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Abstract

This paper assumes that output depends on a large number of variables, but that economic

theory has only revealed a subset of these variables. The variables that determine output include

exogenous shocks, as well as endogenous variables that depend on both the exogenous variables

and agents’ expectations. This paper examines a policy maker’s attempts to forecast output under

two different types of expectations formation. I first analyze the case where the policy maker

knows the structural coefficients associated with all known variables, and uses this knowledge to

form expectations. Under these structural coefficients expectations, if economic theory reveals a

new variable, then welfare will improve with probability between one-half and one. Under adaptive

learning, however, the revelation of a new variable may worsen welfare more often than it improves

welfare. This scenario occurs when the policy maker already knows most of the variables that

determine output and when the model includes significant endogeneity. Furthermore, the policy

maker is typically better off choosing to abandon structural coefficients expectations in favor of

adaptive learning, regardless of how many variables theory has revealed.
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1. Introduction

The baseline approach for modeling the formation of expectations in macroeconomics is the as-

sumption of rational expectations. Under rational expectations, agents know the model’s reduced

form solution, and use that solution to derive the mathematically optimal expectation. This likely

requires that agents know the “true” model that has generated the data, are able to correctly cali-

brate that model, and can solve for its reduced form. The lengthy literature on adaptive learning

criticizes rational expectations for these strong informational requirements. Adaptive learning typi-

cally relaxes these requirements by assuming that agents know which variables appear in a model’s

reduced form, but must estimate the reduced form coefficients through standard econometric tech-

niques.2

Many popular macroeconomic structural models yield reduced form solutions that depend on

only a handful of variables.3 The assumption that agents know the exact set of variables in a

model’s reduced form, common in the adaptive learning literature, may therefore seem plausi-

ble. The simplicity of contemporary macroeconomic models, however, is likely due to a desire

for tractability and clarity. A true model is likely to depend upon a larger set of variables, some

of which are unknown or not emphasized in the literature. Like rational expectations, standard

adaptive learning is therefore vulnerable to criticism for endowing its agents with excessive infor-

mation.

Several papers examine this issue by modeling adaptive learning where agents use underpa-

rameterized models. Cho and Kasa (2006) examine the Sargent “Conquest” (1999) model where

agents use adaptive learning to estimate the endogenous data generating process. In addition to

uncertainty abut the coefficients, agents are also unsure of the correct specification. Agents there-

fore perform tests among a set of timeless, underparameterized models. Branch and Evans (2006)

examine a cobweb model where agents choose among a set of underparameterized specifications.

2See Evans and Honkapohja (2001) for a detailed survey and discussion of the adaptive learning literature.
3In the ubiquitous New Keynesian literature, for example, the entire economy in reduced form often consists only

of output, inflation, a short term interest rate, and a small set of fundamental shocks. For details on the New Keynesian

model, see Woodford (2003).
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The authors demonstrate that equilibria may occur where agents heterogeneously rely on differ-

ent specifications. Evans and Ramey (2006) assume that agents use underparameterized, adaptive

expectations in a model of the New Keynesian Phillips Curve. They allow agents to select the

optimal weights on the previous observation versus the sample mean and show that the Lucas Cri-

tique (1976) still applies to much of the parameter space. Each of these papers assumes that agents

choose among a set of underparameterized models with a timeless set of regressors.

The present paper departs from the related literature by assuming that an underlying economic

theory process gradually reveals the significance of variables to policy makers. Agents therefore

forecast using underparametrized specifications, but the degree of misspecification is diminishing

over time.

This paper uses a simplified version of the Sargent “Conquest” (1999) model where the policy

maker’s objective is equivalent to making the best forecast of output. Output depends on a set

of exogenous variables and a set of endogenous variables. The vector of endogenous variables

depends on both the set of exogenous variables and agents’ expectation of output. At any time,

economic theory has revealed only subsets of both the exogenous and endogenous variables.

I consider two types of expectations formation. The first type is structural coefficients expec-

tations where economic theory reveals not only a subset of relevant variables, but also the exact

coefficients for all known variables in the structural model. Expectations are not fully rational,

however, because agents do not know any coefficients associated with unrevealed variables. The

second type of expectations formation is adaptive learning where agents use all revealed variables

as regressors to estimate output.

This paper examines two questions related to the revelation of a new variable. The first question

is whether a revelation improves the policy maker’s forecasts and therefore welfare. Under struc-

tural coefficients expectations, the revelation of a new variable increases welfare with probability

between one-half and one. Policy makers are therefore generally better off using newly revealed

variables to forecast. There exists, however, a significant (though less than one-half) probability
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that a revelation may actually decrease welfare. I refer to this case as a red herring.4 Under

adaptive learning, the probability of a red herring depends on agent’s prior state of knowledge. If

theory has revealed a small number of variables, then the probability of a red herring is less than

one-half. If the model includes endogeneity and theory has revealed a large number of variables,

however, then the probability of a red herring will typically be greater than one-half. In this case,

the revelation of a new variable likely worsens the policy maker’s forecasts and overall welfare.

The adaptive learning literature typically assumes that agents must use learning because they

lack the information needed to form rational expectations. The second question in this paper is

whether agents are better off choosing to discard structural coefficients expectations in favor of

adaptive learning? The results show that the probability of adaptive learning dominating structural

coefficients expectations is always significantly greater than one-half. This result suggests that

when theory reveals both a new variable and how that variable interacts with the other known

variables, the policy maker should ignore the latter information and estimate the model itself.

The paper is organized as follows. Section 2 develops the model and examines the revelation

of new variables under structural coefficients expectations. Section 3 studies the model’s behavior

under adaptive learning. Finally, Section 4 concludes.

2. The Model and Structural Coefficients Expectations

This paper relies on a version of Sargent’s (1999) “Conquest Model”:

ut = u∗ − θ(yt − xt) (1)

Equation 1 is the New Keynesian Phillips Curve. The policy maker chooses a policy, xt,

that determines the unemployment rate, ut. The policy maker is unable to observe the partially

exogenous variable, yt, which is assumed to depend on a large number of observable variables.

4A red herring is a metaphor used to describe an object that distracts an investigation, diverts attention to a side

issue, or provides useless but confusing information. Its origins date to pre-1900 England where a herring, reddened

by salting and smoking, was used to confuse hounds pursuing a fox or other prey. See Quinion (2002) for more details.
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yt = Azt +Bgt (2)

zt = Cye
t +Dgt (3)

gt is a M x 1 vector of exogenous variables. Each element of gt is independently and identically

distributed, N(0, σ2
g). For simplicity, I assume that gt exhibits no serial correlation. zt is a N x 1

vector of endogenous variables that depends on agent’s expectation of yt, as well as the exogenous

variables. I assume that all agents, including the policy maker, possess identical expectations. C

is a N x 1 vector that describes the feedback between the endogenous variables and ye
t . D is a N x

M matrix that describes how the exogenous variables affect the endogenous variables. All agents

observe only the expectation of yt, not its actual value. I assume that endogeneity results from

agents’ behavior that is based on their expectations. zt therefore depends on ye
t , and not yt.

The timing of the model works as follows: first, gt is drawn. Second, zt and ye
t are simultane-

ously determined. Finally, yt is determined based on gt and zt.

I focus on the model where the policy maker simply attempts to stabilize unemployment around

u∗. This entails setting xt = ye
t . The policy maker’s problem therefore reduces to forming the best

forecast of yt.

Agents generally do not know all of the variables that affect yt. At time t, economic theory

has revealed the first n elements of zt and the first m elements of gt. In this section, I assume that

theory has also revealed An (the first n elements of A), and Bm (the first m elements of B). Agents

use this knowledge to form precise, but biased expectations of yt. Because the policy maker does

not know the full model, expectations are not fully rational. I therefore refer to this assumption

as structural coefficients expectations. Later, I will assume that agents must use adaptive learning,

where they rely on standard econometric techniques to estimate An and Bm. This modification

will reduce bias, but will add noise to agents’ expectations.

ye
t = Anzn

t +Bmgm
t (4)

zn
t = Cnye

t +Dngt (5)
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Substituting Equation 5 into Equation 4 yields the policy maker’s expectation.

ye
t = (1− AnCn)−1[AnDngt +Bmgm

t ] (6)

I assume that the policy maker’s loss, `t, depends on the squared gap between unemployment

and u∗.5

`t = (ut − u∗)2 = θ2(ye
t − yt)

2 (7)

Without loss of generality, I set θ = 1. The policy maker’s loss may then be re-stated in terms

of its knowledge (n and m) and the vector of exogenous shocks, gt.

`t = [((AC − I)(I − AnCn)−1AnDn + AD +B)gt...

((AC − I)(I − AnCn)−1)Bmgm
t ]2 (8)

Proposition 1: If agents are fully rational (m = M and n = N ), then the loss, `t, equals zero.

Proof: If (m = M and n = N ), then An = A, Cn = C, and Bm = B. Equation 8 then reduces to

`t = 0.

Proposition 1 demonstrates that the policy maker’s loss results from departures from full ra-

tionality. Structural coefficients expectations are one such departure, and I now examine how this

assumption affects welfare.

In this section, I assume that agents use structural coefficients expectations instead of adaptive

learning. Suppose, however, that agents did use adaptive learning to estimate yt and that eco-

nomic theory reveals an additional endogenous variable. Further suppose that agents are able to

retroactively regress yt on the new set of variables, [gm
t , z

n
t ], including the newly revealed variable.

Because this revelation changes the way agents form expectations, the Lucas Critique applies, and

the retroactive regression coefficients will be biased relative to their values after the revelation.6

5The results of this paper are robust to any alternative assumption that also implies that the policy maker’s loss is

increasing in the gap between ut and u∗.
6This bias is in addition to the bias that will result from omitted variables.
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Under structural coefficients expectations, however, agents are assumed to rely on invariant struc-

tural coefficients to form their expectations, and the Lucas Critique does not apply. To simplify the

analysis, I therefore examine structural coefficients expectations where C = 0, where 0 is a null

vector. The appendix shows that the results that follow in this section are largely unchanged for

cases where C 6= 0.

Setting C = 0, I re-write the policy maker’s loss under structural coefficients expectations:

`t = [(ADN,m − AnDn,m)gm
t + (ADN,−m − AnDn,−m +B−m)g−m

t ]2 (9)

where g−m
t is a 1 x (M - m) vector of unrevealed exogenous shocks, and DN,m is the first N rows

and first m columns of D. Consider the loss caused by a single unknown exogenous variable, gm+1
t

where gi
t = 0 for all i 6= m+ 1.

`it = [(ADN,m+1 − AnDn,m+1 +Bm+1)gm+1
t ]2 (10)

Each exogenous variable affects yt directly through the B matrix and indirectly through the

endogenous variables. The total gap between yt and its expectation caused by gm+1
t is the sum of

the direct effect (Bm+1) and indirect effect (ADN,m+1−AnDn,m+1). The revelation of the m+1th

exogenous variable reveals the direct effect to the policy maker. Because the direct effect of gm+1
t

is part of its total effect, this revelation is likely to provide useful information about the total effect

and improve forecasting. With probability less than one-half, however, the direct effect may not

be representative of the total effect and may worsen the policy maker’s forecasts, resulting in a red

herring. Similarly, the revelation of the nth endogenous variable will likely increase welfare but

will also result in a red herring with probability less than one-half.

Tedious but straightforward manipulation of Equation 10 allows the policy maker’s expected

loss for any [A,B,D] to be re-stated as a function of the individual elements of the relevant matrices.

E[`t] =
m∑

j=1

σ2
g [

N∑
i=n+1

N∑
k=n+1

A1,iDi,jA1,kDk,j] + ...

M∑
j=m+1

σ2
g [

N∑
i=n+1

N∑
k=n+1

A1,iDi,jA1,kDk,j + 2
N∑

i=n+1

A1,iDi,jB1,j + (B2)1,j] (11)
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Suppose that economic theory reveals the mth exogenous variable. Equation 11 demonstrates

that the change in the expected loss equals:

E[`t]
m+1,n − E[`t]

m,n = −σ2
g [(B

2)1,m+1 + 2B1,m+1
N∑

i=n+1

A1,iDi,m+1] (12)

Likewise, if economic theory reveals the nth endogenous variable, the change in the expected

loss equals:

E[`t]
m,n+1 − E[`t]

m,n = −σ2
g [

M∑
j=1

((A1,n+1Dn+1,j)2 + 2A1,n+1Dn+1,j
N∑

k=n+2

A1,kDk,j)...

+2
M∑

j=m+1

A1,n+1Dn+1,jB1,j] (13)

I assume that agents know, ex-ante, the distributions of each element of [A, B, D]. Each element

of [A, B, D] is independently and identically distributed, N(0, σ2
q ), where q = A,B,D. I further

assume orthogonality across matrices by using the following variance-covariance matrix:


σ2

a 0 0

0 σ2
b 0

0 0 σ2
d

 (14)

Proposition 2: Ex-ante, the revelation of the mth exogenous variable results in a decreased ex-

pected loss.

Proof: Under the assumption of orthogonality of Equation 14, Equation 12 reduces toE[`t]
m+1,n−

E[`t]
m,n = −σ2

gσ
2
b < 0

Proposition 3: Ex-ante, the revelation of the nth endogenous variable results in a decreased ex-

pected loss.

Proof: Under the assumption of orthogonality of Equation 14, Equation 13 reduces toE[`t]
m+1,n−

E[`t]
m,n = −σ2

gσ
2
aσ

2
d < 0

Propositions 2 and 3 show that, ex-ante, the policy maker is always better off relying on a

newly discovered variable because it is likely to result in a welfare improvement. Equations 12

8



and 13 demonstrate, however, that for specific draws of [A, B, D], newly revealed variables may

result in an increased expected loss. Both newly revealed exogenous and endogenous variables

may therefore be red herrings.

Proposition 4: For exogenous variables, the probability of a red herring approaches zero as σ2
b →

∞, σ2
a → 0, or σ2

d → 0.

Proof: By Equation 12, as σ2
b → ∞, E[`t]

m+1,n − E[`t]
m,n → −∞. Likewise, as σ2

a → 0 or

σ2
d → 0, E[`t]

m+1,n − E[`t]
m,n → −σ2

b < 0

Proposition 5: For exogenous variables, the probability of a red herring approaches 1/2 as σ2
b → 0,

σ2
a →∞, or σ2

d →∞.

Proof: By Equation 12, if σ2
b → 0, σ2

a → ∞, or σ2
d → ∞, then E[`t]

m+1,n − E[`t]
m,n → 0.

Because of the model’s symmetry, prob(E[`t]
m+1,n − E[`t]

m,n > 0)→ 1/2.

Proposition 4 considers three cases. If each element of B has a large variance, then the direct

effect of the mth exogenous variable dominates its indirect effect. The revelation of the direct

effect which accompanies the revelation of the mth exogenous variable is therefore necessarily

informative about its total effect. If A is a null matrix, then yt does not depend on zt and the direct

and total effects of gm are one and the same. Finally, if D is a null matrix, then zt always equals

zero and there is no indirect effect.7

Proposition 5 considers the inverse cases. Recall that agents know the distribution of [A, B, D].

If σ2
b → 0, then the revelation that an element of B equals zero is uninformative and does not affect

forecasting. As σ2
b → 0, however, it is also the case that the welfare loss associated with a red

herring approaches zero. If σ2
a → ∞ or σ2

d → ∞, then the indirect effect of the revelation of gm
t

dominates its direct effect. In this case, the welfare loss associated with a red herring approaches

infinity as its probability approaches one-half.

Proposition 6: For endogenous variables, the probability of a red herring approaches zero as

σ2
a →∞ or as σ2

d →∞.

7This latter result is dependent on the assumption that C = 0.
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Proof: By Equation 13, as σ2
a →∞ or as σ2

d →∞, E[`t]
m+1,n − E[`t]

m,n → −∞.

Proposition 7: For endogenous variables, the probability of a red herring approaches one-half as

σ2
a → 0, σ2

d → 0, or as σ2
b →∞.

Proof: By Equation 13, if σ2
a → 0, σ2

d → 0,or σ2
b →∞, then E[`t]

m+1,n−E[`t]
m,n → 0. Because

of the model’s symmetry, prob(E[`t]
m+1,n − E[`t]

m,n > 0)→ 1/2.

Proposition 6 is the analog to Proposition 4. It considers cases where the importance of the

endogenous variables dominates that of the exogenous variables. In these cases, the information

conveyed by the revelation of an endogenous variable is necessarily informative and red herrings

cannot occur. From Proposition 4, the probability of a red herring occurring on an exogenous

variable approaches zero as σ2
b → ∞. It is not the case, however, that the probability of a red

herring on an endogenous variable approaches one-half as σ2
b → 0. Proposition 7 considers three

cases where the importance of the exogenous variables dominates that of the endogenous variables.

In these cases, the revelation of an endogenous variable is not informative and the probability of a

red herring approaches one-half. If σ2
a → 0 or σ2

d → 0, then the welfare loss associated with a red

herring approaches zero. If σ2
b →∞, however, then the welfare loss associated with a red herring

also approaches infinity.

I now simulate the model to quantify the probability of a red herring when an exogenous or

endogenous variable is revealed to policy makers. For these simulations, I assume that N = M =

30. In the baseline case, I set σ2
a = σ2

b = σ2
d = 0.1. I then take 20,000 random draws from [A,

B, D] and evaluate the likelihood of a red herring for all possible combinations of m and n. To

access the effect of the variance terms on the model, I also simulate low variance cases where σ2
a,

σ2
b , or σ2

d equal 0.02 and high variance cases where σ2
a, σ2

b , or σ2
d equal 0.50. Table 1 displays the

probability of a red herring when the 15th exogenous variable is revealed for each possible value

of n.

(FIGURE 1 HERE)
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Figure 1 plots the likelihood that the 15th exogenous variable is a red herring for different values

of n. The middle line represents the baseline case. The probability of a red herring approaches zero

as n approaches N. The top line represents the calibration where σ2
B is low (0.02), and the bottom

line represents the calibration where σ2
B is high (0.5). As predicted by Propositions 4 and 5, the

probability of a red herring decreases as σ2
B increases. Although not shown in either Figure 1 or

Figure 2, the behavior of the high σ2
A and σ2

D calibrations are nearly identical to the low σ2
B case.

Likewise, the low σ2
A and σ2

D calibrations are nearly identical to the high σ2
B case.

(FIGURE 2 HERE)

Figure 2 graphs the likelihood that the mth exogenous variable is a red herring for n = 15.

Once again, higher values of σ2
B decrease the likelihood of a red herring.

(FIGURE 3 HERE)

Figure 3 plots the likelihood that the 15th endogenous variable is a red herring for different

vales of m. The likelihood of a red herring is significantly higher when economic theory reveals

an endogenous variable than when it reveals an exogenous variable. As predicted by Proposition

7, higher values of σ2
B now increase the likelihood of a red herring.8

(FIGURE 4 HERE)
8As for exogenous variables, the model with high values of σ2

A or σ2
D usually behave like it does for low values of

σ2
B and vice versa. One exception, however, is the calibration where σ2

D is low. That calibration yields significantly

lower probabilities of red herrings than any other calibration.
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Figure 4 graphs the likelihood that the nth endogenous variable is a red herring for m = 15.

The results are similar to those shown in Figure 3.9

3. Adaptive Learning

Under structural coefficients expectations, when economic theory reveals a new variable, it also

reveals the associated structural coefficients. This is reminiscent of rational expectations where

agents are assumed to know a model’s exact reduced form solution and use that solution to form

their expectations.

The adaptive learning literature often argues that the informational requirements of rational

expectations are too extreme. An infinite number of structural models may generate any reduced

form. To know the coefficients in the reduced form, agents likely must know which model has

generated the data, know the structural coefficients, and be able to solve for its reduced form

solution. Adaptive learning relaxes these informational requirements by assuming that agents must

use standard econometric techniques to estimate the model’s reduced form. It is therefore typically

the case that agents must use adaptive learning because they simply lack the information to use

rational expectations. If it is unrealistic to assume that economic theory reveals the structural

coefficients associated with a newly revealed variable, then the standard justification for assuming

adaptive learning may certainly be applied to the present paper.

There is, however, an additional justification for adaptive learning in this paper. In this model,

agents would ideally use rational expectations where they know the structural coefficients on all

N + M endogenous and exogenous variables. The assumption that agents know only a fraction of

these variables, however, implies that agents cannot use rational expectations, but must instead rely

on structural coefficients expectations. Whereas rational expectations are certain to yield better

forecasts than adaptive learning, it is possible that adaptive learning will outperform structural

coefficients expectations. In this case, agents are better off choosing to use adaptive learning

9As in Figure 3, the calibration where σ2
D is low yields significantly lower probabilities of red herrings than any

other calibration.
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instead of structural coefficients expectations.

This section addresses two questions. First, how likely are red herrings under the assumption

that agents must use adaptive learning? Second, how often would agents optimally choose to

discard structural coefficients expectations in favor of adaptive learning?

Under rational expectations, agents form more accurate expectations than under adaptive learn-

ing. The possibility that agents may be better off under adaptive learning arises only because agents

may possess structural coefficients expectations, not rational expectations. Several papers develop

different cases where agents may prefer adaptive learning to rational expectations. The most com-

mon approach allows agents to possess rational expectations if and only if they incur an additional

cost.10 If the cost of rational expectations is sufficiently high, then some or all agents will pre-

fer adaptive learning to rational expectations. Adam (2005) develops a model where agents learn

adaptively and choose between a correctly specified model (relative to rational expectations) and

an underparameterized model. If agents use the former specification, adaptive learning asymptoti-

cally converges to rational expectations. If agents use the latter specification, however, the learning

process causes both models to be misspecified and it is possible that the latter model yields a better

forecast on average. Learning the misspecified model is optimal, however, only if agents have al-

ready been using that model. Agents would have been better off had they used the first specification

all along.

To model adaptive learning, I assume that agents know the form of the structural model, but do

not know the exact coefficients.

ye
t = azn

t + bgm
t (15)

Under adaptive learning, I assume that agents use recursive least squares to obtain at and bt.

This is similar to running an OLS regression of yt on zt and gt, and updating that regression each

period as new data becomes available. Equation 15 represents agents’ perceived law of motion

(PLM).
10See Evans and Ramey (1992), Brock and Hommes (1997), and Branch and McGough (2005) for prominent

examples from this literature.
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By inserting agents’ PLM into Equations 2 and 3, it is possible to obtain the economy’s actual

law of motion (ALM).

yt = ACazn
t + (ACb+ ADm +Bm)gm

t + (AD−m +B−m)g−m
t (16)

The mapping from the PLM to the ALM may therefore be written as:

T

 a

b

 =

 ACa

ACb+ ADm +Bm

 (17)

Because the ALM depends on variables not included in the PLM, and zn
t is correlated with

the omitted variables, g−m
t , the optimal projection of the ALM on the PLM yields biased regres-

sion coefficients. Under structural coefficients expectations, a = An and b = Bm. Structural

coefficients expectations therefore provide noiseless coefficients, but at the expense of ignoring

the correlation between zn
t and g−m

t , and thus being a suboptimal projection. Because the policy

maker only cares about forecasting yt, and is unconcerned about the bias of a and b, adaptive

learning asymptotically dominates structural coefficients expectations. While the learning process

is ongoing, however, adaptive learning will be noisier than structural coefficients expectations and

the latter may therefore be preferable.11

Under adaptive learning, it is not typically the case that a and b will converge to their struc-

tural coefficients expectations, or rationale xpectations values. This is therefore an example of

what Evans and Honkapohja (2001) refer to as a restricted perceptions equilibrium.12 A restricted

perceptions equilibrium is optimal in the class of PLMs that agents are considering, but may be

inferior to other types of PLMs. In this model, a restricted perceptions equilibrium implies that

agents are forming the best possible econometric estimate, given that they do not know all the

variables included in the model.

To determine the fixed points of the learning process, it is useful to re-state zn
t as a function of

the exogenous variables.

11The simulations that compare welfare under adaptive learning and structural coefficients expectations assume

constant-gain learning where the learning process is persistent.
12Branch and Evans (2006) analyze restricted perceptions equilibria in a fixed, underparameterized model.
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zn
t = (I − Cna)−1[(Cnb+Dn,m)gm

t +Dn,−mg−m
t (18)

where Dn,m is the first n rows and m columns of D, and Dn,−m is the first n rows and last M - m

columns of D.

To calculate the fixed points of the learning process, I project the ALM onto the PLM. It is

convenient to write both zn
t and yt as functions of gm

t and g−m
t .

zn
t = αgm

t + βg−m
t

where α and β are given by Equation 18.

yt = χgm
t + δg−m

t (19)

where χ = AC(1−aCn)−1(aDn,m+b)+ADm+Bm and δ = AC(1−aCn)−1aDn,−mAD−m+

B−m.

V ar

 zn
t

gm
t

 = σ2
g

 αα
′
+ ββ

′
α

α I(m)

 = (20)

Cov


 zn

t

gm
t

 , yt

 = σ2
g

 αχ
′
+ βδ

′

χ
′

 = (21)

The OLS regression is thus given by:

T

 a

b

 =

 αα
′
+ ββ

′
α

α I(m)


−1  αχ

′
+ βδ

′

χ
′

 (22)

Because a and b appear in in the right hand side of Equation 22, solving for the fixed point is

complex. After using Gauss to solve for the fixed point, I begin the learning process at this point.

For simplicity, I assume that agents do not include an intercept in their regression. If agents do use

an intercept, the fixed point for the intercept equals zero.

The system is stable under adaptive learning if the learning coefficients remain in the neighbor-

hood of their restricted perceptions equilibrium values. To evaluate stability under learning, I use
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the related concept of E-Stability. Evans and Honkapohja (2001) demonstrate that under general

conditions, a model is stable under learning if and only if it is E-Stable. E-Stability maps from the

PLM to the ALM using the E-Stability differential equation.

d/dτ

 a

b

 = T

 a

b

−
 a

b

 (23)

If each eigenvalue of the Jacobian of the right hand side of Equation 23 has real parts less

than zero when evaluated at its fixed point, then the model is E-Stable. Evaluating this condition

using the ALM, Equation 16, and the PLM, Equation 15, shows that the necessary and sufficient

condition for E-Stability is that AC < 1.

There are two sources of red herrings under adaptive learning. The first source is related to the

added noise that an additional regressor adds to the process. It is necessarily true that including an

additional regressor results in an equal or better in-sample fit than before its inclusion. Likewise the

new restricted perceptions equilibrium performs better than the older equilibrium at their respective

fixed points. Often, however, the inclusion of an additional regressor will introduce enough noise

to the estimate so that the enlarged set of regressors provides a worse out of sample fit than the

original set of regressors. In this case, forecasts worsen, welfare decreases, and a red herring

occurs. Later simulations will demonstrate, however, that this source, by itself, results in red

herrings with probability less than one-half.

If the model includes endogeneity, then the Lucas Critique is a second source of red herrings.

I assume that once theory reveals the nth endogenous variable, agents are able to collect past data

for that variable and regress y on zn+1 and gm. Because yt depends on its expectation, however,

the discovery of an additional endogenous variable changes that underlying statistical relationship.

Agents’ initial estimates of at and bt may therefore be significantly different than their values in

the new restricted perceptions equilibrium. While the learning process returns at and bt to the

neighborhood of their restricted perceptions equilibrium values, agents will make poor forecasts.

If their discount factor is sufficiently small, then the revelation of the new variable will worsen

intertemporal utility. Later simulations show that the combination of both sources of red herrings

will often result in their occurrence with probability greater than one-half.
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To simulate adaptive learning, I assume that agents estimate Equation 2 using recursive least

squares. Agents’ (n+m) x 1 vector of regressors, φ = [at, bt]
′, at time t is updated according to:

φt = φt−1 + γR−1
t φ′t−1(yt−1 − at−1z

n
t−1 − bt−1g

m
t−1) (24)

Rt = (1− γ)Rt−1 + γ(φt−1φ
′
t−1) (25)

This type of recursive least squares is not identical to running an OLS regression each period.

The gain (γ) represents the weight placed on the most recent observation. Under standard OLS,

the gain equals the inverse of the sample size and each observation counts equally. Equations 24

and 25 are an example of constant-gain learning where agents place extra weight on more recent

observations.13 Constant-gain learning is a popular way to model learning when the model that

agents estimate is subject to structural change, such as the revelation of a new variable. In the

absence of constant-gain learning, agents would be even more vulnerable to the Lucas Critique for

large sample sizes.

Under structural coefficients expectations, the revelation of a new endogenous variable in-

creases agents’ expected loss with probability between zero and one-half. I now examine the

welfare effects of discovering a new endogenous variable under adaptive learning. I begin the

learning process at the fixed point of the restricted perceptions equilibrium, given by Equation 22.

I initialize the learning process by simulating 2500 random draws of gt while using a gain equal to

0.005. After a 2500 period burn, I calculate the policy maker’s loss for 500 additional periods un-

der three different scenarios. In the first scenario, economic theory reveals the n+ 1th endogenous

variables and agents use this additional variable to forecast yt. In the second scenario, economic

theory does not reveal the new variable and the model’s behavior is unchanged from the first 2500

observations. In the third scenario, I assume that economic theory does reveal the new variable but

that agents possess structural coefficients expectations as discussed in Section 2. I then calculate

the loss under all three cases.
13For more details on constant-gain learning, see Sargent (1999), or Evans and Honkapohja (2001).
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To limit computational time, I do not simulate every pair of m and n. Instead I simulate every

pair where m equals 2,5,8... and n initially equals 2,5,8,... I conduct 500 simulations for each

pair of m and n. My baseline calibration assumes σ2
j = 0.1 for j = A,B,C,D and that agents

use a discount factor of 0.99. For comparison, I consider several other calibrations. I simulate

high variance cases where σ2
j = 0.3, and low variance cases where σ2

j = 0.02. For the low σ2
C

case, however, I set σ2
C = 0.00 to completely isolate the effect of the Lucas Critique. Tables

1-3 display the probability of a red herring where the revelation of a new endogenous variable

decreases welfare.

(Table 1 HERE)

(Table 2 HERE)

(Table 3 HERE)

As shown by Tables 1-3, when agents know a small number of the variables that matter, the

probability of a red herring tends to be significant, but less than one-half. In these cases, the

inclusion of an additional variable ultimately improves forecasting by enough to overcome both

the Lucas Critique and the additional noise that it introduces. As agents know more variables,

however, the probability of a red herring rises above one-half in the baseline and most other cases.

As agents know more of the model, an additional variable contributes less information and is less

likely to overcome the additional noise that it introduces. Additionally, because zt depends on gt,

the model exhibits significant multicolinearity. As agents know more variables, multicolinearity

increases, decreasing the rate of convergence to the new restricted perceptions equilibrium.

The case where σ2
C = 0.00 eliminates all endogeneity and suppresses the Lucas Critique. In

this case, the probability of a red herring never exceeds one-half. By contrast, the high endogeneity

case where σ2
C = 0.3 results in very high probabilities of red herrings.
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These results suggest that the policy maker should include newly revealed variables when its

initial knowledge is poor but should avoid using them to forecast when it knows most of the vari-

ables that matter. In practice, however, it may be difficult for the policy maker to know how many

variables it knows versus how many theory has not yet revealed. Likewise, if the public is aware

of the newly revealed variable and is able to form its own expectations, it may not be possible for

the policy maker to ignore the newly revealed variable.

It is also of interest to examine whether the policy maker should choose to use adaptive learn-

ing if lstructural coefficients expectations are also feasible. Tables 4-6 display the probability that

structural coefficients expectations outperform adaptive learning after the revelation of an addi-

tional endogenous variable.14

(Table 4 HERE)

(Table 5 HERE)

(Table 6 HERE)

Structural coefficients expectations are more precise than adaptive learning but ignore the cor-

relation between zn
t , and the omitted variables, g−m

t . These results show that, under all scenarios,

it is worthwhile for the policy maker to choose adaptive learning and accept the additional noise.

If economic theory reveals both a new variable and the associated structural coefficients, then the

policy maker is better off ignoring the latter information.

14The results do not differ significantly if adaptive learning is compared to structural coefficients expectations with-

out the revelation of a new endogenous variable.
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4. Conclusion

For tractability and clarity, macroeconomic models typically include an unrealistically small num-

ber of variables. This paper examines the implications of a policy maker having to forecast while

only knowing a subset of the relevant variables. I rely on a simple framework where the policy

maker’s objective is equivalent to forming the best forecast of output while relying on an underpa-

rameterized specification.

Under structural coefficients expectations, economic theory is benign in that the revelation

of a new variable is always likely to improve forecasting and welfare. Ignoring the question of

whether structural coefficients expectations are feasible, however, policy makers should abandon

this method of forecasting in favor of adaptive learning because the latter is always likely to out-

perform the former.

If a policy maker is using adaptive learning, either by choice or necessity, then the role of

economic theory is less clear. If most of the relevant variables are unknown, then the revelation

of a new variable is likely to improve forecasting and improve welfare. If most of the relevant

variables are unknown, however, then the revelation will likely decrease welfare.
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Appendix A: Structural Coefficients Expectations with Endo-

geneity

I now consider the model under structural coefficients expectations with endogeneity where C 6= 0

generally. While this addition adds additional complexity to the analysis, the basic results are

unaffected. Under structural coefficients expectations, theory reveals not only new endogenous

variables, but also the exact nature of the endogeneity. Policy makers can therefore easily account

for new endogeneity in their expectations.

With endogeneity, the loss function becomes:

`t = [(AD +B)gt − (AC − 1)(AnCn − 1)−1(AnDngt +Bmgm
t ]2 (26)

The change in the expected loss upon the revelation of the mth exogenous variable equals:

E[`t]
m+1,n − E[`t]

m,n = −σ2
g [(B

2)1,m+1 + 2B1,m+1
N∑

i=n+1

A1,iDi,m+1 + ...

(AC − 1)(AnCn − 1)−1B1,m+1(−(AC − 1)(AnCn − 1)(2
n∑

i=1

A1,iDi,m+1 +B1,m+1) + ...

2(
n∑

i=1

A1,iDi,m+1 − sumN
i=n+1A

1,iDi,m+1)] (27)

The change in the expected loss upon the revelation of the nth endogenous variable equals:

E[`t]
m,n+1 − E[`t]

m,n = −σ2
g [

M∑
j=1

((A1,n+1Dn+1,j)2 + 2A1,n+1Dn+1,j
N∑

k=n+2

A1,kDk,j)...

+2
M∑

j=m+1

A1,n+1Dn+1,jB1,j] + (AC − 1)(AnCn− 1)((AC − 1)(AnCn− 1)(−
M∑

j=1

A1,n+1Dn+1,j...

(A1,n+1Dn+1,j + 2
n∑

i=1

A1,iD1,j)− 2
m∑

j=1

B1,jA1,n+1Dn+1,j) + ...

2
M∑

j=1

A1,n+1Dn+1,j)(
n∑

1=1

A1,iD1,j −
N∑

1=n+2

A1,iD1,j − ...

2
M∑

j=m+1

B1,jA1,n+1Dn+1,j − 2
m∑

j=1

B1,jA1,n+1Dn+1,j)] (28)
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I repeat the simulations from Section 2 for the model with endogeneity. The results are similar,

as reported by Figures 5-8.

(FIGURES 5-8 HERE)
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Figure 1: Effect of Discovering 
the Fifteenth Exogenous Variable
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Figure 2: Effect of Discovering the mth Exogenous Variable
(n = 15)
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Figure 3: Effect of Discovering 
the Fifteenth Endogenous Variable
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Figure 4: Effect of Discovering the nth Endogenous Variable
(m = 15)
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Table 1

Probability of a Red Herring When the 15th Endogenous Variable is Revealed

High Variances Low Variances

m BL σ2
A σ2

B σ2
C σ2

D σ2
A σ2

B σ2
C σ2

D

2 0.44 0.40 0.43 0.40 0.46 0.43 0.39 0.40 0.44

5 0.42 0.41 0.47 0.47 0.44 0.41 0.48 0.41 0.50

8 0.43 0.39 0.46 0.46 0.44 0.44 0.46 0.43 0.47

11 0.43 0.42 0.46 0.42 0.51 0.42 0.43 0.47 0.52

14 0.43 0.48 0.46 0.46 0.50 0.49 0.39 0.46 0.44

17 0.44 0.48 0.47 0.47 0.50 0.44 0.45 0.45 0.50

20 0.49 0.45 0.55 0.48 0.53 0.46 0.47 0.49 0.51

23 0.50 0.49 0.52 0.51 0.62 0.49 0.45 0.47 0.56

26 0.53 0.54 0.59 0.54 0.60 0.51 0.52 0.44 0.56

29 0.56 0.62 0.65 0.68 0.67 0.56 0.53 0.49 0.69

27



Table 2

Probability of a Red Herring When the nth Endogenous Variable is Revealed (m = 14)

High Variances Low Variances

n BL σ2
A σ2

B σ2
C σ2

D σ2
A σ2

B σ2
C σ2

D

3 0.30 0.34 0.40 0.35 0.38 0.32 0.35 0.33 0.41

6 0.36 0.36 0.41 0.38 0.41 0.35 0.37 0.36 0.40

9 0.41 0.37 0.42 0.40 0.45 0.40 0.33 0.39 0.46

12 0.43 0.45 0.46 0.46 0.49 0.43 0.43 0.41 0.48

15 0.43 0.48 0.46 0.46 0.50 0.49 0.39 0.46 0.44

18 0.43 0.44 0.50 0.48 0.51 0.48 0.46 0.45 0.50

21 0.47 0.50 0.49 0.51 0.51 0.51 0.47 0.49 0.53

24 0.45 0.53 0.51 0.48 0.55 0.45 0.42 0.46 0.54

27 0.49 0.51 0.53 0.52 0.56 0.50 0.45 0.39 0.54

30 0.30 0.29 0.51 0.48 0.55 0.27 0.07 0.00 0.53

28



Table 3

Probability of a Red Herring When the nth Endogenous Variable is Revealed (m = n-1)

High Variances Low Variances

n BL σ2
A σ2

B σ2
C σ2

D σ2
A σ2

B σ2
C σ2

D

3 0.37 0.32 0.41 0.40 0.37 0.36 0.28 0.33 0.39

6 0.40 0.35 0.43 0.38 0.44 0.41 0.32 0.35 0.39

9 0.39 0.35 0.41 0.43 0.46 0.39 0.34 0.40 0.40

12 0.44 0.44 0.46 0.45 0.49 0.41 0.40 0.40 0.45

15 0.43 0.48 0.46 0.46 0.50 0.49 0.39 0.46 0.44

18 0.44 0.44 0.47 0.50 0.55 0.45 0.46 0.47 0.55

21 0.54 0.49 0.56 0.57 0.58 0.54 0.46 0.44 0.57

24 0.52 0.54 0.58 0.64 0.61 0.52 0.49 0.49 0.62

27 0.55 0.59 0.65 0.65 0.71 0.59 0.50 0.45 0.72

30 0.45 0.45 0.65 0.67 0.72 0.46 0.14 0.00 0.68
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Table 4

Probability that Structural Coefficients Expectations Dominate Adaptive Learning (n = 15)

High Variances Low Variances

m BL σ2
A σ2

B σ2
C σ2

D σ2
A σ2

B σ2
C σ2

D

2 0.23 0.24 0.32 0.27 0.34 0.24 0.19 0.18 0.32

5 0.24 0.22 0.30 0.32 0.31 0.28 0.20 0.22 0.36

8 0.25 0.22 0.33 0.31 0.33 0.27 0.19 0.17 0.34

11 0.25 0.21 0.33 0.29 0.35 0.25 0.18 0.25 0.37

14 0.26 0.26 0.33 0.32 0.35 0.26 0.16 0.24 0.33

17 0.20 0.25 0.30 0.32 0.35 0.22 0.15 0.21 0.34

20 0.22 0.16 0.32 0.29 0.32 0.22 0.13 0.15 0.33

23 0.21 0.13 0.28 0.25 0.34 0.21 0.09 0.14 0.29

26 0.19 0.12 0.27 0.25 0.30 0.17 0.09 0.09 0.27

29 0.16 0.11 0.33 0.22 0.39 0.32 0.05 0.10 0.38
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Table 5

Probability that Structural Coefficients Expectations Dominate Adaptive Learning (m = 14)

High Variances Low Variances

n BL σ2
A σ2

B σ2
C σ2

D σ2
A σ2

B σ2
C σ2

D

3 0.16 0.12 0.34 0.24 0.33 0.27 0.09 0.18 0.40

6 0.18 0.16 0.26 0.24 0.34 0.20 0.12 0.18 0.30

9 0.21 0.20 0.30 0.27 0.34 0.24 0.14 0.18 0.35

12 0.27 0.16 0.33 0.33 0.35 0.24 0.17 0.21 0.33

15 0.26 0.26 0.33 0.32 0.35 0.26 0.16 0.24 0.33

18 0.25 0.19 0.32 0.29 0.33 0.25 0.18 0.22 0.33

21 0.22 0.20 0.26 0.25 0.25 0.22 0.16 0.15 0.28

24 0.16 0.19 0.23 0.22 0.25 0.17 0.10 0.13 0.21

27 0.15 0.15 0.18 0.15 0.17 0.14 0.09 0.06 0.18

30 0.04 0.04 0.04 0.03 0.03 0.04 0.02 0.00 0.04
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Table 6

Prob. that Structural Coefficients Expectations Dominate Adaptive Learning (m = n-1)

High Variances Low Variances

n BL σ2
A σ2

B σ2
C σ2

D σ2
A σ2

B σ2
C σ2

D

3 0.21 0.18 0.28 0.27 0.26 0.23 0.16 0.18 0.31

6 0.22 0.21 0.25 0.24 0.35 0.23 0.11 0.15 0.32

9 0.21 0.17 0.29 0.27 0.36 0.22 0.16 0.19 0.30

12 0.26 0.26 0.35 0.31 0.35 0.25 0.18 0.20 0.34

15 0.26 0.26 0.33 0.32 0.35 0.26 0.16 0.24 0.33

18 0.19 0.20 0.26 0.28 0.34 0.22 0.16 0.18 0.31

21 0.17 0.15 0.23 0.24 0.27 0.17 0.09 0.11 0.23

24 0.15 0.12 0.18 0.22 0.17 0.14 0.07 0.08 0.19

27 0.10 0.11 0.15 0.14 0.15 0.10 0.06 0.06 0.15

30 0.15 0.20 0.18 0.17 0.14 0.16 0.07 0.00 0.14
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Figure 5: Effect of Discovering
the Fifteenth Exogenous Variable
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Figure 6: Effect of Discovering the mth Exogenous Variable
(n = 15)
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Figure 7: Effect of Discovering the Fifteenth Endogenous 
Variable
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Figure 8: Effect of Discovering the nth Endogenous Variable
(m = 15)
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