AMERICAN STATISTICAL ASSOCIATION (ASA)

+ + + + +

COMMITTEE ON ENERGY STATISTICS
MEETING WITH THE
ENERGY INFORMATION ADMINISTRATION (EIA)
$++++$

FRIDAY
APRIL 3, 2009
The meeting convened at 9:00 a.m.
in Room 8E-089 of the James Forrestal
Building, 1000 Independence Avenue, S.W., Washington, D.C., Edward Blair, Chair,
presiding.
COMMITTEE MEMBERS PRESENT:
EDWARD BLAIR, Chair
STEVE BROWN
BARBARA FORSYTH
WALTER HILL

VINCENT IANNACCHIONE
NANCY KIRKENDALL
EDWARD KOKKELENBERG
ISRAEL MELENDEZ
MICHAEL TOMAN
JOHN WEYANT

EIA STAFF PRESENT:
STEPHANIE BROWN, Designated Federal Official, Director, Statistics and Methods Group (SMG)
JAMES BERRY
CAROL JOYCE BLUMBERG
TINA BOWERS
JAKE BOURNAZIAN, SMG

EUGENE BURNS

MICHAEL COLE, Office of Integrated Analysis and Forecasting (OIAF)
JOHN CONTI
BRENDA COX, SRA
RAMESH DANDEKAR, SMG
JOHN PAUL DELEY, OIT
DEAN FENNELL
STAN FREEDMAN
CAROL FRENCH, OOG
ADRIAN GEAGLA, OIAF
LYNN GEISERT
MARK GIELECKI, Office of Coal, Nuclear,
Electricity, and Alternate Fuels (CNEAF)
HOWARD GRUENSPECHT, Deputy Administrator, EIA
LOUISE GUEY-LEE, CNEAF
STEVE HARVEY, Director, Office of Oil and Gas TYLER HODGE, Office of Energy Markets and End

Use (EMEU)
PATRICIA HUTCHINS, CNEAF
ALETHEA JENNINGS
KATIE JOSEPH
FRED JOUTZ
MARY JOYCE, CNEAF
JAMES KENDELL
BOB KING
ANDY KYDES
TOM LECKEY
JANICE LENT, SMG
BARBARA MARINER-VOLPE
PAULA MASON, OOG
FRED MAYES
PRESTON McDOWNEY, SMG
RENEE MILLER

EIA STAFF PRESENT (CONTINUED):

EILEEN O'BRIEN, Consumption Data Management Team, Office of Energy Markets and End Use (EMEU)

KOBI PLATT

ANTHONY RADICH, CNEAF
MICHAEL SCHAAL, OIAF
ELIZABETH SENDICH, OIAF
SCOTT SITZER

HOWARD STONE, CNEAF
GRACE SUTHERLAND, SMG

EDDIE THOMAS
PHILLIP TSENG, SMG
SHAWNA WAUGH
ALEX WOOD

JASON WORRALL
BIN ZHANG, OOG
A-G-E-N-D-A
Open Meeting. 5
Ed Blair, ASA Committee Chair
STEO Oil and Gas Price Forecasts, 6
Tyler Hodge, Office of Energy Markets and End Use (EMEU) EIA
ASA Discussant: Vincent Iannacchione. 28
ASA Discussant: Ed Kokkelenberg 36
Additional Committee Discussion 41
Re-Labeling Price Data as Nominal, 61Jacob Bournazian, SMG, EIA
ASA Discussant: Walter Hill 79
Committee Discussion. 81
Summary of Stakeholders' Issues and Questions: Andy Kydes, Office of Integrated Analysis and Forecasting, EIA. 95
Liquid Fuels Market Methodology: 119ASA Review Coordinator: Michael Toman
Additional Committee Discussion 136
Committee Suggestions for Topics/Dates. 190for the Fall 2009 Meeting
Invitation for Public Comments.
Adjourn the ASA Spring 2009 Meeting with EIA, Ed Blair, ASA Committee Chair

1
2 9:04 a.m.

6 who did not identify themselves yesterday, if
7 you could please come to the microphone and 8 identify yourself? If you were not here

9 yesterday, if you did not already identify
10 yourself.
P-R-O-C-E-E-D-I-N-G-S
DR. BLAIR: Okay. We're going to
call the meeting to order.

To start, anybody in the audience yourself.

MS. BROWN: I hope the microphone is connected today. Kobi, I think that's as good as it gets.

MR. PLATT: I'm Kobi Platt. I work in the Office of Energy Markets and End Use and helped out actually this analysis here with Tyler and Alex.

MS. GEISERT: I'm Lynn Geisert.
I'm a contractor.
MS. BLUMBERG: Carol Blumberg,
Office of Oil and Gas.
MR. KING: Alex King, EMEU.

DR. BLAIR: Any others who have not signed in?

MS. BROWN: Jim.
MR. KENDELL: I'm Jim Kendell.
DR. BLAIR: Our first session this morning is STEO, Oil and Gas Price Forecasts, Tyler Hodge.

MR. HODGE: Okay. Well, thank you. It's good to see everyone this morning. The reason I'm here is to present some of our research and findings on work we've been doing regarding trying to model uncertainty in our Short-Term Energy Outlook or STEO. And I've been working on this project with Kobi Platt and Alex King who are there in the audience.

And the whole reason we've been working on this project is because, as you are all aware, the rapid rise in crude oil prices since 2007 through the first half of last year plus the even faster decline in prices up to the present has really made it difficult for

1 us to kind of fix a good price path for our 2 short-term outlook.

5 it is not unusual to see a day-to-day
6 fluctuation in prices of like five or ten
7 percent. I think even yesterday I think the
8 crude oil price was up eight percent or so.
And even within the last six months, especially within the last six months,

So, you know, based on this heavily volatility in the prices, we've found ourselves recently in our short-term energy outlook discussing or actually highlighting some of the uncertainty around our price forecasts and we've also been trying to address some of the economic and market issues that impact that uncertainty.

But what we're hoping to do, what our goal is is to actually find a way to characterize or quantify that uncertainty so we can better discuss or frame our discussion of our price forecasts, and specifically the uncertainty around our price forecasts.

1
2 we're going to do is we're going to highlight 3 one widely used measure of uncertainty that's

4 frequently cited within other financial
5 analysis reports. And that's the implied
6 volatility of NYMEX options contracts.

21 volatility, they think of past changes -- or
And for this presentation, what

And what we're hoping to do today
is to get some insight and input from the
Committee about the best way to apply this
volatility measure to our STEO forecasts.
So this will start off just sort of discussing in a general way what implied volatility is and also if you guys have any, you know, simple questions or clarification questions, feel free to bring that up. But if you have any more substantial comments, maybe we can just hold that until the end just to make sure I get through the presentation.

But in terms of volatility, you know, generally when people think of changes in prices of a certain asset over

1 time. And it is easy to measure historical
2 volatility by just, you know, taking a day-to-
3 day percentage change in past prices.
4
5 actually use information from current market
6 activity to sort of gauge or measure the
7 expected uncertainty among market
8 participants. And one way to do that is using
9 the implied volatility measure.
And by definition, implied volatility for an options contract is the uncertainty or the risk that is implicit within an options market premium. And, of course, you have to have some sort of assumption of an option pricing model.

And an important point about this
is that the implied volatility measure is a
forward-looking measure of markets uncertainty as opposed to just measuring historical volatility.

So before I get into more detail about the mechanics of implied volatility,

1 I'll just illustrate some other ways that
2 other financial analysts use this measure to
3 represent or illustrate uncertainty. And
4 first we've got a couple of charts here from
5 the Federal Reserve. I'm not exactly sure
6 what official report this is from. I think it
7 is just for internal use.

9 of using this implied volatility measure. On
10 the left, what they do is they just simply
11 track the implied volatility measure over
12 time. In this case for three different
13 futures contracts.

And it is interesting. You can actually see how the volatility has increased from 2007 through the latter part of 2008. So that's one helpful way of actually illustrating uncertainty.

A little bit more complex way of illustrating uncertainty is to actually take the options for a single fixed contract, in this case for the December 2008 contract. And

1 what they do is they plot the futures price
2 over time. And then in addition to that, they
3 create a confidence interval around the
4 futures price that they construct using the
5 implied volatility within the options on those
6 futures contracts.

9 the confidence interval of the range of
10 expected prices is actually converging even
11 though over time the implied volatility has

21 report from Deutsche Bank actually creates a
And you can see, obviously, that as you get closer and closer to December 2008, expected prices is actually converging even gone up.

So there's two important factors impacting the range of expected prices. There is the expected uncertainty around the future price fluctuations and then, of course, as you get closer to the forecast, you usually have a lower or a narrower range of expected prices.

So another financial analysis much more complex use of the implied

1 volatility measure. And with that, they
2 actually create a probability distribution
3 curve around what they expect the prices to
4 be.

6 actually used two different pricing models,
7 the Black-Scholes model in the red and a skew
8 surface model. They're pretty similar. But
9 what are the benefits of presenting implied 10 volatility this way? It gives you a sort of

11 a visual interpretation of different
12 probabilities, prices.

14 area under the curve, they are pretty much 100 15 percent certain that the price will fall

16 between say 25 dollars and 100 dollars. Of 17 course, that's a pretty wide range, you know.

18 There's not very much information in that.
And you can see here that they probabilities, prices.

And you can see that based on the

But from the probability distribution curve, you can actually create even narrower ranges or more customized ranges of different prices. And this is a table that

1 Deutsche Bank presents along with their
2 probability distribution curve.

4 the June 2009 crude oil contract, you know,
5 the prices in June falling below certain
6 levels for prices or falling above certain
7 levels of prices.

9 actually create you own little confidence 10 interval. For example, let's see the

11 probability that prices will be below 80 21 of -- or 63 percent level of confidence. So,

So that's a narrower range. But we're still talking about a 67 percent level you know, on a statistical basis, that

1 obviously is a pretty low level of confidence.
2 But at least it illustrates the uncertainty
3 around their price forecasts for the future 4 price levels here.

6 start talking about some of the fundamental
7 basics behind options and the implied
8 volatility level. And we'll start off just
9 introducing some basic options terms for those 10 who are unfamiliar with them.

20 has two important terms within the contract. 21 First there's the strike price, which is the

There's two basic types of options that can be traded in the market. A call option gives the holder of the option the right to buy an asset at some time in the future but note, it's not an obligation to buy in the future. And on the other hand, a put option gives the holder the right to sell the asset in the future.

And each specific options contract agreed-upon price that the parties agree

1 either to purchase, in the case of a call
2 option, or sell the asset in the future.

4 important terms of the contract is the
5 expiration date. And that's the last date
6 that the option can be exercised by the holder
7 or the date that the settlement takes place if
8 they don't actually trade before the
9 expiration date.

21 contract. And, you know, accurately modeling

1 options has really kind of fascinated
2 financial economists over the last couple 3 generations.

And one of the most important or
5 well-known options models was formed by two
6 economists. One was Myron Scholes and Fischer
7 Black. This was back in the 1970s. And the
8 mathematics behind this is extremely
9 complicated and I won't pretend to understand
10 the derivation of this model.

First, you can see that the model is a random function of certain variables, specifically, I guess, these two types of variables here, the option premium, and the current price of the actual underlying asset,

1 those variables you can actually directly
2 observe within the market.

4 here, the strike price of the option and the
5 time to expiration are defined within the
6 terms of the contract itself.
And then if you make an assumption
8 about what the risk-free interest rate is,
9 usually like a 30-day Treasury bill rate, the 10 only other parameter variable that you don't

11 know in this model is the sigma value. And 12 that's what we call the implied volatility of 13 the option. You can actually solve this model 14 for sigma to determine an implied volatility.

21 distributed. That's an important assumption
And one other thing I should note about this is that you might be able to tell from some of the functional form of the model that what they assume is that price levels are logged normally distributed or in other words, the daily rate of return is normally behind this model.

21 to the futures price. price.

And also note that you can
actually calculate implied volatility measures for any of the strike price levels for a given option, like for a June contract, you know, there's maybe 30 or 40 different possible options contracts for each specific strike

And for our purposes, what we're going to do is we're going to just focus on the implied volatility for the options contract whose strike price is closest to the futures price for that day. The volatilities, you know, there can be different --
theoretically they should be the same for all levels of strike prices but in practice, there is some difference between the different volatilities and different strike prices.

But we're just going to focus on what is called the at-the-money option, which is where the strike price is equal or closest

So based on that Black-Scholes

1 model, there's a couple different possible
2 methods we could actually use the implied
3 volatility measure from that model to
4 illustrate uncertainty. We could either
5 create a confidence interval for the futures
6 prices in any given month. Or we could create
7 a probability distribution function like
8 Deutsche Bank does.
You know fortunately, you know, we don't have to worry too much about the mathematics behind implied volatility.

Fortunately there's a lot of organizations that actually calculate those values for you.

We've collected a big database of implied volatilities from the CME Group, which is affiliated with NYMEX. And we've been able to obtain some spreadsheets also from the Federal Reserve and we were able to uncover this function for calculating confidence intervals around the expected price in any given month.

Unfortunately, we don't totally

1 understand the mechanics behind that. Carol
2 Blumberg, she was nice enough to help us
3 deconstruct that a bit so we could see some of
4 the assumptions behind this confidence
5 interval.

9 function of the current price, the implied

11 prices.

But at least you can see that the confidence interval is a function of these four different variables. It's obviously a uncertainty or volatility around those futures

It's a function of the time to expiration. And, of course, you have to set up an assumed level of confidence.

And similarly, we can use the futures price and the implied volatility, along with the assumption that the prices are log normally distributed, to create an entire futures price probability distribution curve.

And one thing to keep in mind for either the confidence level or the probability distribution function curve is that these are

1 all derived from NYMEX prices and NYMEX
2 trading.

4 the STEO uncertainty. But at least we can
5 show where the STEO forecast falls either
6 within the confidence interval or on the
7 probability distribution curve. And with the
8 probability distribution curve, we can also
9 possibly compare how the uncertainty has 10 changed from month to month.

21 And you can see that the uncertainty actually
They don't necessarily represent within the confide interval or on the

First, I'll just show you an
illustration of an example of how we applied the implied volatility measure for futures prices on March 6th to the futures price curve on that date. And March 6th was actually the date that we last finalized our most recent STEO.

But you can see here that even for NYMEX futures prices, there is a wide range of possible expectations for future price levels. gets wider and wider the farther out you go

1 through the end of 2010.

And what we could do is we could actually just put a log -- or insert our STEO price forecast to show how our price forecast compares to the NYMEX futures price curve. And one thing I should note that in the later months, it looks like our price forecasts for March actually pretty much coincided with what the NYMEX futures price curve was. But I just want to warn you that that is usually not the case because the expectations that we have in deriving our STEO price forecasts are almost always different from what the NYMEX market is expecting.

For example, in these early
months, we're generally using -- or we are using macroeconomic forecasts for our model that are from Global Insight. And it is generally accepted that as of right now, Global Insight is considered one of the most pessimistic macroeconomic forecasts.

But that's what we've

1 traditionally been using. So that's one
2 explanation why our current price forecast is
3 below the NYMEX market expectations. So one
4 benefit of this chart is that it allows the
5 STEO reader to sort of compare how our price
6 forecast compares to the NYMEX price
7 expectations. And it also shows some of the
8 uncertainty around those prices.

11 we could actually present those intervals 12 numerically in a table. One benefit of this, 21 whatever information they are looking for in

So in addition to just graphing
confidence intervals around the price curve, obviously, is that you can see, you know, values behind the various ranges of possible prices in the future.

And if we decide to go ahead and decide to publish this information, we could probably set up some sort of dynamic web page similar to our STEO query system where the user could actually customize the table to get a simple manner. That's a bit more difficult

1 to do graphically.

3 confidence interval, we could also just plot 4 a probability distribution curve for any given

5 month to show the full spread, sort of 6 illustrate the uncertainty around both the

7 NYMEX futures price and our STEO price
8 forecasts.
Let's see. Okay. Besides the

The 45.52 is the futures price back on March 6th and the 40 dollars is the June price that we were forecasting in our latest STEO.

It's hard to see but you can see the gray lines here illustrate a 67 percent confidence interval, which is just a general one standard deviation confidence interval. And you can see that our STEO actually falls pretty close to the lower bound on that confidence interval around the NYMEX futures price.

So I just want to show this graph to show another way of possibly comparing the

1 uncertainty from month to month.

5 probability distribution curve for the March
6 contract calculated back in early February.
7 And then the blue shows the probability
8 distribution curve for April prices based on
9 options contracts from March 6th.

11 shape of the curve that the implied volatility
These two curves show a one month ahead futures price probability distribution curves. Specifically, in the red it shows the

And you can see that from the of the April curve, the blue curve, is higher than it is for the March contract. And the shape is less peaked, I guess. It is more spread out. I guess you could say in statistical terms, it's more leptokurtic, I think.

But you can see just based on how spread out it is compared to the red curve, that there is more uncertainty in April than there was in March or in March compared to February -- I'm sorry. So that's just one

1 possible way we could actually show the
2 comparison of uncertainty from month to month.
And let's see here, what we could
4 do is we could also just create a table from
5 those probability distribution curves to
6 illustrate numerically the different
7 probabilities of various ranges of prices.
8 One benefit of going with this approach is
9 that it allows the reader to create their own 10 levels of confidence.

For example, if, you know, they
wanted a 99 -- a 98 percent confidence interval, they could say that prices are likely to be between 30 and 70 dollars. But personally, that doesn't offer much information for me. But you can create more narrow bands of ranges, if you want, using the various probabilities.

And I show, of course, how the futures price in our STEO forecasts fall within that table. It is probably easier to illustrate that graphically than in a table.

21 over to questions and Committee discussion.
So I just want to wrap up here by just asking the Committee about a few questions regarding our approach to modeling uncertainty here.

The first one, as I mentioned, what we're doing is we're calculating the confidence intervals and the probability distribution curves based purely on NYMEX data. And I guess we'd like to know whether it's really appropriate to compare EIA STEO forecasts with information about uncertainty in the NYMEX future options market.

And if so, do confidence intervals or the probability distribution charts, which of those is probably the best way to actually illustrate the uncertainty? And if, you know, is it better to actually present the uncertainty information graphically? Or in tables? Or in some combination of the two?

So with that, I guess I'll turn it

DR. BLAIR: Our first discussant

1 is Vince Iannacchione.

21 volatility I equate with variance, of course,
22 and you have a sigma there in one of your

1 formulas. And to go right to your first
2 question there, STEO and the NYMEX, is it
3 appropriate? Well, I think it really --
4 certainly it is appropriate. And I know you
5 want to look into the future for the forecast
6 not in the past.

8 have to be measuring how did it do in the past
9 because if you can't rely at all on the past,
10 then I don't see how you can predict in the
11 future.

21 One of your graphics had -- I just did a
Unfortunately, this is a very volatile time. And I think -- I notice that you have 67 percent confidence intervals, which aren't very confident frankly.

MR. HODGE: Yes, exactly, it just
illustrated the uncertainty.
MR. IANNACCHIONE: It's one
standard error. And that means -- and even at that, the confidence intervals were very wide. little looking at one of them there, the

1 dollars per barrel sitting at 50 dollars a
2 barrel, plus or minus about 20.

5 that? I mean at some point, you may -- the
6 inherent volatility may be such that you
7 really have to say we can't give you a very
8 accurate estimate.

21 I think ideally you'd want the forecasts
MR. HODGE: Yes.
MR. IANNACCHIONE: How useful is

MR. HODGE: Yes, that's true. We're kind of hoping in addition to this, we can kind of compare how the volatility has changed over time. So even though we might have wide bands, maybe you'll have less wide bands next month or something.

MR. IANNACCHIONE: Well, I think we're all hoping for less wide bands --

MR. HODGE: Exactly.
MR. IANNACCHIONE: -- in the
future. That's for sure.
One thing that occurred to me that internally based on here's what was going on

1 in the prior months on the STEO forecasts. So
2 we're going to kind of base it -- the forecast 3 just on that.

4
5 some replication methods that statisticians
6 use to estimate variance. In particular,
7 there are jackknife variance estimation
8 methods where you could basically if you have
9 these for weeks or even daily, if you have 10 these measures, you could delete one and see

11 what the forecast is without that week. And

21 variances kind of difficult. And I get the
And I wonder if you could consider then delete another one. And just kind of randomly bounce around and see how much that deletion effects the volatility.

That's a --
MR. HODGE: Okay.
MR. IANNACCHIONE: -- pretty
effective technique that survey statisticians use because there's complex sample design to generate -- it makes the estimation of feeling that you're kind of in the same boat

1 here.

4 suggestion. guess.

MR. HODGE: Exactly.
MR. IANNACCHIONE: So that's one

On your second point, do confidence intervals and/or PDF charts adequately illustrate uncertainty, well the short answer is yes. I think they do.

You may be saying well, which one should we go with. And I think that depends on the audience. Who you are trying to communicate this information to.

At some level, confidence intervals are more direct. The real value is somewhere between that lower bound and the upper bound. Or at least we're 95 confident or we're 67 percent confident. Whatever it is, the reader can tap right into that.

MR. HODGE: It's more intuitive, I

MR. IANNACCHIONE: It's very intuitive, yes. And you're kind of setting

1 the confidence level.

2

MR. HODGE: Yes.
MR. IANNACCHIONE: I mean there's -- with the PDFs, you had mentioned that they enable custom confidence levels to be made. And they do. And that one, PDFs might be more difficult to understand because the reader can go in and may be confused. Or they're not really setting the confidence level.

I mean it is there. But they may not fully appreciate it where with -- if you set it, then that's what it is. Now obviously you could have, just on this graphic here, you could have different levels. That could be a 67 percent, a 95 percent would probably be maybe --

MR. HODGE: Yes, off the scale.
MR. IANNACCHIONE: -- off the
scale there but still you could have different gradations or shades --

MR. HODGE: Well, that's true.
MR. IANNACCHIONE: -- to

1 illustrate how the confidence interval expands
2 or contracts depending on what level of
3 confidence you have.

4
So as far as the third question,
5 should it be graphics or tables, I think in
6 general all of us would probably say give me
7 a graphic. I can deal with a picture a lot
8 easier.
With something like this,
10 especially with a confidence interval
11 approach, I think you could have tables for
12 someone who wants some more exact measures.
13 They could be in a supplement or something
14 like this. But that's where your main source
15 of communication would be, right with the 16 graphics.

18 there's no reason why, by the way, you can't
19 display both, I mean you could have,
20 especially on a website where for users who
21 want to look at PDFs, they could, it seemed
22 like in the curves, those bell-shaped curves,

1 I found myself looking at the labels.

6 ordinal-type scale. graphical PDF like that? understanding.

MR. HODGE: Okay.
MR. IANNACCHIONE: So maybe the tables would be more appropriate there. Or you could get creative and maybe a graphics artist could help display that in a graphical way as well. But it seemed to me that the tables work better for the PDF.

MR. HODGE: You mean there's
probably more room for misinterpretation on a

MR. IANNACCHIONE: Well, I think misinterpretation or just lack of

MR. HODGE: Oh, okay.
MR. IANNACCHIONE: You know -and, again, this all kind of gets back to who

1 is your audience here.

21 Vince has just outlined. want to avoid that. well, thanks. volatility. questions than answers. I've already

MR. HODGE: Yes, exactly.
MR. IANNACCHIONE: If the people
in this room are your audience, then yes, you could go more upscale as far as the technical level goes. But if you are putting it out on a website for general consumption, you may

MR. HODGE: Yes, exactly. Okay,

DR. BLAIR: Ed Kokkelenberg?
MR. KOKKELENBERG: I want to compliment Tyler and company. They've done a lot of work here. And they really poked around in this issue of trying to forecast

My comments probably raise more communicated rough answers to Tyler by e-mail and they were pretty consistent with what

But here's some comments for what

1 they're worth. First of all, the real issue
2 is can you get a precise forecast of the point
3 value. I mean if you could do that, you could

6 valuable, the variance, when the time period
7 for which you are forecasting is rather wide.
8 For example, you're forecasting for 2010

21 his tux sales, which are highly seasonal -- or
MR. HODGE: Yes.
MR. KOKKELENBERG: -- and that price may vary within that 2010. And that's where the second moment becomes important. So you want to know the limits of this price.

I teach -- when I teach
forecasting, I often use an example called Mr. Tux. Mr. Tux has got a tuxedo rental place. He's thinking of building a second operation on the other side of town. And he has to sign a five-year lease.

So he calculates the volatility of tux rentals. And so I ask students well, why

1 do you care about the volatility. He's got a
2 point estimate for each year.

4 while. And the brighter ones say because he
5 has a monthly lease payment he has to make.
6 And he wants to be able to cover that in the 7 worst month of his sales, right? Right.

9 audience. If somebody really is taking market
10 positions in this for contracts that are
11 futures contracts, they are going to want to
12 know fairly precisely but they want to know 13 what kind of volatility that they can expect 14 within that time period. 21 depends on your audience. Now the estimates

But if you're talking about longrun forecasts for people who are considering building power plants or refineries 20 years from now or 10 years from now, that volatility may not be quite as important. Having said all of that, it really of the volatility are best made if the time

1 series is stationary. And I don't think the
2 time series is stationary at all in terms of
3 co-variants or main. Yet the past is the only
4 thing you have got to work with as you've
5 said. And so you've got that. And if you
6 don't have -- if that isn't going to help you
7 forecast, then you're totally out at sea. question. I like the idea. But I'm a little concerned that what you are going to do is identify a few time periods in which that price really jumped around. And then you're going to have to answer the question should I eliminate that or leave it in?

And as somebody on this Committee years ago said, you should cherish those observations because they fall outside of your model. That means your model isn't able to handle that. And you should be at least aware of that when you're using that model.
And so you're going to come to that question if you use jackknife. But I

1 like the idea to help identify problems. 6 expiration date on the contract because their

7 uncertainty collapses to a point estimate 8 ultimately. Now the futures contract volatility represents only the market players' uncertainty. And as you notice, that got narrow when you got toward the date, the

MR. HODGE: Yes.
MR. KOKKELENBERG: But you're standing there looking at the point and looking into the future. So that's why you get these expanding bands of confidence. And eventually after you get a few periods out, a time series thing becomes mechanical.

And so those bands don't bounce
around nor do your point estimates bounce around. They're just kind of projections of uncertainty that lies within the model itself -- the statistics of the model. As you get more observations, the variance grows.

MR. HODGE: I think, you know, the

1 confidence intervals are based both on the
2 volatility and the timed expiration. So --

5 offsetting the other. So I think that's why
6 it just sort of can get constant after a
7 while. MR. KOKKELENBERG: Right. MR. HODGE: -- you know, one is MR. KOKKELENBERG: Yes, but when you make the forecast, your comb expands as does the Bank of England's or anybody who is doing these forecasts because the volatility, the second moment essentially goes up --

MR. HODGE: Yes.
MR. KOKKELENBERG: -- as you go
off into the future. And it makes intuitive sense because you're extending yourself beyond your experience.

MR. HODGE: Yes.
MR. KOKKELENBERG: Okay. The question I have is would you propose that EIA do something like your third chart, which was that one -- I thought I drank all that coffee

1 -- your Figure One, the probability
2 distribution. Go back a few more -- keep
3 going -- keep going. No, you're going the
4 other way. Reverse yourself. Continue.
MR. HODGE: Is it a probability
6 distribution?

9 probability density function that the Bank of 10 England had or whoever this was -- Deutsche

11 Bank. That, yes.

21 what the range of uncertainty is. And that
Now would you propose that the EIA do that? And here's the problem I have with that, I think that's great. The Deutsche Bank and British Petroleum, and Enron, and formerly Merrill Lynch -- I don't know who does this now -- used to do this repetitively. They may have done this, with the computing capacity they have, ten times an hour to help their market players understand implies a fleetness of foot that is rather

1 daunting for an agency that takes two and a
2 half years to get a form change.

7 time period. this every month. assumptions there.
MR. HODGE: Yes, we're just
talking about monthly forecasts.
MR. IANNACCHIONE: I know, I know.
MR. HODGE: And that's a short

MR. KOKKELENBERG: Yes, for the short-term energy outlook, this might not be a bad thing to do though because you can do

MR. HODGE: Yes.
MR. KOKKELENBERG: Now the other thing is that using Black -- another point -totally different point -- Black Scholes implies that the market has got it right.

MR. HODGE: Yes, there's a lot of

MR. KOKKELENBERG: And that is questionable for 2008 but it may have been good for almost every other time, right? And perhaps Black-Scholes is more important over

1 the long run rather than a very short run
2 thing. Over a ten-year span or a 20-year 3 span, Black-Scholes works.

21 good crunch into the problem.
than answers. But I really appreciate what you did here. And I thought it was a real

MR. HODGE: Okay.

So as I say, I have more questions

1
2 we'll go to questions and comments.

5 comments. First of all, for those of you who
6 are new to the Committee, I thought it would
7 be kind of useful to share but I think as the 8 genesis of this, which is that, you know, six 9 months ago, Congress was sort of demanding -or a group of five Senators was kind of demanding to know why could EIA get its shortterm energy outlooks and long-term energy outlooks right.

So I think part of the response is to really try to explain how much uncertainty there is in any kind of outlook, even in a market outlook.

MR. HODGE: Yes, I think they were specifically pointing to, I think, a forecast by Goldman Sachs. But the problem is Goldman Sachs projects a range not an expected level. So obviously with a range --

2 Sachs also did a super-spiked outlook. And
3 what they do, they create these funny
4 scenarios like super-spike outlooks and stuff
5 like that. And they say well this only has a
6 one percent probability of happening. But if 7 it happens then they look really smart or

8 something.

21 sort of look at in this chart is I would
MR. BROWN: Well, and Goldman

Could you go forward a couple of charts?

MR. HODGE: Sure.
MR. BROWN: It's the one that has your forecast in with -- that one.

MR. HODGE: Okay.
MR. BROWN: I would have, you know, let's say I was kind of running through the STEO and I came to this chart online. And I didn't have a big text to tell me what I'm supposed to think here.

And I would really -- what I would really say well, how does the STEO compare

1 with the NYMEX is what I would get out of
2 this. I wouldn't get the sort of distribution
3 unless you really did something to emphasize
4 the distribution. And I would --

6 background kind of the ranges.

21 you want to accomplish.

1 about viewing it that way. But I can see what
2 you're saying.

4 that's how I look at it as a sort of like --
5 just looking at the picture, I have no
6 context. That's the immediate thing that
7 jumps out to me is oh, it's not really
8 statistically significantly different than the
9 NYMEX.

21 it just the opposite, that they're higher than 22 us, you know.

1
2 I mean it's sort of -- you know, it's sort of
3 you're going to be explaining why you are
4 different from the market if you have a chart
5 like this. And is that what you want to do?

9 highlight the differences between the NYMEX 10 and the STEO. I just thought that since we're

11 presenting this chart, there might be
12 questions.
MR. BROWN: Well, but either way,
,
don't have the answer to that.
MR. HODGE: Yes, we usually don't

MR. BROWN: No, but if you have this chart on the STEO page --

MR. HODGE: Yes.
MR. BROWN: -- in the EIA website, people are going to be asking this question.

MR. HODGE: Yes, we would definitely need to have a lot of explanation behind it.

MR. BROWN: And would you want to answer that question? You may not want to

1 answer that question. In which case you may
2 not want this chart.

21 accomplish. one before?

MR. IANNACCHIONE: Wouldn't it be the next one that you would have on the website? The one after?

MR. HODGE: The -- oh, wait -- the

MR. BROWN: The one before it.
MR. HODGE: Yes, that? Yes, that's another possible way to go. We actually had a workshop about a month ago called Relationship Between Financial and Physical Markets. And we kind of went over this presentation. And it seemed like a lot of the audience seemed to prefer, you know, showing the two together.

So I don't know -- of course, like you said, it depends on who your audience is.

MR. BROWN: Well, it depends on who your audience is and what you're trying to

MR. HODGE: Yes.

1
2 audience, kind of from the point of view of
3 the questions I'm asking right now, are the
4 five Senators in some sense.

6 there's -8 them off your back? And in which case I think

9 you'd want to have the 95 percent confidence 10 band up there.

21 actually been since the STEO itself was
MR. BROWN: I'm assuming your

MR. HODGE: Yes, I mean obviously

MR. BROWN: Do you want to get band up there.

MR. HODGE: Maybe just to be safe.
MR. BROWN: To be safe and well, to have it shaded a different color something like that.

But I do have one question. This is really going far afield about the STEO now, which is in general, it is very hard to outperform auto-regressive models. And you're STEO model is more complex than that.

And I'm wondering how long it's examined to see how well it performs versus an

1 auto-regressive model. 3 are confidence bands on the STEO forecast

4 itself, constructed from the statistics of the 5 STEO.

7 important point I should mention is that we
8 don't -- the WTI crude oil prices, one of the
9 only variables that we don't explicitly model 10 in our STEO outlook -- our STEO we formally

11 model in our model, we developed that forecast 12 through, you know, a consensus of opinions in

And I'm also wondering if there

MR. HODGE: Well, that's an our meetings while discussing, of course, all the variables and stuff.

So -- but obviously if we had an econometric equation for WTI that performed reasonably well, you know, we could develop forecast errors from that equation. I think that that would probably be the ideal way to go.

But using the NYMEX futures also allows us to sort of look forward instead of

1 just sort of looking back at how well we've
2 performed. So but I mean they're both valid 3 ways to, you know, look at forecasts.

4
5 a -- there's some judgment in there as well as
6 some kind of formal model.

9 judgment involved. Of course, we look at all
10 the factors like, you know, the international
11 supply balance and macroeconomic factors and

21 and Mike, and Barb, were you going to say
22 something?
DR. BLAIR: We're a couple of
minutes over time but we'll borrow a couple of minutes from the next section to pick up John,

2 all these great comments, I do think that this 3 is a very important area to push further. And

4 you've made a lot of progress on it.

6 There's a lot of assumptions involved in it.
7 You should kind of -- even without going
8 through the derivation, which isn't actually
9 that hard, you should go through those just to

21 regard. So there's just a little bit of
MR. WEYANT: Okay. To catch up on

I used to teach Black-Scholes. familiarize yourself with it because if you're going to use that methodology, people will start asking you about, you know, zero transaction costs.

And the one I think is
particularly good and relates to something Steve kind of got into is that has been a lot of work on this stochastic properties that best fit energy products, natural gas, electricity, gasoline, crude oil. I think Steve has actually done some work in that literature out there.

1
2 modify the basic set up a little bit in Black-
3 Scholes. And the people who do that, do that
4 second step as well. 6 important if you're going to practice -- to

7 get across that there is variance and it's
8 kind of in the real world -- it's not
9 stationary. 19 NYMEX. You didn't give me any other way to

20 think about uncertainty. I'm trying to 21 actually, you know, manage stockholder funds.

22
And, therefore you might want to Secondly on this, I think it is

So every time I hear an industry person say we need certainty in future carbon prices, oil prices, I just go oh, my God, if I was in the IT industry and I tried to do that 20 years ago, people would have put me in the loony bin.

So my interpretation of this,
which may be just totally idiosyncratic is, I say well, your mean projection is kind of like I'm going to actually graft on that as the

1 uncertainty band around the mean forecast.

6 know what the current futures price is?

21 these, you know, two-thirds of the time they
So this gives me at least a rough idea how likely it is that it is off and how far that being off might be.

MR. WEYANT: By the way, do you

MR. HODGE: I think it was like 52 dollars.

MR. WEYANT: So it's definitely over 50 now. So that comes to the last thing. I think Ed clicked this in my head. I think it would be useful because you have this short time horizon, kind of monthly things, if you buy my argument or have some way of doing uncertainty to kind of collect that data so that the decision theory guys have this really neat concept called calibrated experts.

So if I was saying okay, EIA, you're not responsible for all the uncertainty in the world. But if you're going to show me should be in there, I'm going to collect these

1 for two or three years and say two-thirds of
2 the time, were you within that one standard
3 deviation or whatever the number is?

5 build some credibility as you go to have you 6 kind of be -21 means but these ranges. And that, if you

I think that -- to me, that would

MR. HODGE: That's true.
MR. WEYANT: -- so you're not responsible for solving the problem of massive uncertainty in the world like who is going to be the next President or who is going to be in the next Congress, et cetera.

MR. HODGE: Yes, we have the past data to reconstruct, you know, these bands historically and see how well we did. So that's definitely a good idea.

MR. WEYANT: Yes, that on this kind of big number crunching computer thing is something, you know, you're kind of already doing that. This is just not just doing the don't want to buy into this being a measure of

1 the uncertainty in your conception of this,
2 you could at least critique the use of this
3 methodology which other people have tried to
4 use. But kind of using the NYMEX kind of
5 standard Black-Scholes options, could spread
6 future price, just as you've done it. And say
7 this is the methodology we're putting forward
8 here and it is based on somebody else's model
9 and somebody else's thinking. But we either
10 have more or less confidence over time based
11 on how the numbers turn out over time.

12

21 requirements, that would be an example of
DR. BLAIR: Mike, are you
withdrawing your comment?
MR. WEYANT: I'm just going to make a quick footnote because it is about what John said but it was something very specific.

I would assume there's a -- I don't know if this is transactions cost or something -- that when the folks that purportedly regulate futures transactions raise margin something that, you know, may have changed

1 over the last few years.

5 one more thing to think about. The
6 institutional backdrop is not always being 6 institutional
7

And I would assume that before and
after things like that, there could be differences in price behavior. So it would be

MR. HODGE: That's true.
DR. BLAIR: And Barb?
MS. FORSYTH: The point that I would make is only that you can also encode expert judgments. So you don't have to rely just on historical data.

But you can formally encode expert judgments to measure their uncertainty values and explicitly reflect them so that you could get it not just from the historical data but, in fact, you could assess the uncertainty about the historical data from experts and map those probabilities --

MR. HODGE: Okay.
MS. FORSYTH: -- as well. So --

1
2 moving towards a full update where you start 3 with priors and --

5 that but yes.
MR. WEYANT: So this is almost

MS. FORSYTH: I didn't want to say

DR. BLAIR: And Ed, if you don't mind, I'm going to ask that we go offline with your comments so we can finish the session and move on to the next one because we're over time.

MR. KOKKELENBERG: No, I only have about a two sentence comment. So I would prefer to offer that.

DR. BLAIR: Okay, go ahead.
MR. KOKKELENBERG: And be online.
And the online comment is that somewhat similar to what they're saying but for future forecasting you really should employ a suite of models, not just one model. That's it. DR. BLAIR: Okay. Thank you. MR. HODGE: Okay, I appreciate all the comments. Thanks again.

1

5 again.

MS. BROWN: We're not done.
DR. BLAIR: Oh, I'm sorry. Was there a comment from the audience? I'm sorry.

MR. HODGE: Okay. Well, thanks

DR. BLAIR: Our next session, ReLabeling Price Data as Nominal, Jake Bournazian.

MR. BOURNAZIAN: Thank you, Ed.
Good morning, Committee members and EIA staff and the audience. Today's presentation is about how our agency delivers price data to our customers.

Now we release a great deal of price information. In fact, in just the area of petroleum and natural gas alone, we release approximately 16,000 different price data series from our website.

When I add in electric power and coal and the other fuel groups, we're releasing approximately 20,000 different price data series from that website. So there's a

1 lot of quantity behind this information.

3 quantity and that's popularity because price
4 statistics are always unique more than any
5 other because it is that unique moment when
6 the supply and demand curve intersect and we
7 have a point of measurement where the market
8 is cleared -- for a day, a week, a month, a
9 year, they cleared on that measurement.

11 are so popular. It's the best way to measure 12 market conditions.

21 that this is always going to be with us,
But there's something else besides quantity and that's popularity because price have a point of measurement where the market

And that's why price statistics market conditions.

And it shows back on our price data because two surveys, retail motor gasoline, and retail diesel fuel price survey soak up about ten percent of the traffic from our website. We have two-and-a-half million visits per month on our website and these two surveys take up about ten percent of that.

So it is something to keep in mind right? Price statistics will always be very

1 popular -- tomorrow when you wake up, ten
2 years from now -- and we have a great deal of
3 information.

4

5 is going to be a consideration that kind of
6 overarches this entire presentation and how we
7 do that. Now you see the word nominal and
8 let's get on the same page of what that means
9 because the word nominal means different
10 things depending on your educational
11 background.

21 economists today. And so nominal and real, in
22
If you have a scientific
engineering background, I'd like you to leave
it at the door because nominal for those technical people means a value that approximates the actual. So if I say I have a truckload of dimensional lumber out back versus I have a truckload of two by fours. One is real, the other is nominal.

Now we're all going to be the context that I'm speaking, refers to

1 purchasing power.

And I'm going to keep it really
simple just for discussion purposes. I'm sure you could have a more sophisticated definition but when I'm talking about real and nominal distinction, what I'm referring to is if the rate of change in the money supply does not equal the rate of change of goods and services in the economy, then the purchasing power in the future time period may not be the same as the purchasing power in the current. And the same thing applies to the past.

Now let's take a look at what we do here at the agency. And what I want you to pay attention to is the bread crumbs in the upper left-hand corner.

We release real price information and we do have a pretty clear navigational path -- home page, forecast and analysis, short-term energy outlook, real petroleum prices. So a user will find it -- and, again, we're managing traffic when we're designing

1 and releasing this price information.

4 crude oil, one of my favorite graphs on this
5 page is gasoline. A couple reasons I like
6 this graph because it does show that your
7 grandparents 90 years ago paid through the
8 nose for gasoline, just like you and I are
9 doing today. So not a lot has changed in 90 10 years.

And when you're at this page, you'll see graphs on diesel fuel, heating oil,

Second usefulness for this graph is it does show what the current practices are here at the agency. A nominal referencing of real price series graph.

Let me describe that. What our current business practice is is that if you show real price data reference the reported values as nominal. And if you're just showing your actual reported prices, you don't use the word nominal. Pretty much a general practice

But no story would be interesting

1 this morning if we didn't have any exceptions.
2 And we have some exceptions. I'm not just
3 singling out this one publication. Last
4 summer you may remember that crude oil went up
5 to about 140 dollars a barrel.

9 terms? They want to look at purchasing power.
10 It happens in other fuel groups, too.
Well, the manager of this
publication changed all the price tables and labeled them as nominal retail prices. And very knowledgeable manager, very experienced -

- in fact they won the EIA Administrators

Award for Employee of the Year just a couple of days ago.

So what were they thinking?
19 Because they didn't get the award for doing
20 this re-labeling. Now they're just doing
21 their job as a manager, right? Because
22
customers call in and they're asking. Is that

1 nominal prices that I see up there on your
2 website?

4 hear that same question four or five times, do
5 you need to hear it six, seven, eight, nine?
6 No, you're going to solve the problem. And
7 this manager did. He solved the problem and
8 changed the titles on that section of the pub. 10 other examples. About five years ago, 11 electric prices spiked. The Midwest and 12 northeast lost power. 21 And so any time you see a supply disruption,

Now if you're a manager and you nged Now I told you, I have plenty of

Well, the manager of the Electric Power Monthly was getting questions, once again, from customers. Is that nominal? Now they took a different approach. They changed the text in the footnote to read that monetary values shown are nominal.

So we live in an economy that basically is balancing by bringing in imports. if we have a hurricane four or five months

1 from now, any kind of supply disruption most
2 likely will yield price spikes.

4 for that in the future regardless of what fuel
5 group, except for maybe liquid petroleum
6 fuels, which we'll hear about shortly, they
7 don't need imports.

8

9 inconsistency in an agency, it is always nice
10 to go look at our cousins and say what's going
11 on with the other federal statistical
12 agencies? How are they handling the issue?
Now whenever you see an

Now I picked these agencies
because they are the only ones that release business information just like we do. And so at the Bureau of Economic Analysis, they don't use the word nominal. They use the word current.

And so when they release
information on disposable income, you get to see the flavors as current disposable income and changed. Now because they're not using

1 nominal, I think BEA believes that engineers
2 outnumber economists in our society. And they 3 may be right.

But they come back when they're
5 releasing real personal -- personal disposable
6 income, they'll call it current and real. So
7 real does come back when we're talking about
8 personal disposable income. Now we're on the
9 same page. We're talking about purchasing
10 power because that's what we're trying to
11 measure.

21 nominal when you are releasing real price
Bureau of Labor Statistics
releases a lot of price data, price series.
They only use the word nominal when releasing real price data. And they don't use it -- if you download any data from BLS, you won't see the word nominal.

And same with National
Agricultural Statistics Service. It follows the same general pattern. Only use the word data.

2 release more sales and revenue data though 3 rather than prices.

5 this website fedstats.gov? Okay. I think I
6 see some heads nodding. But what I want to
7 see a show of hands on is who has actually
8 downloaded any energy data from fedstats.gov?
9 Raise your hand. Okay. I stumped everybody 10 on that question. It's like nobody raised 11 their hand there.

Same with the Census Bureau. They

Now has everyone here heard of
\qquad

1 diesel prices, you go right to the gasoline
2 and diesel level two pages on our website.
3 And that's where you will find the retail
4 price data.

6 monthly, all sources, direct link to the
7 Monthly Energy Review. Wait a second. Wasn't
8 that one of the anomalies I was talking about
9 on our current business practice? So
10 depending on where the user has been or is
11 going, they're going to get the same product
12 but labeled differently.

21 data as nominal retail prices without any real
So what we have here is within our
agency and also vis-p-vis other federal
agencies. Because I told you, the Bureau of Labor Statistics releases price information. They release retail motor gasoline prices on 20 major cities.

We only release it for ten. But within our website, we now are showing price data going along with that.

5 fuel groups. Okay. So I'll have state energy
6 profiles, state energy database. 21 bricks loosen in the wall, we're going to see Now another huge concept underlying the information we release is data integration. And we have more and more coming out is information products that draw across

I think Howard Gruenspecht mentioned the state data initiatives. So now I'm grabbing coal, petroleum, natural gas data and I want it all together. Well that -fundamentally in your file specification, you need standardization if you're pulling in data from different fuel groups because what they're doing now is you're taking data from production environments that is being released on the web and you're repackaging it.

And when you repackage it, it is important to pay attention to what label you're using. Once again, once the whack a mole game is getting to be played and the some charts and tables popping up once in a

1 while in info products that say hey, I have
2 nominal prices here on this graph.

4 sometimes our file formatting can make a
5 difference. I'll refer to that later.

8 not all the related issues. I just picked off
9 a few, some of the more interesting ones.

11 nominal spot price? Once again, no hands out
12 there. Same here. I've never used that

File format matter, well in the Natural Gas Monthly, if you click on a table and you click on a PDF file, the label in the PDF file says Nominal Retail Prices.

But if I click on an html file, or an xls file for this same exact table, it

1 doesn't say nominal. Hmm, easy fix. Just
2 change all the other file formats to show
3 nominal, right? We want to be consistent one
4 way or the other.
And, of course, I gave you a
6 couple of anecdotes where one project manager
7 re-labeled the titles. And no customers
8 called back with any questions. Another
9 project manager changed a footnote and, once 10 again, no users called with any questions. A 11 couple of ways to do that.

21 statistical standard in your -- in the paper
Now I have a copy of that as an exhibit. Also the proposed revised

1 standard is in there as an exhibit.

3 the right tool if it yields the right
4 benefits. And let me just confirm with you,
5 we are using the right tool to fix this
6 problem. Because one, when you apply required
7 actions to a statistical standard, you are 8 going to get standardization of common 9 business practice. Same data now will look 10 and appear the same way, regardless of where 11 you find it on the website. 13 fedstats and how fedstats has these cross-

14 links and one is going to go to the Monthly 21 But if you are thirsty and I say, "Would you

Now you know you're working with problem. Because one, when you

Now I mentioned earlier about Energy Review and somewhere else goes to a low gas page and we have different labels.

Now let me ask you -- if I asked any one of the Committee members if you would like some Coke and you aren't thirsty, you are going to ignore me because you're not thirsty. like some Coke," you're still not confused

1 because you're going to answer me yes or no.

3 say, "That's exactly what I was looking for,"
4 or "That really wasn't what I'm looking for
5 but it will do for me."

6
7 thirsty, would you like to access some Coke 8 and you say, "Yes," and then I say, "Well then

9 I have some Coke for you," now I've confused 10 you because now you are wondering is the Coke 11 in this bottle the same as the Coke in this 12 bottle.

And yes, it is. But that's still not good enough for you because you have past experiences. You have a preconceived image in your head. When I said, "Would you like some Coke to drink," you already had an image. And so you're going to choose one of these that more resembles your image in your head. Something that you were used to looking at.

That's the confusion I'm talking about here because it's not that people aren't

1 using fedstats. There is traffic going
2 through fedstats. And if you're looking for
3 something and you find it, there's no
4 confusion. All right?

6 the same data across different web pages on
7 our website and it looks differently each time
8 you're accessing it.
So back to data integration being a huge problem here -- or not a problem, it's just an underlying principle we have to plan for. In the last two years, we've come up with five info products that have built across fuel groups.

And, of course, all statistical
standards arose out of OMB's statistical
standards in 2002 which, again, it's always
interesting. When Statistics Netherlands speaks, they speak with one voice. Statistics Canada, Statistics New Zealand -- but when the federal government speaks, we have many voices.

And so one overarching objective with OMB is trying to get the federal agencies to speak with one voice.

I have some questions and get some feedback but I want to tell you a little something about these questions. First, first question here, keep in mind that when you respond to this question, it is subject matter dependent and I need you to be wearing your data user hat. Okay?

That's different than the second question which is subject matter independent. And you can choose when responding -- keep that data user hat on or wear the data producer hat.

Because I'm sure as economists, at some point in your career -- many times you've worked with price data. And you either had to evaluate do I need to make an adjustment for inflation?

And then whatever you did, you presented your results. So you were a

1 producer at that point. And you chose an
2 appropriate label.
So we have these two questions and
4 then feel free to borrow from my analogy
5 because, of course, everything goes better 6 with Coke.

21 current and constant dollars rather than 22 nominal.

(Laughter.)

MR. BOURNAZIAN: Mr. Chair, let's turn it back over to you.

DR. BLAIR: Walter?
MR. HILL: I guess I don't have many comments. You are quite right. It is confusing to work with price data. Sometimes, of course, there are other data out there like kilowatt hours that are pretty consistent if you're looking at 1990 data or 2009 data.

Typically, you can tell whether or not the data are adjusted or not adjusted although you can't always. The term that I've used in class all the time, I tend to use

1
2 nominal in a different sense -- nominal,
3 ordinal, interval ratio, which maybe is also 4 confusing when I look at the title though from
5 the context, again, it is clear what you mean 4 confusing when I look at the title though from
5 the context, again, it is clear what you mean 6 by that.

8 it, it would be good for the data to be
9 labeled one way or the other -- good to have

11 possibly tell.

21 will save a few minutes here and there
And it turns out I use the word by that.

My first question, I'll preface a consistent label. And often you can

I even use things like data from -

- pre-World War I data. So clearly you're looking at military spending that are in the hundreds of millions of dollars it turns out. So you know that it's a different -completely different frame of reference than the hundreds of billions of dollars that we are using now.

In your segment on the label, it typically if you're going back to look at the

1 data. Typically you can tell, I think. In
2 fact when I've used the data, you can
3 typically go back and tell.
But it will save like five minutes
5 or so trying to figure out which one -- if
6 you're actually using nominal or real data.
MR. BOURNAZIAN: Maybe at the end
8 of this discussion, I'd like to poll the
9 Committee because we're thinking about what

DR. BLAIR: I'd like to ask a clarifying question. Included in the text material was a current standard 202.14 and a revised standard and the revised standard speaks to when you would say real and when you would say nominal.

So this would seem to resolve the matter in a sense. Is the question whether we agree with this?

MR. BOURNAZIAN: No, that's not the question. You're correct. The revision

1 to the statistical standard intends to resolve
2 these issues. And the agency in the last
3 month is going through internal deliberations.
4 They are certainly being commented on right 5 now.

6 What we're interested in, though,
7 from the Committee, because it's unique, I
8 have a specialized, sophisticated group here
9 in this room. And so just like I asked, you 10 don't have a preconceived image. When you're 11 accessing price data, how do you like to view 12 it?

21 releases. Okay, it looks like the Chairman
22 has a comment.

DR. BLAIR: Well, just as a
follow-up -- again, a clarifying question --
if I read the proposed standard correctly, any time dollar figures were real have been adjusted, they would be labeled as real.

MR. BOURNAZIAN: Correct.
DR. BLAIR: If in the same table there are dollar figures that are nominal, they would be labeled as nominal.

MR. BOURNAZIAN: Right.
DR. BLAIR: But if a table was purely nominal data, they would not be labeled as nominal.

MR. BOURNAZIAN: Correct.
DR. BLAIR: The nominal label
would only be used to distinguish those numbers from real numbers when real numbers were used.

MR. BOURNAZIAN: That's correct. DR. BLAIR: So that the default, if you didn't know anything else, the default would be that the data were nominal.

1

21 is are you a sensible person --
MR. BOURNAZIAN: Correct. that the problem is that the user doesn't know your default. So, you know, once the -- after a while, they could kind of figure out ah hah, you know, apparently -in the same publication and one only had nominal and one had real and nominal, the second table would not be labeled nominal even though it was in the same publication.

DR. BLAIR: That's the way --
MR. BOURNAZIAN: Yes, that's correct. read it. And so it would seem that the sensible answer is that you would -- if it's nominal, you would say nominal and if it's real, you would say real. Always.
(Laughter.)

DR. BLAIR: And then it would seem

MR. BROWN: But if two tables were

DR. BLAIR: -- that's the way I

MR. BOURNAZIAN: Now the question

1

2 to know your view.

6 question. First of all, there's no reason why
7 you couldn't prominently display a statement 8 of what nominal prices are and what real

9 prices are. You don't have to put it on every
10 table. But you could have it early in the
11 material you do display.

12

21 they've probably been adjusted it for
Now when you do web page things, that's a little bit more. But you might have a footnote that says for definitions of real and nominal, go see or click here.

The second thing is what the heck do you mean by real? This chart is terrible because it says they're real prices. Oh, well what does that mean?

Well, as an economist, I would say inflation. But what index is used to adjust

MR. BOURNAZIAN: -- because I want

DR. BLAIR: Regrettably no.
(Laughter.)
MR. KOKKELENBERG: I have a basic

1 them for inflation? Is it the Consumer Price
2 Index for all Urban Consumers? Is it an index
3 that says whatever price of gasoline existing
4 in 2008 was the real price and I'm going to
5 call that equal to 100 and then do that?

MR. BOURNAZIAN: It does say --
MR. KOKKELENBERG: Well, wait a minute. Real petroleum prices --

MR. BOURNAZIAN: Your comment is still very much on point.

MR. KOKKELENBERG: -- okay, fine. All right. You did use the CPI here. But what's the base period? It says in some base period.

MR. BOURNAZIAN: Right.
MR. KOKKELENBERG: Okay?
MR. BOURNAZIAN: You rest your case.

MR. KOKKELENBERG: I rest my case.
(Laughter.)
MR. KOKKELENBERG: Right. Also, I have this problem that I was on a committee that was advising our university library about how to set up many of its web pages.

And one of the problems are that -- quickly identified that users of search engines take the first two or three hits. They don't go any deeper. You could have 250,000 hits and they won't drill down past the first page.

So when you're doing this and you get different ways to look at the numbers,

1 you've got real problems. The consistency
2 thing that you're asking for or seeking is, I
3 think, very important simply because of that
4 tendency of people to grab the first number
5 they see. So --

7 wonderful but I'd prefer current dollars and 8 constant dollars.

MS. KIRKENDALL: Yes. I don't
like nominal. Ah, what's nominal?
(Laughter.)
MR. BOURNAZIAN: We've got two
votes for current so far.
MR. MELENDEZ: My suggestion has nothing to do with real or nominal but perhaps in getting more advice. This is -- reaching out to this group is great. You have an opportunity next week at the Energy Conference to perhaps pulse folks that are users of your website. You said two-and-a-half million hits

1 a day?

6 suggestion.

11 And see what they say.

MR. BOURNAZIAN: Per month.
MR. MELENDEZ: Oh, per month. I'd go and seek some more -- you know from real users who are big users of your data. Just a

MR. BOURNAZIAN: That's a good suggestion, too. I think we may want to have some targeted focus groups and media people, some heavy data users like you just outlined.

DR. BLAIR: Other comments?
MS. BROWN: I'll just add this one comment is that we -- this is Stephanie -this has been a topic of discussion internally with the office directors and staff here trying to get consensus on how we're going to move forward. It isn't just with this group.

We sort of -- and Jake's been leading this effort -- trying to get people to think about it and come up with a workable solution for everybody. So thank you for the

1 suggestion of taking it outside to the Energy
2 Conference also.

MR. COHEN: He said he was going to have a show of hands or something.

DR. BLAIR: Yes, that's right.
Or, you know, we could do a quick questionnaire here, write one up. Would you care to poll the group in some fashion?

MR. BOURNAZIAN: Yes, I would.
And the question I'd like you to respond to is when viewing energy price statistics, do you prefer to see the term nominal in the title? So it's nominal wholesale prices, nominal retails.

I'd like to see a show of hands. How many people would prefer that labeling?

MS. BROWN: As opposed to?
MR. BOURNAZIAN: The current default practice which is to not have the word nominal in there.

MR. KOKKELENBERG: I'd prefer that. I think Nancy's point might be well

1 considered in that. But given that
2 variability of whether it's nominal or current
3 or something like that, yes.

4

6 one, two, three, four, five, six, seven,
7 eight.
8
9
MR. BOURNAZIAN: Your preference would be to see the word nominal? So I have

MS. BROWN: Is it -- let me -Stephanie -- clarify, are you asking the word nominal versus nothing? Or some word versus nothing? Because that would take into account like Nancy said.

MR. BOURNAZIAN: I'm asking the word nominal or something substantially similar, you know, whether you pick Nancy's word or, you know, whatever is helpful.

MS. BROWN: Something versus nothing.

MR. BOURNAZIAN: Whether it's current, nominal --

MS. BROWN: Okay.
MR. BOURNAZIAN: -- but basically

1 the decision would -- or the comparison is
2 against our default current practice which is
3 to not use any labeling on that. So I believe
4 that eight Committee members responded
5 affirmatively. 21 use it -- sorry -- put it in parenthesis

But there was actually one that did not. Might I hear your --

MR. IANNACCHIONE: I actually did.
MR. BOURNAZIAN: Oh, okay.
MR. IANNACCHIONE: I would say that this group, with all due respect, is not very representative of --

MR. BOURNAZIAN: Right.
MR. IANNACCHIONE: -- your user group. And I wonder, to expand on Izzy's suggestion, why don't you put this question out on the web and let people respond to it?

MR. BOURNAZIAN: That's another
way to solicit feedback. Okay.
PARTICIPANT: I think some places rather than in the title, right, if you put

1 like current dollars in parenthesis under the
2 title. So you'd say, you know, sales of
3 gasoline (current dollars).

4

5 Just someplace on the page. I would not
6 necessarily want it in the title but a
7 footnote so you see it on the page rather than
8 trying to guess.

21 represents, whether it's real 2000 dollars --
22 year 2000 dollars or nominal, I get confused.

1 And, in fact, it forces me to spend a lot more
2 time trying to figure out what that is.

5 title or in a footnote or something because,
6 you know, I don't just systematically go
7 through a document and read all of the
8 directions to see whether, in fact, it is
9 going to be nominal or real and what are your 10 dollars.

21 you very much, Jake. one? energy.

MR. BOURNAZIAN: Okay.
DR. BLAIR: Other comments or questions? Do you want to poll us on that

MR. BOURNAZIAN: No, because it's more broad and open ended for you to give comments on. More or less, you know, what have you done in the past or outside of

DR. BLAIR: In that case, thank

MR. BOURNAZIAN: Thanks.

6 and reconvene. And in this session, we have
7 Liquid Fuels Market Model. Andy Kydes is
8 going to start us off.
MR. KYDES: Okay. Good morning and welcome. I'm happy to be here and -- at least I am now.

What I want to do is give you a brief overview and status report on our new model development effort on the liquid fuel market model, LFMM, and I really twist over that. So let's just call it the LFM so that I don't get too confused and use too many words here.

After we go through the quick overview of the status, we're going to go to the summary of the stakeholder inputs that we've gotten and that we've prioritized at

1 this point with the review Board for this
2 project.

4 talk about is why did we do that? Why did we
5 undertake this project? What are, you know,
6 what is the process that we're using? Where
7 are we? And where are we headed? And what's 8 the approximate schedule that we're going to -

9 - we think we're going to be done at with?

11 the stakeholder issues and questions. And I
So basically what I'm going to

And then we're going to talk about say prioritize because they are prioritized actually by EIA, the OIAF group, not by the stakeholders. We did ask for prioritizations but unfortunately almost all of the prioritizations we got were either critical or very high.

So it was difficult to get a spread, a meaningful spread in terms of priorities. So we had to go through and do that ourselves.

Okay. So why did we do this? And

1 the critical point is number three, which is
2 to correct deficiencies and add some new
3 capabilities that we thought we needed within
4 this particular model system.

6 modeling system or component is, it's going to
7 replace the petroleum market model. It's
8 going to replace the International Energy
9 Market Module, again, NEMS. And it's also
10 going to take a whole bunch of satellite
11 modules that produce liquids for transport
12 fuels primarily and basically put them in a
13 consistent framework that allows these
14 technologies in fuels to compete against each
15 other in the U.S.

21 instead, because of the priorities, at least
And then, again, we're going --
and this project is part of the new NEM development. We didn't formally -- though we asked for some 10, 12 million dollars two or three years ago, we didn't quite get that. So this office has, with regard to what needs to

1 really get done, we decided to try and squeeze
2 apart some money, start this process going
3 because we thought it was very important to
4 actually get this new modeling system in place
5 given the interest in liquids today.

7 talking about with regard to improvements?
8 Well, we want a model that is easier to update
9 than the current model -- use and maintain.
To be more specific, what am I We want less analyst intervention necessary before we, you know, before we find a converged solution that we believe.

We want, to the extent possible, a
seamless integration between the domestic liquid market and the international market.

There are the usual things of technology
assessment, the ability to analyze complex policies related particularly to carbon, cap and trade, and, of course, the new low carbon fuel standard that we haven't integrated yet even in the current system.

There are -- obviously we have had

1 some -- because we have so much analyst
2 intervention, this is a big issue for us, the
3 issue of contents in the liquid products and
4 prices -- prices and margins that we've had.
5 We've had to work on, I think, too much.

7 have confidence in what we put out but it took 8 us too long to get there. So that's something

9 we want to change. We want to increase model 10 transparency and frankly we thought it was

11 time to reevaluate, you know, the level of 12 technological detail. 21 to make sure that we get that right and that

But not that we don't, in the end,

The refinery has lots of processes in place. We really don't care about most of those. We care about some of them. Whereas coal to liquids or other synfuels, liquids, biomass to liquids, in fact, have sort of a greater level of aggregation.

So we want to revisit that particular aspect of how we do that modeling we either have more detail on the synfuels or

1 less on the refinery. But in any case,
2 there's now a difference, a major difference
3 between the two. Of course the other thing is that

5 we keep on getting suggestions on is that we
6 really need to make sure that we build in the
7 flexibility to do uncertainty analysis. And
8 this means uncertainty in key inputs and
9 distributions of them, how they effect the
10 distributions of the output.

19 before, this is actually a formula process you
20 go through in some detail, lots of checks,
21 reviews, to make sure you're on schedule.
22
And there are a lot of other things that would be considered. But that's one of them.

What's the process we're using?
We're going through a formal project management process.

This is new to me in the sense of EIA because while I've done project management There's lots of measurements to make sure

1 that, in fact, you are not exceeding costs.
2 You're not too late. And so on.

4 process. We have a formal project review
5 Board which is composed of the office
6 director, who is the sponsor of this project,
7 four division directors, and I meet with them
8 once a month, and I meet with the sponsor once
9 every two weeks. So we've got this
10 communication that's pretty tight with regard
11 to where we are and where we're headed.

21 prioritizations, our views on what's
22 necessary, what's not, along with the

1 stakeholder views of what's important and
2 what's less important.

4 modeling types of questions. What do we need?
5 To what kind of structure can best serve the
6 issues that need to be addressed and the
7 questions that need to be answered?

9 questions that need to be answered. This is 10 just a partial list. But how complex should 11 the model be? Should it be simple? Should it 12 be very complex? There's no unanimity of

13 thought on this, by the way, among the 14 stakeholders' responses that we did get, 15 originality, the kind of structure.

21 and then what level of product detail, what
And try and address, okay, the

And this includes a lot of

Certainly the optimization
frameworks have gotten advanced enough so that we can now consider nonlinear if it turned out to be the appropriate method to use.

And, of course, there's simulation are the data requirements? You can build a

1 fantastic model but if you can't support with
2 data, there's no point in building it,
3 platform, and so on. All of these things are
4 on the table when we describe or try and
5 discuss the technical aspects of the modeling 6 building this summer.

This is the process, the design
8 and development process that we've used so
9 far. We've developed a list of what we think
10 are representative stakeholders for this
11 project. Many of them have been outside of
12 the government. Some of them have been inside
13 the government.

But the central or key question is

1 what are the issues and questions this model
2 has to be able to answer reliably? We
3 developed that list, the initial list by
4 December. We sent out the request for
5 information or feedback.
6 We subsequently added through
7 inputs by various people within our
8 organization and outside of our organization
9 some additional stakeholders which we then
10 continued to send letters to and requests for.

At that point we continued to get their inputs. All but one of the inputs, in fact, have been incorporated in our prioritized list of these dates. Because of the formality of the process, I needed help. So we developed a core team to help me through getting through Phase One, which is the completion of the technical workshop organizing that, getting the summaries and so on.

And Susan Holte, Phil Tseng, and Randy Cook are the three members of this team

1 that I want to thank. One of them, at least,
2 is here. But I want to acknowledge their
3 help. They've been very helpful in pushing
4 the process along and keeping it close to
5 being on time or a little behind.
$6 \quad$ There were more than 70 individual
7 suggestions made by the stakeholders, not
8 including this group. Again, I mentioned the
9 issue with the prioritization. So we
10 coalesced these 70 or more than 70 into a
11 smaller set.

We presented it to the Review
Board and we said okay, since, you know, there's not good information or good enough information to really create a separation between these, you guys go ahead and measure it and prioritize these. And so we ended up with a prioritized list. And I'll show you some of that at the end of this thing.
We've also gone through the
process of trying to get the list of technical experts, modeling experts knowledgeable in the

1 liquid market area. And we were looking for
2 up to about 20, 25 suggestions from which
3 we'll pick four to write white papers on
4 technical aspects of developing this model,
5 given the information from the stakeholders
6 and from basically our needs and priorities
7 and information that must be exchanged between
8 various modules. 10 here, the June or July time frame for the

11 workshop.

21 names and e-mail addresses and telephone
So the key deliverable is right

And I would invite the members of this committee, if you have suggestions toward technical experts in this area, please, please send them to me. I will take them and I will definitely use them in this thought process and in this selection process.

I'd like to have them before the end of next week. So you have, you know, several working days maybe to come up with numbers. 6 availability, and the model structures they 7 recommend.

21 reviewers complete their work and we've
Okay, the next steps. After we complete this workshop, we're going to have two independent expert groups develop component design reports which basically lays out the critical issues, the data

And then some of the equations that are characteristic in developing this kind of model. It's not enough to build a model but it's a good place to start.

EIA is going to take those reviews and develop its own, taking as many of the good ideas as we can identify them and combining those where it's possible. But in any case, we'll have our own so we'll own it.

Then we'll have an independent review. So there's lots of reviews in this process of project management.

Once the independent expert incorporated their comments, the next step is

1 to develop the full mathematical
2 specification. That's in March.

4 through July -- to produce a pilot model that 5 stands alone using something that's quick and

6 easy. Think of MetLab that's going through 7 part of NEMS initially but something that we

8 can fully test, put it through its paces.
Once we've got that and obviously we're going to be modifying the representation because we're going to learn some things in the process, once we think we've learned enough, we're going to present it to the IER and get some feedback there.

Once we've basically addressed those hurdles or those issues, we'll be then starting the full model implementation within NEMS. Then do the testing and the documentation. And be ready for use for AE02012.

This is a long cycle. And it's a long cycle because we're trying to do it

1 right, in a sense. We've adopted the project
2 management approach with feedback.

4 stage where we think it's really the wrong way
5 to go or, you know, the wrong thing to do.

7 stakeholder interests or inputs. And this is
8 the, if you want, the buckets in terms of
9 which the suggestions and questions could fall
Now let's get to the categories of in to within the areas of markets -- of prices and margins, technology assessments, lot of these.

The key ones that I think occurred pretty often were the prices and margins, for example, type assessment, competition, international here, and policy analysis.

There are all sorts of policy analysis. This model should be able to do lots of different types of policy analysis including the low carbon fuel standard for the U.S.

There were -- there was one mention of security. Externalities here

1 refers to water and land competition, energy
2 crops versus food primarily, and, of course,
3 a few of us picked up on the fact that the
4 current model doesn't really represent a
5 vintage representation of capacity so you
6 really have a tough time trying to figure out
7 what the investments to make to meet the new
8 changing mix of outputs -- petroleum product
9 outputs or liquids -- given new, for example,
10 ARCA standards, less gasoline, for example, 11 possibly more diesel, the refineries, all the 12 refineries can't meet that.

And so you either have to invest so that they can change their mix or you have to retire them. And we have to provide enough details so that we can make that decision within the model.

Now these are, in fact, the suggestions that were provided. And these are, remember, coalesced suggestions. So we've taken some liberties to reduce the number from 70 to -- I don't know -- about 45

1 or 50. And even that's too large. But
2 there's still some development in this here.

5 of questions or issues to be addressed. They
6 were in the form of how to address some
7 unspoken set of issues and questions.

9 enough to be able to backtrack and figure out
10 what we think they were. But in terms of
11 being sort of transparent and honest, we 12 simply put them down in the form we got them.

14 And so you can see number one priority of
15 those that we have is fuel prices by market
But the main point here is that many of these suggestions were not in the form

That isn't bad because we're smart

So this is the form we got them. segment and disaggregated by margins, disaggregated by product and region.

Lots of times, you have a recurrent theme for policy analysis of environmental issues, carbon cap-and-trade.

Also tax policies, tax incentives. These are listed several times, as you'll see, in these

1 handouts. 3 very often, they wanted to make sure that we

4 incorporated alternate fuel supplies for
5 liquids. That is bio liquids of all sorts
6 including ethanol liquids, gas liquids, bio
7 mass liquids, ethanol. They want all this to
8 be done on a level playing field. And the
9 competition should be correctly represented. 11 behavior included in there. And, of course, 12 they wanted, again, more policies that they

20 recurrent themes, potential to analyze taxes, 21 tax incentives, constraints on the kinds of

Some of the ones that occurred iquid. That is bio liquids of all sorts And, of course, they wanted market wanted us to be able to address.

Some more, there were some very specific suggestions. Make sure you can address the impact of an ethanol tariff. Well, okay, we do that. And that was nice. But also we'll be moving it.

But there were, again, the liquids you can use and their content, carbon

1 content or particulate content, or sulfur
2 content, and their impact on liquid prices and 3 environmental emissions.

And also on investments. A key
5 point. They continually, particularly the oil
6 and gas industry, stressed make sure you
7 include the costs and benefits -- not just the
8 benefits -- of forcing a particular policy on
9 the system because they feared that we would 10 be under representing the cost of the industry

11 in trying to push a particular policy for
12 using fuel that would lower the carbon for 13 example.

There was one strong request to -more than one but one very strong one to make sure that we broke up the liquids production between refinery gate, transportation, distribution, and dispensing in order to be able to identify the bottlenecks for particularly new products.

So, you know, there's a whole slew of these. Again, include the non-petroleum

1 feedstocks so you can do that. Make sure --
2 so you can represent correctly. Fairly, I
3 think the word fairly was used a number of
4 times. The competition that has to go on
5 between the petroleum source, liquids, and
6 conventional liquids, for example.
And make sure that you show -- I don't see it here but it's somewhere in here -

9 - the competition between the uses for bio 10 fuels.

That is bio fuels used for energy

production versus bio fuels used for liquids, bio fuels used for generation in bio mass generation versus bio fuels used for liquids in transport fuels. And so that was repeatedly stated a number of times. And then finally, realistic representation of market adoption for new technologies.

I'm happy to give this group the
full list, all 70-plus of them on a spreadsheet with attribution. I will take the

1 names of the individuals who suggested a
2 particular item off so that -- so there's no
3 issue related to attribution.
4
5 that I put out the original list to the
6 stakeholders on -- I think it was December
7 31st or 30th. And one of your ASA members
8 sent me his responses on January 1st. I was
9 impressed. I was truly impressed. Thank you,
10 John.

11
12
13
14
(Laughter.)
MS. BROWN: And identified.
MR. KYDES: And with that, because
there were so many individual suggestions,
I've given you just the highlights of the top roughly 30. But I didn't want to go through all of them because there's no time.

But you can view them yourselves.
And I would be happy to send them to you.
At this point, are there any
questions?
MR. BROWN: You are not required

1 to represent the production of crude oil for
2 this, right?

6 of the turbine and crude oil prices.

21 of what matters are in the inputs to that. Is
MR. BROWN: Okay. You demand crude oil.

MR. KYDES: I demand crude oil. I demand the correct price relationship with supply availability.

MR. BROWN: Okay.
MR. KYDES: Right.
MR. WEYANT: Can you describe exactly how the oil price directories and NEMS are developed because it looks like they're kind of -- they're not in this module, I guess, at least part of the determinants are.

Then there's the international energy model. But it almost seems like a lot that a correct interpretation?

2 those, you know, the 200, 110, 70 -6 initial low, medium references and high. We

7 really don't have a model per se that can 8 produce for us a particular price trajectory.

So the question is how do you get

MR. KYDES: Okay. To be completely above Board, those are done through a Delphi method in terms of selecting the

MR. WEYANT: I understand. The people who do that are, we think, are well aware of the numbers and behavior of the different modules in terms of, you know, how big a deal is bio fuels, unconventional versus conventional. You'll probably have to have some.

MR. KYDES: Yes. When I mentioned the -- first you have the gross assumption on prices. Then you have the external analysis of what the aggregate demand is by product, again.

But then the supply of crude oil
is really identified by -- it has to be

1 identified and is identified by at this point
2 five different crude types from regions.

4 a simple model of supply and demand and
5 involve the crude types and some refinery
6 representation. That feeds into currently the
7 international energy model, which is then used 8 by the rest of the NEMS.

PARTICIPANT: Can I make a
statement just about the oil prices? Is this a good time to try and address that? Or is this not the right time?

MR. KYDES: Yes.
PARTICIPANT: And so the oil price is -- you take an oil price trajectory and then we run it through WEPS+ to see what the demand for total liquids are. And then we have a model called GWAD where we try and meet that demand.

And so then what develops is you
find that certain oil prices you need more oil than you think is reasonable to produce or you

1 have an increased demand for OPEC crude or
2 whatever. So it is an iterative process. But
3 it's not a model iterative process. There is
4 human intervention that way.

6 Mike up next?

21 which I saw about a week ago, and my own.
But also I should say what I want to do here, per Ed's request, is provide somewhat an organized synthesis of comments that John Weyant had produced which I saw yesterday, things that Steve Brown produced,

And I'll invite both Steve and

1 John to, you know, quickly and mercilessly
2 correct me if I forget anything or get
3 anything wrong.

4

5 comments, to my knowledge yet, unless they
6 came in very early this morning and I didn't
7 see them.
8
DR. BLAIR: Oh, here they are.
Can you integrate them please?
MR. TOMAN: Oh, sure, okay.
(Laughter.)
MR. TOMAN: I'll be happy to do that tomorrow.

Well, let me get to it so we have
more time for discussion. I think that the
list that Andy showed us of the different kinds of stakeholder requests, preferences, goals, is helpful. And it does show that people are thinking about this effort in multiple ways.

They're thinking about how to build the model, the kinds of things they want

1 the model to produce, and then the kinds of
2 questions they want the model to answer. We
3 were asked to comment on that last category.
4 But I want to share -- because they were part
5 of the overall feedback of the three of us --
6 a few observations as well on the approaches
7 and the nature of the outputs.
8
9 I don't think any of this, with perhaps one
10 exception, is not already covered in the
11 comments that you have, Andy. So these are 12 more in the way of endorsements.
I think the ability to do -- we think the ability to do uncertainty analyses, sensitivity analyses is obviously crucial. But particularly in this case when so many of the alternative fuel technologies remain so profoundly uncertain, it's going to require a great deal of, I think, even offline work to think through the range of reasonable parameters to be putting in for describing supply behavior on several of these

1 alternatives. 3 the virtue of modularity. You mentioned that

4 this replaces several different components.
5 And I'm hopeful that as the architecture of
6 the model itself develops, one would be able
7 to build it and then snap on additional pieces
8 as they became available with relative ease.

11 have any solid judgment about the economics of 21 the ability to capture some form of forward-

And I think with that would come And And example might be that it's very difficult now, at least in my view, to production of liquids from oil shale with in situ technology. You could build that module now but it would sort of sit there idle.

If you build it later and snapped it in and didn't have to redo the model, that would be a good thing. And presumably you've already been, you know, thinking that through. One point that John particularly emphasized but I would certainly agree with is looking investment behavior, to not have

1 investment be myopic or recursive but to try
2 to have investment based on some notion of
3 expected long-run returns to that investment
4 and not just, you know, conditions of that 5 moment.

7 harder to do but I think when we're talking
8 about the kind of investments that we're
9 considering here, that would be a high bar
10 well worth aiming for.

21 you've already figured out what you want to do

2 have a thought on it, perhaps a naive one, and
3 John and Steve can weigh in on this, too, as
4 well as others, is this idea of having one
5 model that can be used for both the domestic
6 application and a direct feed to the
7 international application or possibly two
8 models.
One question that you asked and I

One model seems like a good idea but I don't know enough about the nature of the non-U.S. data to know how well that works. If the non-U.S. data are very coarse and you'd have to coarsen up the U.S. data as a consequence to make it work, it may be worthwhile to have separate models rather than a one size fits two purposes.

But, again, that reflects ignorance and naivete on my part about the data. And so that's more like a point for thought rather than any kind of serious recommendation at least now.

Another area where I at least have

1 an opinion and others may or may not agree is
2 I think that this is an area in which less can
3 be more. I applaud the desire to move away
4 from a detailed process refining model of
5 which there is exactly one in each pad. That
6 strikes me as a really good idea.

8 that I've been involved with looking at
9 specific energy types because of the
10 uncertainties about them and then often the
11 heterogeneities of the supply conditions, a 12 very elaborate model that includes a lot of 13 that may end up simply making it harder to 14 detect the effects of changes in parameters 15 that you are trying to do in a policy 16 analysis.

19 you know, to caricature more along the lines 20 of, you know, simple supply curves or with

21 multi product, you know, outputs, cost curves
So there's a trade off here. But
I would at least tend to say something along, plus product trade offs, you know obviously

1 the real model would be a little more jazzed
2 up than that but I think in particular the
3 idea of hanging on to a separate, really
4 detailed model, I'm not sure I see the virtue
5 in that. But then, again, I don't work for
6 EIA and you may have strong reasons to do
7 that.

9 letter laid out, I think it would be good to 10 move to a much more transparent framework that 11 would make it easier to use and easier to see 12 what's driving what.

16 And your stakeholders have identified, you
17 know, a lot of the obvious things that you'd 18 certainly want a model to do.

21 are wanting to do costs and benefits, what
Okay, so a couple of quick
comments on the outputs, I mean a lot of that,
I guess, is pretty much what one would expect.

One thing that I think will be important to think through is that when you would be your device for measuring costs and

1 benefits?

5 how to supply them, you can certainly work out
6 the supply side cost impacts. If they make
7 fuel more expensive, there's going to be
8 losses in consumer surplus and so on. 21 not actually, you know, homogeneous goods,

If this is a model, as I understand it, that sort of takes a menu of demands for liquid fuels and then works out

So presumably to do complete welfare analysis of the policies and not just increased costs of production, you'd want to have some ability to deal with larger economic effects than just movements in the supply relationships and the associated costs.

I'm not sure how inter-fuel competition will be represented -- one of the questions that was raised in the annex -- and I'm also not sure how important it is. So I should say that.

To the extent that the fuels are just liquids that are basically all the same

1 except maybe there's a different thermal
2 content per volume, then presumably there is
3 some kind of imperfect competition or
4 different goods competition that's going on
5 that may be important to represent more
6 explicitly in the cases where that's important
7 so that you're getting a competition among the
8 attributes of goods and not just among
9 different energy forums.

11 relevant in dealing with the vehicle side,
12 which is not in the model, you know the old 13 story of everybody buy compressed natural gas 14 vehicles so they didn't lose the whole trunk 15 to the tank. So maybe that shows up elsewhere 16 in the overall modeling system.

But if the fuels are different, then I think those differences need to be retained if they're different in an economically significant way.

I think more than anything else, at least my own opinion, the ability to talk

1 about, as an output of the model, what the
2 model means for the consumption and cost of
3 bio feed stocks is just huge. And I think
4 it's the area in which we absolutely know the
5 very least of any of the things that are being
6 addressed in this kind of modeling effort.
That also then refers, you know, of course to important applications. But trying to construct supply curves for bio feed stocks is a pretty difficult exercise. And I think it is something that really warrants a pretty significant investment of effort amongst the different things you'll have to be investing in to get the new framework up and running.

And that would include then, in
the larger application, the point that you made in the overhead about potential other sources of demand for feedstocks and what competition between bio electric and bio fuel, for example, might turn out to look like.

In the applications -- and also

1 then sort of the consequences for the modeling
2 itself, to come back briefly to that -- it
3 seems like it is possible perhaps to compress
4 that still-large set of different interests
5 that you have a little bit.
6
7 things, which, again, speaking in simple-
8 minded terms -- that's my comparative
9 advantage -- you have to have the ability to
10 show how changes in the overall supply side,
11 you know, the availability of more fuels of 12 different types, if that's changing the share 13 of conventional refined petroleum products in 14 the market or the mix, you know, we need to be 15 able to look at the refining cost implications 16 of that, for example. back to the individual refining unit or set of refining units. And basically there has to be some way to manipulate the parameters of these supply relationships because a lot of the

1 policy interventions that will be considered
2 won't be, I think, just output-based standards
3 or, you know, pricing policies.
4
There's still, in my view at
5 least, continued relevance in the ability to
6 describe things that actually move the supply
7 curve around -- technology-based, you know,
8 regulation.

16 that we can distill out of interest are first,
17 just what happens if alternate fuels start
18 taking on a larger share of the market?
19 Whether that's driven by improvement in their
20 cost structures or the various policy levers
21 that you've already identified. So that would be one application.

1
2 backwards from the question to the model, that 3 seems like something you'd really want to be 4 able to do. 6 said define energy security if you dare to

7 mention the phrase. And so to me, not 8 everything that mean when they ask this but

9 sort of the most interesting and sensible
10 questions that are brought to mind is if
11 you've got policies that are either trying to
12 restrict overall use of liquid fuels or
You know if you're working

Another category in your note, you policies on the supply side that try to torque the mix in different ways, tax preferences, investment tax credits, efficiency standards on the demand side, you know you want to be able to deploy in the model a good suite of different policy options and trace those through.

And again, some of those may involve changing the composition of demand for different fuels. Some of them may involve,

1 you know, actually changing the relative costs
2 of the different fuel types.

4 fuels as a market or policy phenomenon
5 themselves. Energy security is something that
6 links to alternate fuels but also to the
7 demand side. How well will the model run
8 globally?

11 to capture the way investment response to

21 fuels. So the flip side of being able to
So we've got kind of alternate

1 then to be able to look at different policy
2 approaches toward expanding bio fuel feedstock
3 availability. Are we going to sort of dismiss
4 the conservation reservation and turn it into
5 a feedstock farm or something like that?

7 obviously, is important. That could include,
8 as Steve pointed out in one of his comments,
9 the effects on investment of constrained 10 sighting or lags in permitting. Certainly it

11 will involve carbon pricing.

21 mentioned, and John particularly called this
But as I mentioned, it could also
involved technology approaches. And presumably the model will also be able to give some insights into what the differentiated fuel recipes mean for pricing in local markets for like gasoline where you can't really trade across price differences without violating, you know, local air quality standards. Now the last thing that was out, but then I think the Q\&A may have taken

1 us a little further on that is the question of 2 using the model to explore market power. And

3 it may be that there are important instances
4 of downstream market power, at least in the
5 short run, that one could explore.

7 that are kind of captive to a few refineries,
8 I don't hear much about that so I kind of
9 assume at this point that isn't a major issue 10 in the market. oil behavior, supply and pricing behavior, and presumably that's outside the model, this model, so I don't know whether it's possible to get traction on this issue in this modeling effort. Or whether that's part of the larger suite of efforts that EIA might be considering.

You know my view, having thought about this a little bit over a few years, is that it's very interesting and very tough. So I'm not sure I would necessarily put it at the

1 top. In fact I'm sure I would not put it at
2 the top of my priority list given all the
3 other things you have to do. But it
4 ultimately would be useful to be able to help
5 policymakers think that through as well.
Now can I turn it directly back to
Steve and John to see if there's anything that they either want to contradict or add before we open it up?

MR. BROWN: It seemed like a very comprehensive list to me.

MR. WEYANT: Well, I have some general comments just learning from, you know, the real time problem during our discussion here and your comments but I can do those another time.

So this will seem like partly a summary but in many ways a reinforcement and modest elaboration of what Mike has already said to kind of take Mike as a spokesman for our group any time is the optimal strategy.

So one thing to keep in mind, I

1 guess I view this, particularly in EIA, this
2 opportunity to kind of think about models from
3 the ground up, as a real kind of precious, you
4 know, much more valuable than oil or good old,
5 probably like diamonds, or maybe even
6 dilithium crystals. Because I think you guys
7 don't get many opportunities to do this.

8

9 debate. And there was going to be new model
10 development. But there were a hundred
11 different directions to go and lots of
12 reports, special reports, and regular reports.
I actually remember the whole NEMS

So I think it is a very unique and valuable opportunity.

But -- so I always start with --
some people asked me what -- is this a good model or is that a good model? So I have this kind of snide way of just getting people to think more broadly and I think you are well on your way to doing this.

So I guess I find in a lot of applications, you know, one percent of

1 formulation is worth about 99 percent of, you
2 know, model other than design computations and
3 stuff but particularly at points like this.

4

5 the question of -- I'm always asked what makes
6 a good scenario, what makes a good model, what
7 makes a good approach to uncertainty, what
8 makes a good approach to model assessment?

21 occupational hazard here at EIA -- into a
So the snide response I have to --

And my answer is always it all depends on the question. So Mike actually started with questions as your survey did. But I think you need to continue to push in that direction.

So I like Mike's idea because one thing I jotted down right as he was starting there is you could do -- and he did start and Andy started and your committee started on market segmentation kinds of things.

I guess I do worry that you'll get pulled into -- and this is just an model that does everything.

1
2 model that does, you know, the U.S. version of
3 a whale oil market for the purpose of
4 projecting oil prices be different or similar
5 to some, you know, corn ethanol guy who really
6 wants to know exactly what his product is
7 going to be worth versus another one. Or --
8 I don't know -- electric -- I actually had
9 some neat course projects, as I mentioned 10 before, electric cars.

But if you think about it, would a before, electric cars.

You say well, it's hard to use NEMS to do, you know, the better price model of electric cars. But you're asked to do all of these kinds of things. So I think market segmentation might be good.

And I always come back and I know you've heard this before, but here again, Mike did a very good job of arguing for modularity. That you might be able to prune it down to three, four, five, six categories. I had a list of three.

He had a list of six or seven that

1 I think, you know, you could probably refine
2 it. But boy, for off the top of your head,
3 that was a pretty good one.
4 And then you -- but are we really
5 -- just because it's just design phase and not
6 implementation phase, think through, as you do
7 on the NEMS documentation, all the linkages
8 with all the other modules and what those
9 would entail.

11 do with the existing architecture, just for a 12 few specific examples that I think are hard 13 that I've thought a little bit about is on the 14 bio fuels because I've been through this with 15 the global models, kind of right in the middle 16 of the -- well, let's just put it bio fuels

17 technology in. Maybe we couple it to carbon 18 capture and sequestration. Boy, that could do

19 negative emissions. It wouldn't be cool.
So there actually was a bunch of
21 groups that put that out. Then the
22 negotiators wanted this to be kind of a main

1 scenario. And people said well, we didn't
2 really look at that. And who knows if there's
3 enough land to do this. And whether it's on
4 marginal lands, national park lands, or we're
5 taking ag land away from starving people in
6 the developing world.

9 segmentation and modularity, think how to 10 confront some of those problems. But I think

11 if you get it down to five or six potential 12 main uses as opposed to all 70, I think that's 13 possible.

21 stuff to grow fast in a small amount of land 22

So you will have to, at some point, I think in doing this market

And there are kind of specific things. The other one that I hadn't thought about but should have is this Clean Air Act amendment overlay when you're talking about refineries and bio fuels and greenhouse gases.

The other big one on the biofuels was if you're not careful, the way to get is to dose it pretty heavily with nitrogen

1 fertilizer, which produces nitrous oxide,
2 which is almost a perfect substitute for
3 carbon dioxide as a radiative-forcing agent.

4
5 community, you know well some of the people in
6 the U.S. can help thinking about that. But
7 the Clean Air Act probably -- I just -- don't 8 ask me why I read the whole, you know,

9 American Bar Association overhead on the Clean 10 Air Act and there is a lot of -- Mike probably

11 knows better than some other people here do --
12 things that are coming along.

21 that peak oil is kind of not completely out of
So -- actually when I think that or

But if you're talking about refineries and citing refineries and what constraints there might be on them and bio fuels plants and I guess the other big one that wasn't explicitly mentioned but it's really prominent in the current projections of liquid fuels is the non-conventionals. So I guess I got from the last couple of meetings the cards for conventional oil, even a clean

1 EIA, but the big issue is how much, I guess,
2 tar sands are now heavy, heavy. Do I have
3 that right? Heavy, heavy oil or heavy, heavy,
4 heavy oil.

6 talked to somebody who was just up in Alberta
7 and they're planning on exporting five-ten
8 million barrels a day to the U.S.
All those categories, I just

So I don't know what all -- I
think it just means to proceed along the path that Andy described that Mike augmented. But to do as much of this -- actually take some lessons from marketing to do kind of even more intense focus groups and I guess the one thing that popped into my mind when Mike was speaking was this idea of market segmentation, that you could group this.

And I guess you already tried some consolidation. But then I guess the next step would be to kind of run that through a more full preliminary design thing in terms of what that is going to mean in terms of information

1 from other modules, information provided to
2 other modules, and so on.

4 but if this is one of the few times where I
5 think you've really had the chance in the last
6 10, 15 years anyway to rethink kind of the
7 design at that level as opposed to improving
8 one or another of the individual modules.
9 MR. BROWN: One environmental
10 issue that John's comments just refreshed in
11 my mind is that the carbon content of some of
12 our imported liquids, such as the tar sands
13 oil from Canada, is a little bit different
14 than let's say domestically produced light
15 crudes.

21 that we don't actually get to see kind of the
22 net carbon contribution of our consumption

1 activity. 3 even if you don't want to answer, someone

4 might want to have answered not too far down
5 the road.

7 going to underscore Steve's comment, to some
8 extent here. Congress apparently has, and
9 society has two objectives. One is to 10 minimize the importation of crude oil from the

11 Middle East or other unstable areas. And the 12 other is carbon dioxide control.

And that may be something that

MR. KOKKELENBERG: I'm simply

And the models and the development I'm sure are serving both of those. But those two aspects are probably going to be the ones where you get questions in the near-term future anyway.

And so issues like Steve just
pointed out about the carbon content of various sources as well as the BTU content and -- because bio fuels might be great for crude oil substitute. But they certainly are no

1 panacea for carbon dioxide.

6 audience want to make a comment or question on
7 this subject?
8
9 to say anything? DR. BLAIR: Other comments?

Questions?
(No response.)
DR. BLAIR: Did anybody in the

Going once -- Andy, did you want

MR. SCHAAL: I'm Michael Schaal.
I'm the Director of the Oil and Gas Division within Integrated Analysis and Forecasting. And I very much appreciate your comments and suggestions that I've heard here today.

And I'd like to underline one issue that I think comes out of the discussions here, one of which is this is an excellent opportunity to take what we have and make it simple within the context of what we want to do in terms of policy analysis.

But also towards the end of this conversation, I'm struck by the number of

1 issues that are new and arising that are
2 potentially complex and have a degree of
3 uncertainty which come in to some conflict
4 with the idea of keeping the modeling approach
5 simple.

7 tension points that we're going to face in
8 discussing what this new module looks like
9 going forward. And I think that's one of the
10 observations that I get out of observing the

21 of what is driving policy get brought in, it conversation and the feedback that we've gotten here today.

Thank you.
MR. TOMAN: Just a -- I think you make a very good point. So maybe five seconds on that.

To the extent that you have the ability to modularize so that a lot of uncertainties can be dealt with in a satellite place and then pretty simple representations seems like you sort of -- you know, you build

So I think that's one of the key

1 some flood walls to prevent uncertainty in one 2 place from swamping you in another place.

So I was thinking when I made my first comments about that kind of modularity 5 in addition to, you know, modularity just in

6 terms of technology or fuel price.

9 here. sands.

DR. BLAIR: Andy?
MR. KYDES: Just a minor response

The low carbon fuel standard is going to require the full life cycle analysis that you're talking about with regard to tar

For example, and that's one of the items -- that's one of the policies that I think we have to be able to incorporate within the new structure, in fact, we'll probably have to do it before the new structure because I think that there's a legislation that is coming along that we are going to be asked to evaluate.

And that legislation is the Waxman

1 Bill, which has that among three other items.
2 And so I agree with you that that's, in fact,
3 one of the capabilities we're going to have to
4 build into the model when we're designing and
5 building it. So I think that's a very good
6 suggestion.

9 the GREET model or somebody else redo

21 that the GREET results need to be freshened up
MR. TOMAN: So, Andy, on that point, is there a thought to have Argonne redo something like that? A new round of analysis? Some life cycle carbon calculations?

MR. KYDES: We may do that. The only reason I'm hedging is because of the fact that you're too early in the process to be able to identify, you know, what needs to be done. But I think if it is a necessary part of what we need to do, then we'll be doing it.

MR. TOMAN: Okay. Well, maybe this is a side point to the main discussion and it's just one person's opinion but I think and tightened up. I think it is important if

1 we're going to go down the road of trying to
2 do the life cycle carbon calcs for the reasons
3 you and Steve mentioned, to take a free look
4 at the measurement of that.

6 since those calculations were done. And it
7 would be a good time to freshen that up.

8

9 other point though, which I think is

11 other life cycle cost systems and getting as
12 much as you possibly can out of that in 13 looking at how you might be able to graft
14 those as sources of inputs and destinations 13 looking at how you might be able to graft
14 those as sources of inputs and destinations

MR. WEYANT: Actually back to your generalizable, is I think that using that and for outputs would be a good idea.

I guess one think I implied before is you could use the kind of global integrated assessment models as a source of insights about, you know, international trade and land use change and things like that. Again, it's maintaining the ability to deal with complexity but not making it part of the core

I think there's been a lot learned

1 modeling system if I interpreted that
2 correctly.

5 good start at start at that. I know there are
6 tree or four groups that have tied to do that,
7 none of which I actually think are completely
8 up to date.

21 had this virtually figured out, how do to land
So that's generalizable. So this specific Greek case, which is, you know, a

But then you could actually
leverage off them and get them to update their thing and take advantage of that rather than trying to do the whole enchilada.

So we're trying to coordinate socioeconomic modeling with the climate models for the next quasi-IPPC round so one issue is land use. Land use submissions, greenhouse gases, mitigation, projections, all that stuff.

So I naively thought about 15, 16 months ago that one group or the other kind of use. So we had a meeting. It was actually

1 back here a year ago February. And the
2 conclusion was neither side really knew what
3 the heck they were doing.

4

5 of land use experts there and said well, we've
6 been working on this. And we're not really
7 sure. But if we work together for a while, we
8 might be able to come up with some reasonable
9 numbers.

21 refinery model and do reduced form kind of
22 vectors or surfaces from that.

5 has to reside as a, you know, hard-wired
6 module in the model.
You explicitly mentioned this at one point. You could actually build your own, you know, complex life cycle cosmos that you like better but that doesn't mean that that

You could then take -- I guess I'm still in OR -- I hardly can take kind of extreme points in vectors out of that. You know this is part of that.

MR. KYDES: This is, in fact, one of the options I think that should or could come out of the technical workshop. In fact, it is one of the options that we considered.

The plus side is that you have presumably a very, very good detailed refinery model that has lots of different levels of complexity for the refineries that you can then run through and test out.

And then, of course, there are a well-known number of different ways to be able to generate a pseudo model or small model that

1 represents it. The problem is that then you
2 have to maintain essentially the large model 3 and then make sure that the algorithms work.

And so then when you get some
5 silliness, you have to then figure out what to
6 do about it.

21 the rest of the NEMS --

1 to the current NEMS document?

5 identify the information the LFM model
6 requires from other sources, not only from the
7 rest of NEMS but from the IEO component as 8 well --

MR. KYDES: To the current, yes.
MR. WEYANT: That's great.
MR. KYDES: And then it will also

MR. WEYANT: That's great.
MR. KYDES: -- the international component. Okay. So I think many of the suggestions you've made, in fact probably all of them with one exception, I think we agree with. At least I personally agree with.

MR. WEYANT: Which ones didn't you agree?
(Laughter.)
MR. KYDES: Forward looking, I agree with how you formed that is really the problem.

MR. WEYANT: It was his suggestion. So Don will tell you how to do

1 it.

4 that has to do with opportunity, the question
5 is how you formulate that so that it actually 6 simulates it.

8 information they have, of course, is from the 9 past.

11 procedures. I guess I was hoping there might
MR. KYDES: And fundamentally, I do believe that every decision that you make

MR. BROWN: But the only

MR. WEYANT: Well, not the be a way to do kind of what is done in the electric utility sector. To look at some simple way for people who making these big investments in refineries or bio fuel plants to have some maybe simplistic way of -- yes,

I definitely believe a 30-year foresight alone, both the primo and deal path is a little bit -- it's kind of like well, the stock market didn't work last year so --

But I think from the business people I know, which is probably less than

1 you're exposed to, that, you know, some kind
2 of, you know, three-, four-, five-year trend
3 extrapolation or, you know, a STEO, somebody
4 who looks at STEO, you know, a few years out 5 into the future.

7 demand side is most people who make energy
8 efficiency investments either don't look out
9 at all -- you can actually do this by simple
10 questionnaires -- even the auto industry has
11 this thing -- that even the people who do only
12 go about three years. Three, maybe four at 13 the outside.

What we're finding on the consumer

So nobody actually does life cycle costs. Now that suggests a whole different set of policies you might or might not be willing to do. And some complicated Welker economics. That's another question.

But just it's something other than using current conditions as future --

MR. KYDES: Absolutely.
MR. WEYANT: -- like it's done in

1 the electric sector. So I was -- I think Mike
2 responded correctly.

4 Myopic expectations are wrong.

6 unrealistic? Completely myopic or 30-year,
7 50-year foresight?
8
9 answer to that.

MR. KYDES: Yes. I do appreciate
the Committee's recommendations. I know many of you and I appreciate meeting you again.

DR. BLAIR: And I'd particularly
like to thank Mike for his work in
coordinating this and giving the response.
MR. TOMAN: It was a labor of love.

DR. BLAIR: That brings us to
Committee suggestions for topics or dates --

1 and/or dates for the fall 2009 meeting. 4 here. I looked in my trusty little

5 Blackberry. If we keep it Thursday and 6 Friday, I assume that's probably what people 7 prefer.

9 differently and Ed and I discuss differently -

20 missing this.
MS. BROWN: I have the dates, potential dates, just to make your job easier

And we'll still -- unless I hear - we'll go with the day-and-a-half format. There's five potential dates. October -first, second, eighth, ninth, 15th, 16th, 22nd, 23rd, 29th, and 30th. So there are five dates.

I don't know if anybody has any
preferences. But those are the five
Thursday/Friday dates.
(Off-mic comment.)
MS. BROWN: I'm sorry. I'm

MR. TOMAN: I was asking John if there was anything we already knew on the

1 calendar due to the climate change
2 negotiations where at least he may be yanked 3 out of the country.

4
MR. WEYANT: It all peaks at the
5 end of the year in Copenhagen. So there's
6 supposedly -- nobody really has anything
7 scheduled.

8
9

21 that up. But let's all tentatively go with
22
MS. BROWN: So is earlier in
October better than later?
MR. WEYANT: Probably, yes. I just -- the other thought I had is just to pick some dates and I can probably defend them.

MS. BROWN: Well, why don't we go with the first and second? How is that? Want me to get it on your calendar?

MR. WEYANT: Yes.
MS. BROWN: You know, we'll kick it around here at the EIA to make sure that there's no conflicts here. I haven't looked the first and the second.

5 cover travel expenses the first day of the 6 fiscal year.

MR. TOMAN: The first day of your new fiscal year. And that's okay?

MS. BROWN: Yes, there you go.
MR. TOMAN: You'll be able to

DR. BLAIR: How about topics for the next meeting?

MR. BROWN: One topic that I want to raise, and I don't want to discuss it in great detail today, is whether this Committee ought to remain affiliated with the ASA. I actually found Ron's remarks to be out of touch and defensive. And I think they provide a terrible service on travel.

And, you know, in keeping us informed even of the dates when I was a new member. And I got much better service on National Academy panels that I've been on. And I don't know what the cost is, ASA versus National Academy panels. But --

MS. KIRKENDALL: It's a lot more.

21 about this problem. address with ASA.

MR. BROWN: They're a lot more?
MS. KIRKENDALL: Yes.
MR. BROWN: Okay.
MS. BROWN: Maybe you and I and Ed can talk about what it is that you don't like about it. And we can work through ASA to try to improve what the process is.

MR. BROWN: Okay.
MR. KOKKELENBERG: Can I join in
on this? I think that Steve is right. The support that ASA has -- and years ago the support that they gave this panel was very much at arms' length, which didn't bother me so much. But if it is impeding the work of the panel or making it difficult to do planning, maybe those are issues we can

Alternatively, there may be other affiliations that might make more sense. And I think it is a good idea to at least think

MS. BROWN: I think this is

1 something we have to think about internally at

9 the Committee should be making. This is
MR. KOKKELENBERG: Oh, yes.
MS. BROWN: And I will bring this up with the other senior management here about your concerns. But it's not a decision --

MS. BROWN: No.
MS. KIRKENDALL: -- that I think probably an EIA decision, okay?

MS. BROWN: Probably. We offer you some kind of cover with the ASA emblem, right?

MS. KIRKENDALL: Yes.
MS. BROWN: The seal of approval.
And without that, it has to be somebody who is equivalent like the National Academy. And they may not want to touch us.

MS. BROWN: That's not what ASA gets to do this.

MR. KOKKELENBERG: Pardon?
MS. KIRKENDALL: They wouldn't

1 touch it for the amount of money that ASA gets 2 to do this.

4 be a good reason to stay with ASA.

6 he was really complaining. I think he was
7 offering alternatives.

8
9 suggested that we stop being affiliated with 11 like to me we'd be more affiliated with EIA 12 than ASA.

MR. BROWN: Well, he actually EIA, which is odd because I mean it is sort of

MS. KIRKENDALL: Well, and see it's -- this has always been kind of funny. I was on the ASA Committee on Committees that he talked about at one time. At one time the Board of Directors of ASA actually considered getting rid of this committee until I pointed out that there was a grant that came into ASA that they might like to keep.
It's just people -- you know, it's
kind of a funny committee from the point of

MR. KOKKELENBERG: Well, that may

MS. KIRKENDALL: Oh, I don't think

1 view of ASA. And they're happy to continue 2 it. But we really just don't fit the mold.

4 many ways. They don't require that everybody
5 be members which is great because most of you
6 aren't members. None of the modelers are
7 probably. I mean --
8
9 to be. I'm actually not sure if I am.
MR. KOKKELENBERG: Well, that can be readily enforced. Ed can say look, we want to hire Stephanie to be a member of the committee but we'd like you to become a member of the ASA.

MS. BROWN: But they didn't
require that. But when I solicited new people for the committee, that wasn't the deal breaker. Being a member of the committee is not a deal breaker.

MR. WEYANT: Well, it was when I was chair. It was a deal breaker. I just said very strongly you will become a member of

1 ASA. I mean big deal. What's so hard about
2 that?

4 is right. ASA, at least in Ron's remarks,
5 sounded like they were woefully out of touch
6 with this committee.

18 Administration -- would be things like
19 behavior on the demand side, kind of energy
But the point I think that Steve DR. BLAIR: Well, let me try to move into topics.

MR. WEYANT: I guess in general it will be interesting because I know there is now a plan at EIA to do this NEM model. So it would be useful. I guess I personally wouldn't want to do things that were totally off that track.

But the three big things I see -and this is partly just what I'm concerned about right now and also the new efficiency behavior.

Or maybe something even more pragmatic like the stimulus stuff. I still

1 think I would rather have the Administration
2 come talk to EIA and a couple of other groups
3 that actually have looked at these sectors,
4 about where to park all that money.

6 modeling level or even based on NEMS runs, you
7 could do subsidies and stuff right within the 8 current structure.

11 advanced energy technology assessment and

21 you were asked to do a McCain Lieberman Boxer
I don't know if that's beneath the

And the third one with Steve Chu and John Holderman around would be kind of things. At least thinking that through.

I guess is the -- what's the status of the horizon for the models now? That NEM is going to go out to 2030 or any -if you're going to do climate stuff, you probably have to have 2050 even for the current bill?
(Off-mic comment.)
MR. WEYANT: For the AEO? But if make up your names, do they let you just use

1 the current version of NEMS? Or do they try
2 to get you to extend it out?

These are just ideas but those are the three that I like.

MS. BROWN: John --
MR. CONTI: Well, I'll try and address some of John's questions.

MS. BROWN: Just speak loud.
MR. CONTI: First of all, as you know, as part of the EMF, when it comes to all of the modelers around in terms of the end-use models, we typically have more information than anybody else. So we're not going to get a lot of insight from anybody in terms of how subsidies or legislation is done.

MR. WEYANT: No, but I was talking
about you guys providing insights to the people putting together the stimulus money.

MR. CONTI: And we do.
MR. WEYANT: You do?
MR. CONTI: And we do, and we do.
One way or another, we do.

And when it comes to how stimulus money is spent at least within the Department, we're pretty much in touch with that. A lot of times, it is very hard to connect the expenditures with how they actually will effect reductions in energy use. And I'm sure -- you know, that's a constant struggle.

I'd like to have some distinction between the National Energy Model and our current National Energy Modeling System. We are certainly updating a number of our modules in the current system. And we might assume them lock, stock, and barrel in a new National Energy Model.

But what we have today is not what is going to be a National Energy Model. We are definitely rethinking the whole structure.

MR. WEYANT: Is there one after the liquid fuels that is next in the queue so far? Or is that still in debate?

MR. CONTI: Well, I guess the
first one in the queue is the OLOGS model.

1 And we're starting to implement that now for
2 the upcoming AEO.

4 module. And we really haven't gotten past
5 that because we have to deal with a lot of --
6 first of all, in spite of thinking we had the
7 money, we never really had the money -- we
8 didn't start receiving some of these funds up
9 until a week ago. We actually don't even have
10 it yet. They said that we had but we really
11 still don't have it.

21 you are familiar with how to try and do
MS. BROWN: We really haven't see it.

MR. CONTI: They said yes, you have the money but it's not really in your accounts yet. So we really don't have the money.

> And then we've run into some procurement issues as to what we could do with this money. And I'm sure you guys -- a lot of contracts within the federal government.

1
2 National Energy Model. And Howard keeps on
3 mentioning it even though we never really have
4 the personnel that are devoted to doing it,
5 which I think is absolutely required.

7 sort of at a very high level saying, okay, if
8 you're going to do a new National Energy
9 Model, at the module level, I'm very 10 comfortable that we have a lot of experts that 11 know how to model individual sectors very 21 ultimately flexible. But you pay a big price

But I do foresee us doing a new

And you might be able to help us well.

> I think maybe what we don't have is some of that insight at the very highest level of putting together this as a system. And start thinking of it from even maybe from different computer-type of platforms or computer-type of systems that might, you know, make it easier to maintain and to use because that's what -- our current system is for that.

1
2 easy to use. But we can do just about
3 anything that anyone asks us to do with it,
4 given enough time.

6 a possible -- maybe it takes three months to
7 decide this -- a possible agenda item? Where
8 you guys could say here's what we're thinking.
9 What do you think? Is that too early? Too 10 late? Just, you know -21 found this out at the break, that you'll be

You know it's not particularly

MR. WEYANT: Well, again, is that

MR. CONTI: No, I don't think it is too late to start thinking about it. I think we really do -- and we do need to start at the high level and figure out, you know, where they might connect.

Yes, Mike?
MR. TOMAN: Well, John, I hear your points clearly enough. I'm still not clear though on one, which is John Weyant's suggestion that since I understand, I just doing another round on AEO sort of to look at

1 the stimulus packages as they go through? outputs.

MR. CONTI: We will not be doing another round of the AEO. We will, as a part of any service request that is forthcoming, we will update our reference case assumptions.

MR. TOMAN: Okay.
MR. CONTI: And they will include a representation of the stimulus package.

MR. TOMAN: I thought you already had a service request in hand that was going to be asking you to do another round of

MR. CONTI: We do have one -- yes, we do have one in hand.

MR. TOMAN: Okay.
MR. CONTI: But we're not -- I'd like to differentiate between a full AEO --

MR. TOMAN: No, I agree. I was --
MR. CONTI: Yes, we'll update the reference case. And we'll update a number of

MR. TOMAN: Okay.

MR. CONTI: We're not going to update all of the parameters we do annually because first of all, a lot of that data is not even available.

MR. TOMAN: Since at least for a long time it seems, we've talked about the way that different macro level influences effect energy and how energy effects macro level issues, and you're going to be doing this service report. Does it makes sense?

I would say I agree with John Weyant. I would like to see something about the energy economy, public expenditure linkage be on the agenda in the fall.

I'd like to hear more about what you were having to do with the service report, compliance, and what issues that raised. And is there anything the Committee can do to be, you know, helpful in exploring things that are tough or endorsing what you're doing. Is that totally off map for you?

MR. CONTI: No, we sort of touched

1 on this the other day. There was another
2 comment that came up yesterday morning. And
3 looking at -- or maybe it was at lunch -- in
4 terms of the interaction with the economy,
5 most of you know we use the -- now the IHS
6 Global Insight model. First it was DRI, then
7 it was WEFA DRI. Then it was Global Insight.
8 And now it is IHS Global. IHS, I think, is
9 beginning to own most of the energy consulting
10 industry in the United States.

21 might be able to do in a NEMS development
And so that's the model we use.
So in terms of how -- what are the
interactions between the energy and the macro,
it is the interactions between NEMS and the Global Insight model.

Now we can certainly look at that
a bit. I don't think we have alternatives to that connection in any type of a near-term framework. Maybe, you know, if you want to start looking at it today to see what you setting --

21 better than anything else. actually be more interested in the other direction. We have some share of the 800 billion that's going into energy-related and how it will be spent.

MR. CONTI: Right.
long run as well as short run carbon
trajectories.
MR. CONTI: Right.
would be an interesting starting point. that case --

MR. TOMAN: I think given the current debate, I mentioned that. But I'd activities. I know you know how much that is

MR. TOMAN: But what effect it has
on the larger economy does seem to be very
interesting as well as estimates that are made
from it about, you know, how this will change

MR. WEYANT: Just how you do it

MR. CONTI: Well, you know, in

MR. WEYANT: It's going to be

MR. CONTI: -- in that case -- but

1 I think most of that is done internally to the
2 Global Insight model. We certainly have the
3 energy component of how that effects the
4 energy sector. But in terms of how it effects
5 the whole U.S. sector, I don't think EIA is an
6 expert in how --

8 out of bounds to ask them to come talk to this 9 group?

21 you've got a sense of what it is they'd like
22 to see. Who would do it is -- you know,

1 bringing in someone from outside -- this is
2 the forum to bring in people from outside. So
3 that's fine if we can do it.

4

7 topics?

21 consider -- could the agency consider how --
MR. CONTI: We can discuss it.
MS. BROWN: Okay.
DR. BLAIR: Any other suggested

MR. KOKKELENBERG: Yes, something I've mentioned in different ways. The policies are changing and they're changing fairly rapidly. And the economics last year was a really shocking set of changes in prices among other things.

The ability of the agency to move rapidly and address questions like the Senators provided and like the ones that Mike and John were just talking about is well, okay, how are things going to interact, is an issue that is bothering me.

How -- could the department what are the bottlenecks of making it fleet of

1 foot to be responsive and adjust things? I
2 mean the stimulus is known, to some extent.
3 And the AEO that was just published is totally
4 out of date. Well, that happens.

6 respond? And is there ways to make that
7 response faster? To make the agency more
8 relevant to the people who are asking it
9 questions, whether they be Congress or the

That would be a topic -- I would have no way --

MS. KIRKENDALL: Are you talking about the forecasting piece or the data piece?

MR. KOKKELENBERG: Either -- both -- I don't care.

MS. KIRKENDALL: I think the data piece actually keeps up pretty well.

MR. KOKKELENBERG: All right. Then the forecasting piece or the implications piece. The data piece might keep up well but the first session I came to, years ago you

1 were presenting how we were trying to make the
2 data au currant by essentially using time
3 series analysis of past data because we had no
4 idea what was happening right now.
MS. KIRKENDALL: They do use that for some imputations. But they also have real survey data that come in at that same time.

MR. KOKKELENBERG: No, I
understand that. I'm saying maybe this is a topic for next session, okay.

Then I have one other one that is interrelated again to John and Mike. If there is going to be pressure on carbon issues, there's going to be questions about nuclear. And I don't think the Committee has looked at nuclear for some times.

Years ago, there was a question about capacity utilization rates in nuclear power plants. And there were studies that the Committee did or ancillary groups did about --

MR. WEYANT: Life extensions.
MR. KOKKELENBERG: Yes, life

1 extensions. And is there a statistical or
2 modeling issue there that the Committee might
3 be useful to the agency on? Maybe next time,
4 maybe a year from now? That's the issue
5 there.

6

7

8

9 different talks this time questions about 10 assessing uncertainty. And I'm wondering if

11 there is an interest in either talking about

16 there's a need to educate users about 17 uncertainties. So kind of a -- I don't know

18 if there is a general interest in that. But
19 it sounds like there are very different
MS. BROWN: Okay.
DR. BLAIR: Barb?
MS. FORSYTH: I heard in a lot of standard approaches that EIA uses to assess uncertainty or to present uncertainty information to users.

And I'm also wondering whether estimation contexts.

And the specifics of the approaches could be very different. But maybe

1 there is a framework. 6 And give us a chance to look at, you know, and

7 actually kind of have a list of where we're
8 headed in terms of the STEO. 11 know, being pretty current. Some of it is

21 of you think that's a stretch because you are
MR. BROWN: One thing that I think would be helpful both to the EIA and the Committee would be to have sort of a plan on presenting one part of the STEO every time.

Because I know in some cases, some of the STEO stuff is legacy rather than, you pretty current. And it would be good to know kind of where the STEO stands and what pieces, you know, might need a little bit more work, et cetera.

MS. BROWN: One from me? Just in
line with one of the things that Ron had mentioned and we talked about yesterday. If you have work that you are doing related to the work that we do, and some sampler or in industry or whatever, but I

1 think if you really think about it, there
2 probably are things that you have that are
3 relevant to what we do.
And if you want to talk to us
5 about what it is that you're doing, that would
6 be very valuable to us.

11 them.

21 if you wouldn't mind, to be thinking about
And I think, John, you mentioned that you have a graduate student working on something with NEMS?

MR. WEYANT: I have a bunch of

MS. BROWN: A bunch of them. I mean if you wanted to maybe bring them in or one of them in to summarize to us what they're doing, I think the NEMS groups might be interested in seeing what graduate students are working on. That's always a fresh approach.

MR. WEYANT: Sure.
MS. BROWN: So I want each of you, that. If you are working on something, please

1 contact either Ed or myself and let us know
2 what it is so we can get it on the agenda.

5 talked about the two new initiatives to
6 evaluate the Petroleum Statistics Report and 7 the Natural Gas Monthly. And I think that a

8 number of us on the Committee will be real
9 interested in that.
MS. BROWN: Actually there will be follow ups on a couple of the items. That's one of them. And Steve had mentioned in his presentation that he'll be doing more in the fall.

I would guess that the liquid
fuels, you might be doing an update on what you find from your workshop? I don't know. We'll have to talk about it.

But I think there are some natural add ons. And the other thing that I hope that we'll implement is -- I don't remember -- it was either Izzy or Vince that suggested the

1 spreadsheet that talks about what the
2 recommendations are from the Committee so we
3 can follow up on what we've done.

4
MR. WEYANT: And the other one
5 like that was the Coal Group -- I think
6 Phillip and others said that they might -- I
7 don't know if it's next time or the time
8 after, just that one way to think about it is
9 it was mostly focused on supply and not on
10 transportation.

11
12

21 year. So we'll be looking into the
22
So if there is new work on
transportation bottlenecks, that could be a good one.

MS. BROWN: I'm sure Phillip and Jason will be interested in talking more about where they're going with their work. That will be good.

MR. TSENG: Yes, actually for the coal, we do have a very rich dataset. We have the distribution information as well for each transportation part.

2 of maybe two papers. One is addressing some
3 of the issues we presented this time and we
4 got feedback. And the other part is if we
5 have the transportation information, who do we
6 present it in a modeling framework so we can 7 actually simulate effect of different

8 transportation bottlenecks on coal production 9 and consumption.

And we probably can provide kind

I have one more comment, kind of going back to Mike's comment about the stimulus package. It is related to, I think it's energy technology assessment because I know for sure the energy efficiency in the Renewable Energy Office, the Biomass Program receive 800 million dollars additional money besides their regular budget.

And so the question will be what's
the new tact on technical progress. And that's going to be a very challenging issue.

But if it accelerates the technology, development, and the penetration, I think in

1 a modeling framework, that's almost like
2 another challenge for EIA.

4

6 you have --

8 AEO.

21 scenarios that would allow that kind, you
22 know, of exploration? And it's still going to

1 be a judgment call ultimately for the decision
2 makers.

4 to answer that.

7 answer it definitely in the sense that the
8 GPRA analysis or the analysis that the
9 specific programs do should do exactly that.
10 I was in a meeting yesterday -
MR. TSENG: I'm not in a position

MS. BROWN: But John --
MR. CONTI: I think I want to

MR. TOMAN: That's true.
MR. CONTI: -- where we were talking about how we are going to evaluate this because they're going to get, like he says, you know, a few hundred million there, a couple of billion here.

And they have to figure out how that will increase, you know, the effectiveness of their programs. And so I don't want EIA to really do it. If they had -

- if they come out with a report that says as
a result of this, it is going to advance, you

1 know, the technology two years. Then we could
2 clearly run a scenario that does that.

21 to look at them sort of one-off. I don't
MR. TOMAN: Right. No, that's not inconsistent, John, with what I was saying.

MR. CONTI: Yes.
MR. TOMAN: It's not that you would have to take ownership of the two years, five years, whatever. But you work with the relevant lab and others to, you know, have them tell you well, we think it could be this or this. And then you could look at each set of consequences.

MR. CONTI: And I think we do try and do that. The problem is we get into the number of technologies modeled in NEMS. And so we package them all up and we put them into one scenario.

What you're suggesting is you want think we have --

1

2

7 topics?
8
9 which --

Secretary.

Thank you.

MR. TOMAN: At least a few.
MR. CONTI: Who gets to determine

MR. TOMAN: Mr. Chu, Mr.

DR. BLAIR: Any other suggested
(No response.)
DR. BLAIR: We'll invite public comment at this time. Would anybody from the public care to make a comment?

MR. CONTI: I'll reiterate one thing I said yesterday. Three-quarters of our budget or more is spent on the data programs. And we spend a lot of time in these meetings talking about the analysis and modeling.

DR. BLAIR: Any other comments?
(No response.)
DR. BLAIR: We stand adjourned.
(Whereupon, the above-entitled meeting was concluded at 12:26 p.m.)

A	:19	AE		49:7,22 50:1 76:1
ability 98:17	adaptable 1	173:3,	algorithms 15	:17 104:2 121:2
121:13,14 122:2	add 61:19 89:13	179:3 187:5,8,10	allow 187:21	8:9 14
128:22	97:2 136:8 184:20	AEO2012 108:20	allows 23:4	188:4,7
(131:5	ad	affilia	97	swered 102:7,9
33:20 147:18	addition 11:2	161:1	alternate	14:4
150:21 178:14	:10	filia	112:4 131:17	Iswers 36:18,19
able 17:16 19:16,18	additional 4:8	affirmative	33:3,6	44:19
28:7 38:6 39:18	104	field 51:16	Iternativ	NTHONY 3
103:16 104:2	186:16	ag 141:5	152:19	nybody 5:5 41:
109:18	address 7:15 102:3	agencies 68:12,	Alternatively	146:5 159:15
11	103:16 111:6	71:15 78:2	162:18	168:13,14 190:10
122:6 130:15	2:13,16 118:	agency 43:1 44:9	alternative	anyway 28:12,15
132:4,17 133:10	62:17 168:7	61:12 64:14 65:13	164:717	144:6 145:17
133:16,21 134:1	178:15	:9 71:14	amendment 141:17	apar
134:14 136:4	addressed	21	Amer	apparently 28
139:19 140:10	10	179:7 181:3 187:9	142:9	84:6 145:8
148:16 149:15	129:6	agenda 172:7		
150:13 152:8	addresses	174181820	仡	plaud 125:3
153:21 161:4	addressing		analogy 70.4	
171:6	adds 53	aggregate 117:1	analyses 121:14	129:17 131:22
above-entid	adequately 32	aggregation 99:18	analysis 2:6 4:1	applications 129:8
190:21	Adjourn 4:22	ago 39:16 45:9	5:16 8:5 11:20	129:22 137:22
ab	adjourned 190:19	50:11 55:14 65:7	4:19 68:16 10	applied 21:12
157:21 1	adjust 85:22 179:1	6:17 67:10 97	09:16,17,19	applies 64:12
Academy	adjusted 79:18,18	:20	117:18	apply 8:9 75:6
161:21 163:1	83:5 85:21	152:1 162:11	125:16 127:10	appreciate 33:11
accelerates 186:21	adjustment 78:19	170:9 179:22	146:12,20 148:11	44:19 60:21
187:19	123:19	180:17	149:10 180:3	146:13 158:13,15
accepted 22:	Adminis	agree	188:8,8 190:1	approach 26:8 27
access 76:7	31:9 166:18	122:20 125:	analyst 98:10 99:1	34:11 67:16 109
accessing	167:1	49:2 154:12	analysts 10	退:7,87
11,1	A	,16	analyze 98:1	3:18
accomp	2:14	173:18	12:20	approaches 121:6
	Administrators	174:11	ancillary 180:20	21:8 134:2,13
	66:15	agreed-upon 14	Andy 2:21 4:14	181:12,22
		Agricultural 69	:7 119:10	appropriate 27:10
nts	adopt	ah 84:5 88:1	20:16 121:1	29:3,4 35:9 79:2
rate 30:8	A	ahead	143:11	102:19
accurately 15:21	ad	25:3 60:14 95:5		
acknowledge 105:2				
Act 141:16 142:7	advanced			
142:10		air 131:10 134:19 141:16 142:7,10	annex 127:1 annual 123:	
actions 75:7	advantage	141:16 142:7,10	annual 123:16	approximat 63:16
$\text { vity 9:6 } 1$				April 1:8 25:8,12
tual 16:22 63:16	advising 87:13	Alex 3:20 5:17,22	answer 32:8 39:13	25:20

ARCA 110:10
architecture 122:5
140:11
area 12:14 54:3 61:15 73:6 106:1 106:14 124:22 125:2 129:4 134:6 areas 109:10 145:11
Argonne 149:8 arguing 139:18 argument 56:14 arising 147:1
arms 162:13
arose 77:16
artist 35:11
ASA 1:1 4:2,6,7,11 4:17,22,22 115:7 161:12,20 162:6 162:11,17 163:12 163:19 164:1,4,12 164:15,17,19 165:1,14 166:1,4 asked 75:17 82:9 97:19 121:3 124:1 137:16 138:5 139:13 148:20 167:21
asking 27:2 44:16 49:6,17 51:3 54:12 66:22 88:2 91:9,13 133:18 159:21 173:11 179:8
asks 172:3
aspect 99:20
aspects 103:5 106:4 145:15
assess 59:18 181:12
assessing 181:10
assessment 98:17 109:15 138:8 150:18 167:11 186:13
assessments 109:11
asset 8:22 14:14,18 15:2,11,14 16:22
associated 127:14
Association 1:1 142:9
assume 17:18 58:17 59:2 135:9 159:6 169:12
assumed 20:14 assuming 51:1 assumption 9:15 17:7,21 20:17 117:17
assumptions 20:4 43:18 54:6 173:5
attention 64:15 72:18
attributes 128:8
attribution 114:22 115:3
at-the-money 18:19
au 180:2
audience 5:5 6:16 32:11 36:1,4 38:9 38:21 50:15,18,20 51:2 61:3,11 146:6
augmented 143:11
authors 154:19
auto 157:10
auto-regressive 51:18 52:1
availability 107:6 116:11 130:11 134:3
available 122:8 174:4
Avenue 1:10
avoid 36:8
award 66:16,19
aware 6:19 39:19 117:11
awry 82:16
A-G-E-N-D-A 4:1
a.m 1:9 5:2 95:3,4

B
back 16:7,13 24:10

25:6 28:6 35:22
42:2 51:8 53:1
62:13 63:17 69:4
69:7 74:8 77:9
79:9 80:22 81:3
130:2,19 136:6
139:16 150:8
152:1 186:11
backdrop 59:6
background 47:6
63:11,13
backtrack 111:9
backwards 132:2
bad 43:10 44:14
111:8
balance 53:11
balancing 67:20
band 51:10 56:1
bands 26:17 30:13
30:14,16 40:13,16
47:10,11 52:3
57:14
Bank 11:21 13:1 19:8 41:10 42:9 42:11,14
bar 123:9 142:9
Barb 53:21 59:9 181:7
BARBARA 1:15 2:22
barrel 30:1,2 66:5 169:13
barrels 143:8
base 31:2 87:3,3
based 7:9 12:13
13:8 18:22 25:8 25:18 27:8 30:22 41:1 58:8,10 123:2 167:6
basic 14:9,11 16:14 55:2 85:5
basically 31:8 44:7
67:20 91:22 96:3
97:12 101:19
106:6 107:4
108:15 127:22
130:20
basics 14:7
basis 13:22
basket 86:10
BEA 69:1
beginning 93:14 175:9
behavior 15:22
59:4 112:11
117:11 119:9
121:22 122:22
123:20 135:12,12
166:19,20
believe 92:3 98:12
156:3,17
believes 69:1
bell-shaped 34:22
beneath 167:5
benefit 23:4,12 26:8
benefits 12:9 75:4 113:7,8 126:21 127:1
BERRY 2:4
best 8:9 27:15
38:22 54:18 62:11
102:5
better 7:20 27:17
35:13 44:17 79:5
139:12 142:11
153:4 160:9
161:18 176:21
beyond 41:16
big 19:14 46:18
47:17 57:18 89:5
99:2 117:13
141:19 142:16
143:1 156:14
166:1,15 171:21
bill 17:9 149:1
167:18
billion 176:5 188:16
billions 44:12 80:18
bin 3:22 55:15
bio 112:5,6 114:9
114:11,12,13,13

114:14 117:13
129:3,9,20,20
133:20 134:2
140:14,16 141:18
142:15 145:21
156:15
biofuels 141:19
biomass 99:17
186:15
bit 10:19 20:3
23:22 48:12 54:21
55:2 85:13 130:5
135:20 140:13
144:13 156:19
175:17 182:14
Black 16:7,12
43:14,15 55:2
Blackberry 159:5
Black-Scholes 12:7
18:22 28:19 43:22
44:3,6 54:5 58:5
Blair 1:11,14 4:2
4:22 5:3 6:1,5
27:22 36:11 45:1
53:18 58:12 59:9
60:6,14,20 61:2,6
79:10 81:12 83:1
83:7,11,15,20
84:2,12,15 85:3
89:12 90:5 94:12
94:20 95:1,5
119:5 120:8 146:2
146:5 148:7
158:16,21 161:7
166:7 177:16
178:6 181:7 184:3
190:6,9,17,19
BLS 69:16
blue 25:7,12
Blumberg 2:4 5:20
5:20 20:2
blurry 70:21
Board 96:1 101:5 105:13 117:4 164:17
boat 31:22
BOB 2:20

borrow 53:19 79:4	46:1,12,15 47:7	19:13	cars 139:10,13	125:14 130:10
bother 162:13	48:3 49:1,13,16	calculated 25:6	case 10:12,22 15:1	178:12
bothering 178:19	49:21 50:8,19	calculates 37:20	22:11 45:1 50:1	changing 44:7
bottle 76:2,11,12	51:1,7,12 53:4	calculating 19:19	51:8 87:8,9 94:20	110:8 130:12
bottlenecks 113:19	61:1 84:7 89:13	27:6	100:1 107:16	132:21 133:1
178:22 185:12	90:17 91:8,17,21	calculations 149:11	121:16 151:4	178:10,10
186:8	93:9 115:12,22	150:6	173:5,20 176:19	characteristic
bounce 31:13 40:16	116:7,12 119:20	calendar 160:1,16	176:22	107:9
40:17	136:10 144:9	calibrated 56:17	cases 128:6 182:9	characterize 7:19
bound 24:18 32:15	156:7 159:2,19	call 5:4 14:12 15:1	catch 54:1 119:14	chart 23:4 41:21
32:16	160:8,14,18 161:3	17:12 66:22 69:6	categories 70:19,20	46:17,21 49:4,11
bounds 177:8	161:9 162:1,3,4,8	86:5 95:16 188:1	109:6 131:15	49:14 50:2 85:17
Bournazian 2:5	162:22 163:4,7,11	called 18:19 37:15	139:20 143:5	charts 10:4 27:14
4:10 61:8,9 79:8	163:15,19 164:8	50:12 56:17 74:8	category 121:3	32:6 46:10 72:22
81:7,21 83:6,10	165:15 168:5,8	74:10 118:18	132:5	checks 100:20
83:14,19 84:1,13	170:12 177:18	134:21 187:11	caveats 93:14	cherish 39:16
84:20 85:1 86:12	178:5 181:6 182:2	Canada 77:20	Census 70:1	China 133:14
86:18,21 87:5,7	182:16 183:12,20	144:13	central 103:22	choose 76:18 78:13
88:9,14 89:2,7	184:10 185:14	cap 98:18	certain 8:22 12:15	chose 79:1
90:9,18 91:4,13	188:5	capabilities 97:3	13:5,6 16:19	Chu 167:9 190:4
91:19,22 92:9,13	BTU 145:20	149:3	73:15 118:21	cited 8:4
92:18 94:11,15,22	buckets 109:8	capacity 42:19	135:6	cities 71:18
BOWERS 2:5	budget 186:17	110:5 180:18	certainly 29:4 82:4	citing 142:14
Boxer 167:21	190:14	captive 135:7	102:16 122:20	clarification 8:14
boy 140:2,18	build 57:5 100:6	capture 122:21	126:18 127:5	clarify 91:9
bread 64:15	102:22 107:10	133:11 140:18	131:11 134:10	clarifying 81:13
break 95:1 172:21	120:22 122:7,13	cap-and-trade	145:22 169:11	83:2
breaker 165:18,19	122:15 147:22	111:20 131:14	175:16 177:2,16	class 79:20
165:21	149:4 153:2	carbon 55:11 98:18	certainty 55:11	clean 141:16 142:7
BRENDA 2:8	building 1:10 37:17	98:19 109:20	cetera $57: 12$	142:9,22
bricks 72:21	38:17 103:2,6	111:20 112:22	182:15	clear 64:18 80:5
brief 95:13	131:13 149:5	113:12 134:11	chair 1:11,14 4:2	97:5 172:19
briefly 130:2	built 77:13	140:17 142:3	4:22 79:8 165:21	cleared 62:8,9
brighter 38:4	bunch 97:10	144:11,18,19,22	Chairman 82:21	clearly 80:13
bring 8:15 163:4	140:20 183:10,12	145:12,19 146:1	challenge 187:2	123:22 172:18
178:2 183:13	Bureau 68:16	148:10 149:11	challenging 186:20	189:2
bringing 67:20	69:12 70:1 71:15	150:2 176:13	chance 144:5 182:6	click 70:16,22
177:12 178:1	BURNS 2:6	180:13	change 9:3 43:2	73:18,19,21 85:15
brings 158:21	business 65:16	cards 142:22	64:7,8 74:2 99:9	clicked 56:11
British 42:15	68:15 71:9 75:9	care 37:4 38:1 90:8	110:14 131:11	clicks 71:5
broad 94:16 152:11	156:21	99:14,15 179:16	150:20 160:1	climate 151:14
broadly 137:19	buy 14:14,15 56:14	190:11	176:12	160:1 167:16
broke 113:16	57:22 128:13	career 78:17	changed 21:10	climbed 74:15
brought 132:10		careful 141:20	30:12 44:8 58:22	close 24:18 105:4
147:21	C	caricature 125:19	65:9 66:12 67:8	closer 11:8,8,17
Brown 1:14 2:2	calcs 150:2	Carol 2:4,11 5:20	67:16 68:22 74:9	closest 18:11,20
5:11 6:3 45:4	calculate 18:2	20:1	changes 8:21,22	CME 19:15

CNEAF 2:13,14,17 2:19 3:10,14
coal 2:13 61:20 72:9 99:16 185:5 185:19 186:8 coalesced 105:10 110:20
coarse 124:12
coarsen 124:13
Coca-Cola 82:14
coffee 41:22
COHEN 90:3
coincided 22:9
Coke 75:19,22 76:7 76:9,10,11,17 79:6
COLE 2:6 collapses 40:7 collect 56:15,22 collected 19:14 color 51:13
comb 41:9
combination 27:19
combine 13:12
combining 107:15
come 5:7 39:8,21
69:4,7 77:12 89:21 106:20 122:2 130:2 139:16 147:3 152:8 153:13 167:2 177:8 180:7 188:21
comes 56:10 146:16 168:10 169:1
comfortable 48:13 171:10
coming 72:3 142:12 148:20
comment 58:13 60:12,16 61:3 82:22 86:21 89:14 121:3 145:7 146:6 159:18 167:19 175:2 186:10,11 190:10,11
commented 82:4 comments 4:21
8:16 28:18 36:17 36:22 45:2,5 54:2 60:8,22 79:12
81:11 89:12 94:12
94:17 107:22
119:13,18 120:5
121:11 123:12
126:14 134:8
136:13,15 144:10
146:2,13 148:4 190:17
committee $1: 4,13$
4:2,8,12,18,19,22
8:9 27:2,21 39:15
45:6 61:10 74:13
75:18 81:9 82:7
87:12 92:4 106:13
138:17 158:22
161:11 163:9
164:15,18,22
165:13,17,18
166:6 174:18
180:15,20 181:2
182:4 184:8 185:2
Committees 164:15
Committee's
158:14
common 75:8 86:6
communicate
32:12
communicated 36:19
communication
34:15 101:10
community 142:5
company 36:13
comparative 130:8
compare 21:9 23:5
27:10 30:11 46:22
compared 25:19,21
compares 22:5 23:6
comparing 24:22 comparison 26:2

92:1
compete 97:14
competion 109.15
110:1 112:9 114:4
114:9 127:16
128:3,4,7 129:20
complaining 164:6
complete 107:2,21
127:9
completely 80:17
117:4 142:21
151:7 158:6
completion 104:18
complex 10:19
11:22 31:19 51:19
98:17 102:10,12
147:2 153:3
complexities
152:14
complexity $150: 22$
152:15 153:18
compliance 174:17
complicated 16:9
157:17
compliment 36:13
component 97:6
107:4 116:5 155:7
155:11 177:3
components 122:4
composed 101:5
composite 86:10
composition
132:21
comprehensive
70:20 136:11
compress 130:3
compressed 128:13 computations 138:2
computer 57:18 computer-type
171:17,18
computing 42:19
concept 56:17 72:1
conception 58:1
concern 135:11
concerned 39:10
166:16
concerns 163:6
concluded 190:22
conclusion 152:2
conditions 62:12
123:4 125:11
157:20
Conference 88:20
90:2
confidence 11:3,9
13:9,16,21 14:1
19:5,19 20:4,7,14
20:21 21:6 23:10
24:3,15,16,19
26:10,12 27:7,13
29:14,20 32:6,13
33:1,5,9 34:1,3,10
40:13 41:1 47:9
47:11 51:9 52:3
58:10 99:7
confident 29:15
32:16,17
confirm 75:4
conflict 147:3
conflicts 160:20
confront 141:10
confused 33:8
75:22 76:9 77:5
93:22 95:17
confusing 79:13 80:4
confusion 76:21
77:4
Congress 44:16 45:9 57:12 145:8 179:9 connect 169:4 172:15
connected 5:12
connection 175:18
consensus 52:12
89:17
consequence 124:14
consequences
130:1 189:14
conservation 134:4
consider 31:4

102:18 178:21,21
consideration 63:5 considered 22:20
91:1 100:12 131:1 153:14 164:17
considering 38:16 123:9 135:18
consistency 88:1,6
consistent 36:20
74:3 79:15 80:10 97:13
consolidation 143:19
constant 41:6 59:7 79:21 88:8 93:12 169:7
constrained 134:9
constraints 112:21 142:15
construct 11:4 129:9
constructed 52:4
consulting 175:9
consumer 86:1 123:14 127:8 157:6
Consumers 86:2 consumption 3:5 36:7 129:2 144:22 186:9
contact 184:1
content 112:22
113:1,1,2 128:2 144:11,19 145:19 145:20
contents 99:3
context 48:6 63:22
80:5 146:19
contexts 181:20
CONTI 2:8 168:6,9 168:19,21 169:21 170:14 172:11 173:2,7,13,16,19 174:1,22 176:8,15 176:18,22 177:14 178:4 188:6,12 189:7,15 190:2,12

continually 113:5	cosmos 153:3	credits 132:15	customized 12:21	day-and-a-half
continue 42:4	cost 58:18 113:10	critical 96:16 97:1	cut 109:3	159:10
133:18 138:12	125:21 127:6	107:5	Cutler's 120:4	day-to 9:2
165:1	129:2 130:15	critique 58:2	cycle 108:21,22	day-to-day 7:5
continued 3:3	131:20 150:11	crops 110:2	148:11 149:11	deal 34:7 61:14
104:10,11 131:5	161:20	cross 75:13	150:2,11 153:3	63:2 117:13
contract 9:11 10:21	costs 54:13 101:1	crucial 121:15	157:14	121:19 123:19
10:22 13:4 14:19	113:7 126:21,22	crude 6:19 7:8 13:4		127:12 150:21
14:20 15:4,16,21	127:11,14 133:1	52:8 53:8 54:19	D	156:18 165:17,19
17:6 18:4,11 25:6	157:15	65:4 66:4 116:1,4	daily 17:20 31:9	165:21 166:1
25:13 40:2,6	countries 133:16	116:6,8,9 117:21	DANDEKAR 2:9	170:5
contracting 101:16	country 160:3	118:2,5 119:1	dare 132:6	dealing 128:11
contractor 5:19	couple 10:4 16:2,16	135:11 145:10,21	data 3:5 4:9 27:9	dealt 147:19
contracts 8:6 10:13	19:1 28:8 45:4	crudes 144:15	56:15 57:14 59:13	DEAN 2:10
11:6 18:6 25:9	46:9 53:18,19	crumbs 64:15	59:17,19 61:7,13	debate 137:9
34:2 38:10,11	65:5 66:16 74:6	crunch 44:21	61:17,22 62:14	169:20 176:2
170:22	74:11 126:13	crunching 57:18	65:17 69:13,15,16	December 10:22
contradict 136	140:17 142:20	crystals 137:6	69:22 70:2,8,15	11:8 104:4 115:6
contribution	152:4 167:2	currant 180:2	71:4,21,22 72:2,8	decide 23:16,17
144:22	177:19 184:11	current 9:5 16:22	72:9,12,14 75:9	172:7
control 145:12	188:16	20:9 23:2 56:6	77:6,9 78:10,14	decided 74:16 98:1
convened 1:9	course 9:14 11:16	64:11 65:12,16	78:14,18 79:13,14	decides 131:10
conventional 114:6	12:17 15:3 20:13	68:18,21 69:6	79:16,16,18 80:8	decision 56:16 92:1
117:14 130:13	26:19 28:21 50:17	71:9 79:21 81:14	80:12,13 81:1,2,6	110:16 156:3
142:22	52:13 53:9 74:5	88:7,15 90:18	82:11,19 83:12,22	163:6,10 188:1
converged 98:12	77:15 79:5,14	91:2,20 92:2 93:1	89:5,10 93:14,16	decline 6:21
converging 11:10	98:19 100:4	93:3,9,11,12 98:9	93:20,20 102:22	deconstruct 20:3
conversation	102:20 110:2	98:21 110:4 131:9	103:2 107:5	deeper 87:18
146:22 147:11	112:10,11 129:8	142:18 144:17	124:11,12,13,19	default 83:20,21
Cook 104:22	139:9 153:20	155:1,2 157:20	174:3 179:14,17	84:4 90:19 92:2
cool 140:19	156:8	167:8,18 168:1	179:21 180:2,3,7	defend 160:12
coordinate 151:13	cousins 68:10	169:10,12 171:20	190:14	defensive 161:14
coordinating	cover 38:6 152:13	176:2 182:11,12	database 19:14	defer 28:17
158:18	161:5 163:12	currently 118:6	72:6	deficiencies 97:2
Coordinator 4:17	covered 121:10	curve 12:3,14,20	dataset 185:19	define 132:6
Copenhagen 160:5	COX 2:8	13:2 20:19,22	date 15:5,5,7,9	defined 17:5
copy 74:20	co-authorization	21:7,8,14 22:5,10	21:15,16 40:5,6	definitely 49:19
core 104:16 150:22	189:4	23:10 24:4 25:5,8	151:8 179:4	56:9 57:16 106:16
corn 139:5	co-variants 39:3	25:11,12,12,19	dates 104:14	156:17 169:17
corner 64:16	CPI 87:2	35:3 62:6131:7	158:22 159:1,2,3	188:7
correct 81:22 83:6	create 11:3 12:2,20	curves 25:2,4 26:5	159:11,14,17	definition 9:10
83:14,19 84:1,14	13:9 19:5,6 20:18	27:8 34:22,22	160:12 161:17	64:4 187:20
97:2 116:10,22	26:4,9,16 46:3	125:20,21 129:9	daunting 43:1	definitions 85:14
120:2	105:15	custom 33:5	day 9:3 18:12 62:8	degree 147:2
correctly 83:3	creates 11:21	customers 61:13	89:1 143:8 161:1	delete 31:10,12
112:9 114:2 151:2	creative 35:10	66:22 67:15 74:7	161:5 175:1	deletion 31:14
158:2	credibility 57:5	customize 23:20	days 66:17 106:20	DELEY 2:9

deliberations 82:3	153:16	67:16 72:13 75:16	159:9 161:10	141:8 149:17
deliverable 101:12	details 110:16	77:6 78:11 80:2	178:4	152:3,15 171:1,4
106:9	detect 125:14	80:16,17 87:22	discussant 4:6,7,11	172:22 173:2
delivers 61:12	determinants	109:18 117:12	27:22 28:17	174:9,20 182:20
Delphi 117:5	116:18	118:2 120:16	discussants 154:19	183:5,15 184:13
demand 62:6 116:7	determine 17:14	122:4 128:1,4,9	discussing 7:12	184:16
116:9,10 117:19	190:2	128:17,19 129:13	8:12 52:13 147:8	dollar 66:8 83:4,8
118:4,17,19 119:1	determines 15:13	130:4,12 132:14	discussion 4:8,12	dollars 12:16,16
129:19 132:16,21	Deutsche 11:21	132:18,22 133:2	4:18 7:20 27:21	13:12,14,18 24:10
133:7,12,14 157:7	13:1 19:8 42:10	134:1 137:11	64:3 81:8 89:15	26:14 30:1,1
166:19	42:14	139:4 144:13	120:15 136:14	44:13 56:8 66:5
demanding 45:9,11	develop 52	153:17,21 157:15	149:19	79:21 80:15,18
demands 127:4	107:3,13	171:17 174:7	discussions 146:17	88:7,8 93:1,3,10
density 42:9	developed 52:11	178:9 181:9,19,22	dismiss 134:3	93:21,22 94:10
department 169:2	103:9 104:3,16	186:7	dispensing 113:18	97:19 186:16
178:20	116:16	differenti	display 34:19 35:11	domestic 98:14
ependent 7	developing	173:17	85:7,11	124:5
depending 34:2	106:4 107:9	differentiated	disposable 68:20	domestically
63:10 71:10	133:15 141:6	134:15	68:21 69:5,8	133:10 144:14
depends 32:10 38:8	development 95:14	differently 71 :	disruption 67:21	Don 155:22
38:21 44:6 50:18	97:18 101:14	77:7 159:9,9	68:1	oor 63:14
50:19 138:10	103:8 111:2	difficult 6:22 2	distill 131:16	dose 141:22
deploy 132:17	137:10 145:13	31:21 33:7 96:18	distinction 64:6	Dow 28:6
Deputy 2:14	175:21 186:22	122:10 129:10	169:8	download 69:16
erivation 16:10	develops 118:20	162:15	distinguish 83:16	lownloaded 70:8
54:8	122:6	difficulty 53:15	distributed 17:19	downstream 135:4
derived 21:1 53:17	deviation 24:16	dilithium 137:6	17:21 20:18	DR 5:3 6:1,5 27:22
deriving 22:12	57:3	dimensional 63:17	distribution 12:2	36:11 45:1 53:18
describe 65:15	device 126	dioxide 142:3	12:20 13:2 19:7	58:12 59:9 60:6
103:4 116:14	devoted 171:4	145:12 146:1	20:19,22 21:7,8	60:14,20 61:2,6
131:6	diamonds 137:5	direct 32:14 71:6	24:4 25:3,5,8 26:5	79:10 81:12 83:1
escribed 143:	diesel 62:15 65:	124:6	27:8,14 42:2,6	83:7,11,15,20
describing 121:21	71:1,2 110:11	direction 138:13	47:2,4 113:18	84:2,12,15 85:3
design 31:19 103:7	difference 13:14	176:4	185:20	89:12 90:5 94:12
107:4 138:2 140:5	18:16 73:5 100:2	directions 94:8	distributions 100:9	94:20 95:1,5
143:21 144:7	100:2	137:11	100:10	119:5 120:8 146:2
Designated 2:2	differences 49:9	directly 17:1 136:6	division 101:7	146:5 148:7
designing 64:22	59:4 128:18	director 2:2,15	146:11	158:16,21 161:7
149:4	134:1	101:6 146:11	document 93:15	166:7 177:16
desire 125:3	different 10:8,12	directories 116:15	94:7 155:1	178:6 181:7 184:3
destinations 150:14	12:6,11,22 15:18	directors 89:16	documentation	190:6,9,17,19
detail 9:21 99:12	18:5,13,16,17	101:7 164:17	108:19 140:7	draft 86:14
99:22 100:20	19:1 20:8 22:13	disaggregated	doing 6:12 27:6	dramatically 44:8
102:21 103:20	26:6 33:14,19	111:16,17	41:11 44:10 56:14	drank 41:22
161:11	43:15 47:14,15,1	disconcerting	57:20,20 65:9	draw 72:4
detailed 125:4	48:8 49:4 51:13	119:11	66:19,20 72:14	DRI 175:6,7
126:4 152:13,20	61:17,21 63:9	discuss 7:20 103:5	87:21 137:20	drill 87:19

drink 76:17
driven 131:19
driving 126:12
147:21
due 92:11 160:1
dynamic 23:18
D.C 1:11

Earlier 28:8 75:12

160:8
early 22:15 25:6
85:10 120:6
149:14 172:9
ease 122:8
easier 26:21 34:8
98:8 126:11,11
159:3 171:19
East 145:11
easy 9:1 74:1 108:6 172:2
econometric 52:16
economic 7:15
68:16 127:12
economically 128:20
economics 122:11 157:18 178:11
economist 28:16 85:20
economists 16:2,6 63:21 69:2 78:16
economy 64:9 67:19 174:13 175:4 176:10
Ed 4:2,7,22 28:2,17 36:11 56:11 60:6 61:9 159:9 162:4 165:11 184:1
EDDIE 3:17
educate 181:16 educational 63:10
Edward 1:11,14,19
Ed's 119:17
effect 100:9 169:6 174:7 176:9 186:7 effective $31: 18$
effectiveness
188:19
effects 31:14
125:14 127:13
134:9 174:8 177:3 177:4
efficiency 132:15 157:8 166:20
186:14
effort 89:20 95:14
120:19 129:6,12
135:16
efforts 53:16
135:17
EIA 1:5 2:1,14 3:3
4:5,10,15,22
27:10 41:20 42:12
45:11 49:16 56:18
61:11 66:15 96:13
100:18 107:12
126:6 135:17
137:1 138:21
143:1 160:19
163:2,10 164:10
164:11 166:11
167:2 177:5
181:12 182:3
187:2 188:20
eight 7:8 67:5 91:7 92:4
eighth 159:12
EILEEN 3:5
either 15:1 19:4
20:21 21:5 49:1
58:9 73:13 78:18
94:4 96:16 99:22
110:13 132:11 136:8 157:8
179:15 181:11
184:1,22
elaborate 125:12
elaboration 136:19
electric 61:19
67:11,13 129:20
139:8,10,13
156:13 158:1
electricity 2:13

54:19
eliminate 39:14
ELIZABETH 3:12
else's 48:19 58:8,9
emblem 163:12
EMEU 2:16 3:7 4:5
5:22
EMF 168:10
emissions 113:3
140:19
emphasize 47:3,9
emphasized 122:20
employ 60:18
Employee 66:16
enable 33:5
enchilada 151:12
encode 59:11,14
ended 94:16 105:17
endorsements
121:12
endorsing 174:20
end-use 168:11
energy 1:4,5 2:15
3:6 4:4 5:15 6:13
7:11 43:9 45:12
45:12 54:18 64:20
70:8,15 71:7 72:5
72:6 75:15 88:20
90:1,11 94:19
97:8 110:1 114:11
116:20 118:7
125:9 128:9 132:6
133:5 157:7
166:19 167:11
169:6,9,10,14,16
171:2,8 174:8,8 174:13 175:9,13
177:3,4 186:13,14
186:15
energy-related
176:5
enforced 165:11
engineering 63:13
engineers 69:1
engines 87:17
England 42:10
England's 41:10

Enron 42:15
entail 140:9
entire 20:18 63:6
environmental
111:20 113:3
134:6 144:9
environments 72:15
equal 18:20 64:8
86:5
equate 28:21
equation $52: 16,18$ 187:15
equations 107:8
equivalent 163:17
error 29:19 53:16
errors 52:18
especially 7:4
34:10,20 53:7
essentially $41: 12$
103:14 154:2
180:2 187:17
estimate 30:8 31:6
38:2 40:7
estimates 38:21
40:17 176:11
estimation 31:7,20 181:20
et $57: 12$ 182:15
ethanol 112:6,7,16 139:5
EUGENE 2:6
evaluate 78:19
148:21 184:6
188:13
eventually 40:14
everybody $48: 18$
70:9 89:22 128:13
165:4
exact 34:12 73:22
exactly 10:5 29:16
30:17 32:2 36:2,9
76:3 116:15 125:5 139:6 188:9
examined 51:22
example 13:10
21:12 22:15 26:11

37:8,15 58:21
109:15 110:9,10
113:13 114:6
122:9 129:21
130:16 131:11
148:14
examples 67:10
140:12
exceeding 101:1
excellent 146:18
exception 121:10
155:13
exceptions 66:1,2
exchanged 106:7
exercise 129:10
exercised 15:6
exhibit 74:22 75:1
existing 86:3
140:11
expand 92:15
expanding 40:13
134:2
expands $34: 141: 9$
expect 12:3 38:13 126:15
expectations 21:20
22:12 23:3,7
82:17 158:4
expected 9:7 11:10
11:14,15,18 19:20
45:21 123:3
expecting 22:14
82:15
expenditure 174:13
expenditures 169:5 187:16
expenses 161:5 expensive $127: 7$
experience $41: 17$
experienced 66:14
experiences 76:15
expert 59:12,14 88:9 107:3,20 177:6
experts 56:17
59:19 105:22,22 106:14 152:5

171:10	136:1 148:17	feedstocks 114:1	fit 54:18 165:2	46:13 47:15 52:3
expiration 15:5,9	149:2,13 153:11	129:19 133:20	fits 124:16	52:11,18 53:16
17:5 20:13 40:6	153:13 155:12	feel 8:15 44:13 79:4	five 7:6 45:10 51:4	56:1 64:19
41:2	factors 11:13 15:18	feeling 31:22	67:4,10,22 77:13	forecasting 2:7
explain 45:15	53:10,11	fence 154:8	81:4 91:6 103:17	4:15 24:11 37:7,8
48:20	fair 86:12	FENNELL 2:10	118:2 139:20	37:15 44:10 60:18
explained 48:12	fairly 38:12 114:2,3	fertilizer 142:1	141:11 147:15	146:12 179:14,20
explaining 47:17	178:11	field 112:8	159:11,13,16	forecasts 4:4 6:6
48:16 49:3	fall 4:19 12:15	figure 42:1 81:5	189:10	7:14,21,22 8:10
explanation 23:2	26:20 39:17 109:9	84:5 94:2 110:6	five-page 103:19	14:3 22:8,13,17
49:19	159:1 174:14	111:9 152:11	five-ten 143:7	22:21 24:8 26:20
explicitly 52:9	184:14	154:5 172:14	five-year 37:19	27:11 30:21 31:1
59:16 128:6	falling 13:5,6	188:17	157:2	38:16 41:11 43:4
142:17 153:1	falls 21:5 24:17	figured 123:21	fix 7:1 74:1,16 75:5	48:14 53:3
exploration 187:22	familiar 170:21	151:21	fixed 10:21	foregoing 95:2
explore 135:2,5	familiarize 54:10	figures 83:4,8	flavors 68:21	foresee 171:1
177:14	fantastic 103:1	file 72:11 73:4,17	fleet 178:22	foresight 156:17
exploring 174:19	far 34:4 36:5 51:16	73:19,20,21,22	fleetness 42:22	158:7
exporting 143:7	56:4 86:7 88:15	74:2	flexibility 100:7	forget 120:2 187:10
exposed 157:1	103:9 145:4	finalized 21:16	flexible 171:21	forgetting 154:9
extend 168:2	169:20	finally 114:17	flip 86:13 93:16	form 17:17 43:2
extending 41:16	farm 134:5	financial 8:4 10:2	133:21	103:18 111:4,6,12
extensions 180:21	farther 21:22	11:20 15:11 16:2	flood 148:1	111:13 122:21
181:1	fascinated 16:1	50:12	fluctuation 7:6	152:21
extent 98:13	fashion 90:8	find 7:18 13:14	fluctuations 11:16	formal 53:6 100:15
123:17 127:20	fast 141:21 179:5	64:21 71:3 75:11	focus 18:9,18 89:9	101:4
145:8 147:17	faster 6:21 179:7	77:3,5 98:11	143:14	formality 104:15
179:2	fatter 35:3	118:21 137:21	focused 185:9	formally 52:10
external 117:18	favorite 65:4	154:14 184:17	folks 58:19 88:21	53:13 59:14 97:18
Externalities	feared 113:9	finding 157:6	follow 184:11	format 73:17
109:22	February 25:6,22	findings 6:11	185:3	159:10
extra 123:18	152:1	fine 87:1 178:3	follows 69:19	formats 74:2
extrapolation	federal 2:2 10:5	finish 60:8	follow-up 83:2	formatting 73:4
157:3	19:18 68:11 71:14	first 6:5,20 10:4	food 110:2	formed 16:5
extreme 153:9	77:21 78:2 170:22	14:21 16:18 21:11	fool's 158:10	155:19
extremely 16:8	fedstats 75:13,13	27:5,22 28:3 29:1	foot 42:22 179:1	formerly 42:15
e-mail 36:19	77:1,2	37:1 45:5 78:6,6	footnote 58:15	formula 100:19
106:21	fedstats.gov 70:5,8	80:7 81:10 85:6	67:17 74:9 85:14	formulas 29:1
F	70:12	87:17,20 88:4	93:7 94:5	formulate 156:5
face 28:5				
	feedback 78:5	148:4 159:12	forces 94:1	Forrestal 1:10
16:11 59:18	92:19 104:5	160:15,22 161:1,5	forcing 113:8	FORSYTH 1:15
61:15 66:15 81:	108:14 109:2	168:9 169:22	forecast 11:17 21:5	59:10,22 60:4
93:19 94:1,8	121:5 147:11	170:6 174:3 175:6	22:4,4 23:2,6 29:5	177:10 181:8
99:17 101:1	186:4	179:22	31:2,11 36:15	forthcoming 173:4
103:18 104:13	feeds 118:6	fiscal 161:2,6	37:2 39:7 41:9	fortunately 19:9,12
110:3,18 123:16	feedstock 134:2,5	Fischer 16:6,12	44:14,16 45:19	74:14 152:4

forum 178:2	114:14,15 117:13	73:18 75:16 112:6	136:2 172:4 176:1	75:14,20 76:1,18
forums 128:9	127:4,20 128:17	113:6 128:13	gives 12:10 14:13	77:1 80:22 82:3
forward 46:9 52:22	130:11 131:17	146:11 184:7	14:17 56:2	86:4 89:17 90:3
58:7 89:18 122:21	132:12,22 133:4,6	gases 141:18	giving 158:18	94:9 95:8,20 96:3
147:9 155:18	133:21 140:14,16	151:17	global 22:18,20	96:8,9,10 97:6,8
forward-looking	141:18 142:16,19	gasoline $28: 14$	133:9,12 140:15	97:10,16 98:2
9:18	145:21 169:19	54:19 62:15 65:5	150:17 175:6,7,8	100:15 101:3
found 7:10 35:1	170:3 184:16	65:8 70:22 71:1	175:15 177:2	107:2,12 108:6,10
161:13 172:21	full 24:5 60:2 108:1	71:17 86:3,11	globally 133:8	108:11,13 109:3
four 20:8 67:4,22	108:17 114:21	93:3 110:10	go 14:5 21:22 23:16	119:5,8 121:18
91:6 101:7 106:3	143:21 148:11	134:17	29:1 32:10 33:8	127:7 128:4 134:3
139:20 151:6	173:17	gate 113:17	36:5 41:14 42:2	137:9 139:7
157:2,12	fully 33:11 108:8	gauge 9:6 53:15	45:2 46:9 50:10	143:22 145:7,15
fours 63:18	function 16:19 19:7	GEAGLA 2:12	52:20 54:9 55:12	146:8 147:7,9
frame 7:20 80:17	19:19 20:7,9,12	Geisert 2:12 5:18	57:5 60:7,14	148:11,20 149:3
106:10	20:22 42:9	5:18	68:10 70:12 71:1	150:1 167:15,16
framework 97:13	functional 17:17	general 8:12 24:15	75:14 81:3 85:15	168:13 169:16
126:10 129:14	fundamental 14:6	34:6 36:7 51:17	86:7,7 87:18 89:4	171:8 173:10
175:19 182:1	fundamentally	65:20 69:20	93:16 94:6 95:5	174:1,9 176:5,20
186:6 187:1	72:11 156:2	136:13 166:9	95:19,20 96:20	178:18 180:13,14
frameworks	funds 55:21 170:8	181:18	100:20 105:16	185:16 186:11,20
102:17	funny 46:3 164:14	generalizable	109:5 114:4	187:15,22 188:13
frankly 29:15	164:22	150:10 151:3	115:16 137:11	188:14,22
99:10	further 54:3 135:1	generally 8:20	150:1 157:12	Goldman 45:20,20
FRED 2:18,23	future 11:15 14:3	22:16,19	159:10 160:14,21	46:1
free 8:15 79:4	14:15,16,18 15:2	generate 31:20	161:3 167:15	good 5:13 6:9 7:1
150:3	21:20 23:15 27:12	153:22	173:1	43:21 44:21 54:15
FREEDMAN 2:10	29:5,11 30:19	generation 114:13	goal 7:18	57:16 61:10 76:14
FRENCH 2:11	40:12 41:15 55:11	114:14	goals 120:18	80:8,9 89:7 95:9
frequently 8:4	58:6 60:17 64:10	generations 16:3	God 55:12	105:14,14 107:11
fresh 183:17	68:4 145:17 157:5	genesis 45:8	goes 28:14 36:6	107:14 118:11
freshen 150:7	157:20	getting 67:14 72:20	41:12 73:3 75:15	122:17 124:9
freshened 149:21	futures 10:13 11:1	88:18 100:5	79:5	125:6 126:9
Friday 1:8 159:6	11:4,6 18:12,21	104:17,19 128:7	going 5:3 8:2,2	132:17 133:16
fuel 61:20 62:15	19:5 20:10,16,19	137:18 150:11	18:9,9,18 26:8	137:4,16,17 138:6
65:3 66:10 68:4	21:13,14,19 22:5	164:18	28:11,17 30:22	138:6,7,8 139:15
72:5,13 77:14	22:9 24:7,9,19	GIELECKI 2:13	31:2 34:17 38:11	139:18 140:3
95:14 98:20	25:3 26:20 38:11	give 30:7 34:6	39:6,10,13,21	147:15 149:5
109:20 111:15	40:2 52:21 56:6	55:19 93:17 94:16	42:3,3,3 49:3,17	150:7,15 151:5
112:4 113:12	58:20	95:12 114:20	51:16 53:21 54:7	153:16 154:13,14
121:17 127:7		119:8 133:16	54:11 55:6,22	162:20 164:4
129:20 133:2	G	134:14 182:6	56:20,22 57:10,11	182:12 185:13,17
134:2,16 148:6,10	game 72:20 158:10	given 15:20 16:14	58:14 60:7 62:21	187:15
156:15	garden 86:6	18:3 19:6,21 24:4	63:5,20 64:2 66:7	goods 64:8 127:21
fuels 2:13 4:16 68:6	gas 2:15 4:4 5:21	91:1 98:5 101:16	67:6 68:10 70:14	128:4,8
95:7 97:12,14	6:6 28:11,12	106:5 110:9	70:21 71:11,11,22	gotten 95:22
114:10,11,12,13	54:18 61:16 72:9	115:15 123:18	72:21 73:14 75:8	102:17 120:4

147:12 170:4	143:14 151:6	54:9 139:11	highlights 115:15	Howard 2:14 3:14
government 77:21	152:12 167:2	140:12 166:1	highly 37:21	72:7 171:2
103:12,13 170:22	180:20 183:15	169:4	Hill 1:15 4:11	html 73:21
GPRA 188:8	grow 141:21	harder 123:7	79:11 93:4,4,11	huge 72:1 77:10
grab 88:4	grows 40:21	125:13	hire 165:12	129:3
grabbing 72:9	growth 133:14	hard-wired 153:5	historical 9:1,19	human 119:4
GRACE 3:15	Gruenspecht 2:14	Harvey 2:15 184:4	59:13,17,19	hundred 137:10
gradations 33:20	72:7	hat 78:10,14,15	historically 57:15	188:15
graduate 183:8,16	guess 14:5 16:20	hazard 138:21	hit 28:4 70:16	hundreds 80:15,18
graft 55:22 150:13	25:14,15 27:9,20	head 56:11 76:16	hits 87:17,19 88:22	hurdles 108:16
grandparents 65:7	32:20 79:11 93:8	76:19 140:2	Hmm 74:1	hurricane 67:22
grant 164:19	116:18 126:15	headed 96:7 101:11	Hodge 2:15 4:4 6:7	HUTCHINS 2:17
graph 24:21 65:6	137:1,21 138:19	182:8	6:8 29:16 30:3,9	
65:11,14 73:2	142:16,20 143:1	heads 70:6	30:17 31:16 32:2	I
graphic 33:13 34:7	143:14,18,19	hear 55:10 67:4,5	32:19 33:2,17,21	Iannacchione 1:17
graphical 35:11,16	150:16 153:7	68:6 92:7 135:8	35:7,14,20 36:2,9	4:6 28:1,2,10,15
graphically $24: 1$	156:11 166:9,12	144:3 159:8	37:9 40:9,22 41:4	29:18 30:4,15,18
26:22 27:18	167:13 169:21	172:17 174:15	41:13,18 42:5	31:17 32:3,21
graphics 29:21	184:15	heard 70:4 139:17	43:3,6,12,17 44:4	33:3,18,22 35:8
34:5,16 35:10	GUEY-LEE 2:14	146:14 181:8	44:22 45:3,18	35:17,21 36:3
graphing 23:9	guy 139:5	heating 65:3	46:11,14 47:5,22	42:7 43:5 50:3
graphs 65:3,4	guys 8:13 44:12	heavily 7:10 141:22	48:20 49:8,15,18	92:8,10,14
gray 24:14	56:16 105:16	heavy 89:10 143:2	50:6,9,22 51:5,11	idea 39:9 40:1 56:3
great 42:14 54:2	137:6 168:17	143:2,3,3,3,3,4	52:6 53:7 56:7	57:16 124:4,9
61:14 63:2 88:19	170:20 172:8	heck 85:16 152:3	57:7,13 59:8,21	125:6 126:3
121:19 145:21	GWAD 118:18	hedging 149:13	60:21 61:4	138:14 143:16
155:3,9 161:11		held 59:7	hold 8:17	147:4 150:15
165:5	H	help 20:2 35:11	holder 14:13,17	162:20 180:4
greater 99:18	hah 84:5	39:6 40:1 42:20	15:6	ideal 52:19
Greek 151:4	half 6:20 43:2	82:19 104:15,16	Holderman 167:10	ideally 30:21
greenhouse 141:18	hallways 74:16	105:3 136:4 142:6	Holte 104:21	ideas 107:14 168:3
151:16	hand 14:16 70:9,	171:6	home 64:19	identified 87:16
GREET 149:9,21	173:10,14	helped 5:16	homepage 70:14	115:12 117:22
gross 117:17	handle 39:19	helpful 10:17 91:16	homogeneous	118:1,1 126:16
ground 137:3	handling 68:12	105:3 120:18	127:21	131:21
group 2:2 19:15	handouts 112:1	174:19 182:3	honest 111:11	identifies 154:20
45:10 68:5 74:15	hands 70:7 73:11	heterogeneities	hope 5:11 28:14	identify 5:6,8,9
82:8 88:19 89:18	90:4,15	125:11	101:15 184:20	39:11 40:1 107:14
90:8 92:11,15	hanging 126:3	hey 73:1	hopeful 122:5	113:19 149:15
96:13 105:8	happening 46:6	he'll 184:13	hoping 7:17 8:7	155:5
114:20 136:21	180:4	high 96:17 117:6	30:10,16 101:17	idiosyncratic 55:17
143:17 151:20	happens 46:7 66:10	123:9 171:7	156:11	idle 122:14
154:18 177:9	131:17 179:4	172:14 187:11	horizon 56:13	IEO 155:7
185:5	happy 95:10	higher 25:12 48:21	167:14	IER 108:13
groups 61:20 66:10	114:20 115:19	highest 171:14	horse 74:15	ignorance 124:18
72:5,13 77:14	120:12 165:1	highlight 8:2 49:9	hour 42:20	ignore 75:20
89:9 107:3 140:21	hard 24:13 51:17	highlighting 7:12	hours 79:15	IHS 175:5,8,8

illustrate 10:1,3
19:4 24:6,14 26:6
26:22 27:16 32:7 34:1
illustrated 29:17
illustrates 14:2
illustrating 10:18 10:20
illustration 21:12
image 76:15,17,19 82:10
imagine 15:17
immediate 48:6
impact 7:16 15:19
112:16 113:2
impacting 11:14
impacts 127:6
impeding 162:14
imperfect 128:3
implement 170:1 184:21
implementation 108:17 140:6
implications 130:15 179:20
implicit 9:12
implied 8:5,12 9:9 9:10,17,22 10:9 10:11 11:5,11,22 12:9 14:7 17:12 17:14 18:2,10 19:2,11,15 20:9 20:16 21:13 25:11 150:16
implies 42:22 43:16 import 144:18,20
important 9:16
11:13 14:20 15:4
16:4,16 17:21
37:12 38:19 43:22
52:7 54:3 55:6 72:18 88:3 98:3
102:1,2 116:5
123:22 126:20
127:18 128:5,6
129:8 134:7 135:3
149:22
importation 145:10
imported 144:12 imports 67:20 68:7
impressed 115:9,9
improve 162:7
improvement
131:19
improvements 98:7
improving 144:7
imputations 180:6
incentives 111:21
112:21
include 113:7,22
129:16 134:7
173:7 189:3
included 81:13 112:11
includes 102:8 125:12
including 105:8 109:19 112:6
income 28:14 68:20 68:21 69:6,8
inconsistency 68:9
inconsistent 189:6
incorporate 148:16
incorporated 104:13 107:22 112:4
increase 99:9 188:18
increased 10:15 119:1 127:11
Independence 1:10
independent 78:12 107:3,17,20
index 85:22 86:2,2 86:9
individual 105:6 115:14 130:19 144:8 171:11
individuals 115:1
industry 55:10,13 113:6,10 157:10 175:10 182:22
inflation 78:20 85:22 86:1

Jake 2:5 61:7 94:21	164:20 179:21	163:8,14,22 164:5	153:3,5,10 156:22	lab 189:11
Jake's 89:19	keeping 105:4	164:13 179:13,17	157:1,2,3,4 158:8	label 72:18 73:19
James 1:10 2:4,19	147:4 161:16	180:5 184:4	158:14 159:15	79:2 80:10,20
JANICE 2:22	keeps 171:2 179:18	knew 119:13 152:2	160:18 161:16,20	82:13,15 83:15
January 115:8	Kendell 2:19 6:4,4	159:22	164:21 166:10	labeled 66:13 71:12
Jason 3:21 185:15	key 100:8 103:15	know 7:9 8:14,20	167:5 168:10	80:9 83:5,9,12
jazzed 126:1	103:22 106:9	9:2 12:17 13:4,15	169:7 171:11,18	84:10
JENNINGS 2:17	109:13 113:4	13:22 15:21 16:14	172:1,10,14	labeling 61:7 90:16
Jim 6:3,4	147:6 187:20	17:11 18:4,13	174:19 175:5,19	92:3 93:20
job 66:21 139:18	kick 160:18	19:9,9 23:13	176:6,6,12,18	labels 35:1 75:16
159:3	kilowatt 79:15	26:11 27:9,16	177:19,22 181:17	labor 69:12 71:16
John 1:22 2:8,9	kind 7:1 16:1 28:4	29:4 35:2,4,5,21	182:6,9,11,12,14	158:19
53:20 58:16	30:10,11 31:2,12	37:13 38:12,12	184:1,17 185:7	lack 35:18
115:10 119:19	31:21,22 32:22	40:22 41:4 42:16	186:14 187:14,18	lags 134:10
120:1 122:19	35:5,22 38:13	43:5,5 45:8,11	187:19,22 188:15	laid 126:9
124:3 134:21	40:18 45:7,10,16	46:16 48:15,16,22	188:18 189:1,11	land 110:1 141:3,5
136:7 159:21	46:16 47:6,8,16	49:2 50:15,17	knowledge 120:5	141:21 150:19
167:10 168:5	50:13 51:2 53:6	52:12,17 53:3,10	knowledgeable	151:16,16,21
172:17,19 174:11	54:7,16 55:8,18	53:15 54:12 55:21	66:14 105:22	152:5
177:18 178:17	56:13,15 57:6,18	56:6,21 57:14,19	known 179:2	lands 141:4,4
180:12 183:7	57:19 58:4,4 63:5	58:17,22 75:2	knows 141:2	large 111:1 154:2
188:5 189:6	68:1 84:5 102:5	80:16 83:21 84:3	142:11	larger 127:12
John's 144:10	102:15 107:10	84:4,6 85:2 86:6	Kobi 3:9 5:12,14	129:17 131:18
168:7	116:17 123:8	89:4 90:6 91:15	6:15	135:16 176:10
join 162:9	124:20 128:3	91:16 93:2 94:6	Kokkelenberg 1:19	late 101:2 172:10
JOSEPH 2:18	129:6 133:3 135:7	94:17 96:5 98:11	4:7 28:13 36:11	172:12
jotted 138:15	135:8 136:20	99:11 105:13	36:12 37:10 40:10	latest 24:12
JOUTZ 2:18	137:2,3,18 140:15	106:19 109:5	41:3,8,14,19 43:8	Laughter 28:9 79:7
JOYCE 2:4,19	140:22 141:14	110:22 113:21	43:13,19 44:5	84:22 85:4 87:10
judgment 53:5,9	142:21 143:13,20	117:2,12 120:1	60:11,15 85:5	88:13 115:11
122:11 188:1	144:6,21 148:4	122:18 123:4,13	86:16,19 87:1,6,9	120:11 155:17
judgments 59:12	150:17 151:20	123:15,17 124:10	87:11 90:21 145:6	lays 107:4
59:15	152:19,21 153:8	124:11 125:7,19	162:9 163:3,21	leading 89:20
July 101:17 106:10	154:7 156:12,19	125:20,21,22	164:3 165:10	learn 108:11
108:4	157:1 163:12	126:17 127:21	178:8 179:15,19	119:11
jumped 39:12	164:14,22 166:19	128:12 129:4,7	180:8,22	learned 108:12
jumps 48:7	167:10 181:17	130:11,14 131:3,7	Kydes 2:21 4:14	150:5
June 13:4,5 18:4	182:7,13 186:1,10	132:1,16 133:1,12	95:7,9 115:13	learning 136:13
24:11 101:15	187:21	134:19 135:14,19	116:3,9,13 117:3	lease 37:19 38:5
106:10	kinds 112:21	136:13 137:4,22	117:16 118:13	leave 39:14 63:13
	120:17,22 121:1	138:2 139:2,5,6,8	119:7 148:8	LECKEY 2:21
K	138:18 139:14	139:12,16 140:1	149:12 153:11	left 10:10
KATIE 2:18	King 2:20 5:22,22	142:5,8 143:9	154:12 155:2,4,10	left-hand 64:16
keep 20:20 42:2,3	6:15	144:3,16,19	155:18 156:2	legacy 182:10
62:20 64:2 78:7	KIRKENDALL	147:22 148:5	157:21 158:3,8,13	legislation 148:19
78:13 100:5 136:22 159:5	1:18 88:6,11	149:15 150:19		148:22 168:15
136:22 159:5	161:22 162:2	151:4,5 152:17	L	length 162:13

LENT 2:22
leptokurtic 25:16
lessons 143:13
letter 126:9
letters 104:10
let's 13:10 24:2
26:3 46:16 63:8
64:13 70:12 79:8
81:10 95:16 109:6
140:16 144:14 160:21
level 13:20,21 14:1 14:8 15:13 20:14 20:21 32:13 33:1 33:9 34:2 36:6 45:21 53:14 71:2 99:11,18 102:21 112:8 144:7 167:6 171:7,9,15 172:14 174:7,8
levels 13:6,7 14:4 17:18 18:3,15 21:20 26:10 33:5 33:14 153:17
leverage 151:10 152:12
levers 131:20
LFM 95:16 155:5
LFMM 95:15
liberties 110:21
library 87:13
Lieberman 167:21
lies 40:19
life 148:11 149:11 150:2,11 153:3 157:14 180:21,22
lifetime 187:14
light 144:14
limits 37:13
line 182:17
lines 24:14 125:19
link 71:6
linkage 174:13 linkages 140:7
links 75:14 133:6
liquid 4:16 68:5
95:7,14 98:15

99:3 106:1 113:2
127:4 132:12
142:19 169:19 170:3 184:15
liquids 97:11 98:5 99:16,16,17 110:9 112:5,5,6,6,7,22 113:16 114:5,6,12 114:14 118:17 122:12 127:22 144:12
list 70:19 102:10 103:9 104:3,3,14 105:18,21 114:21 115:5 120:16 136:2,11 139:21 139:22 182:7
listed 111:22
literature 54:22
little 10:19 13:9
29:22 39:9 48:12
54:21 55:2 70:20
78:5 85:13 105:5
119:11,14 126:1
130:5 135:1,20
140:13 144:13
156:19 159:4 182:14
live $67: 19$
local 134:16,19
lock 169:13
$\log 20: 18$ 22:3
logged 17:19
long 38:15 44:1
51:20 99:8 108:21
108:22 174:6
176:13
long-run 123:3
long-term 45:12
look 29:5 34:21
46:7,21 48:4
52:22 53:3,9
64:13 66:9 68:10
73:14 75:9 76:2
80:4,22 87:22
123:15 129:21
130:15 133:20

134:1 141:2 150:3
156:13 157:8
165:11 172:22
175:16 182:6
189:13,21
looked 159:4 160:20 167:3 180:15
looking 23:21 29:22 35:1 40:11 40:12 48:5 53:1 76:3,4,20 77:2 79:16 80:14 81:10 106:1 122:22 125:8 150:13 155:18 175:3,20 185:21
looks 22:7 77:7
82:21 116:16
147:8 157:4
loony 55:15
loosen 72:21
lose 128:14
losses 127:8
lost 67:12
lot 19:12 34:7
36:14 43:17 49:19
50:14 54:4,6,16
62:1 65:9 69:13
73:7 94:1 100:11
102:8 109:11
116:20 125:12
126:14,17 130:22
137:21 142:10
147:18 150:5
161:22 162:1
168:14 169:3
170:5,20 171:10
174:3 181:8 190:15
lots 93:15 99:13
100:20,22 107:18
109:18 111:18
137:11 153:17
loud 168:8
LOUISE 2:14
love 158:20
low 14:1 48:16
75:15 98:19
109:19 117:6
148:10
lower 11:18 24:18
32:15 48:12,18
113:12
lumber 63:17
lunch 175:3
Lynch 42:16
Lynn 2:12 5:18
M
macro 48:17 174:7
174:8 175:13
macroeconomic
22:17,21 53:11
main 34:14 39:3
111:3 140:22
141:12 149:19
maintain 98:9
154:2 171:19
maintaining 150:21
major 71:18 100:2
101:12 135:9
makers 133:17 188:2
making 125:13 150:22 156:14 162:15 163:9 178:22
manage 55:21
management 3:5
100:16,18 107:19
109:2 163:5
manager 66:11,14 66:21 67:3,7,13 74:6,9
managing 63:4 64:22
manipulate 130:21
manner 23:22
$\boldsymbol{\operatorname { m a p }}$ 59:19 174:21
March 21:14,15 22:8 24:10 25:5,9 25:13,21,21 108:2

108:3
margin 58:20
marginal 141:4
margins 99:4
109:11,14 111:16
MARINER-VO... 2:22
MARK 2:13
market 4:16 7:15
9:5,7,13 14:12
15:12,12,20 17:2
22:14 23:3 27:12
38:9 40:3 42:20
43:16 44:11 45:17
49:4 62:7,12
86:10 95:7,15
97:7,9 98:15,15
106:1 111:15
112:10 114:18
119:9 130:14
131:18 133:4
135:2,4,10 138:18
139:3,14 141:8
143:16 156:20
marketing 143:13
markets 2:15 3:6
4:4 5:15 9:18
50:13 73:16
109:10 123:20
134:16 135:6
market's 15:22
MARY 2:19
MASON 2:23
mass 112:7 114:13
massive 57:9
material 81:14
85:11
mathematical 108:1
mathematics 16:8 16:15 19:11 matter 70:16 73:17 78:8,12 81:19 95:2
matters 116:21
MAYES 2:23
McCain 167:21

McDOWNEY 2:24
mean 30:5 33:3,10
34:19 35:2,5,14
37:3 48:3 49:2
51:5 53:2 55:18
56:1 80:5 85:17
85:19 126:14
132:8 134:16
143:22 153:4
164:10 165:7
166:1 179:2
183:13
meaningful 96:19
means 28:7 29:19
39:18 57:21 63:4
63:8,9,15 100:8
129:2 143:10
measure 8:3,10 9:1 9:6,9,17,18 10:2,9 10:11 12:1 19:3 21:13 57:22 59:15 62:11 69:11 105:16
measurement 62:7 62:9 150:4
measurements 100:22
measures 18:2 31:10 34:12
measuring 9:19 29:8 66:7 126:22
mechanical 40:15
mechanics 9:22 20:1
media 66:7 89:9
medium 117:6
meet 101:7,8 110:7 110:12 118:18
meeting 1:5,9 4:2 4:19,22 5:4 151:22 158:15 159:1 161:8 188:10 190:22
meetings 52:13 142:20 190:15
MELENDEZ 1:20 88:16 89:3
member 161:18
165:12,13,18,22
members 1:13
61:10 74:13 75:18 92:4 104:22 106:12 115:7 165:5,6
mention 52:7
109:22 132:7 154:16
mentioned 27:5 33:4 72:8 75:12 105:8 117:16 122:3 123:11 133:19 134:12,21 139:9 142:17 150:3 153:1 176:2 178:9 182:18 183:7 184:12
mentioning 171:3
menu 127:3
mercilessly 120:1
Merrill 42:16
Merton 16:12
method 102:19 117:5
methodology 4:16 54:11 58:3,7 86:14
methods 2:2 19:2 31:5,8 74:15
MetLab 108:6
Michael 1:21 2:6 3:11 4:17 146:10
microphone 5:7,11
middle 140:15 145:11
Midwest 67:11
Mike 53:21 58:12 119:6,8 136:19,20 138:10 139:17 142:10 143:11,15 152:19 158:1,17 172:16 178:16 180:12
Mike's 138:14 186:11
military 80:14
MILLER 2:25
million 62:17 88:22
97:19 143:8
186:16 188:15
millions 44:12
80:15
mind 20:20 60:7 62:20 78:7 82:14
132:10 136:22
143:15 144:11
183:21
minded 130:8
minimize 145:10
minor 148:8
minus 30:2
minute 86:20
minutes 53:19,20
80:21 81:4
misinterpretation
35:15,18
missing 159:20
mitigation 151:17
mix 110:8,14
130:14 132:14
model 6:12 9:15
12:7,8 16:10,13
16:17,18 17:11,13
17:17,22 19:1,3
22:17 39:18,18,20
40:19,20 51:19
52:1,9,11,11 53:6
53:13 58:8 60:19
95:7,14,15 97:4,7
98:8,9 99:9
102:11 103:1,16
104:1 106:4 107:6
107:10,11 108:4
108:17 109:18
110:4,17 116:20
117:7 118:4,7,18
119:3 120:22
121:1,2 122:6,16 123:6,18 124:5,9
125:4,12 126:1,4
126:18 127:2
128:12 129:1,2

132:2,17 133:7,16
133:22 134:14
135:2,13,14 137:9
137:17,17 138:2,6
138:8,22 139:2,12
144:17 149:4,9
152:16,21 153:6
153:17,22,22
154:2,15 155:5
166:11 169:9,14
169:16,22 171:2,9
171:11 175:6,11
175:15 177:2
modeled 189:17
modelers 165:6
168:11
modeling 15:21
27:3 28:18 97:6
98:4 99:20 102:4
103:5 105:22
128:16 129:6
130:1 135:15
147:4 151:1,14
167:6 169:10
181:2 186:6 187:1
190:16
models 12:6 16:5
51:18 60:19 124:8
124:15 137:2
140:15 145:13
150:18 151:14
167:14 168:12
modest 136:19
modify 55:2
modifying 108:10
modularity 122:3
139:18 141:9 148:4,5
modularize 147:18
module 97:9
116:17 122:13
147:8 152:18
153:6 170:4 171:9
modules 97:11
106:8 117:12
140:8 144:1,2,8
169:11
mold 165:2
mole 72:20
moment 37:5,12
41:12 62:5 123:5
monetary 67:17
money 64:7 98:2
164:1 167:4
168:18 169:2
170:7,7,15,17,20
186:16
month 19:6,21
21:10,10 24:5
25:1,1,2 26:2,2
30:14 38:7 43:11
50:11 62:8,18
82:3 89:2,3 101:8
monthly 38:5 43:4
44:10 56:13 67:14
71:6,7 73:18
75:14 184:7
months 7:4,4 22:7
22:16 28:8 31:1
45:9 67:22 151:20
172:6
morning 6:6,9
61:10 66:1 95:9
120:6 175:2
motor 62:14 71:17
move 60:9 89:18
125:3 126:10
131:6 166:8
178:14
movements 127:13
moving 60:2
112:18
multi 125:21
multiple 120:20
myopic 123:1
158:4,6
Myron 16:6

N

naive $124: 2$
naively 151:19
naivete $124: 18$
names 106:21
115:1 167:22

Nancy 1:18 91:12 184:3
Nancy's 90:22 91:15
narrow 26:17 40:5 narrower 11:18 12:21 13:19
national 69:18 141:4 161:19,21 163:17 169:9,10 169:13,16 171:2,8
natural 54:18 61:16 72:9 73:18 128:13 184:7,19
nature 121:7 124:10 131:12
navigational 64:18
near-term 145:16 175:18
neat 56:17 139:9
necessarily 21:3 93:6 135:22
necessary 98:10 101:22 149:16
need 49:19 55:11 67:5 68:7 72:12 78:9,19 100:6 102:4,6,7,9 118:21 128:18 130:14 138:12 149:17,21 172:13 181:16 182:14
needed 97:3 104:15
needs 97:22 106:6 123:18 149:15
negative 140:19
negotiations 160:2
negotiators 140:22
neither 152:2
NEM 97:17 166:11 167:15
NEMS 97:9 108:7 108:18 116:15 118:8 137:8 139:12 140:7 144:17 154:21 155:1,7 167:6

168:1 175:14,21
183:9,15 189:17
net 144:22
Netherlands 77:18 never 73:12 170:7 171:3
new 45:6 77:20
95:13 97:2,17 98:4,19 100:17 103:16 110:7,9 113:20 114:18 129:14 137:9 147:1,8 148:17,18 149:10 161:2,17 165:16 166:17 169:13 171:1,8 184:5 185:11 186:19
nice 20:2 68:9 112:17 154:10
night 28:5
nine 67:5
ninth 159:12
nitrogen 141:22
nitrous 142:1
Nobel 16:13
nodding 70:6
nominal 4:9 61:7
63:7,9,14,19,21
64:5 65:13,18,20
66:13 67:1,15,18
68:17 69:1,14,17
69:21 71:21 73:2
73:11,20 74:1,3 79:22 80:2,2 81:6 81:17 82:19 83:8 83:9,12,13,15,22 84:9,9,10,18,18 85:8,15 88:12,12
88:17 90:12,13,13
90:20 91:2,5,10
91:14,20 93:22
94:9
nonlinear 102:18
non-conventionals 142:19
non-petroleum

113:22
non-U.S 124:11,12
normally 17:19,20
20:18
northeast 67:12
nose 65:8
note 14:15 17:15
18:1 22:6 132:5
notice 29:13 40:4
notion 123:2
nuclear 2:13 180:14,16,18
number 57:3,18 88:4 97:1 103:20 110:22 111:14 114:3,16 146:22 153:21 169:11 173:20 184:8 189:17
numbers 58:11 83:17,17,17 87:22 106:22 117:11 152:9
numerically 23:12 26:6
NYMEX 8:6 19:16 21:1,1,19 22:5,9 22:14 23:3,6 24:7 24:19 27:8,12 29:2 47:1,11,15 47:19 48:9,13 49:9 52:21 55:19 58:4

0

objective 78:1
objectives 145:9
obligation 14:15
observations 39:17 40:21 121:6 147:10
observe 17:2
observing 147:10
obtain 19:17
obvious 126:17
obviously 11:7 14:1 20:8 23:13 33:12

45:22 51:5 52:15
98:22 108:9
121:15 123:6
125:22 134:7
occupational
138:21
occurred 30:20
109:13 112:2
October 159:11
160:9
odd 164:10
offer 26:15 60:13 163:11
offering 164:7
office 2:6,13,15,15
3:6 4:4,14 5:15,21
89:16 97:22 101:5
186:15
official 2:2 10:6
offline 60:7 121:19
offs 125:22
offsetting 41:5
Off-mic 159:18
167:19
oh 35:20 45:3 47:14
48:7 50:6 55:12
61:2 85:18 86:16
89:3 92:9 120:8
120:10 163:3
164:5
OIAF 2:7,12 3:11
3:12 96:13
oil 2:15 4:4 5:21
6:6,19 7:8 13:4
52:8 53:8 54:19
55:12 65:3,4 66:4
113:5 116:1,5,6,8
116:9,15 117:21
118:10,14,15,21
118:21 122:12
135:12 137:4
139:3,4 142:21,22
143:3,4 144:13
145:10,22 146:11
OIT 2:9
okay 5:3 6:8 24:2
31:16 35:7,20

36:9 38:8 41:19
44:22 46:14 54:1
56:18 59:21 60:14
60:20,21 61:4
70:5,9 72:5 78:10
82:21 86:16 87:1
87:6 91:21 92:9
92:19 94:11 95:9
96:22 102:3
105:13 107:1
112:17 116:7,12
117:3 120:10
126:13 149:18
155:11 161:2
162:3,8 163:10
171:7 173:6,15,22
178:5,18 180:10
181:6
old 128:12 137:4
OLOGS 169:22
OMB 78:2
OMB's 77:16
once 67:14 72:19
72:19,22 73:11 74:9 84:4 101:8,8 107:20 108:9,12 108:15 146:8 ones $38: 4$ 68:14 73:9 109:13 112:2 145:15 155:15 178:16
one-month 44:6
one-off 189:21
online 46:17 60:15 60:16
ons 184:20
OOG 2:11,23 3:22
op 189:3
OPEC 119:1
open 4:2 94:16 136:9
operation 37:17
opinion 125:1
128:22 149:20
opinions 52:12
opportunities 137:7

Neal R. Gross \& Co., Inc.
(202) 234-4433

opportunity 88:20	126:14 150:15	Pardon 163:21	peak 142:21	phase 104:17 140:5
137:2,14 146:18	173:12	parenthesis 92:21	peaked 25:14	140:6
156:4	output-based 131:2	93:1	peaks 160:4	phenomenon 133:4
opposed 9:19 90:17	outside 39:17 90:1	parenthetically	penetration 186:22	Phil 104:21 187:3
141:12 144:7	94:18 103:11	94:4	people 8:20 36:3	Phillip 3:18 185:6
opposite 48:21	104:8 135:13	park 141:4 167:4	38:16 49:17 54:11	185:14
optimal 136:21	157:13 177:12	part 10:16 45:14	55:3,14 58:3	phrase 132:7
optimization	178:1,2	97:17 101:13	63:15 76:22 88:4	physical 15:11
102:16	overall 121:5	108:7 116:18	89:9,20 90:16	50:13
option 9:15 14:13	128:16 130:10,18	121:4 124:18	92:17 104:7	pick 44:11 53:20
14:13,17 15:2,6	132:12	135:16 149:16	117:10 120:19	70:14 91:15 106:3
15:14,19,20 16:21	overarches 63:6	150:22 153:10	137:16,18 141:1,5	160:12
17:4,13 18:4,19	overarching 78:1	168:10 173:3	142:5,11 156:14	picked 44:9 68:13
154:13	overhead 129:18	182:5 185:22	156:22 157:7,11	73:8 110:3
options 8:6 9:11,13	142:9	186:4	159:6 164:21	picture 34:7 48:5
10:21 11:5 14:7,9	overlay 141:17	partial 102:10	165:16 168:18	piece 179:14,14,18
14:11,19 15:11,16	overseas 144:20	PARTICIPANT	178:2 179:8	179:20,21,21
16:1,5 18:6,10	overview 95:13,20	92:20 93:13 118:9	percent 7:7,8 12:15	pieces 122:7 182:13
25:9 27:12 58:5	ownership 189:9	118:14	13:12,16,20,21	pilot 108:4
132:18 153:12,14	oxide 142:1	participants 9:8	24:14 26:12 29:14	place 15:7 37:16
order 5:4 113:18	O'BRIEN 3:5	particular 31:6	32:17 33:15,15	98:4 99:14 107:11
ordinal 80:3	P	97:4 99:20 113:8	46:6 51:9 62:16	147:20 148:2,2
ordinal-type 35:6	P	113:11 115:2	62:19 137:22	places 15:20 92:20
organization	paces 108:8	117:8 126:2	138:1	plan 68:3 77:11
101:13 104:8,8	package 173:8	particularly 48:11	percentage 9:3	166:11 182:4
organizations	186:12 189:18	54:15 98:18 113:5	perfect 142:2	planning 143:7
19:12	packages 173:1	113:20 121:16	performed 52:16	162:16
organized 119:18	pad 125:5	122:19 134:21	53:2	plants 38:17
organizing 104:19	page 23:18 49:14	137:1 138:3	performs 51:22	142:16 156:15
original 115:5	63:8 64:19 65:2,5	158:16 172:1	period 37:6 38:14	180:19
originality 102:15	69:9 75:16 85:12	particulate 113:1	43:7 64:10 87:3,4	platform 103:3
ought 161:12	86:13 87:20 93:5	parties 14:22	periods 39:11	platforms 171:17
outcomes 187:16	93:7	partly 136:17	40:14	Platt 3:9 5:14,14
outdistance 44:14	pages 71:2 77:6	166:16	permitting 134:10	6:15
outlined 36:21	87:14 93:17	path 7:1 64:19	person 55:11 84:21	play 119:14
89:10	paid 65:7	143:10 156:18	personal 69:5,5,8	played 72:20
outlook 6:13 7:2,12	panacea 146:1	PATRICIA 2:17	personally 26:15	players 40:3 42:20
43:9 45:16,17	panel 162:12,15	pattern 69:20	94:3 155:14	playing 112:8
46:2 52:10 64:20	panels 161:19,21	PAUL 2:9	166:12	please 5:7 106:14
outlooks 45:12,13	paper 28:6 74:21	PAULA 2:23	personnel 171:4	106:14 120:9
46:4	154:17	pay 28:12 64:15	person's 149:20	183:22
outnumber 69:2	papers 106:3 186:2	72:18 171:21	pessimistic 22:21	plenty 67:9
outperform 51:18	par	payment 38:5	petroleum 42:15	plot 11:1 24:3
output 100:10	parameter 17:10	PDF 32:6 35:13,16	61:16 64:20 68:5	plus 6:21 30:2
129:1	parameters 121:21	73:19,20	72:9 86:20 97:7	125:22 153:15
outputs 110:8,9	125:14 130:21	PDFs 33:4,6 34:17	110:8 114:5	point 9:16 29:7
121:7 125:21	173:21 174:2	34:21	130:13 184:6	30:5 32:5 37:2

38:2 40:7,11,17	107:15 130:3	119:12 184:13	82:18 86:1,3,4,9	priors 60:3
43:14,15 48:14	135:14 141:13	presented 78:22	90:11 93:20	Prize 16:13
51:2 52:7 59:10	172:6,7 187:13,20	105:12 186:3	116:10,15 117:8	probabilities 12:12
62:7 70:21 78:17	possibly 21:9 24:22	presenting 12:9	118:14,15 134:18	13:3 26:7,18
79:1 86:22 90:22	80:11 110:11	49:11 180:1 182:5	139:12 148:6	59:20
96:1 97:1 103:2	124:7 150:12	presents 13:1	171:21	probability 12:2,19
104:11 111:3	potential 112:20	President 57:11	prices 6:19,21 7:6	13:2,11,13,16
113:5 115:20	129:18 141:11	presiding 1:12	7:10 8:22 9:3	19:7 20:19,21
118:1 122:19	159:3,11	pressure 180:13	11:10,14,19 12:3	21:7,8 24:4 25:3,5
124:19 129:17	potentially 147:2	PRESTON 2:24	12:12,22 13:5,6,7	25:7 26:5 27:7,14
135:9 141:8	154:13	presumably 122:17	13:11,13 18:15,17	42:1,5,9 46:6
147:15 149:8,19	power 38:17 61:19	123:20 127:9	19:6 20:11,17	probably 23:18
150:9 153:2	64:1,9,11 66:9	128:2 134:14	21:1,14,19 23:8	26:21 27:15 33:15
164:22 166:3	67:12,14 69:10	135:13 153:16	23:15 25:8 26:7	34:6 35:15 36:17
176:17	135:2,4 180:19	pretend 16:9	26:13 28:11 52:8	52:19 85:21
pointed 134:8	practice 18:15 55:6	pretty 12:8,14,17	55:12,12 64:21	117:14 137:5
145:19 164:18	65:16,20 71:9	14:1 22:8 24:18	65:19 66:6,13	140:1 142:7,10
pointing 45:19	75:9 90:19 92:2	31:17 36:20 64:18	67:1,11 70:3,22	145:15 148:17
points 138:3 147:7	practices 65:12	65:20 70:19 79:15	71:1,5,17,21 73:2	155:12 156:22
153:9 172:18	pragmatic 166:22	101:10 109:14	73:20 85:8,9,18	159:6 160:10,12
poked 36:14	precious 137:3	126:15 129:10,12	86:11,20 90:13	163:10,11 165:7
policies 98:18	precise 37:2	140:3 141:22	99:4,4 109:10,14	167:17 183:2
111:21 112:12	precisely 38:12	147:20 169:3	111:15 113:2	186:1
127:10 131:3	preconceived 76:15	179:18 182:11,12	116:6 117:18	problem 42:13
132:11,13 148:15	82:10	prevent 148:1	118:10,21 139:4	44:15,21 45:20
157:16 178:10	predict 29:10	pre-World 80:13	178:12	57:9 67:6,7 74:17
policy 109:16,17,19	preface 80:7	price 4:4,9 6:6 7:1	pricing 9:15 12:6	75:6 77:10,10
111:19 113:8,11	prefer 50:15 60:13	7:8,13,21,22 11:1	131:3 134:11,16	84:3 87:12 136:14
125:15 131:1,20	88:7 90:12,16,21	11:4,16 12:15	135:12	154:1 155:20
132:18 133:4,17	93:9,11 94:3	13:17 14:3,4,21	primarily 97:12	162:21 189:16
134:1 146:20	159:7	14:22 15:15 16:22	110:2	problems 40:1
147:21	preference 91:4	17:4,18 18:3,7,11	primo 156:18	87:15 88:1 141:10
policymakers	preferences 120:17	18:12,20,21 19:20	principle 77:11	procedures 156:11
136:5	132:14 159:16	20:9,16,19 21:14	prior 31:1 86:13	proceed 143:10
poll 81:8 90:8	preliminary 143:21	21:20 22:4,4,5,7,9	priorities 96:20	process 96:6 98:2
94:13	prelude 119:12	22:13 23:2,5,6,10	97:21 106:6	100:14,16,19
pollutant 131:14	premium 9:13	24:7,7,9,11,20	prioritization	101:4 103:7,8
popped 143:15	15:14,19 16:21	25:3 26:20 37:11	105:9	104:15 105:4,21
popping 72:22	preparing 119:13	37:13 39:12 53:8	prioritizations	106:16,17 107:19
popular 62:11 63:1	prescription	56:6 58:6 59:4	96:14,16 101:21	108:12 119:2,3
popularity 62:3	152:10	61:7,13,15,17,21	prioritize 96:12	125:4 149:14
posed 187:18	present 1:13 2:1	62:3,10,13,15,22	105:17	162:7
position 188:3	3:3 6:10,22 23:11	64:17 65:1,14,17	prioritized 95:22	processes 99:13
positions 38:10	27:17 108:13	66:8,12 68:2	96:12 104:14	procurement
possible 18:5 19:1	181:13 186:6	69:13,13,15,21	105:18	170:19
21:20 23:14 26:1	presentation 8:1,18	71:4,16,20 73:11	priority 111:14	produce 97:11
50:10 98:13	50:14 61:12 63:6	78:18 79:13 82:11	136:2	108:4 117:8

118.22 121.1	161:14 186:1	q	R	89:4 93:21 94:9
			radiative-forcing	26:1 136:14
19:20 144:14,20	110:19 144:1			7:3 180:6
producer 78:15	178:16	39:9,13,22 41:20		realign 82:16
79:1	oviding 168	48:10 49:6,17,22	raise 36:17 58:20	realistic 114:17
producer's 86:9	prune 139:19	50:1 51:15 67:4	70:9 161:10	ealities 123:19
produces 142:1	eudo 153:2	0:10 78:7,8,12	rais	really $6: 22$ 16:1
product 71:11	pub 67:8	80:7 81:13,19,2	127:17 174:17	27:10 29:3 30:7
102:21 110:8	public 4:21 174:13	83:2 84:20 85:6	R	33:9 36:14
1:17 117:19	179:10 190	86:8 90:10 92	random 16:19	$8: 20$ 39:1
25:21,22 130:18	publicatio	3:	randomly 31:13	5:1
96	84:8,11	117:1 123:12	Randy 104:22	47:3,11,18 48:7
production 72:15	publish 23:17	4:1 132:2	range 11:9,14,18	48:13 51:16 56:16
13:16 114:12	published 179	38:5,10 146:	12:17 13:19 21:19	0:18 64:2 7
6:1,4 122:12	pulled 138:20	156:4 157:18	2:21 45:21,22	5:15 98:1 9
127:11 186:8	pulling 72:12	8:11 180:1	121	105:1
products 54:18	pulse 88:21	86:18 187:1	rang	9:4 110:4,6
72:4 73:1 77:1	purchase 1	questionable 43:20	,	7:7,22 125:6
113:20	purchasing 15:16	questionnaire 90:7	47:6 57:21	129:11
123:15 130:13	64:1,9,11 66:9	questionnaires	rapid 6:19	132:3 134:17
profiles 72:6		157:10	187:11	139:5 140:4 14
pr	pu	questi	rapidly 17	142:18 144:5
Progr		8:15 27:3,21	rapidly-growin	152:2,6,17,20
programs	purpos	36:18 44:18 45:2	133:15	155:19 160:6
190:14	purposes 18:86	49:12 51:3 67:14	rate 17:8,9,20 64:7	164:6 165:2 170:4
progress 54	124:16 126:8	8,10 78:4,6	ratili,9,20 64.7	70:7,10,12,15
186:19	push 54:3 113:11	9:3 94:13 96:11	rates 1	17:3 172:13
project 6:15,18	138:12	102:4,7,9 103:1	ratio 80:3	8:12 183
74:6,9 96:2,5	pushing 105:3	3:21 104:1		188:20
:17 100:15,18	put 14:16 22:3	9:9 111:5,7	re	reason 6:10,17
1:4,6,13 103:1	55:14 85:9 92:16	5:21 121:2	84:16 93:14 94:7	3:1885
107:19 109:1	22	127:17 132:10	142.8	64:4
projecting 139:4	99:7 108:8 111:12	133:18 138:1	reade	reasonable 118:22
projection $55: 18$	115:5 135:2	145:161461	3:1	121:20 152:
projections 40:18	:1 140	168:7 178:	readily 165:1	
142:18 151:17	9:18	179:9 180:1	reading 28	aso
projects 45:2	ting 36:6 58	181:9	ready 108:	50:
139:9	12:21 168:18	queue 169:19,2		
minent 142:18	:15	quick 58:15 70:13		ceiving 170:8
prominently 85:7	P-R-O-C-E-E-D-...	90:6 95:19 108:5		cipes 134:16
perties 54:17		126:13		cognize 47:10
propose 41:20	p.m 190:22	ckly 8		commend
42:12	\mathbf{Q}	120:1	70:13 71:21 81:6	recommendati
119:17 152:12	quantity 62:1,3		85:8,14,17,18 86.4,20 88.1,17	reconstruct 57:14

reconvene 95:6
record 66:8 95:3
recurrent 111:19
112:20
recursive 123:1
red 12:7 25:4,19
redo 122:16 149:8 149:9
reduce 110:21
reduced 152:21
reductions 169:6
reevaluate 99:11
refer 73:5
reference 65:17 80:17 173:5,20
references 117:6
referencing 65:13
referring 64:6
refers 63:22 110:1 129:7
refine 140:1
refined 130:13
refineries $38: 17$ 110:11,12 135:7 141:18 142:14,14 153:18 156:15
refinery 99:13 100:1 113:17 118:5 152:21 153:16
refining 125:4 130:15,19,20 131:12
reflect 59:16 133:22
reflects 124:17
refreshed 144:10
regard 54:21 97:22
98:7 101:10
148:12 154:15
regarding 6:12 27:3
regardless 68:4 75:10
region 111:17
regions 118:2
Regrettably 85:3
regular 137:12 186:17 regulate 58:19
regulation 131:8
reinforcement 136:18
reiterate 190:12
related 73:7,8
74:13 98:18 115:3 182:20 186:12
relates 54:15 187:16
relationship 50:12 116:10 relationships 127:14 130:22
relative 122:8 133:1
release 61:14,16 64:17 68:14,19 70:2 71:17,19 72:2
released 72:15
releases 69:13 71:16 82:21
releasing 61:21
65:1 69:5,14,21
relevance 131:5
relevant 128:11 179:8 183:3 189:11
reliably 104:2
relieve 152:14
rely 29:9 59:12 68:3
remain 121:17 161:12
remarks 161:13 166:4
remember 66:4 110:20 137:8 184:21
RENEE 2:25
Renewable 186:15
rental 37:16
rentals 37:22
repackage 72:17
repackaging 72:16
repeatedly $114: 16$
repetitively 42:17
replace $97: 7,8$
replaces 122:4
replication 31:5
report 10:6 11:21
95:13 174:10,16
184:6 188:21
reported 65:17,19
reports 8:5 107:4
137:12,12,12
represent 10:3 21:3
110:4 114:2 116:1
116:4 128:5
representation
108:10 110:5
114:18 118:6
173:8
representations
147:20
representative
92:12 103:10
represented 112:9
127:16
representing
113:10
represents 15:15
40:3 93:21 154:1
request 104:4
113:14 119:17
126:8 173:4,10
requests 104:10
120:17
require 121:18
148:11 165:4,16
required 75:6
115:22 116:4
154:20 171:5
requirements
58:21 102:22
requires 155:6
research 6:11
187:16
resembles 76:19
reservation 134:4
Reserve 10:5 19:18
reside 153:5
resolve 81:18 82:1
respect 92:11
respond 78:8 90:10
92:17 179:6
responded 92:4
158:2
responding 78:13
response 45:14
119:9 133:11
138:4 146:4 148:8
158:18 179:7
190:8,18
responses 102:14
115:8
responsibility
152:15
responsible 56:19
57:9
responsive 179:1
rest 87:7,9 118:8
154:21 155:7
restrict 132:12
result 188:22
results 78:22
123:16 149:21
resumed 95:4
retail 62:14,15
66:13 71:3,17,21
73:20
retails 90:14
retained 128:19
rethink 144:6
rethinking 169:17
retire 28:7 110:15
return 17:20
returns 123:3
revenue 70:2
Reverse 42:4
review 4:17 71:7
75:15 96:1 101:4
105:12 107:18
reviewers 107:21
reviews 100:21
107:12,18
revised 74:22 81:15
81:15
revision 81:22
revisit 99:19
131:10
re-labeled 74:7
re-labeling 4:9
66:20
rich 185:19
rid 164:18
right 14:14,17
22:19 29:1 32:18
34:15 37:4 38:7,7
41:3 43:16,21
45:13 51:3 62:22
66:21 69:3 71:1
74:3 75:3,3,5 77:4
79:12 82:4 83:10
86:7,17 87:2,5,11
90:5 92:13,22
99:21 106:9 109:1
116:2,13 118:12
138:15 140:15
143:3 154:12
162:10 163:13
166:4,17 167:7
176:8,15 179:19
180:4 189:5
rise 6:19
rising 133:12
risk 9:12
risk-free 17:8
road 145:5 150:1
Robert 16:12
rode 74:16
Ron 182:17
Ron's 161:13 166:4
room 1:10 35:15
36:4 82:9
rough 36:19 56:2
roughly 115:16
round 149:10
151:15 172:22 173:3,11
run 38:16 44:1,1 118:16 133:7,10
135:5 143:20
153:19 170:18
176:13,13 189:2

running 46:16	second 32:5 37:5	selection 106:17	139:22	silliness 154:5
129:15	37:12,17 41:12	sell 14:17 15:2	shaded 51:13	similar 12:8 23:19
runs 167:6	55:4 65:11 71:7	Senators 45:10	shades 33:20	60:17 91:15 139:4
S	78:11 84:10 85:16	51:4 178:16	shading 47:9	similarly 20:15
Sachs 45:20,21		7:5 104:10	2:1	simple 8:14 23:22
46:2		ENDICH 3:12	share 45:7	125:20 130:7
safe 51:11,12	Secretary 190:5	sending 154:18	130:12 131:18	146:19 147:5,20
sales 37:21 38:7	section 53:20 67:8	senior 163:5	176:4	156:14 157:9
70:2 93:2	154:19	sense 41:16 51:4	SHAWNA 3:19	simplistic 156:16
sample 31:19	sector 156:13 158:1	80:2 81:19 100:17	shocking 178:12	simply 10:10 88:3
sampler 182:22	177:4,5	109:1 162:19	short 32:8 43:6	111:12 125:13
sands 143:2 144:12	sectors 167:3	174:10 177:21	44:1 45:11 56:12	145:6
148:13	171:11	188:7	135:5 176:13	simulate 186:7
satellite 97:10	security 109:22	sensible 84:17,21	shortly 68:6	simulates 156:6
147:19	132:6 133:5	132:9	short-term 6:13	simulation 102:20
save 80:21 81:4	see 6:9 7:5 10:8,15	sensitivity 121:15	7:2,11 43:9 64:20	single 10:21 152:16
saw 119:19,21	11:7 12:5,13	sent 104:4 115:8	show 21:5,11 22:4	singling 66:3
saying 32:9 47:13	13:10 16:15,18	sentence 60:12	24:5,21,22 25:2	sit 122:14
48:2 56:18 60:17	20:3,6 21:18,21	separate 124:15	26:1,19 56:20	sitting 30:1
171:7 180:9 189:6	23:13 24:2,13,13	126:3	65:6,12,17 70:7	situ 122:13
says 73:20 85:14,18	24:17 25:10,18	separation 105:15	70:13 74:2 90:4	SITZER 3:13
86:3 87:3 188:15	26:3 28:20 29:10	sequestration	90:15 105:18	six 7:3,4 45:8 67:5
188:21	31:10,13 48:1	140:18	114:7 120:18	91:6 139:20,22
scale 33:17,19 35:6	51:22 57:15 63:7	series 39:1,2 40:15	130:10	141:11
scenario 138:6	65:3 66:7 67:1,21	61:18,22 65:14	showed 120:16	size 124:16
141:1 189:2,19	68:8,21 69:16	69:13 180:3	showing 50:16	skew 12:7
scenarios 46:4	70:6,7 72:21	serious 124:20	65:18 71:20	slate 130:18
187:12,21	82:15 85:15 86:14	serve 102:5	shown 67:18	slew 113:21
Schaal 3:11 146:10	88:5 89:11 90:12	service 69:19	shows 13:3 23:7	small 141:21
146:10	90:15 91:5 93:7	161:15,18 173:4	25:4,7 62:13	153:22
schedule 96:8	94:3,8 111:14,22	173:10 174:10,16	128:15	smaller 105:11
100:21	114:8 118:16	services 64:8	side 37:18 127:6	smart 46:7 111:8
scheduled 160:7	120:7 126:4,11	serving 145:14	128:11 130:10	SMG 2:3,5,9,22,24
schemes 28:18	136:7 144:21	session 6:5 60:8	132:13,16 133:7	3:15,18 4:10
Scholes 16:6 43:15	164:13 166:15	61:6 95:6 179:22	133:21 149:19	snap 122:7
55:3	170:12 174:12	180:10	152:2 153:15	snapped 122:15
scientific 63:12	175:20 177:20,22	set 20:13 23:18	157:7 166:19	131:13
SCOTT 3:13	seeing 183:16	33:12 55:2 87:14	sighting 134:10	snide 137:18 138:4
se 117:7	seek 89	105:11 111:7	sigma 17:11,14	soak 62:16
sea 39:7	seeking 88:2	130:4,19 157:16	28:22	society 69:2 145:9
seal 163:15	segment 80:20	178:12 187:13	sign 37:18	socioeconomic
seamless 98	111:16	189:13	signed 6:2	151:14
search 8	segmentation	setting 32:22 33:9	significant 128:20	solicit 92:1
seasonal 37:21	138:18 139:15	175:22	129:12	solicited 165:16
123:20	141:9 143:16	settlement 15:7	significantly 47:19	solid 122:11
seasonality 123:12	selecting 117:5	seven 67:5 91:6	48:8	solution 89:22

Neal R. Gross \& Co., Inc.
(202) 234-4433

98:12
solve 17:13 67:6
solved 67:7
solving 57:9
somebody 38:9
39:15 58:8,9
143:6 149:9
154:11,14 157:3
163:16
someplace 93:5
somewhat 60:16
119:18
sophisticated 64:4 82:8
sorry 25:22 61:2,3 92:21 159:19
sort 8:11 9:6,14 12:10 23:5,18 24:5 41:6 45:9 46:21 47:2,13 48:4,11,15,16 49:2,2 52:22 53:1 89:19 99:17 111:11 122:14 127:3 130:1 132:9 134:3 147:22 164:10 171:7 172:22 174:22 182:4 189:21
sorts 109:17 112:5
sounded 166:5
sounds 181:19
source 34:14 114:5 150:18
sources $71: 6$ 129:19 145:20 150:14 155:6
span 44:2,3,6
speak 77:19 78:3 168:8
speakers 177:12
speaking 63:22 130:7 143:16
speaks 73:13 77:19 77:21 81:16
special 74:18 137:12
specialized 82:8
specific $14: 19$
15:13 18:6 58:16
98:6 112:15 125:9
140:12 141:14
151:4 188:9
specifically 7:21
16:20 25:4 45:19
specification 72:11
108:2
specifics 181:21
spend 94:1 190:15
spending 80:14
spent 169:2 176:7
190:14
spike 66:6,8
spiked 67:11
spikes $68: 2$
spill 101:17
spite 170:6
spokesman 136:20
sponsor 101:6,8
spot $73: 11$
spread 24:5 25:15
25:19 58:5 96:19 96:19
spreadsheet 114:22 185:1
spreadsheets 19:17
Spring 4:22
squeeze $98: 1$
SRA 2:8
staff 2:1 3:3 61:11 89:16
stage 109:4
stakeholder 95:21
96:11 101:20 102:1 109:7 120:17
stakeholders 4:13
96:14 102:14 103:10 104:9 105:7 106:5 115:6 126:16
STAN 2:10
stand 190:19
standard 24:16

29:19 57:2 58:5
74:21 75:1,7
81:14,15,15 82:1 83:3 98:20 109:20 148:10 181:12
standardization
72:12 75:8
standards 74:19
77:16,17 110:10
131:2,10 132:15
134:19
standing 40:11
stands 108:5
182:13
start 5:5 8:11 14:6 14:8 54:12 60:2 95:8 98:2 107:11 131:17 137:15 138:16 151:5,5 170:8 171:16
172:12,13 175:20
started 138:11,17
138:17
starting 108:17
138:15 170:1
176:17
starving 141:5
state 72:5,6,8
stated 114:16
statement 85:7
118:10
States 175:10
stationary 39:1,2 55:9
statistical 1:1 13:22 25:16 68:11 74:18
74:21 75:7 77:15
77:16 82:1 181:1
statistically 47:14
47:18 48:8
statistician 28:16 28:20
statisticians 31:5 31:18
statistics 1:4 2:2 40:20 52:4 62:4
62:10,22 69:12,19

71:16 74:14 77:18 77:19,20 90:11
184:6
status 95:13,20
167:14
stay 164:4
STEO 4:4 6:6,14
8:10 21:4,5,17
22:3,12 23:5,19
24:7,12,17 26:20
27:10 29:2 31:1
46:17,22 48:12,14
49:10,14 51:16,19
51:21 52:3,5,10
52:10 53:4 157:3
157:4 182:5,8,10
182:13
step 55:4 107:22
143:19
Stephanie 2:2
89:14 91:9 165:12
177:11
steps 107:1 123:13
Steve 1:14 2:15
45:1 54:16,20
119:20,22 123:11
124:3 134:8 136:7
145:18 150:3
162:10 166:3
167:9 184:4,12
Steve's 145:7
still-large 130:4
stimulus 166:22
168:18 169:1
173:1,8 179:2
186:12
stochastic 54:17
stock 156:20
169:13
stockholder 55:21
stocks 129:3,10
STONE 3:14
stop 164:9
story 65:22 128:13
strategy 136:21
stressed 113:6
stretch 182:21
strike 14:21 17:4
18:3,6,11,15,17
18:20
strikes 125:6
strong 113:14,15 126:6
strongly 165:22
struck 146:22
structure 102:5,15
148:17,18 167:8 169:17
structures 16:16 107:6 131:20
struggle 169:7
student 183:8
students 37:22 183:16
studies 180:19
study 187:17
stuff 46:4 52:14
53:12 138:3
141:21 151:18
166:22 167:7,16
182:10
stumped 70:9
subject 70:16 78:8
78:12 146:7
submissions 151:16
submit 70:17
subsequently 104:6
subsidies 167:7
168:15
substantial 8:16
substantially 91:14
substitute 142:2
145:22
suggested 47:8 115:1 164:9 178:6 184:22 190:6
suggesting 189:20
suggestion 32:4
88:16 89:6,8 90:1
92:16 149:6
155:22 172:20
177:17
suggestions 4:19
100:5 105:7 106:2

Neal R. Gross \& Co., Inc.
(202) 234-4433

106:13 109:9	surplus 127:8	133:12 162:5	131:7	22:6 30:20 39:4
110:19,20 111:4	survey 31:18 62:15	167:2 177:8,11	telephone 106:21	40:15 43:10,14
112:15 115:14	138:11 180:7	183:4 184:18	tell 17:16 46:18	44:2 47:12 48:6
146:14 155:12	surveys $62: 14,19$	talked 143:6	78:5 79:17 80:11	48:17 56:10 57:18
158:22	Susan 104:21	164:16 174:6	81:1,3 155:22	59:5 64:12 85:16
suggests 157:15	SUTHERLAND	177:10 182:18	189:12	88:2 100:4 105:19
suite 60:18 132:17	3:15	184:5	ten 7:6 42:19 62:16	109:5 115:4
135:17	swamping 148:2	talking 13:20 14:6	62:19 63:1 71:19	122:17 126:19
sulfur 113:1	synfuels 99:16,22	38:15 43:4 64:5	103:17	134:20 136:22
summaries 104:19	synthesis 119:18	69:7,9 71:8 73:15	tend 79:20 123:15	138:15 143:14,21
summarize 183:14	system 23:19 97:4	76:21 98:7 123:7	125:18	151:11 157:11
summary 4:13	97:6 98:4,21	141:17 142:13	tendency 88:4	182:2 184:20
95:21 136:18	113:9 128:16	148:12 168:16	tension 147:7	190:13
summer 66:4 103:6	151:1 169:10,12	178:17 179:13	tentatively 160:21	things 44:7,7,9
super-spike 46:4	171:15,20	181:11 185:15	ten-year 44:2	56:13 59:3 63:10
super-spiked 46:2	systematically 94:6	188:13 190:16	term 45:12 73:10	80:12 85:12 98:16
supplement 34:13	systems 150:11	talks 181:9 185:1	79:19 90:12	100:12 103:3
supplies 112:4	171:18	tank 128:15	terminology 88:10	108:11 119:20
supply 53:11 62:6	S.W 1:10	$\boldsymbol{\operatorname { t a p }} 32: 18$	terms 8:19 14:9,20	120:22 126:17
64:7 67:21 68:1		$\boldsymbol{\operatorname { t a r }} 143: 2$ 144:12	15:4 17:6 25:16	129:5,13 130:7
116:11 117:21	T	148:12	39:2 66:9 96:19	131:6 136:3
118:4 121:22	table 12:22 13:8	targeted 89:9	109:8 111:10	138:18 139:14
125:11,20 127:5,6	23:12,20 26:4,21	tariff 112:16	117:5,12 130:8	141:15 142:12
127:13 129:9	26:22 73:18,22	$\boldsymbol{t a x} 111: 21,21$	143:21,22 146:20	150:20 154:17
130:10,22 131:6	83:7,11 84:10	112:21 132:14,15	148:6 168:11,14	166:13,15,18
132:13 135:12	85:10 103:4	taxes 112:20	175:4,12 177:4	167:12 174:19
185:9	tables 27:19 34:5	teach 37:14,14 54:5	182:8	178:13,18 179:1
support 103:1	34:11 35:9,13	team 3:6 104:16,22	terrible 85:17	182:17 183:2
162:11,12	66:12 72:22 84:7	tech 189:3	161:15	187:12
supposed 46:19	tact 186:19	technical 36:5	test 108:8 153:19	think 5:12 7:7,7
supposedly 160:6	take 10:20 62:19	63:15 101:14	testing 108:18	8:20,21 10:6
sure 8:18 10:5	64:13 73:14 87:17	103:5 104:18	text 46:18 47:17	16:11 25:17 29:3
30:19 44:9 45:3	91:11 97:10	105:21 106:4,14	67:17 81:13	29:7,13 30:15,21
46:11 47:20 64:3	101:20 106:15	153:13 154:18	thank 6:8 28:2	32:8,10 34:5,11
78:16 99:21 100:6	107:12 114:22	186:19 187:12	60:20 61:9 89:22	35:17 38:3 39:1
100:21,22 112:3	118:15 136:20	technique 31:18	94:20 105:1 115:9	40:22 41:5 42:14
112:15 113:6,16	143:12 144:17	technological 99:12	119:10 147:13	45:7,14,18,19
114:1,7 120:10	146:18 150:3	technologies 97:14	158:17 190:20	46:19 47:22 51:8
126:4 127:15,18	151:11 153:7,8	114:19 121:17	thanks 36:10 60:22	52:18 54:2,14,19
135:22 136:1	177:16 179:5	189:17	61:4 94:22	55:5,20 56:7,11
145:14 152:7	189:9	technology 98:16	theme 111:19	56:11 57:4 59:5
154:3 160:19	taken 110:21	109:11 122:13	themes 112:20	69:1 70:5 72:7
165:9 169:6	134:22	131:12 134:13	theoretically 18:14	81:1 82:14 88:3
170:20 183:19	takes 15:7 43:1	140:17 148:6	theory 56:16	89:8,21 90:22
185:14 186:14	127:3 172:6	167:11 186:13,21	thermal 128:1	92:20 93:18 96:9
surface 12:8	take-away 47:16	187:11 189:1	they'd 177:21	99:5 103:9 108:6
surfaces 152:22	talk 96:4,10 128:22	technology-based	thing 17:15 20:20	108:12 109:4,13

Neal R. Gross \& Co., Inc.
(202) 234-4433

111:10 114:3	THOMAS 3:17	timed 41:2	touched 152:19	118:11,18 123:1
115:6 117:10	thought 41:22	times 42:19 67:4	174:22	132:13 162:6
118:22 119:7	44:20 45:6 49:10	78:17 111:18,22	tough 110:6 135:21	166:7 168:1,6
120:15 121:8,9,13	97:3 98:3 99:10	114:4,16 144:4	174:20	170:21 189:15
121:14,19,20	102:13 106:16	169:4 180:16	town 37:18	trying 6:12 7:14
122:2 123:7 125:2	124:2,20 135:19	TINA 2:5	toxics 131:10	9:4 32:11 36:15
126:2,9,19,20	140:13 141:15	title 80:4 90:12	trace 132:18	50:20 53:15 55:20
128:18,21 129:3	149:8 151:19	92:22 93:2,6 94:5	track 10:11 166:14	69:10 78:2 81:5
129:11 131:2	160:11 173:9	titles 67:8 74:7	traction 135:15	89:17,20 93:8
133:17 134:22	three 10:12 57:1	today 5:12 8:7	trade 15:8 98:19	94:2 105:21
136:5 137:2,6,13	87:17 91:6 97:1	63:21 65:9 98:5	125:17,22 134:17	108:22 110:6
137:19,19 138:12	97:20 104:22	146:14 147:12	150:19	113:11 125:15
139:1,14 140:1,6	121:5 139:20,21	161:11 169:15	traded 14:12 15:12	129:9 132:11
140:12 141:8,9,10	149:1 157:2,12,12	175:20	trading 15:12 21:2	150:1 151:12,13
141:12 142:4	166:15 168:4	Today's 61:11	traditionally 23:1	180:1
143:10 144:5	172:6	told 67:9 71:15	traffic 62:16 63:4	Tseng 3:18 104:21
146:16 147:6,9,14	Three-quarters	TOM 2:21	64:22 77:1	185:18 187:4,7
148:16,19 149:5	190:13	Toman 1:21 4:17	trajectories 176:14	188:3
149:16,20,22	throwing 154:8	119:8,10 120:10	trajectory 117:8	turbine 116:6
150:5,9,10,16	Thursday 159:5	120:12 147:14	118:15	turn 27:20 58:11
151:7 153:12	Thursday/Friday	149:7,18 158:19	transaction 54:13	79:9 129:21 134:4
154:13 155:11,13	159:17	159:21 161:1,4	transactions 58:18	136:6
156:21 158:1,11	tie 130:18	172:17 173:6,9,15	58:20	turned 102:18
161:14 162:10,20	tied 151:6	173:18,22 174:5	translates 13:15	turns 80:1,15
162:20,22 163:1,8	tight 101:10	176:1,9 187:3,5,9	transparency	tux 37:16,16,21,22
164:5,6 166:3	tightened 149:22	188:11 189:5,8	99:10	tuxedo 37:16
167:1 171:5,13	time 9:1 10:12 11:2	190:1,4	transparent 111:11	twist 95:15
172:9,11,13 175:8	11:11 14:14 17:5	tomorrow 63:1	126:10	two 10:8 11:13 12:6
175:17 176:1	20:12 29:13 30:12	120:13	transport 97:11	14:11,20 16:5,20
177:1,5,15,20	37:6 38:14,22	tool 74:18 75:3,5	114:15	17:3 25:2 27:19
179:17 180:15	39:2,11 40:15	top 115:15 136:1,2	transportation	43:1 50:16 57:1
182:2,21 183:1,1	43:7,21 48:14	140:2	113:17 185:10,12	60:12 62:14,18
183:7,15 184:7,19	53:19 55:10 56:13	topic 28:4 89:15	185:22 186:5,8	63:18 71:2 77:12
185:5,8 186:12,22	56:21 57:2 58:10	161:9 177:17	travel 161:5,15	79:3 84:7 87:17
188:6 189:12,15	58:11 60:10 64:10	179:11 180:10	Treasury 17:9	88:14 91:6 97:19
189:22	67:21 77:7 79:20	topics 158:22 161:7	tree 151:6	100:3 101:9 107:3
thinking 37:17	83:4 94:2 99:11	166:8 178:7 190:7	trend 157:2	124:7,16 145:9,15
42:8 58:9 66:18	105:5 106:10	Topics/Dates 4:19	tried 55:13 58:3	184:5 186:2 189:1
81:9 120:19,21	110:6 115:17	torque 132:13	143:18	189:9
122:18 142:6	118:11,12 120:15	total 118:17	truckload 63:17,18	two-and-a-half
148:3 167:12	123:13 136:14,16	totally 19:22 39:7	true 30:9 33:21	62:17 88:22
170:6 171:16	136:21 144:3	43:15 55:17	57:7 59:8 188:11	two-thirds 56:21
172:8,12 183:21	150:7 164:16,16	166:13 174:21	truly 115:9	57:1
third 34:4 41:21	172:4 174:6 180:2	177:7 179:3	trunk 128:14	Tyler 2:15 4:4 5:17
167:9	180:7 181:3,9	touch 161:14	trusty 159:4	6:7 36:13,19
thirsty 75:19,20,21	182:5 185:7,7	163:18 164:1	try 45:15 98:1	type 15:10 70:20
76:7	186:3 190:10,15	166:5 169:3	102:3 103:4	109:15 175:18

187:13
types $14: 11$ 16:20
73:15 102:4
109:19 118:2,5
125:9 130:12
133:2
typically 79:17 80:22 81:1,3 168:12

U

ultimately $40: 8$ 136:4 171:21 188:1
unanimity 102:12
uncertain 121:18
uncertainties
125:10 133:22
147:19 181:17
uncertainty 6:13
7:13,16,19,22 8:3
9:7,12,18 10:3,18
10:20 11:15 14:2
19:4 20:10 21:4,9
21:21 23:8 24:6
25:1,20 26:2 27:4
27:11,16,18 29:17
32:7 40:4,7,19
42:21 45:15 55:20
56:1,15,19 57:10
58:1 59:15,18
100:7,8 121:14
138:7 147:3 148:1
181:10,13,13
unconventional 117:13
uncover 19:18
underline 146:15
underlying 16:22 72:2 77:11
underscore 145:7
understand 16:9
20:1 33:7 42:20 117:9 127:3 172:20 180:9
understanding 35:19
undertake 96:5
unexpected 133:14
unfamiliar 14:10
unfortunately
19:22 29:12 96:15 unique 62:4,5 82:7 137:13
unit 130:19
United 175:10 units 130:20
university 87:13
unrealistic 158:6 unspoken 111:7 unstable 145:11 unusual 7:5
upcoming 170:2
update 60:2 98:8 151:10 154:9,10 173:5,19,20 174:2 184:16
updating 169:11
upper 32:16 64:16
ups 184:11
upscale 36:5
Urban 86:2
use 2:16 3:7 4:5
5:16 9:5 10:2,7
11:22 19:2 20:15
31:6,19 37:15
39:22 48:18 54:11
58:2,4 65:19
68:17,17 69:14,15
69:20 79:20 80:1
80:12 87:2 92:3
92:21 93:12,12
95:17 98:9 102:19 106:16 108:19 112:22 126:11 132:12 139:11 150:17,20 151:16 151:16,22 152:5 154:15 167:22 169:6 171:19 172:2 175:5,11 180:5
useful 30:4 45:7 56:12 136:4

166:12 181:3
usefulness 65:11
user 23:20 64:21 71:5,10 78:10,14 84:3 86:7 92:14 93:13
users 34:20 74:10 82:19 87:16 88:21
89:5,5,10 181:14
181:16
uses 114:9 141:12 181:12
usual 98:16
usually 11:17 17:9
22:11 49:8 135:11
utility 156:13
utilization 180:18
U.S 97:15 109:20 124:13 139:2 142:6 143:8 177:5
V
vagaries 101:16
valid 53:2
valuable 37:6
137:4,13 183:6
value $15: 13,19$
17:11 32:14 37:3 63:15
values 15:22 19:13 23:14 59:15 65:18 67:18
variability 91:2
variable 17:10
variables 15:18
16:19,21 17:1,3 20:8 52:9,14
variance 28:21
31:6,7 35:3,4 37:4
37:6 40:21 55:7
variances $31: 21$
variety $15: 18$ 86:7
various 23:14 26:7
26:18 104:7 106:8
131:20 145:20
vary 37:11
vectors 152:22

153:9
vehicle 128:11 vehicles 128:14 version 139:2 168:1
versus 51:22 63:18
91:10,10,17 110:2
114:12,14 117:13
139:7 161:20
view 51:2 82:11
85:2 115:18
122:10 131:4
135:19 137:1
165:1
viewing 48:1 90:11
views 101:21 102:1
Vince 28:1 36:21
184:22
Vincent 1:17 4:6 47:8
vintage 110:5
violating 134:18
virtually 151:21
virtue 122:3 126:4
visits 62:18
visual 12:11
vis-p-vis 71:14
voice 77:19 78:3
voices 77:22
volatile 29:13
volatilities 18:12 18:17 19:15
volatility 7:10 8:6
8:10,13,19,21 9:2
9:9,11,17,20,22
10:9,11,15 11:5
11:11 12:1,10
14:8 17:12,14
18:2,10 19:3,11
20:10,16 21:13
25:11 28:21 30:6
30:11 31:14 36:16
37:20 38:1,13,18
38:22 40:3 41:2
41:11
volume 128:2
votes $88: 15$
$\frac{\mathbf{W}}{\frac{\text { wait 50:6 71:7 }}{}}$
86:19
wake 63:1
wall 72:21
walls 148:1
Walter 1:15 4:11 79:10 93:4
want 22:10 24:21 26:17 27:1 29:5 30:21 34:21 36:8
36:12 37:13 38:11
38:12 47:21 49:5
49:21,22 50:2
51:7,9 55:1 57:22
60:4 64:14 66:9
70:6,13 72:10
74:3 78:5 85:1
89:8 93:6,18
94:13 95:12 98:8
98:10,13 99:9,9
99:19 105:1,2
109:8 112:7 115:4
115:16 119:16
120:22 121:2,4
123:21 126:18
127:11 132:3,16
136:8 145:3,4
146:6,8,20 154:10
160:15 161:9,10
163:18 165:11
166:13 175:19
183:4,20 188:6,20
189:20
wanted 26:12 112:3
112:10,12,13
140:22 154:16
183:13
wanting 126:21
wants 34:12 38:6 139:6
War 80:13
warn 22:10
warrants 129:11
Washington 1:11
wasn't 71:7 76:4 142:17 165:17

Neal R. Gross \& Co., Inc.
(202) 234-4433
water 110:1
WAUGH 3.19
Waxman 148.22
way 7:18 8:9,12 9:8 10:17,19 12:10 24:22 26:1 27:15 34:18 35:12 42:4 48:1 49:1 50:10 52:19 55:19 56:5 56:14 62:11 73:13 74:4 75:10 80:9 82:20 84:12,15 92:19 102:13 109:4 119:4 121:12 128:20 130:21 133:11 137:18,20 141:20 156:12,14,16 168:22 174:6 179:12 185:8
ways 10:1,8 53:3
74:11 87:22 120:20 132:14 136:18 153:21 165:4 178:9 179:6
wear 78:14
wearing 78:9
web 23:18 72:16
77:6 85:12 87:14 92:17
website 34:20 36:7 49:16 50:5 61:18 61:22 62:17,18 67:2 70:5,15 71:2 71:20 75:11 77:7 88:22
week 31:11 62:8 88:20 106:19 119:21 170:9
weeks 31:9 101:9 177:20
WEFA 175:7
weigh 124:3 welcome 95:10 welfare 127:10
Welker 157:17 well-known 16:5

153:21
went 50:13 66:4 95:3
WEPS 118:16
Weyant 1:22 54:1
56:5,9 57:8,17
58:14 60:1 116:14
117:9 119:19
136:12 150:8
154:7,22 155:3,9
155:15,21 156:10
157:22 158:5,10
160:4,10,17 165:8
165:20 166:9
167:20 168:16,20
169:18 172:5
174:12 176:16,20
177:7,13 180:21
183:10,19 185:4
Weyant's 172:19
we'll 14:8 45:2
53:19 68:6 95:5
106:3 107:16,16
107:17 108:16
112:18 119:14
148:17 149:17
154:19 159:8,10
160:18 173:19,20
184:18,21 185:21
190:9
we're 5:3 7:17 8:2 8:2,7 9:4 13:20 18:8,9,18 22:16 27:6,6 30:10,16 31:2 32:16,17 43:3 48:17 49:10
53:18 58:7 60:9 61:1,20 63:20 64:22,22 69:7,8,9 69:10 72:21 73:14 81:9 82:6 89:17 95:20 96:6,8,9,10 97:16 100:14,15 101:3,11 107:2 108:10,11,13,22 111:8 116:3 123:7 123:8 141:4 147:7

149:3,4 150:1
151:13 152:6
157:6 168:13
169:3 170:1 172:8
173:16 174:1
182:7
we've 6:12,17 7:10
7:14 10:4 19:14
19:16 22:22 53:1
77:12 88:14 95:22
95:22 99:4,5
101:9 103:8,9
105:20 107:21
108:9,12,15 109:1
110:21 133:3
147:11 152:5
170:18 174:6
185:3
whack 72:19
whale 139:3
white 74:15 106:3
154:17
wholesale 73:15
90:13
wide 12:17 21:19
29:20 30:13,13,16
37:7
widely $8: 3$
wider 21:22,22
willing 157:17
withdrawing 58:13
woefully 166:5
won 16:12 66:15
wonder 31:4 92:15
wonderful 88:7
wondering 51:20
52:2 76:10 181:10 181:15
WOOD 3:20
word 63:7,9 65:20
68:17,17 69:14,17
69:20 80:1 82:19
90:19 91:5,9,10
91:14,16 114:3
words 17:19 95:18
work 5:15 6:11
35:13 36:14 39:4

54:17,20 79:13 99:5 107:21
121:19 123:18
124:14 125:7
126:5 127:5 152:7
154:3 156:20
158:17 162:6,14
177:19 182:14,19
182:20 185:11,16
189:10
workable 89:21
worked 78:18
working 6:14,18
75:2 106:20 132:1
152:6 183:8,17,22
works 44:3 124:11
127:4
workshop 50:11
101:14,19 104:18
106:11 107:2
153:13 184:17
world 55:8 56:20
57:10 141:6
WORRALL 3:21
worry 19:10 74:12
138:19
worst $38: 7$
worth 37:1 123:10
138:1 139:7
worthwhile 124:15
wouldn't 44:13
47:2 50:3 140:19
163:22 166:13
183:21
wrap 27:1
write 90:7 106:3
writeup 103:19
wrong 109:4,5
120:3 158:4
WTI 52:8,16 53:8
X
xls 73:22
Y
yanked 160:2
year 6:20 38:2 44:5
62:9 66:16 93:22

101:16 152:1
156:20 160:5
161:2,6 178:11
181:4 185:21
years $38: 17,18$
39:16 43:2 55:14
57:1 59:1 63:2
65:7,10 67:10
77:12 97:20
103:17 133:13
135:20 144:6
157:4,12 162:11
179:22 180:17
189:1,9,10
yesterday 5:6,9 7:7
119:20 175:2
177:12 182:18
188:10 190:13
yield 68:2
yields 75:3

\mathbf{Z}
Zealand 77:20
zero 54:12
ZHANG 3:22

1
1st 115:8
10 38:18 97:19
144:6
10:38 95:3
10:57 95:4
100 12:14,16 86:5
1000 1:10
110 117:2
119 4:16
12 97:19
12:26 190:22
136 4:18
140 66:5
15 144:6 151:19
15th 159:12
16 151:19
16th 159:12
16,000 61:17
190 4:19
1970s 16:7
1990 79:16

1997 16:14	6
2	$64: 4$
20 30:2 38:17 55:14	$\begin{array}{\|l} \mid \text { 6th 21:14,15 24:10 } \\ \text { 25:9 } \end{array}$
71:18 106:2	$6013: 14,17$
20,000 61:21	61 4:9
20-year 44:2	63 13:16,21
$200117: 2$	67 13:20 24:14
2000 93:21,22 2002 77:17	29:14 32:17 33:15
2007 6:20 10:16	7
2008 10:16,22 11:8	70 26:14 105:6,10
43:20 44:8 86:4	105:10 110:22
2009 1:8 4:19,22	117:2 141:12
13:4 79:16 159:1	70-plus 114:21
2010 22:1 37:8,11	79 4:11
$202.14 \text { 81:14 }$	
$2030 \text { 167:15 }$	8
2050 167:17	8E-089 1:10
22nd 159:13	8,000 28:6
23rd 159:13	80 13:11,17
25 12:16 106:2	800 176:4 186:16
250,000 87:19	81 4:12
28 4:6	
29th 159:13	9
	9:00 1:9
3	9:04 5:2
$31: 8$	90 65:7,9
	$9413: 12$
$3018: 5$ 26:14 115:16	95 4:15 32:16 33:15
	51:9
30th 115:7 159:13 30-day 17:9	98 26:12
30-year 156:17	99 26:12 138:1
31st 115:7	
36 4:7	
4	
40 18:5 24:10	
41 4:8	
45 110:22	
45.52 24:9	
5	
$54: 2$	
50 30:1 56:10 111:1	
50-year 158:7$5256: 7$	

Neal R. Gross \& Co., Inc.
(202) 234-4433

