Did You Know?

Steam coming out of the nuclear cooling towers is just hot water.

Dry Storage Cask
Dry storage cask

Some canisters are designed to be placed vertically in robust above-ground concrete or steel structures.

Source: U.S. Nuclear Regulatory Commission (Public Domain)

Nuclear Power Plants Produce No Carbon Dioxide

The first sentence is questionable: is nuclear energy really "clean"?

Unlike fossil fuel-fired power plants, nuclear reactors do not produce air pollution or carbon dioxide while operating. However, the processes for mining and refining uranium ore and making reactor fuel require large amounts of energy. Nuclear power plants have large amounts of metal and concrete, which also require large amounts of energy to manufacture. If fossil fuels are used to make the electricity and manufacture the power plant materials, then the emissions from burning those fuels could be associated with the electricity that nuclear power plants generate.

Nuclear Energy Produces Radioactive Waste

The main environmental concerns for nuclear power are radioactive wastes such as uranium mill tailings, spent (used) reactor fuel, and other radioactive wastes. These materials can remain radioactive and dangerous to human health for thousands of years. They are subject to special regulations that govern their handling, transportation, storage, and disposal to protect human health and the environment. The U.S. Nuclear Regulatory Commission regulates the operation of nuclear power plants.

Radioactive wastes are classified as low-level and high-level. The radioactivity in these wastes can range from just above natural background levels, as in mill tailings, to much higher levels, such as in spent reactor fuel or the parts inside a nuclear reactor. The radioactivity of nuclear waste decreases with the passage of time through a process called radioactive decay. The amount of time necessary to decrease the radioactivity of radioactive material to one-half the original level is called the radioactive half-life of the material. Radioactive waste with a short half-life is often stored temporarily before disposal in order to reduce potential radiation doses to workers who handle and transport the waste, as well as to reduce the radiation levels at disposal sites.

By volume, most of the waste related to the nuclear power industry has a relatively low-level of radioactivity. Uranium mill tailings contain the radioactive element radium, which decays to produce radon, a radioactive gas. Most uranium mill tailings are placed near the processing facility or mill where they come from, and are covered with a barrier of a material such as clay to prevent radon from escaping into the atmosphere and then a layer of soil, rocks, or other materials to prevent erosion of the sealing barrier.

The other types of low level radioactive waste are the tools, protective clothing, wiping cloths, and other disposable items that get contaminated with small amounts of radioactive dust or particles at nuclear fuel processing facilities and power plants. These materials are subject to special regulation that govern their handling, storage, and disposal so they will not come in contact with the outside environment.

High-level radioactive waste consists of “irradiated” or used nuclear reactor fuel (i.e., fuel that has been used in a reactor to produce electricity). The used reactor fuel is in a solid form consisting of small fuel pellets in long metal tubes.

Spent Reactor Fuel Storage and Power Plant Decommissioning

Spent reactor fuel assemblies are highly radioactive and must initially be stored in specially designed pools resembling large swimming pools, where water cools the fuel and acts as a radiation shield, or in specially designed dry storage containers. An increasing number of reactor operators now store their older spent fuel in dry storage facilities using special outdoor concrete or steel containers with air cooling. There is currently no permanent disposal facility in the United States for high-level nuclear waste. High-level waste is being stored at nuclear plants.

When a nuclear power plant stops operating, the facility must be decommissioned. This involves safely removing the plant from service and reducing radioactivity to a level that permits other uses of the property. The Nuclear Regulatory Commission has strict rules governing nuclear power plant decommissioning that involve cleanup of radioactively contaminated plant systems and structures, and removal of the radioactive fuel.

Nuclear Reactors and Power Plants Have Complex Safety and Security Features

An uncontrolled nuclear reaction in a nuclear reactor can potentially result in widespread contamination of air and water with radioactivity for hundreds of miles around a reactor. The risk of this happening at nuclear power plants in the United States is considered to be very small due to the diverse and redundant barriers and numerous safety systems at nuclear power plants, the training and skills of the reactor operators, testing and maintenance activities, and the regulatory requirements and oversight of the Nuclear Regulatory Commission. A large area surrounding nuclear power plants is restricted and guarded by armed security teams. U.S. reactors have containment vessels that are designed to withstand extreme weather events and earthquakes.