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Abstract

A growing body of evidence suggests that ongoing relationships between consumers and firms

may be important for understanding price dynamics. We investigate whether the existence of

such customer relationships has important consequences for the conduct of both long-run and

short-run policy. Our central result is that when consumers and firms are engaged in long-term

relationships, the optimal rate of price inflation volatility is very low even though all prices are

completely flexible. This finding is in contrast to those obtained in first-generation Ramsey

models of optimal fiscal and monetary policy, which are based on Walrasian markets. Echoing

the basic intuition of models based on sticky prices, unanticipated inflation in our environment

causes relative price distortions across markets. Such distortions are due to the long-term nature

of relationships and makes pursuing inflation stability optimal.
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1 Introduction

A growing body of evidence suggests that ongoing relationships between consumers and firms may

be important for understanding price dynamics. In this paper, we investigate whether the existence

of such customer relationships has important consequences for the conduct of both long-run and

short-run policy. We explore this question using the Ramsey framework of optimal fiscal and

monetary policy, in the tradition of Lucas and Stokey (1983) and Chari, Christiano, and Kehoe

(1991), because it is a powerful laboratory for uncovering properties of optimal policy. Our central

result is that long-term relationships between consumers and firms, which we model using search-

based frictions in goods markets, make keeping inflation variability low an important goal of policy,

even though all prices are completely flexible and not subject to any menu costs. This finding is

in contrast to first-generation Ramsey models, which are based on Walrasian markets and thus are

ill-suited to handle long-lived relationships. Our results continue to call into question the perceived

wisdom that nominal rigidities are a necessary feature of a model in order for it to deliver a policy

prescription of stabilizing inflation.

The basic reason that any model with nominal rigidities recommends inflation stability as the

optimal policy is that variations in inflation affect relative prices of goods. Given technologically

identical goods — as virtually all sticky-price-based models assume — it is transparent that allowing

relative prices to deviate from unity as a result of variations in inflation is welfare-reducing. Hence

the prescription to stabilize inflation. As a general tenet, we think this core intuition recommending

inflation stability is sound. Our model and results show, though, that one does not need a typical

sticky-price model to reach this prediction. In the environment we use to study optimal policy,

fundamental trading frictions that lead to some goods being purchased in the context of long-term

customer relationships, while others are purchased in the spot goods markets used as the basis

for nearly all macroeconomic models, mean that volatile inflation induces the same sort of relative

price distortions as in sticky-price models. Optimal policy thus stabilizes inflation.

Our environment builds on the quantitative search-based model of goods markets developed

in Arseneau and Chugh (2007b). Their model, as does Hall’s (2007) model, uses the search-and-

matching framework familiar from the labor search literature as a basis for a model of goods markets.

In both Arseneau and Chugh (2007b) and Hall (2007), the search frictions that both consumers and

firms must overcome before goods trade can occur make customer relationships valuable to both

parties. We extend Arseneau and Chugh (2007b) to a monetary environment, motivating money

demand by layering over it a cash good/credit good structure, in the spirit of Lucas and Stokey

(1983). In our model here, then, some search goods can be acquired only with cash, while others

may be acquired using credit. As in a basic cash/credit model, there is no explicitly-modeled reason

why some goods have to be purchased using cash. By situating a familiar cash/credit structure
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in a clearly-defined concept of customer relationships, however, we are able to show that goods

trading frictions per se, even independent from those that generate an endogenous role for money,

may have important consequences for policy recommendations.

Our primary result is that realized (ex-post) inflation is quite stable over time in the face of

shocks, which is in contrast to the very volatile ex-post inflation rates found by Chari, Christiano,

and Kehoe (1991) that have become the benchmark for the Ramsey monetary literature. Inflation

volatility is high in the benchmark Ramsey model because surprise movements in the price level

allow the government to synthesize real state-contingent debt payments from nominally risk-free

government bonds without distorting relative prices. The government then need not change other,

distortionary, tax rates much in response to shocks. In our model, in contrast, real activity is

distorted by ex-post inflation because inflation affects relative prices of goods in a way that a

basic flexible-price Ramsey monetary model cannot articulate. Quantitatively, the welfare cost of

this relative-price distortion dominates the insurance value of generating state-contingent debt in

our model, rendering inflation an order of magnitude more stable than in first-generation Ramsey

models. Varying one key parameter that governs the importance of goods-trading frictions in our

model allows us to trace out the spectrum between the optimal inflation volatility result of Chari,

Christiano, and Kehoe (1991) and the optimal inflation stability result of a standard sticky-price

model. Deep frictions underlying goods trade thus provide novel justification for the optimality of

inflation stability, a prescription that resonates with central bankers.

Our second main result is that a deviation from the Friedman Rule of a zero net nominal interest

rate may be optimal in the long run. The optimality of positive nominal interest rates is taken

almost for granted by central bankers and those studying monetary policy using sticky-price-based

models, in which the attendant deflation associated with the Friedman Rule is undesirable, but it

is a result that usually has been difficult to obtain in flexible-price models. Two distinct reasons

lead to a departure from the Friedman Rule in our model, and each connects naturally with recent

results in the Ramsey literature. First, a positive nominal interest rate can be used to indirectly

tax monopolistic producers’ profits, a policy channel first identified by Schmitt-Grohe and Uribe

(2004a). Second, a positive nominal interest rate can be used to offset inefficient search activity,

similar to findings in the labor-search models of Cooley and Quadrini (2004) and Arseneau and

Chugh (2007a) and the money-search model of Rocheteau and Wright (2005). As in all of these

previous studies, allowing for policy instruments that directly tax monopoly profits and inefficient

search activity restores the optimality of the Friedman Rule.

Other than Hall (2007) and Arseneau and Chugh (2007b), other studies have also taken the view

that deeper models of relationships between consumers and firms, even if not applied to studying

policy issues, may be important for understanding price dynamics. Such a view is motivated by the
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survey evidence of, for example, Blinder et al (1998) and Fabiani et al (2006), that firms often try to

avoid upsetting their existing customers when considering price changes. Recent theoretical models

that fall into this broadly-defined area are the deep habits models of Ravn, Schmitt-Grohe, and

Uribe (2006) and Nakamura and Steinsson (2007) and the switching-cost model of Kleschelski and

Vincent (2007). The main way in which our framework, along with Hall’s (2007), differs from these

other frameworks is that we embed customer relationships as a feature of the trading structure

of the environment, rather than altering preferences to account for them. We also differ here, of

course, in emphasis, using our framework to study optimal policy.

The Lucas and Stokey (1983) and Chari, Christiano, and Kehoe (1991) studies — henceforth

LS and CCK, respectively — are the benchmark for Ramsey models of optimal fiscal and monetary

policy. The LS/CCK framework is particularly effective at uncovering the welfare consequences

of stabilizing inflation over the business cycle, an issue about which central bankers have strong

priors. In a recent outburst of work in this area, Schmitt-Grohe and Uribe (2004a, 2004b, 2005),

Siu (2004), and Chugh (2006, 2007) enrich the original Walrasian-based LS and CCK models along

a number of dimensions, with a focus on studying the dynamics of optimal inflation. However,

premised as they are on a fundamentally Walrasian view of markets, the primitive desirability of

inflation volatility embedded in the basic LS/CCK structure underlies them all. In a different recent

direction of the Ramsey literature, Arseneau and Chugh (2007a) and Aruoba and Chugh (2006)

study the dynamics of optimal inflation when key markets feature fundamental trading frictions

— frictions underlying labor market relationships in the former, and frictions underlying monetary

trade in the latter. Our work here continues the theme begun in these two studies by employing

a deeper description of trade in goods markets. Taken together, this emerging second generation

of Ramsey models uncovers several novel insights regarding the economic forces that may shape

policy, in particular monetary policy.

Although we use the canonical Ramsey framework of optimal taxation, the primary goal we set

out to achieve is not the design of an efficient tax system. That is obviously one natural — and

the original — objective to pursue using the Ramsey framework. Our model of course does have

implications for optimal (regular) fiscal policy, the most basic being an echo of the standard Ramsey

prescription of smoothing proportional labor tax rates over time. Instead, our primary goal here

is to shed some light on how conventional thinking regarding the forces affecting monetary policy

may be quite different once one treats non-Walrasian frictions in goods markets seriously, which we

can isolate from a serious treatment of frictions underlying monetary trade. As second-generation

and the most recent of the first-generation Ramsey monetary models have demonstrated, and as we

mentioned at the outset, the Ramsey laboratory is effective at isolating such forces; Chugh (2007b)

provides more discussion on this point.
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The rest of our work is organized as follows. Section 2 lays out our model, which is a cash/credit

version of the search-based model of goods markets developed in Arseneau and Chugh (2007b).

Section 3 presents the Ramsey problem, and Section 4 presents and analyzes our steady-state and

dynamic results. Section 5 summarizes and offers possible avenues for continued research.

2 The Economy

The environment builds on Arseneau and Chugh (2007b), which posits that, for some goods trades,

households and firms each have to expend time and resources finding individuals on the other side

of the market with whom to trade. A fraction of goods market exchange is thus explicitly bilateral,

in contrast to all trades happening against the anonymous Walrasian auctioneer. The modeling

device used by Arseneau and Chugh (2007b) and Hall (2007) to tractably capture these search

frictions in goods markets is to adapt the aggregate matching function ubiquitous in the labor

search literature.

To motivate money demand, we build on this idea by imposing a LS/CCK type of cash/credit

margin on top of the search markets. Our model of money demand is as simple as existing

cash/credit structures, and we think this makes our results readily comparable with most existing

optimal-policy studies. We proceed to describe in turn the environment faced by households, the

environment faced by firms, the determination of prices, aggregate matching dynamics, the nature

of the consolidated fiscal-monetary government, and the private-sector equilibrium. At the end of

the presentation of the household side of the model, we discuss the intuition for why the dynamics

of Ramsey-optimal inflation have the potential to be quite different in our environment than in a

baseline LS/CCK model.

2.1 Households

There is a measure one of identical, infinitely-lived households in the economy, each composed

of a measure one of individuals. In a given period, an individual member of the representative

household can be engaged in one of six activities: purchasing goods (shopping) at a cash location,

purchasing goods (shopping) at a credit location, searching for cash goods, searching for credit

goods, working, or enjoying leisure. More specifically, lt members of the household are working in a

given period; s1t (s2t) members are searching for firms from which to buy cash (credit) goods; Nh
1t

(Nh
2t) members are shopping at firms with which they previously formed cash (credit) relationships;

and 1− lt − s1t − s2t −Nh
1t −Nh

2t members are enjoying leisure.

We make more precise the distinction between cash shoppers and credit shoppers below; for

now, note our more general distinction between shopping and searching for goods. Individuals who
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are searching are looking to form relationships with firms, which takes time. Individuals who are

shopping were previously successful in forming customer relationships, but the act of acquiring and

bringing home goods itself takes time.1 We assume that all members of a household share equally

the consumption that shoppers acquire.

Defining Nh
t = Nh

1t +Nh
2t and st = s1t + s2t, the household’s discounted lifetime utility is given

by

E0

∞∑
t=0

βt

[
u(x1t, x2t) + ϑv

(∫ Nh
1t

0
ci1tdi,

∫ Nh
2t

0
ci2tdi

)
+ g(1− lt − st −Nh

t )

]
, (1)

where x1 is consumption of a standard Walrasian cash good, x2 is consumption of a standard

Walrasian credit good, and ci1t and cj2t are the quantities of the search cash and search credit good,

respectively, that cash shopper i and credit shopper j bring back to the household. Instantaneous

utility of leisure is g(.), and the parameter ϑ governs how the household prefers to divide its total

consumption between search and non-search goods.

As in Arseneau and Chugh (2007b), note that consumption of search goods potentially has two

dimensions: an extensive margin (the number of cash (credit) shoppers that buy goods) and an

intensive margin (the number of cash (credit) goods that each cash (credit) shopper buys). Given

the complexity of our model and to keep the focus on the extensive margin of search consumption,

we close down adjustment at the intensive margin and assume that the intensive quantity of either

cash or credit goods obtained in a match is always c̄ = 1. Arseneau and Chugh (2007b) show the

technical details one requires to open up the intensive margin; extending those requirements to our

more complicated environment here is straightforward in principle, but we refrain from doing so to

illustrate as clearly as possible how some conventional thinking regarding policy may change due to

the presence of just the search (extensive) margin of consumption. However, we keep the notation

general and continue writing cijt, but it will be understood from here on that cijt = c̄ = 1 ∀i, j, t.
The household faces the sequence of flow budget constraints,

Mt −Mt−1 +Bt −Rt−1Bt−1 = (2)

(1− τ l
t−1)Wt−1lt−1 − Pt−1x1t−1 − Pt−1x2t−1 −

∫ Nh
1t−1

0
Pi1t−1ci1t−1di−

∫ Nh
2t−1

0
Pi2t−1ci2t−1di+ Pt−1dt−1,

whereMt−1 is the nominal money the household brings into period t, Bt−1 is nominal bonds brought

into period t, Pt is the nominal price level (equivalently, the nominal price of both Walrasian cash

and Walrasian credit goods), Rt is the gross nominal interest rate on nominally risk-free government

bonds held between t and t+1, τ l
t is the tax rate on labor income, and dt is real dividends distributed

lump-sum by firms to households. All of these objects are standard in the line of cash/credit models

begun by LS and CCK and recently used by Siu (2004), Chugh (2006, 2007a), and Arseneau and
1For example, even if one knows exactly where to go to buy certain goods, one may still have to walk around the

aisles, stand in the checkout line, etc.
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Chugh (2007a). Finally, the nominal prices of cash search goods and credit search goods purchased

by cash shopper i and credit shopper j, respectively, are Pi1t and Pj2t.

The household also faces the sequence of cash-in-advance constraints,

Ptx1t +
∫ Nh

1t

0
Pi1tci1tdi ≤Mt, (3)

that apply to both a subset of Walrasian goods and a subset of search goods. As in LS, CCK, and

the subsequent literature, the purchase of some goods requires the use of money for an unstated

reason; it is a reduced-form way of motivating money demand. We extend this idea to cover

both a subset of standard Walrasian goods and a subset of goods acquired via ongoing customer

relationships. We point out that these ideas are quite different from those emphasized by Lagos

and Wright (2005) and the related literature, in which search-type frictions in some goods trades

lead endogenously to a welfare-enhancing role for fiat money. That is not the case here, as we do

not use search frictions to motivate a fundamental role for money.2 We interpret our setup as one

that separates search frictions in goods markets from the (to use a term favored in the money-

search class of models) “essentiality” of money central to money-search-based models like Lagos

and Wright (2005). Our cash in advance constraint, applied to both search and non-search goods,

nevertheless forms the basis of our central hypothesis that inflation variability is undesirable in the

environment we study; we discuss this hypothesis further after we complete our description of the

household problem.

Apart from the obvious differences due to our inclusion of search markets, the timing of both

the budget constraints and cash-in-advance constraints conforms to that of LS and CCK and

the ensuing literature. In addition to these constraints, the representative household also faces

perceived laws of motion for the numbers of active cash customer relationships and credit customer

relationships in which it is engaged,

Nh
1t+1 = (1− ρx)(Nh

1t + s1tk
h(θ1t)) (4)

and

Nh
2t+1 = (1− ρx)(Nh

2t + s2tk
h(θ2t)). (5)

The probability that a searching individual forms a cash (credit) relationship is kh, which in turn

depends on aggregate market tightness θ1 (θ2) in cash (credit) search markets. Market tightness,

defined as the aggregate number of advertisements per searching individual in a given market, is

taken as given by the household, hence matching probabilities are taken as given by the household.
2One crucial way in which our environment is different from Lagos and Wright (2005) and related models is that

during the course of a long-term relationship, a customer and a firm are not anonymous. Anonymity of buyers and

sellers is a crucial feature underlying the role for money in money-search types of models.
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With fixed probability ρx, which is known to both households and firms, an existing customer

relationship dissolves at the beginning of a period.3

This completes the basic description of the environment households face. We relegate more

formal details of the household optimization problem to Appendix A; we proceed here directly to

the optimality conditions. Before presenting household optimality conditions, a few points are in

order. First, we restrict attention to equilibria that are symmetric across all cash relationships and

symmetric across all credit relationships — that is, Pi1t = Pi′1t = P1t ∀ i 6= i′ and Pj2t = Pj′2t = P2t

∀ j 6= j′. Second, define p1t ≡ P1t/Pt and p2t ≡ P2t/Pt as the symmetric equilibrium relative prices

of search cash and search credit goods, respectively. Third, to conserve on notation, from here

on let vit stand for vi

(∫Nh
1t

0 ci1tdi,
∫Nh

2t
0 ci2tdi

)
, g′t stand for g′(1 − lt − st −Nh

t ), and uit stand for

ui(x1t, x2t)

Three household optimality conditions are identical to those in standard cash/credit models:

the consumption-leisure optimality condition

g′t
u2t

= (1− τ l
t )wt, (6)

the (Walrasian) cash-good/credit-good optimality condition

u1t

u2t
= Rt, (7)

and an Euler equation that prices a one-period nominally risk-free bond

1 = RtEt

[
βu1t+1

u1t

1
πt+1

]
, (8)

where πt ≡ Pt/Pt−1 is the gross inflation rate between periods t− 1 and t.

In search markets, the household’s choice of sit to hit a target Nh
it+1 make shopping decisions

akin to investment decisions, just as in Arseneau and Chugh (2007b) and Hall (2007). The optimal

shopping condition for cash goods is

g′t
kh(θ1t)

= β(1− ρx)Et

{
c1t+1 [ϑv1t+1 − p1t+1u1t+1]− g′t+1 +

g′t+1

kh(θ1t+1)

}
, (9)

and the optimal shopping condition for credit goods is

g′t
kh(θ2t)

= β(1− ρx)Et

{
c2t+1 [ϑv2t+1 − p2t+1u2t+1]− g′t+1 +

g′t+1

kh(θ2t+1)

}
. (10)

The cash (credit) shopping condition simply states that at the optimum, the household sends a

number of individuals out to search for cash (credit) goods such that the expected marginal cost of
3To keep things symmetric, we assume ρx is identical across cash and credit relationships, and, as we present below,

we assume a number of other features of the environment are symmetric across the two types of relationships. One

could easily relax such assumptions, but we think it makes the most sense to begin with as symmetric an environment

as possible.
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shopping for a cash (credit) good equals the expected marginal benefit of forming a cash (credit)

relationship. The expected marginal benefit of a cash (credit) relationship is composed of two parts:

the utility gain from obtaining c1t (c2t) more cash (credit) goods via the search market rather than

via the Walrasian market (net of the direct disutility g′ of shopping) and the asset value to the

household of having one additional pre-existing cash (credit) customer relationship entering period

t+ 1.

Because it will be useful in understanding our optimal policy results, we define the shadow

nominal interest rate

R∗
t ≡

kh(θ2t)
kh(θ1t)

. (11)

With this definition, note that the shopping conditions (9) and (10) can be condensed into a

household shopping margin,

Et

{
c1t+1 [ϑv1t+1 − p1t+1u1t+1]− g′t+1 +

g′t+1

kh(θ1t+1)

}
Et

{
c2t+1 [ϑv2t+1 − p2t+1u2t+1]− g′t+1 +

g′t+1

kh(θ2t+1)

} = R∗
t , (12)

which emphasizes that, when sending members out to shop for goods, the household faces a cash-

search/credit-search decision margin. The relevant price influencing this margin is relative matching

probabilities. The higher is the matching probability kh(θ2t) in the credit market, the more costly

it is, ceteris paribus, for a household to assign an additional member to search in the cash market.

This cost is an opportunity cost — the foregone opportunity of matching in the credit market. We

use the label shadow nominal interest rate because condition (12) is quite similar in idea to (7),

although of course, because it takes time to form relationships, the “marginal rate of substitution”

on the left-hand-side of (12) is an expectational one. From the point of view of the optimal

policy problem we will construct, however, R∗
t is a price that can be manipulated by the Ramsey

government.

We now return to a point we mentioned earlier: our central hypothesis can be seen in our model’s

cash-in-advance constraint. As in nearly all cash-in-advance models, we focus on an equilibrium

in which the cash-in-advance constraint binds. In a symmetric equilibrium, the time-t and t − 1

versions of (3) can thus be combined to yield

πt

[
x1t + p1tN1tc1t

x1t−1 + p1t−1N1t−1c1t−1

]
= µt, (13)

where µt ≡Mt/Mt−1 is the gross growth rate of the nominal money stock. If there were no search

frictions, this would reduce to πt(x1t/x1t−1) = µt, the standard condition relating inflation to money

growth in cash-in-advance models. In a deterministic steady state, the monetarist condition π = µ

pins down inflation. Despite search frictions, the simple monetarist relation obviously continues to

hold in the steady state of our model. But dynamics in the search market complicate the dynamic
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relationship between fluctuations in money growth and inflation. In particular, and this forms

the basis for the central hypothesis of our project, note that (13) links realized inflation πt to the

relative price p1t. Fluctuations in πt thus have the potential to transmit into fluctuations in p1t,

which in turn may disrupt search markets. This means that state-contingent movements in πt

under the Ramsey plan may be undesirable in a way that does not occur in a baseline LS/CCK

model. We can only assess this conjecture quantitatively.

Finally, define

Ξt+1|t =
βu2t+1

u2t
(14)

as the conditional real discount factor between period t and t+1, which will be useful in constructing

firms’ optimization problems, to which we turn next.

2.2 Walrasian Firms

To make pricing labor simple, we assume that there is a representative firm that buys labor in and

sells the Walrasian goods x1 and x2 in competitive spot markets. The firm operates a linear pro-

duction technology subject to aggregate TFP fluctuations. Profit-maximization yields the standard

results that the real wage is equated to the marginal product of labor,

wt = zt, (15)

where zt is the period-t realization of aggregate TFP. All participants in the economy, including

the non-Walrasian firms described next, take this wt as given.

2.3 Non-Walrasian Firms

There is a measure one of identical firms that sell goods through bilateral relationships with cus-

tomers. Bilateral relationships are classified as either cash relationships or credit relationships, and

a given relationship is always one or the other for as long as it remains intact. For each good that it

sells through either a cash or a credit relationship, the firm must first attract a customer. To attract

customers, the firm must advertise, and how any given level of cash (credit) advertisements it posts

maps into how many cash (credit) customers it finds is governed by matching technologies to be

described below. Owing to frictions associated with finding customers, be they cash customers or

credit customers, the firm views existing customers as assets. Its total stocks of cash customers

and credit customers evolve according to the perceived laws of motion

Nf
1t+1 = (1− ρx)(Nf

1t + a1tk
f (θ1t)) (16)

and

Nf
2t+1 = (1− ρx)(Nf

2t + a2tk
f (θ2t)), (17)
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which are obviously analogous to the customer laws of motion facing households; kf denotes a

firm’s probability of attracting a customer through an advertisement, which in turn depends on the

aggregate tightness of the market in which the advertisement is placed.

As with competitive firms, search firms’ production technology is linear in labor and subject

to aggregate productivity zt. Because we assume a constant-returns production technology with

no fixed costs of production (there is a fixed cost of advertising, but no fixed cost of producing),

its real marginal cost of production is constant and coincides with average cost. Denoting period-t

marginal production cost by mct, we can express the firm’s total production costs as the sum of

production costs across all of its active customer relationships,
∫Nf

1t
0 mctci1tdi+

∫Nf
2t

0 mctci2tdi.

With this structure in place, total nominal profits of the representative search firm in a given

period t are∫ Nf
1t

0
Pi1tci1tdi+

∫ Nf
2t

0
Pi2tci2tdi−

∫ Nf
1t

0
Ptmctci1tdi−

∫ Nf
1t

0
Ptmctci1tdi− Ptγ(a1t + a2t), (18)

where γ is the flow cost of posting an advertisement in either the cash market or the credit market.4

The firm’s customer bases Nf
1t and Nf

2t are pre-determined entering period t. Discounted lifetime

nominal profits of the firm are thus

E0

∞∑
t=0

(
Ξt|0

P0

Pt+1

)[∫ Nf
1t

0
Pi1tci1tdi+

∫ Nf
2t

0
Pi2tci2tdi−

∫ Nf
1t

0
Ptmctci1tdi−

∫ Nf
2t

0
Ptmctci2tdi− Ptγ(a1t + a2t)

]
,

(19)

where
(
Ξt|0

P0
Pt+1

)
is the period-0 value to the household of a period-t nominal unit, which we assume

the firm uses to discount nominal profit flows because households are the ultimate owners of firms.5

Firms maximize (19) subject to the customer evolution constraints (16) and (17) by choosing{
a1t, a2t, N

f
1t+1, N

f
2t+1

}
. Optimization leads to what we refer to (following Arseneau and Chugh

(2007b)) as the firm’s optimal advertising conditions: one for advertising in cash markets,

γ

kf (θ1t)
= (1− ρx)Et

{
Ξt+1|t

(
p1t+1c1t+1 −mct+1c1t+1 +

γ

kf (θ1t+1)

)}
, (20)

and one for advertising in credit markets,

γ

kf (θ2t)
= (1− ρx)Et

{
Ξt+1|t

(
p2t+1c2t+1 −mct+1c2t+1 +

γ

kf (θ2t+1)

)}
. (21)

The term Ξt+1|t ≡ Ξt+1|0/Ξt|0 is the household real discount factor (again, technically, the real

interest rate) between period t and t + 1. In equilibrium, Ξt+1|t = βEt+1φt+2

Etφt+1
, which in turn by

4Echoing a point we made earlier, allowing γ to differ across the two markets might be another natural feature in

which to introduce asymmetry across cash and credit relationships.
5Technically, of course, it is the real interest rate with which firms discount profits, and in equilibrium the real

interest rate between time zero and time t is measured by Ξt|0. Because there will be no confusion using this

equilibrium result “too early,” we skip this intermediate level of notation and structure.
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the household’s optimal choice of Walrasian credit goods, is Ξt+1|t = βu2t+1

u2t
— see Appendix A for

more details. In writing (20) and (21), we have imposed symmetry across all cash relationships and

across all credit relationships.

Finally, because of the assumptions we make regarding the matching process, the shadow nom-

inal interest rate R∗
t defined in (11) affects the allocation of total advertising across cash and credit

markets,
Et

{
Ξt+1|t

(
p1t+1c1t+1 −mct+1c1t+1 + γ

kf (θ1t+1)

)}
Et

{
Ξt+1|t

(
p2t+1c2t+1 −mct+1c2t+1 + γ

kf (θ2t+1)

)} = R∗
t

θ1t

θ2t
. (22)

However, this condition is different from (12) because it is not just R∗ that governs firms’ alloca-

tion of search activities across cash and credit markets, but rather R∗ scaled by relative market

tightness.6

2.4 Price Determination

We use as our benchmark Nash bargaining over price in both cash relationships and credit rela-

tionships. Appendix B provides the details behind the solutions that we present here. The relative

prices p1t and p2t of cash search goods and credit search goods, respectively, that emerge from Nash

bargaining are

p1tc1,t = (1− η)

(
ṽ1(c1t)

βEtφt+1 + λt

)
+ η(mctc1,t − γθ1t) (23)

and

p2tc2,t = (1− η)

(
ṽ2(c2t)
βEtφt+1

)
+ η(mctc2,t − γθ2t), (24)

where η is the Nash bargaining power of customers in both cash and credit relationships. The

total payment pitcit a customer hands over to a firm is a convex combination of the customer’s

valuation of the goods obtained (given by the first terms in parentheses on the right-hand-side

of (23) and (24)) and the firm’s effective marginal cost of selling those goods (given by the second

terms in parentheses on the right-hand-side of (23) and (24)), which takes into account both the

production cost and the resources spent finding the customer in the first place. The function ṽ1(.)

is the marginal utility to the household of obtaining cash consumption from the i-th match, and
6As we state below, we assume identical matching functions for cash relationships and credit relationships, and

furthermore that the matching process is constant returns in both the levels of search and advertising. This means

that kh(θi) ≡ m(si, ai)/si = m(1, θi) and kf (θi) ≡ m(si, ai)/ai = m(1/θ1, 1), i = 1, 2. Dividing (20) by (21) gives

rise to the term kf (θ2)/kf (θ1). By the properties of the matching function and given our definition of R∗, it is

straightforward to show that kf (θ2)/kf (θ1) = R∗θ1/θ2. We also point out that although in the ways in which we

have written conditions (12) and (22) it seems that relative tightness affects the latter but not the former, relative

market tightness indeed is the only factor driving both, which simply follows from constant-returns matching.

13



ṽ2(.) is the marginal utility to the household of obtaining credit consumption from the i-th match.

Hence, ṽi(.) ≡ vit(.), i = 1, 2.

The main difference between (23) and (24) is in the factor by which the household discounts

ṽi(.). Let φt/Pt−1 denote the Lagrange multiplier on the household’s budget constraint (2) and

λt/Pt the Lagrange multiplier on the cash-in-advance constraint (3). Because cash must be used,

by definition, for cash relationships, the relevant discount takes into account both these multipliers.

For credit relationships, only the multiplier on the wealth constraint is relevant because cash does

not need to be held. In equilibrium, by the household first-order conditions on Walrasian cash goods

and Walrasian credit goods (presented in Appendix A), βEtφt+1 = u2t and βEtφt+1 + λt = u1t,

which are standard in cash/credit models.7 Recalling condition (7), these equilibrium relations

mean that the nominal interest rate Rt implicitly affects the price ratio p1t/p2t.

2.5 Goods Market Matching

The numbers of new customer-firm cash relationships and credit relationships that form in any

period t are described by a pair of aggregate matching functions m1(s1t, a1t) and m2(s2t, a2t).

We assume symmetry across the matching technologies (although we again point out that one

could relax this assumption), so from here on we write m(.) = m1(.) = m2(.). As is standard

in a Mortensen-Pissarides type of framework, the matching technology is Cobb-Douglas, m(st, at).

With Cobb-Douglas matching, the probabilities that shoppers and firms, respectively, find partners

in the cash market are

kh(θ1) =
m(s1, a1)

s1
= m

(
1,
a1

s1

)
= m(1, θ1) (25)

and

kf (θ1) =
m(s1, a1)

a1
= m

(
s1
a1
, 1
)

= m(θ−1
1 , 1), (26)

with θ1 ≡ a1/s1 a measure of how tight (the ratio of firms searching for customers to individuals

searching for goods in the cash market) the cash goods market is. Matching probabilities and

market tightness in the credit search market are defined in the obvious way, with s2 replacing s1,

a2 replacing a1, and θ2 replacing θ1.

As in the labor search literature and as adapted by Hall (2007) and Arseneau and Chugh

(2007b), the matching function is meant to be a reduced-form way of capturing the idea that

it takes resources, be it time or otherwise, for parties on opposite sides of the market to meet.

Rogerson, Shimer, and Wright (2005, p. 968) note that the ability to be agnostic about the actual

mechanics of the process by which parties make contact with each other may be a virtue. Our

modeling motivation is very much in line with this idea.
7Again, more details are provided in Appendices A and B.
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With the matching functions describing the flow of new customer relationships, the aggregate

numbers of active cash customer relationships and credit customer relationships evolve according

to

N1t+1 = (1− ρx)(N1t +m(s1t, a1t)) (27)

and

N2t+1 = (1− ρx)(N2t +m(s2t, a2t)). (28)

2.6 Government

The government’s flow budget constraint is

Mt +Bt + τ l
t−1Pt−1wt−1lt−1 = Mt−1 +Rt−1Bt−1 + Pt−1gt−1, (29)

where gt denotes exogenous government consumption in period t. The government finances its

spending through proportional labor income taxation, issuance of nominal one-period debt, and

money creation. Note that government consumption is a credit good, following Chari, Christiano,

and Kehoe (1991), because gt−1 is not paid for until period t.

2.7 Resource Constraint

Cash goods and credit goods are technologically identical. Furthermore, Walrasian consumption

goods and search consumption goods are also technologically identical. Hence, the only “differenti-

ation” along both dimensions is in terms of transactions methods/trading structures. The resource

constraint of the economy is thus

x1t + x2t +
∫ N1t

0
ci1tdi+

∫ N2t

0
ci2tdi+ gt + γ(a1t + a2t) = ztlt. (30)

In symmetric equilibrium,

x1t + x2t +N1tc1t +N2tc2t + gt + γ(a1t + a2t) = ztlt. (31)

2.8 Private-Sector Equilibrium

A private-sector equilibrium is made up of endogenous processes

{x1t, x2t, lt, s1t, s2t, a1t, a2t, N1t+1, N2t+1, p1t, p2t, πt, Rt, wt} that satisfy the household optimality con-

ditions (6), (7), (8), (9), and (10); efficiency in the labor market (15); the firm advertising condi-

tions (20) and (21); the Nash pricing conditions (23) and (24); the aggregate laws of motion for

active cash relationships and active credit relationships (27) and (28); the government budget con-

straint (29); and the aggregate resource constraint (31) for given exogenous processes
{
zt, gt, τ

l
t , µt

}
.

Furthermore, the restriction Rt ≥ 1, which states that the net nominal interest rate cannot be less
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than zero, is a requirement for a monetary equilibrium. Also, as we have already pointed out,

c1t = c2t = c̄ = 1 ∀t.

3 Ramsey Problem

In standard Ramsey models with flexible prices, a well-known result is that household optimality

conditions can be condensed into a single, present-value implementability constraint (PVIC) that

encodes all of the equilibrium conditions that, apart from the resource frontier, must be respected by

Ramsey allocations. In more complicated environments, such as Schmitt-Grohe and Uribe (2004b),

Chugh (2006), and Arseneau and Chugh (2007a), it is not always possible to construct a PVIC,

meaning that, in principle, all of the household (and other) optimality conditions must be imposed

explicitly as constraints on the Ramsey problem.

Our environment presents an intermediate case. We can construct a PVIC using the “standard”

household optimality conditions (6), (7), and (8), but the household and firm optimality conditions

surrounding the search markets cannot easily be captured by it. Thus, we adopt a hybrid approach,

constructing a Ramsey problem that is constrained by the resource frontier, the PVIC, as well as

all conditions surrounding search and pricing activities in the non-Walrasian markets. As we show

in Appendix D, starting with the household flow budget constraint (2), conditions (6), (7), and (8)

can be condensed into the PVIC,

E0

∞∑
t=0

βt [u1tx1t + u2tx2t − g′tlt + (u1t − u2t)p1tN1tc1t + u2tmctN1tc1t + u2tmctN2tc2t + u2tγ(a1t + a2t)] = A0.

(32)

In constructing (32), we impose a binding cash-in-advance constraint (which is standard in Ramsey

analyses based on a cash/credit structure) and substitute in the symmetric equilibrium expression

for real firm dividend payments, dt = (p1t −mct)N1tc1t + (p2t −mct)N2tc2t − γ(a1t + a2t). If there

were no search frictions and hence no customer relationships, we would have γ = N1 = N2 = 0, in

which case the PVIC would roll back to E0
∑∞

t=0 β
t [u1tx1t + u2tx2t − g′tlt] = A0, identical to that

in LS and CCK.

The Ramsey problem is thus to choose state-contingent processes

{x1t, x2t, lt, s1t, s2t, θ1t, θ2t, N1t+1, N2t+1, p1t, p2t}∞t=0 to maximize (1) subject to the PVIC (32), the

resource constraint (31), the household shopping conditions (9) and (10), the firm advertising con-

ditions (20) and (21), the Nash pricing conditions (23) and (24), and the aggregate laws of motion

of cash and credit customer relationships (27) and (28). By using the resource constraint and

the household budget constraint (which is embedded inside (32)), we do not need to specify the

government budget constraint (29) as a constraint on the Ramsey problem because it is implied.

The Ramsey government takes as given the exogenous processes {zt, gt}∞t=0. Given the Ramsey
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allocation, we can then construct the policy processes {τ l
t , Rt, πt}∞t=0 using (6), (7), and (8), and

the process for the shadow nominal interest rate {R∗
t }∞t=0 using (11); the Ramsey-optimal money

growth rate process {µt}∞t=0 can be constructed using (13).

In principle, we must also impose the inequality condition

u1t − u2t ≥ 1 (33)

as a constraint on the Ramsey problem, which would guarantee (in terms of allocations — refer to

condition (7)) that the zero-lower-bound on the net nominal interest rate is not violated. We thus

refer to constraint (33) as the ZLB constraint. The ZLB constraint in general is an occasionally-

binding constraint. Because our model likely is too complex, given current technology, to solve

using global approximation methods (as we describe below, we use a locally-accurate approximation

method) that would be able to properly handle occasionally-binding constraints, for our dynamic

results we drop the ZLB constraint and then check whether the ZLB constraint is ever violated. For

our benchmark calibration, it turns out it is never violated, meaning we are justified in dropping

the ZLB constraint. For our steady-state results, keeping the ZLB constraint in place poses no

computational problem because we use a non-linear equation solver.

Finally, throughout, we assume that the first-order conditions of the Ramsey problem are nec-

essary and sufficient and that all allocations are interior.

4 Optimal Policy

We characterize both the Ramsey steady-state and dynamic policies and allocations numerically.

Before turning to our results, we describe how we parameterize our model. Because our model weds

a standard cash/credit foundation to a search-based view of (some) goods trades, we draw on two

different literatures in choosing our baseline parameter settings. Parameters surrounding the basic

cash/credit structure are drawn from LS, CCK, and Siu (2004), while the parameters surrounding

search in goods markets are drawn from Arseneau and Chugh (2007b) and Hall (2007).

4.1 Parameterization

The time unit in our model is one quarter, so we set the subjective time discount factor to β =

0.9924, in line with an average real interest rate of three percent. For instantaneous utility over

Walrasian cash and credit goods, we choose

u(x1t, x2t) =

{[
(1− κx)xφx

1t + κxx
φx
2t

]1/φx
}1−σx

− 1

1− σx
; (34)
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such a CES aggregate of cash and credit goods nested inside CRRA utility is standard in cash/credit

models. Following Siu (2004), we set φx = 0.79, and, consistent with many macro models, we set

σx = 1, making utility log in the consumption aggregate. For instantaneous utility over leisure, we

choose

g(1− lt − st −Nt) =
ζ

1− ν
(1− lt − st −Nt)1−ν , (35)

also standard. We set ν = 0.4, which makes our calibration of the elasticity of leisure with respect

to the real wage consistent with most macro models; however, we point out that this does not

necessarily mean that the wage elasticity of labor supply is the same as in standard models because

in addition to labor and leisure, searching and shopping are part of a household’s “time constraint”

as well. Given the rest of our calibration, N + s is much smaller than either labor or leisure, so our

parameter setting seems not grossly misleading. We set ζ = 4.3 so that l = 0.28 in the deterministic

Ramsey steady state of our benchmark specification.

To make preferences symmetric across Walrasian and non-Walrasian goods, instantaneous utility

v is

v

(∫ N1t

0
ci1tdi,

∫ N2t

0
ci2tdi

)
=

{[
(1− κc)

[∫N1t
0 ci1tdi

]φc

+ κc

[∫N2t
0 ci2tdi

]φc
]1/φc

}1−σc

− 1

1− σc
, (36)

again a CES aggregate of cash (search) and credit (search) goods nested inside CRRA utility.

Natural baseline setting are φc = φx = 0.79 and σc = σx = 1; to finish making u and v as

symmetric as possible, we would want κc = κx. Siu (2004) estimates κx = 0.62, and this value

is adopted by Chugh (2006, 2007) and Arseneau and Chugh (2007a). In the interest of making

things really symmetric, however, we will set as our baseline κc = κx = 0.5, delivering symmetry

along the cash/credit dimensions of both search goods and non-search goods; this parameter choice

will help in understanding some of the core forces at work in the model. We explore sensitivity to

asymmetric preferences in some of our experiments.

We set the preference parameter ϑ = 1, which governs the composition of search consumption

in total consumption, as a baseline. With this baseline setting and given the rest of our calibration,

the fraction of total consumption that is comprised of consumption obtained through search is

about 25 percent in the Ramsey equilibrium. That is, ϑ = 1 delivers N1c1+N2c2
N1c1+N2c2+x1+x2

= 0.25,

which does not seem unreasonable. Varying ϑ varies this share, and doing so helps illuminate some

forces at work in our model, especially for our dynamic results. In the limit, ϑ = 0 collapses our

model to a standard LS/CCK cash/credit model in which all goods are exchanged via Walrasian

trade. Our calibration also delivers N1+s1+N2+s2
l = 0.32, meaning that households spend about

one-third as much time in shopping-related activities as they do working. As discussed in Arseneau

and Chugh (2007b), this is close to the evidence in the American Time Use Survey that the average
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individual spends about one hour in shopping activities for every four hours of work.

As we stated earlier, we choose a standard Cobb-Douglas matching function,

m(s, a) = ψsξsa1−ξs (37)

and set the elasticity to ξs = 0.5. We calibrate ψ so that the steady-state quarterly probability

a searching individual successfully forms a customer relationship is 90 percent, kh = 0.9. For the

Nash bargaining weight η, we choose η = ξs = 0.5, which has the virtue, well-known to search

theorists since Hosios (1990), that it makes the underlying search equilibrium socially-efficient. We

of course do not know if an efficient search equilibrium in the goods market is the best description

of the data, but Hosios efficiency seems useful as a starting point for our theoretical investigation.

Hosios efficiency, or the lack thereof, turns out to be one of the important forces at work in our

model shaping the long-run Ramsey policy.

We set the cost γ to a firm of posting an advertisement such that total advertising expendi-

tures γ(a1 + a2) absorb about four percent of output in the Ramsey equilibrium, consistent with,

although a bit higher than, the evidence presented in Arseneau and Chugh (2007b) that advertising

expenditures make up about 2.5 percent of GDP. The reason we calibrate a bit higher is that given

our cash/credit structure, we think that some “long-term cash relationships” may be a product

of relatively informal advertising expenditures that would not be recorded in the data.8 Finally,

absent direct evidence, we simply set ρx = 0.10, which states that a firm loses ten percent of its

existing customers in any given period. Equivalently, this parameter setting means that a newly-

formed customer-firm relationship is expected to last for 1/ρx = 10 periods (quarters), which we

think does not seem implausible.

The exogenous productivity and government spending shocks follow AR(1) processes in logs,

ln zt = ρz ln zt−1 + εzt , (38)

ln gt = (1− ρg) ln ḡ + ρg ln gt−1 + εgt , (39)

where ḡ denotes the steady-state level of government spending, which we calibrate in our baseline

model to constitute 18 percent of steady-state output in the Ramsey allocation. The resulting value

is ḡ = 0.06, which we hold constant as we try other specifications of our model. The innovations

εzt and εgt are distributed N(0, σ2
εz) and N(0, σ2

εg), respectively, and are independent of each other.

We choose parameters ρz = 0.95, ρg = 0.97, σεz = 0.006, and σεg = 0.03, consistent with the RBC

8For example, the advertising expenditures — a colorful banner, a hand-written sign showing sale prices — of a

hot dog vendor one goes to every day, one that accepts only cash, on a street corner of New York City probably do

not get recorded in advertising data.
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literature and CCK. Also regarding policy, we assume that the steady-state government debt-to-

GDP ratio (at an annual frequency) is 0.5, in line with evidence for the U.S. economy and with the

calibrations of Schmitt-Grohe and Uribe (2004b) and Siu (2004).

4.2 Ramsey Steady State

We begin by describing the deterministic Ramsey steady state, dividing the discussion into four

parts. First, we discuss how purely exogenous fiscal and monetary policy affect households’ search

incentives in our environment. Understanding these unique policy channels will be helpful in

understanding how our Ramsey results connect with both the benchmark results of CCK as well

as later optimal-policy results in the literature. We next present our model’s Ramsey steady-state

allocations and policies, comparing them with socially-efficient allocations. We then successively

allow for alternative policy instruments to illustrate how the nominal interest rate in our model

plays two auxiliary roles not present in the basic LS/CCK model. Finally, we document how the

Ramsey steady-state varies as we vary three key parameters associated with search.

We provide a thorough analysis of how Ramsey policy operates in the long run because our

model is novel; as such, we think it worthwhile to spend some effort understanding the forces

at work, knowing that future work will reveal some of these mechanisms to be more important

that others. Readers primarily interested in understanding the dynamic policy implications of our

model, however, may safely skip to Section 4.3 with the following summary of the steady-state

results in mind. If the planner is able to use only the basic Ramsey instruments of a labor income

tax and nominal interest rate, a strictly positive nominal interest rate is optimal, which violates

the Friedman Rule of a zero net nominal interest rate that is optimal in a wide class of models.

A strictly positive net nominal interest rate R − 1 has three effects in our model. In addition to

the standard wedge that it creates in the margin between Walrasian cash goods x1 and Walrasian

credit goods x2, it indirectly taxes firms’ profit flows, and it also plays a role in guiding search

markets towards their Hosios-efficient outcomes. The ability of a positive nominal interest rate

to stand in for a direct tax on firm profits is identical to that first found by Schmitt-Grohe and

Uribe (2004a). The ability of a positive nominal interest rate to guide the economy towards Hosios

efficiency is related to that found by Cooley and Quadrini (2004) and Arseneau and Chugh (2007a)

in labor-search models and Rocheteau and Wright (2005) in a money-search model. We recover

the optimality of the Friedman Rule if we allow for both a profit tax and a direct tax on household

search, but not if we allow just one or the other of these alternative instruments. Our findings thus

in some sense connect the auxiliary role for nominal interest rates discovered by Schmitt-Grohe

and Uribe (2004a) with the auxiliary role discovered by Cooley and Quadrini (2004), Arseneau

and Chugh (2007a), and Rocheteau and Wright (2005). Even absent these alternative instruments,
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however, the steady-state nominal interest rate is not very large; for our baseline calibration, the

optimal nominal interest rate is 5.6 percent at an annual rate.

4.2.1 Effects of Exogenous Policy on Search Behavior

In the standard CCK model, a deviation from the Friedman Rule is costly because it distorts the

marginal rate of substitution between cash and credit goods. Implementing the Friedman Rule

requires the Ramsey planner to raise the funds to finance the attendant deflation via the labor

tax.9 In the standard CCK model, financing a deflation with proportional labor income taxation

does not generate any other distortions that undermine the optimality of the Friedman Rule. This

conclusion does not carry over to our model for two reasons. To elucidate them, it is helpful to first

consider how completely exogenous tax rates and nominal interest rates affect search behavior in

our environment, channels of course not present in a standard model of goods markets.

First, due to the presence of search frictions and the fact that search and leisure are both

alternatives to labor as uses of a household’s time, the labor income tax distorts not only labor

supply but also household shopping behavior. This is true even though ostensibly the Hosios

parameterization for search efficiency is in place. Just as in the standard CCK model, all else

equal, a higher labor tax rate causes households to substitute out of labor (l) and into leisure

(1 − l − s1 − s2 − N1 − N2). However, in our environment, the resulting decline in the marginal

utility of leisure, g′(1− l− s1− s2−N1−N2), means that the cost of engaging in additional search

activity falls as well, inducing households to spend more time searching for goods.10 That is, s1

and s2 both rise as τ l rises. To isolate this effect, we plot in the top row of Figure 1 the long-run

responses of s1 and s2 to exogenous changes in the labor tax rate, holding monetary policy fixed at

the Friedman Rule.11 The resulting slackness in product markets (by which we mean a fall in θ1 and

θ2) induces firms to reduce advertising expenditures because a given level of advertising now more

readily yields new customers.12 On net, the decline in advertising expenditures dominates, causing

the number of active customer relationships (N1 and N2) to fall. Thus, because the labor tax

distorts household labor supply, it also directly distorts shopping behavior and indirectly distorts

advertising behavior. These latter effects, absent in a standard CCK model, make the welfare

consequences of running the Friedman deflation financed via a labor tax quite different in our

environment.
9Simply because of the Ramsey assumption that no direct lump-sum instruments of any sort exist. Thus, π and

τ l are tightly linked through the government budget constraint, as is the case in any Ramsey monetary model.
10Recall from the household shopping conditions (9) and (10) that g′(.)/kh(.) measures the marginal cost of

shopping.
11To emphasize, Figure 1 presents non-Ramsey responses.
12Cobb-Douglas matching means that firm matching rates kf (θi) increase as θi falls. For brevity, we do not plot

all of these equilibrium responses, but we have confirmed them.
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Figure 1: Steady-state household search behavior under exogenous policy. First row: money growth fixed

at µ = β. Second row: labor tax rate fixed at τ l = 0.

The second reason that a CCK type of argument does not carry over to our environment

is that search frictions also result in welfare costs of anticipated inflation absent in a standard

model. In a standard model, long-run inflation simply distorts the marginal rate of substitution

between cash and credit goods. In our model, long-run inflation also affects the household shopping

margin between cash search goods and credit search goods. Here, it is helpful to think in terms

of the household shopping margin that we constructed in (12). In a high-inflation (and hence

high nominal interest rate) steady state, the return to searching for and entering into a long-run

credit relationship is greater than the return to searching for and entering into a long-run cash

relationship, simply because the latter requires the use of money, whose value erodes with inflation,

while the former does not. Substituting (7) into (12) and imposing steady state shows that a higher

“regular” nominal interest rate R, ceteris paribus, results in a lower shadow nominal interest rate

R∗.13 With R∗ defined as the relative probability kh(θ2)/kh(θ1) a household matches in the credit

market versus in the cash market, anticipated inflation thus directs household search away from the
13The ceteris paribus is important here; as we show below in an experiment where we vary the parameter η, a

positive association between R and R∗ can arise in the Ramsey equilibrium. It is of course more difficult to make

analytical statements regarding the Ramsey equilibrium because the binding government budget constraint renders

very few things ceteris paribus. This is a general statement about Ramsey models, not one about just our model.
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cash sector and towards the credit sector. We confirm these effects in the bottom row of Figure 1 by

plotting the long-run responses of s1 and s2 to exogenous changes in the inflation rate (governed by

the long-run money growth rate), holding the labor tax fixed at τ l = 0. In summary, labor income

taxation and anticipated inflation have consequences for search-market outcomes that a standard

model cannot articulate, and these effects are important in shaping the Ramsey policy.

4.2.2 Ramsey Policy and Allocation

With this basic understanding about how π and τ l affect search incentives, we proceed to begin

analyzing the long-run Ramsey policy, presented in Table 1. For comparison, we also present in

the upper row the allocation that solves the corresponding social planning problem, along with

the implied policy computed residually from equilibrium conditions. By social efficiency, we mean

those allocations that are subject to the technological constraints imposed by production and

search and matching but which are not necessarily implementable as a decentralized equilibrium

with proportional taxes, a requirement which of course is imposed on the Ramsey planner. Thus,

Pareto-optimal allocations are the solution of the planning problem that maximizes (1) subject

to (27), (28), and (31).

The most striking feature of the Ramsey solution in the second row of Table 1 is that the

Friedman Rule is not optimal. In the next subsection, we parse out the reasons for this result

by introducing into the decentralized environment two alternative tax instruments. In terms of

allocations, given that a positive nominal interest rate is in place, it is quite intuitive that activity

in the search cash market is depressed compared to activity in the search credit market. That

is, N , s, and a are all lower in the cash sector than in the credit sector, and the intuition is just

as described above in the exogenous-policy case: a positive nominal interest rate directs activity

away from the cash search market and towards the credit search market. Also consistent with our

discussion above, associated with the positive nominal interest rate R − 1 is a negative shadow

nominal interest rate R∗ − 1.14

4.2.3 Restoring the Friedman Rule Through Alternative Instruments

The deviation from the Friedman Rule is due to two distinct reasons, each related to recent results

in the optimal policy literature: a positive nominal interest rate indirectly taxes firm profits and

also serves to guide search markets towards efficiency. To assess the contribution of each of these

auxiliary roles of the nominal interest rate to the magnitude of the departure from the Friedman

Rule, we introduce in succession two alternative tax instruments to the environment.
14Note that the fact that R∗−1 can be negative is not a violation of the ZLB. The ZLB applies to the proper price

R, while R∗ is more of a shadow price — which indeed is why we labeled it the shadow nominal interest rate.
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R − 1 π − 1 τ l R∗ − 1 s1 s2 a1 a2 N1 N2 θ1 θ2 gdp

Socially-efficient allocation

0 -3 0 0 0.0146 0.0146 0.0221 0.0221 0.0308 0.0308 1.5135 1.5135 0.3372

Ramsey policy and allocation

5.6561 2.4864 0.2776 -3.4060 0.0133 0.0160 0.0156 0.0175 0.0248 0.0288 1.1718 1.0934 0.2734

Ramsey policy and allocation with 100% profit tax

3.1750 0.0797 0.1973 -1.8079 0.0140 0.0155 0.0177 0.0188 0.0270 0.0293 1.2601 1.2149 0.2929

Ramsey policy and allocation with 100% profit tax and search tax

0 -3 0.1648 0 0.0126 0.0126 0.0191 0.0191 0.0266 0.0266 1.5097 1.5097 0.2995

Table 1: Steady-state Ramsey and socially-efficient allocations. Nominal interest rate, inflation rate, and

shadow nominal interest rate reported in annualized percentage points.

First, we allow the Ramsey planner access to a proportional tax on profit income. The way

in which we allow for a profit tax follows closely Schmitt-Grohe and Uribe (2004a): we assume

that household receipts of dividend payments by firms are taxed at the rate τpr
t . Formally, in

the household flow budget constraint (2), we modify the last term on the right hand side to read

(1−τpr
t−1)Pt−1dt−1. Note that the presence of this profit tax does not affect any of the private-sector

equilibrium conditions — because households take dt as given — which is the key to understanding

how it operates. The way in which the profit tax alters the PVIC is shown at the end of Appendix D.

As in Schmitt-Grohe and Uribe (2004a), assuming a natural upper bound of τpr of 100 percent,

it is easy to show that the Ramsey planner would set τpr = 1 because that achieves maximum

relaxation of the PVIC.15 The third row of Table 1 shows that with a 100 percent profit tax, the

nominal interest rate falls from 5.65 percent to 3.18 percent. The labor income tax rate also falls

because part of revenue is now raised through the profit tax, but we still have τ l > 0. Thus, over

2 percent of the positive nominal interest rate in the second row of Table 1 is a proxy for a profit
15More precisely, maximum relaxation of the PVIC would occur at that profit tax rate at which the multiplier

on the PVIC in the Ramsey problem is zero. At this profit tax rate, the planner would be able to implement a

zero labor income tax rate because all government spending would be financed through the non-distortionary profit

tax. In our baseline model, the profit tax rate at which the Ramsey multiplier on the PVIC shrinks to zero is 140

percent. This result is not very interesting because it means that we effectively are no longer considering a Ramsey

equilibrium, defined as one in which at least some distortionary instruments must be used. Hence the natural cap

on τpr at 100 percent. Schmitt-Grohe and Uribe (2004a) also impose this natural upper limit, but we suspect that

an unconstrained optimization over τpr must similarly yield τpr > 1 in their model.
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tax. Just as in Schmitt-Grohe and Uribe (2004a), Ramsey taxation of profits is non-distortionary

in our environment, hence desirable. Taxation of long-run profit flows are non-distortionary in our

environment because the pre-determined customer bases N1 and N2, which are the source of firm

revenue and hence profit, cannot be altered.16 In the absence of a direct tax on this fixed profit

flow, the nominal interest rate can indirectly tax it. The fact that the nominal interest rate falls

upon introduction of a profit tax is thus consistent with Schmitt-Grohe and Uribe (2004a); the fact

that it does not fall all the way to zero is different from their result. There is thus yet another

motivation for setting a positive nominal interest rate in our environment.

This second motivation stems from inefficiently-high s1 and s2 induced by the positive labor

income tax, an effect we documented, recall, for the exogenous-policy case in the top row of Figure 1.

The natural instrument to correct inefficiently-high search is a tax directly on search. Denote by τ s1

(τ s2) a proportional tax on cash (credit) search activity. We introduce search taxation by including

τ s1
t−1s1t−1 + τ s2

t−1s2t−1 on the left-hand-side of the household budget constraint (2). For generality,

we allow for differential search taxation, reflected in our notation, on cash search and credit search,

but it turns out that τ s1 = τ s2 . Unlike the profit tax, search taxes do affect equilibrium conditions.

Specifically, they modify the equilibrium versions of the cash and credit shopping conditions to

g′t + u2tτ
si
t

kh(θit)
= β(1− ρx)Et

{
cit+1 [ϑvit+1 − pit+1uit+1]− g′t+1 +

g′t+1 + u2t+1τ
si
t+1

kh(θit+1)

}
, (40)

for i = 1, 2, which is a straightforward and intuitive modification of the shopping conditions (9)

and (10): search taxes add to the marginal cost of searching (the left-hand-side), but also add to the

expected future marginal benefit of successfully forming a customer relationship (the right-hand-

side) by allowing the household to save on future search taxes. We also introduce τ s1
t s1t + τ s2

t s2t

as a revenue item in the government budget constraint, making it part of the optimal government

financing problem. This means that the PVIC includes the search taxes; we show at the end of

Appendix D how search taxes alter the PVIC.

Optimizing directly in the Ramsey problem with respect to τ s1
t and τ s2

t , we find the optimal

steady-state search tax rates are τ s1 = τ s2 = 0.48. At first glance, this seems quite high, but

on further reflection one realizes that because we do not seem to observe search taxes at all in

reality, there really is no basis for judging whether or not it is “high.” In any case, our main

interest here is not in the search taxes themselves, but rather in what their presence implies for

the rest of the Ramsey policy mix. The bottom row of Table 1 presents the Ramsey policy and

allocation in the presence of these search taxes and the 100-percent profit tax. The most important

result here is that optimality of the Friedman Rule is restored. We omit it from the table, but
16In Schmitt-Grohe and Uribe (2004a), the fixity of firm profits stems from the exogenous Dixit-Stiglitz-style

monopoly power firms wield.
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we also computed the Ramsey solution in the presence of just search taxes and τpr = 0. Here, we

found 100(R − 1) = 5.6601 (virtually identical to that in the second row of Table 1), τ l = 0.2198,

τ s1 = 0.5593, and τ s2 = 0.7258. Thus, both profit taxes and search taxes are required to restore

the optimality of the Friedman Rule. The deviation from the Friedman Rule in our environment

thus has connections with the findings of both Schmitt-Grohe and Uribe (2004a) and with those of

Cooley and Quadrini (2004), Arseneau and Chugh (2007a), and Rocheteau and Wright (2005).

In terms of welfare, steady-state utility (not shown) is strictly increasing as we move down

Table 1 from the Ramsey equilibrium with neither profit nor search taxes to the Ramsey equilibrium

with profit taxes but no search taxes to the Ramsey equilibrium with both profit and search taxes.

Qualitatively examining how allocations vary as instruments are successively added, it is clear that

allocations move closer to the Pareto optimum shown in the first row of Table 1. Of course, the

Ramsey equilibrium can never get all the way to the Pareto optimum because τ l > 0 is required

under any Ramsey equilibrium.

Having demonstrated that positive nominal interest rates proxy for multiple instruments in our

environment, the remainder of our analysis omits these alternative instruments. Our reason for

omitting the alternative instruments is that in studying Ramsey dynamics, given that we drop

the ZLB constraint from the dynamic solution, we want to ensure our equilibrium does not pierce

the zero lower bound during simulations. Results obtained by Cooley and Quadrini (2004) and

Arseneau and Chugh (2007a) suggest that causing such a level-shift in policy in this way does not

blur interpretation of dynamics.

4.2.4 Varying Search Parameters

Before turning to dynamics, we also briefly document how the Ramsey equilibrium varies with a few

novel parameters associated with search markets. Figures 2 and 3 analyze the Ramsey steady state

along the bargaining-power dimension, plotting key policy and allocation variables as a function of

customer bargaining power η. Varying η away from 0.5 moves the economy away from the usual

notion of Hosios efficiency. This type of departure from search efficiency is the one most related to

the existing labor-search or money-search literature, in contrast to our demonstration above that

labor-income taxation also makes outcomes in search markets inefficient, which is a more novel,

policy-induced, type of departure from Hosios efficiency.17

Based on the results above that the optimal nominal interest rate can proxy for direct search

taxes, it is natural to expect that the nominal interest rate will vary with η. Indeed, as the upper left

panel of Figure 2 shows, the optimal nominal interest rate is increasing in η. This response arises
17Arseneau and Chugh (2006) also demonstrate that policy-induced departures from Hosios efficiency lead to

auxiliary roles for other “standard” tax instruments; their focus was on a capital income tax.
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Figure 2: Steady-state Ramsey policy and allocation variables as function of customer bargaining power η.

because the Ramsey government tries to mitigate households’ increased search activity induced by

higher η. Absent the policy response shown in the upper left panel of Figure 2, the rise in the

sum of s1 and s2 (each of which is shown in Figure 3) would be even larger, which we can confirm

by running the corresponding experiments in the exogenous (non-Ramsey) policy environment.18

In terms of how other allocation variables vary with η (i.e., a1 and a2 depend negatively on η, p1

and p2 depend negatively on η, and so on), the results in Figures 2 and 3 match up with those of

Arseneau and Chugh (2007b), so we refer the reader there for more analysis.

Figures 4 and 5 display how the Ramsey steady-state depends on ϑ, which, recall from the

specification of household preferences in (1), governs how valuable search goods are to the household.

In the absence of direct evidence, recall that we set as our baseline ϑ = 1. Setting ϑ = 0 eliminates

search markets and collapses our model to a standard CCK cash/credit economy. The optimal

nominal interest rate, shown in the upper left panel of Figure 4, rises as ϑ rises because profits

generated from search markets (not shown) grow with ϑ. A larger profit base makes taxing profits

more attractive to the Ramsey planner, and we already showed above that the nominal interest
18Specifically, in the exogenous-policy environment, we find, computationally, ∂si/∂η > 0, i = 1, 2, which is intuitive

(a higher return to search, measured by higher bargaining power, induces a household to increase its search), and

also that ∂s/∂π < 0, where s = s1 + s2. The latter can also be seen in the bottom row of Figure 1, in which s1 falls

by more than s2 rises as π rises, meaning s1 + s2 falls.
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Figure 3: Steady-state Ramsey policy and allocation variables as function of customer bargaining power η.

rate has the ability to indirectly tax profits. The responses of search-market allocation variables as

ϑ rises (i.e., Ni, ai, and si, i = 1, 2, all increase) all are intuitive: the more important (all) search

goods are in preferences, the more resources the economy directs to search activities.

Finally, our baseline calibration has κc = κx = 0.5, meaning the importance of cash and credit

goods in preferences is symmetric across search and non-search markets. A natural conjecture may

be that cash transactions are less important in markets with long-lived relationships. Because of

repeat interactions, a firm may be more willing to “extend credit” to a good customer. We can

probe this idea by varying κc, holding all other parameters fixed at their baseline values; Figures 6

and 7 plot the Ramsey steady state as we vary κc. Higher values of κc mean that cash is less

intensively used for goods acquired in bilateral transactions. The results are again quite intuitive.

As κc rises, cash search goods are valued less and less, so activity in the cash search market

disappears, as evidenced by the fact that N1 (the number of active cash relationships), s1 (the

number of individuals searching for cash goods), and a1 (advertisements posted in the cash search

market) all tend towards zero. For κc > 0.6, the ZLB binds, revealed by the fact that the Ramsey

multiplier on the ZLB constraint (denoted λ12 and displayed in the lower right panel of Figure 6)

rises above zero.
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Figure 4: Steady-state Ramsey policy and allocation variables as function of importance of search goods,

governed by ϑ.
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Figure 5: Steady-state Ramsey policy and allocation variables as function of importance of search goods,

governed by ϑ.
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Figure 6: Steady-state Ramsey policy and allocation variables as function of share parameter κc.
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Figure 7: Steady-state Ramsey policy and allocation variables as function of share parameter κc.
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4.3 Ramsey Dynamics

To study dynamics, we approximate our model by linearizing in levels the Ramsey first-order

conditions for time t > 0 around the non-stochastic steady-state of these conditions. We use our

approximated decision rules to simulate time-paths of the Ramsey equilibrium in the face of a

complete set of TFP and government spending realizations, the shocks to which we draw according

to the parameters of the laws of motion described above. Our numerical method is our own

implementation of the perturbation algorithm described by Schmitt-Grohe and Uribe (2004c). As

in Khan, King, and Wolman (2003) and others, we assume that the initial state of the economy is

the asymptotic Ramsey steady state. As we mentioned above, we assume throughout, as is common

in the literature, that the first-order conditions of the Ramsey problem are necessary and sufficient

and that all allocations are interior. We also point out that because we assume full commitment

on the part of the Ramsey planner, the use of state-contingent inflation is not a manifestation

of time-inconsistent policy. The “surprise” in surprise inflation is due solely to the unpredictable

components of government spending and technology and not due to a retreat on past promises.

We conduct 5000 simulations, each 200 periods long. For each simulation, we then compute first

and second moments and report the medians of these moments across the 5000 simulations. We

divide the discussion of results into three parts: we first analyze the dynamics of policy variables,

we then discuss key allocation variables, and we close by analyzing how the asset values of search

and active customer relationships vary under the Ramsey plan. As we mentioned above, for all of

our dynamic experiments, we assume that the alternative tax instruments (the profit tax and the

search taxes) are unavailable.

4.3.1 Ramsey Policies and Prices

The upper panel of Table 2 reports key first and second moments for Ramsey policy and price

variables. The first row shows that the labor tax rate has a standard deviation of 0.1 percent

around its mean of about 28 percent. The low volatility of the labor tax rate is in line with

benchmark tax-smoothing findings in the Ramsey literature — for example, Chari and Kehoe

(1999, p. 1737), Schmitt-Grohe and Uribe (2004a, p. 204), and Siu (2004, p. 595) all report very

similar results. In search-based models, Arseneau and Chugh (2007a, p. 38) find substantially more

volatility in labor tax rates in the presence of labor matching frictions, while Aruoba and Chugh

(2006, p. 47) find about the same or even lower volatility in labor tax rates in the presence of

frictions underlying monetary exchange. Also as in the basic LS/CCK environment, the labor tax

rate inherits the serial correlation of the exogenous shocks; when we simulate a version of our model

with zero persistence in TFP and government spending shocks, the first-order autocorrelation of τ l

is virtually zero. Furthermore, the serial correlation of real government debt obligations, defined
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as bt ≡ Bt/Pt, also inherits from the assumed persistence of the exogenous shocks, again just as in

a baseline LS/CCK model.

The second row of Table 2 displays our central result: the volatility of the optimal inflation rate,

at 0.67 percent around a mean of 2.5 percent (all on an annual basis), is an order of magnitude

lower than benchmark results in the Ramsey literature. Optimal inflation policy in our environment

stands in sharp contrast to the extremely volatile optimal inflation rate first found by CCK in a

flexible-price Ramsey model and recently verified in, among others, the flexible-price versions of the

models of Schmitt-Grohe and Uribe (2004a, 2004b), Siu (2004), and Chugh (2006, 2007a, 2007b).19

In these flexible-price Ramsey models, unanticipated inflation does not distort relative prices of

goods. It is easiest to understand this in the basic cash/credit economy absent the search frictions

of our model. In a basic cash/credit economy, the nominal price of both cash and credit goods

is P , and the relative price depends only on the nominal interest rate, reflecting the opportunity

cost of the money used to purchase the cash good. In other words, given a nominal interest rate,

dynamic fluctuations in the price level do not alter the relative price between cash and credit goods

and therefore have little effect on equilibrium dynamics. In these baseline models, then, the driving

force behind price-level dynamics is just the (desirable) ability of price-level fluctuations to tailor

the real returns on nominal government debt, thus avoiding the need to change other distortionary

taxes in the face of shocks to the government budget.

With search frictions, this result is overturned because inflation affects the relative price of search

goods. To see this, recall expression (13), which we noted above contained our central hypothesis.

The (binding) cash-in-advance constraint links realized inflation to the dynamics of the relative

price, p1, of search cash goods. As we discussed when we presented condition (13), fluctuations in

πt may potentially transmit into fluctuations in p1t, which in turn may disrupt search markets. Our

intuition is that disruption of search markets would not stem from fluctuations in p1t per se, but

rather, more precisely, from the extent to which those fluctuations alter expectations about future

p1t+1 and the extent to which they are associated with fluctuations in goods-market tightness. We

think that the reason that the transmission of movements in p1t into anticipated movements in p1t+1

is important here is that p1t itself plays no direct allocative role. As is well-known in search-based

models, the actual realization of p1t in and of itself has only a distributive role once period t begins.

The Nash-bargained price divides the surplus between parties, here between customers and firms,
19From their simulation experiments, Chari and Kehoe (1999) report a mean inflation rate of -0.44 percent with a

standard deviation of 19.93; Schmitt-Grohe and Uribe (2004a) report a mean inflation rate of -3.39 percent with a

standard deviation of 7.47 percent; Siu (2004) reports a mean inflation rate of -2.59 percent with a standard deviation

of 5.08 percent; and Chugh (2006) reports a mean inflation rate of -4.01 percent with a standard deviation of 6.96

percent. Each of these models is calibrated in a slightly differen way from the others, but the general result that

comes through is clear: with flexible prices, the Ramsey inflation rate is quite volatile.
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Variable Mean Std. Dev. Auto corr. Corr(x, Y ) Corr(x,Z) Corr(x,G)

Ramsey policies and prices

τ l 0.2776 0.0010 0.8854 -0.0586 0.6871 -0.6832

π − 1 2.4874 0.6744 -0.0433 -0.0942 -0.1446 -0.0001

R− 1 5.6567 0.0394 0.9556 0.1225 0.7478 -0.4788

R∗ − 1 -3.4044 0.0595 0.9677 0.4344 0.9480 -0.2239

p1 1.4534 0.0063 0.2577 0.4067 0.6892 -0.0546

p2 1.4380 0.0067 0.2670 0.4051 0.6972 -0.0634

Ep′1 1.4534 0.0029 0.9376 0.6108 0.9981 -0.0373

µ− 1 2.4848 0.1059 0.1470 -0.0597 0.0747 -0.1449

Ramsey allocations

gdp 0.2734 0.0049 0.9335 1 0.6425 0.7358

l 0.2734 0.0038 0.9395 0.5159 -0.2705 0.9544

θ1 1.1715 0.0190 0.9125 0.5983 0.9979 -0.0522

θ2 1.0931 0.0180 0.9142 0.5977 0.9980 -0.0529

N1 0.0248 0.0002 0.9203 0.3718 0.8806 -0.2501

N2 0.0288 0.0003 0.9147 0.3821 0.8839 -0.2393

s1 0.0133 0.0001 0.0788 -0.0629 0.3018 -0.3462

s2 0.0160 0.0001 0.0377 -0.0240 0.3233 -0.3127

a1 0.0156 0.0003 0.6903 0.4664 0.9211 -0.1632

a2 0.0175 0.0004 0.6688 0.4671 0.9152 -0.1576

x1 0.0599 0.0009 0.9342 0.4857 0.9787 -0.1815

x2 0.0779 0.0014 0.9045 0.4999 0.9819 -0.1661

Table 2: Simulation-based moments in the Ramsey equilibrium.
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but does not affect allocations, all else, including expectations of future prices, equal.

Absent a direct concern for distributions of gains between customers and firms, more important

from the perspective of the Ramsey planner is that period-t search activity, on the part of both

households and firms, is governed by expectations of period-t + 1 prices. Indeed, the shopping

conditions (9) and (10) and advertising conditions (20) and (21) depend on pit+1, not on pit; as

we have already noted, shopping and advertising in our model are akin to investment decisions in

that they are governed by expected future returns. To the extent that inflation-induced volatility

of expected future prices disrupts search activity, keeping inflation volatility low is important.

Another feature of search-based models that seems germane for understanding our dynamic

results is that market tightness is the critical variable governing efficiency. Indeed, the Hosios

(1990) notion of search efficiency is all about getting market tightness “right.” Despite the problem

of financing government purchases using available instruments, the Ramsey planner of course has

a primitive concern for efficiency. Extending the centrality of market tightness in the usual static

notion of search efficiency to a dynamic setting, it seems natural to conjecture that time-variation

in market tightness would be undesirable from the Ramsey point of view. Well-known from search

theory — see, for example, Pissarides (2000, Chapter 1) or Rogerson, Shimer, and Wright (2005)

— is that p and θ are the two key endogenous variables in search markets.

To try to quantitatively assess the importance of the dynamics of θ1t, θ2t, and Etp1t+1 in

shaping the dynamic Ramsey policy, we present in Table 3 a battery of median cross-correlations

between policy and search-market variables from our simulated Ramsey equilibria, along with the

same measures from a version of our model in which policy is exogenous and government financ-

ing concerns are absent. The way in which we construct the exogenous-policy simulations whose

correlations are presented in the lower panel of Table 3 is the following. We assume independent

AR(1) processes describe sufficiently-well the dynamics of the labor tax rate τ l and the money

growth rate µ, positing exogenous laws of motion ln τ l
t = (1 − ρτ l) ln τ̄ l + ρτ l ln τ l

t−1 + ετ
l

t and

lnµt = (1−ρµ) ln µ̄+ρµ lnµt−1 + εµt . We set the means τ̄ l = 0.2776 and µ̄ = 1.0248 and persistence

parameters ρτ l = 0.8854 and ρµ = 0.147 to match the corresponding values under the Ramsey

equilibria shown in Table 2.20 We use the same laws of motion and even the exact realizations

of {zt} and {gt} used in computing the Ramsey equilibria. We then approximate decision rules

for this exogenous-policy version of our model using our linear procedure, with which we conduct

simulations.

Four main observations stand out to us in comparing the Ramsey equilibria in the upper panel

of Table 3 with the exogenous-policy equilibria in the lower panel of Table 3.21 First, the Ramsey-
20The assumption of independent laws of motion for µt and τ l

t is justified by the fact that in the Ramsey equilibria,

we found a median correlation between µt and τ l
t of -0.011 and a mean correlation between µt and τ l

t of -0.005.
21A caveat in all of our comparisons here is that the Ramsey policy cannot be fully captured by simple AR(1) rules
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equilibrium correlations of πt with θ1t, θ2t, p1t, and p2t are all negative, opposite in sign to the

corresponding correlations under exogenous policy. Thus, the Ramsey policy engineers quite differ-

ent cross-dynamics between inflation and key search-market variables than does an arbitrary policy.

Second, while both are negative, the dynamic correlation between πt and Etp1t+1 is much weaker

in the Ramsey equilibrium (-0.07) than in the corresponding exogenous-policy equilibrium (-0.41).

This result has the flavor of the often-made empirical argument that if policy successfully stabilizes

a particular variable, there ought to be little observed correlation between them.22 Because the

Ramsey correlation between πt and Etp1t+1 is the smallest between any policy variable and search-

market variable, it may be the case that Ramsey adjustments in πt are made with a primary concern

for stabilizing Etp1t+1.23 Third, under exogenous policy, the correlations of πt with s1t and a1t are

both negative, but the correlations of πt with s2t and a2t are both positive. Thus, unanticipated

inflation under exogenous policy directs household search away from the cash sector and towards

the credit sector, just as in the exogenous-policy steady-state effects we documented in Figure 1.

In contrast, the Ramsey policy maintains nearly symmetric correlations between πt and s1t and s2t

(approximately -0.92 in both cases) and between πt and a1t and a2t (approximately -0.47 in both

cases). These symmetric correlations seem a sensible goal of policy: given that all preference and

technology parameters are symmetric across the cash-search and credit-search sectors, efficiency

dictates that the two search markets move symmetrically. Fourth, interestingly, under exogenous

policy, there is virtually zero correlation between p1t and Etp1t+1, while this correlation, at 0.66, is

substantially different from zero in the Ramsey equilibrium.

Another observation, regarding just the Ramsey equilibria, is that, as shown in the upper panel

of Table 3, the Ramsey-equilibrium correlations of Rt, τ l
t , and R∗

t with θ1t, θ2t, and Etp1t+1 are all

very high. Again, if fluctuations in θ1t, θ2t, and Etp1t+1 are undesirable as we conjecture, it would

seem that Ramsey policy should stabilize Rt, τ l
t , and R∗

t . Referring back to the upper panel of

Table 2, we see that indeed the volatility of Rt, τ l
t , and R∗

t are all very small.

The low Ramsey volatility of R∗
t and Rt is quite different from what occurs under exogenous

policy. We can compare the Ramsey-optimal policy dynamics in Table 2 with the corresponding

as we assume in the exogenous-policy case. Thus, some part of any differences we note here may be explained by

“mis-specification” of the policy rules.
22The basic idea behind this argument is simple: if adjustments in a policy variable successfully completely stabilize

a target variable, then by construction there is zero correlation between the policy and target variables (nor, of course,

between any variable and the target variable). For a recent example of this kind of argument, see Kishor and Kochin

(2007) and the references therein.
23Another subtle caveat is in order here. Properly speaking, a central bank of course does not directly set π, but

rather µ or some relevant nominal interest rate. Under the Ramsey equilibrium, however, one can think of π as being

set directly, with µ determined “residually” through equilibrium conditions, which allows us to speak here of π being

the direct policy instrument.
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π R R∗ τ l Ep′1 p1 p2 θ1 θ2 s1 s2 a1 a2

Ramsey-policy cross-correlations

π 1 0.25 0.05 -0.21 -0.07 -0.82 -0.81 -0.17 -0.16 -0.93 -0.91 -0.48 -0.47

R 1 0.92 0.86 0.79 0.28 0.29 0.78 0.79 0.06 0.12 0.65 0.66

R∗ 1 0.83 0.96 0.53 0.54 0.96 0.96 0.19 0.26 0.85 0.86

τ l 1 0.73 0.61 0.62 0.75 0.76 0.54 0.59 0.81 0.82

Ep′1 1 0.66 0.67 0.99 0.99 0.26 0.34 0.91 0.92

p1 1 1 0.70 0.69 0.87 0.90 0.90 0.89

p2 1 0.70 0.70 0.87 0.90 0.91 0.90

θ1 1 1 0.33 0.41 0.94 0.94

θ2 1 0.32 0.40 0.93 0.94

s1 1 0.99 0.65 0.64

s2 1 0.72 0.70

a1 1 0.99

a2 1

Exogenous-policy cross-correlations

π 1 0.24 0.24 -0.05 -0.41 0.70 0.74 0.22 0.23 -0.51 0.68 -0.70 0.52

R 1 0.99 -0.09 -0.17 0.29 0.57 0.93 0.99 -0.90 0.72 -0.71 0.91

R∗ 1 -0.09 -0.14 0.30 0.57 0.94 0.99 -0.90 0.72 -0.70 0.91

τ l 1 0.21 -0.01 -0.07 -0.13 -0.10 0.12 -0.07 0.10 -0.09

Ep′1 1 0.01 -0.09 0.21 -0.03 0.01 -0.26 0.22 -0.17

p1 1 0.94 0.32 0.31 -0.64 0.84 -0.84 0.65

p2 1 0.56 0.57 -0.84 0.97 -0.97 0.86

θ1 1 0.97 -0.90 0.64 -0.64 0.85

θ2 1 -0.92 0.70 -0.69 0.91

s1 1 -0.90 0.91 -0.99

s2 1 -0.99 0.94

a1 1 -0.93

a2 1

Table 3: Simulation-based cross-correlations. Upper panel: Ramsey policy. Lower panel: exogenous policy.
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dynamics of the exogenous-policy model, which are presented in Table 4. The dynamics of τ l and

µ are the same in both cases by construction. The most apparent differences lie in the volatilities

of R∗
t , Rt, and, to a lesser extent, πt. Under the Ramsey equilibrium, R∗

t and Rt are one and

two orders of magnitude less volatile, respectively, than under the exogenous-policy equilibrium.

Stabilization of R∗
t is consistent with our conjecture that stabilizing the cash search/credit search

margin (12) is a central goal of policy. The quantitative degree of stabilization of the standard static

cash/credit margin (7) is similar to that found by Schmitt-Grohe and Uribe (2004a, 2004b) and

Chugh (2007a). The fact that Ramsey-optimal fluctuations in πt are larger than in the exogenous-

policy case is consistent with the fact that state-contingent variations in inflation are desirable from

the Ramsey point of view because they allow for shock absorption — just not nearly as desirable

as in a basic LS/CCK environment. The larger Ramsey fluctuations in πt are also evident in the

larger fluctuations in p1t under the Ramsey equilibria compared to the exogenous-policy equilibria.

This result is consistent with our intuition regarding condition (13): fluctuations in πt transmit

into fluctuations in p1t.

In sum, a number of volatilities in and correlations between policy and the key search-market

variables θ1t, θ2t, and Etp1t+1 are quite different under the Ramsey policy than they are under

exogenous policy. These observations of course do not prove our intuition that the key to under-

standing the optimality of stabilizing inflation in our model is inflation’s effects on market tightness

and expectations of future search-goods prices, but we think they are all consistent with it. If cor-

rect, this kind of motivation for stabilizing inflation is different from that articulated in a standard

sticky-price model, in which distortions in static relative prices per se, rather than inflation’s effects

on the dynamics of expected future prices, is the typically-understood reason behind the optimality

of inflation stability.

Figure 8 demonstrates this idea in a different way and displays the quantitative power of the

search friction in shaping optimal policy. In Figure 8, we plot the standard deviation of the Ramsey

inflation rate as a function of ϑ, which, recall from the specification of household preferences in (1),

governs how valuable search goods are to the household; all other parameter values are held constant

at their benchmark levels. In the absence of direct evidence, recall that we set as our baseline ϑ = 1.

In the limit, setting ϑ = 0 collapses our model to a standard CCK model.

Figure 8 clearly shows that as we move our environment close to that of CCK (by lowering

ϑ), their benchmark inflation volatility result re-emerges. As ϑ rises from very low values, optimal

inflation volatility falls quickly, approaching a basic sticky-price model’s prediction of near-zero

inflation volatility for sufficiently-large ϑ. We encountered numerical difficulty in solving for very

small and very large values of ϑ, hence we limit the results in Figure 8 to ϑ ∈ [0.1, 1.5], but the

main message seems clear: as the importance of goods obtained in long-term relationships grows
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Variable Mean Std. Dev. Auto corr. Corr(x, Y ) Corr(x,Z) Corr(x,G)

Policies and prices

τ l 0.2777 0.0011 0.8609 -0.0515 -0.0106 -0.0080

π − 1 2.4795 0.3409 0.2860 0.0849 0.2305 -0.0318

R− 1 5.6832 1.0461 0.9237 0.3592 0.9818 -0.1608

R∗ − 1 -4.6915 0.5305 0.9233 0.3831 0.9867 -0.1358

p1 1.4533 0.0023 -0.0056 0.2135 0.3106 0.0677

p2 1.4634 0.0061 0.1393 0.2633 0.5744 -0.0372

Ep′1 1.4533 0.0003 0.9282 0.8102 -0.0097 0.9740

µ− 1 2.4795 0.1039 0.1449 -0.0034 -0.0034 0.0019

Allocations

gdp 0.2757 0.0047 0.9397 1 0.4991 0.8412

l 0.2755 0.0045 0.9386 0.5262 -0.4287 0.8919

θ1 1.1719 0.0073 0.9240 0.6805 0.9661 0.1996

θ2 1.0645 0.0183 0.9233 0.4962 0.9948 -0.0116

N1 0.0254 0.0002 0.9237 -0.4357 -0.9175 0.0446

N2 0.0279 0.0006 0.9229 0.3070 0.9019 -0.1833

s1 0.0137 0.0002 0.6452 -0.4910 -0.9107 -0.0244

s2 0.0157 0.0003 0.3132 0.1684 0.6921 -0.2192

a1 0.0160 0.0001 0.2908 -0.2084 -0.6835 -0.1683

a2 0.0168 0.0006 0.6289 0.3466 0.8981 -0.1330

x1 0.0600 0.0009 0.9229 -0.3571 -0.9762 0.1680

x2 0.0780 0.0026 0.9234 0.3661 0.9837 -0.1537

Table 4: Simulation-based moments in the exogenous-policy equilibrium.
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Figure 8: Optimal inflation volatility (standard deviation in annualized percentage points) as a function of

ϑ.

(governed by increasing ϑ), stabilizing inflation becomes an ever-more important goal of policy.

4.3.2 Ramsey Allocations

In terms of the dynamics of allocations, the first row of the lower panel of Table 2 shows that

the volatility of GDP, at about 1.8 percent, is in line with the empirical evidence for the U.S.

economy presented in King and Rebelo (1999) and with many DSGE models, so there is nothing

unusual about the macrodynamics of our model. Table 2 also shows, as was also suggested by the

correlations presented in Table 3, that the dynamics of a1 follow very closely the dynamics of a2,

the dynamics of s1 follow very closely the dynamics of s2, the dynamics of N1 follow very closely

the dynamics of N2, and the dynamics of θ1 follow very closely the dynamics of θ2. These results

all seem natural given the symmetry of our calibration across the cash search and credit search

sectors. In the interest of at least some brevity, we leave our discussion of Ramsey allocations at

that, but Table 2 presents some other moments calculated from our simulations.
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Figure 9: Dynamic realizations of cash-relationship and credit-relationship surpluses for households and

firms.

4.3.3 Relationship Values

Finally, the structure of our model implies that there are “no-arbitrage” conditions between cash

customer relationships and credit customer relationships for both households and firms. The house-

hold shopping conditions (9) and (10) and firm advertising conditions (20) and (21) suggest that

household and firm surpluses across cash and credit relationships should be perfectly correlated

over time. We can verify this from our Ramsey simulations.

Using notation that we define formally in Appendix B, the upper panel of Figure 9 plots dynamic

realizations from a representative simulation of a household’s surplus M1
t − S1

t from entering into

cash relationships against its surplus M2
t − S2

t from entering into credit relationships. The lower

panel plots dynamic realizations of a firm’s surplus A1
t from entering into cash relationships against

its surplus A2
t from entering into credit relationships. Under the Ramsey plan, the correlation

between the surpluses from cash relationships and credit relationships is unity for both households

and firms, which has the implication that both households and firms have incentives to direct search

towards the cash and credit sectors in a perfectly-correlated manner. Indeed, as shown in Table 3,

the correlation between s1t and s2t is virtually unity, as is that between a1t and a2t, confirming the

no-arbitrage relationships across the cash and credit sectors.
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5 Conclusion

The idea that unanticipated inflation is undesirable because it distorts relative prices is a well-

established one. It is an idea articulated in basic undergraduate textbooks, and it is embedded

in a very simple way – through the assumption of sticky prices — in the modern New Keynesian

models that provide the basis for much of the model-based discussions of monetary policy issues.

We show that deep-rooted frictions underlying goods-market trades lead to much the same effect.

We adapted a standard cash/credit model, one that has been a workhorse in Ramsey studies of

monetary policy, to include fundamental transactions frictions in what we view is at least one very

natural way. With this simple extension, we show that achieving inflation stability is an important

objective of policy precisely because unanticipated inflation distorts relative prices, even though

there are no nominal rigidities of any sort. Our results thus challenge the standard view that sticky

prices must be at the core of any practical DSGE model of monetary policy.

As we mentioned at the outset, our work builds on the theme begun in Arseneau and Chugh

(2007b) and Aruoba and Chugh (2006) of studying optimal policy in environments with deep-

rooted frictions in key markets. With the lessons learned by studying optimal policy in the face

of fundamental trading frictions in labor markets (Arseneau and Chugh (2007b)), in one type of

financial market (money markets — Aruoba and Chugh (2006)), and now here in product markets,

an obvious interesting next step would be to characterize optimal policy in the presence of more than

one of these frictions. Such a project would move this emerging second-generation of Ramsey-based

optimal policy models even closer to the medium- and large-scale quantitative models favored by

central banks as one input in their policy-making process. Some of the insights to be learned may

be quite similar to those from existing models; some of the lessons are likely to be quite different.
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A Household Problem

The representative household’s problem in the baseline model is to choose state-contingent rules

for lt, x1t, x2t, Mt, Bt, Nh
1t+1, N

h
2t+1, s1t, and s2t to maximize

E0

∞∑
t=0

βt

[
u(x1t, x2t) + ϑv

(∫ Nh
1t

0
ci1tdi,

∫ Nh
2t

0
ci2tdi

)
+ g(1− lt − st −Nh

t )

]
(41)

subject to the sequence of flow budget constraints

Mt −Mt−1 +Bt −Rt−1Bt−1 = (42)

(1− τ l
t−1)Wt−1lt−1 − Pt−1x1t−1 − Pt−1x2t−1 −

∫ Nh
1t−1

0
Pi1t−1ci1t−1di−

∫ Nh
2t−1

0
Pi2t−1ci2t−1di+ Pt−1dt−1,

the sequence of cash-in-advance constraints

Ptx1t +
∫ Nh

1t

0
Pi1tci1tdi ≤Mt, (43)

perceived laws of motion for the number of active cash relationships,

Nh
1t+1 = (1− ρx)(Nh

1t + s1tk
h(θ1t)) (44)

and credit relationships

Nh
2t+1 = (1− ρx)(Nh

2t + s2tk
h(θ2t)), (45)

as well as the identities

Nh
t = Nh

1t +Nh
2t (46)

and

st = s1t + s2t. (47)

Substitute the identities (46) and (47) directly into the utility function. Associate the sequence of

multipliers φt/Pt−1, λt/Pt, µh
1t, and µh

2t to the remaining constraints, respectively. The first-order

conditions with respect to lt, x1t, x2t, Mt, Bt, Nh
1t+1, N

h
2t+1, s1t, and s2t are, respectively,

−g′t + (1− τ l
t )wtβEtφt+1 = 0, (48)

u1t − λt − βEtφt+1 = 0, (49)

u2t − βEtφt+1 = 0, (50)

− φt

Pt−1
+
λt

Pt
+ βEt

(
φt+1

Pt

)
= 0, (51)

− φt

Pt−1
+ βRtEt

(
φt+1

Pt

)
= 0, (52)
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βEt {ϑv1t+1c1t+1}−βEtg
′
t+1−µh

1t+β(1−ρx)Etµ
h
1t+1−βEt

{
λt+1

P1t+1

Pt+1
c1t+1

}
−βEt

{
βφt+2

P1t+1

Pt+1
c1t+1

}
= 0,

(53)

βEt {ϑv2t+1c2t+1} − βEtg
′
t+1 − µh

2t + β(1− ρx)Etµ
h
2t+1 − βEt

{
βφt+2

P2t+1

Pt+1
c2t+1

}
= 0, (54)

−g′t + (1− ρx)µh
1tk

h(θ1t) = 0, (55)

−g′t + (1− ρx)µh
2tk

h(θ2t) = 0. (56)

The first-order conditions (48) through (52) are completely standard in cash/credit models;

they imply a standard consumption-leisure optimality condition

g′(1− lt − st −Nh
t )

u2t
= (1− τ l

t )wt, (57)

a (Walrasian) cash-good/credit-good optimality condition

u1t

u2t
= Rt, (58)

and a pricing formula for a one-period nominally risk-free bond

1 = RtEt

[
βu1t+1

u1t

1
πt+1

]
, (59)

where πt ≡ Pt/Pt−1 is the gross inflation rate between periods t− 1 and t.

Regarding the search markets, the first-order conditions (53) and (55) yield an optimal shopping

condition for cash goods,

g′t
kh(θ1t)

= β(1− ρx)Et

{
c1t+1 [ϑv1t+1 − p1t+1u1t+1]− g′t+1 +

g′t+1

kh(θ1t+1)

}
, (60)

which is expression (9) in the text; and the first-order conditions (54) and (56) yield an optimal

shopping condition for credit goods,

g′t
kh(θ2t)

= β(1− ρx)Et

{
c2t+1 [ϑv2t+1 − p2t+1u2t+1]− g′t+1 +

g′t+1

kh(θ2t+1)

}
, (61)

which is expression (10) in the text.
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B Nash Bargaining

The marginal value to the household of a family member who is actively engaged in a cash rela-

tionship with a firm (in nominal terms):

M1
t =

Ptṽ
1(ci1t)

βEtφt+1 + λt
−Ptg

′(1− lt − st −Nt)
βEtφt+1 + λt

−Pi1tci1t+Et

[(
Ξt+1|t

Pt

Pt+1

)
((1− ρx)M1

t+1 + ρxS1
t+1)

]
.

(62)

The marginal value to the household of a family member who is actively engaged in a credit

relationship with a firm (in nominal terms):

M2
t =

Ptṽ
2(ci2t)

βEtφt+1
− Ptg

′(1− lt − st −Nt)
βEtφt+1

−Pi2tci2t +Et

[(
Ξt+1|t

Pt

Pt+1

)
((1− ρx)M2

t+1 + ρxS1
t+1)

]
.

(63)

The function ṽ1(.) is the marginal utility to the household of obtaining cash consumption from

the i-th match, and ṽ2(.) is the marginal utility to the household of obtaining credit consumption

from the i-th match. Hence, ṽi(.) ≡ vit(.), i = 1, 2. Captured in these Bellman equations is

the assumption that if a given customer relationship survives separation, it continues to be a cash

(credit) relationship if it was previously a cash (credit) relationship. Note that the discount used for

M1
t is different from the discount used for M2

t . Because of our assumption that a cash relationship

is always a cash relationship and a credit relationship is always a credit relationship, the nominal

interest rate needs to be taken account of in defining these two asset values. Because in equilibrium,

βEtφt+1 = u2t, βEtφt+1 + λt = u1t, and u1t/u2t = Rt, defining the asset values this way does this.

For tractability and in line with our assumption that cash (credit) relationships are always cash

(credit) relationships, we assume that a cash (credit) relationship can result only from purposeful

search in the cash (credit) market. An extension one may want to later pursue is to allow crossover

from search in one market into active relationships in the other market. The marginal value to the

household of an individual searching for a cash relationship and an individual searching for a credit

relationship thus are, respectively,

S1
t = −Ptg

′(1− lt − st −Nt)
βEtφt+1 + λt

+Et

[(
Ξt+1|t

Pt

Pt+1

)(
θ1tk

f (θ1t)(1− ρx)M1
t+1 + (1− θ1tk

f (θ1t)(1− ρx))S1
t+1

)]
(64)

and

S2
t = −Ptg

′(1− lt − st −Nt)
βEtφt+1

+Et

[(
Ξt+1|t

Pt

Pt+1

)(
θ2tk

f (θ2t)(1− ρx)M2
t+1 + (1− θ2tk

f (θ2t)(1− ρx))S2
t+1

)]
.

(65)

By the properties of the Cobb-Douglas matching function, kh(θit) = θitk
f (θit). Notice that in

these formulations of S1
t and S2

t , we make the assumption that if an individual is not successful

in forming a lasting customer relationship, he is assigned back to search in the next period. In

principle, a given atomistic individual unsuccessful in forming a customer relationship could be
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assigned by the household to labor or leisure in the next period, as well. Our specification is

without loss of generality, however, because the household in every period optimally allocates its

members between cash-search and credit-search. That is, as we allude to in the text, there is

essentially a “no-arbitrage” condition between cash search and credit search a the household level,

making the precise identities of those assigned to search in one sector versus the other irrelevant.

Thus, without loss of generality, we can suppose that an individual who continues to search from

one period to the next does so in the same sector.

The values to a firm of an existing cash customer and an existing credit customer are, respec-

tively,

A1
t = Pi1tci1t −mctci1t + Et

[(
Ξt+1|t

Pt

Pt+1

)
(1− ρx)A1

t+1

]
(66)

and

A2
t = Pi2tci2t −mctci2t + Et

[(
Ξt+1|t

Pt

Pt+1

)
(1− ρx)A2

t+1

]
. (67)

Bargaining occurs every period between a given customer and the firm with which he is engaged

in a relationship. For i = 1, 2, the firm and customer maximize the Nash product

(Mi
t − Si

t)
ηAi

t
1−η

, (68)

where η ∈ (0, 1) is the fixed weight given to the customer’s (equivalently, the household’s) surplus

and identical across cash and credit relationships. Make the following changes of variables: divide

Mi
t, Si

t, and Ai
t by Pt, define pit = Pit/Pt as the relative price of a search good, and re-interpret

the asset values to be real, rather than nominal, asset values. With these changes, the first-order

condition of the Nash product with respect to pit is

η(Mi
t − Si

t)
η−1

(
∂Mi

t

∂pit
− ∂Si

t

∂pit

)
Ai

t
1−η

+ (1− η)(Mi
t − Si

t)
ηAi

t
−η ∂Ai

t

∂pit
= 0, (69)

which can be condensed as usual to

(1− η)(Mi
t − Si

t)
∂Ai

t

∂pit
= −ηAi

t

(
∂Mi

t

∂pit
− ∂Si

t

∂pit

)
. (70)

Using the value functions above and going through several tedious steps of algebra, all of which are

identical to those in Arseneau and Chugh (2007b), we have

p1tc1,t = (1− η)

(
ṽ1(c1t)
u1t

)
+ η(mctc1,t − γθ1t) (71)

and

p2tc2,t = (1− η)

(
ṽ2(c2t)
u2t

)
+ η(mctc2,t − γθ2t), (72)

which are expressions (23) and (24) in the text.
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C Private-Sector Equilibrium

Here, we collect the conditions characterizing a symmetric search equilibrium defined in Section 2.8.

They are:

• Resource constraint:

x1t + x2t +N1tc1t +N2tc2t + gt + γ(a1t + a2t) = ztlt (73)

• The standard (Walrasian) cash-credit optimality condition:

u1t

u2t
= Rt (74)

• The standard consumption-leisure optimality condition:

g′t
u2t

= (1− τ l
t )wt (75)

• The standard bond Euler equation (pricing formula for a one-period nominally risk-free bond):

1 = RtEt

[
βu1t+1

u1t

1
πt+1

]
(76)

• The (two different) shopping conditions for cash relationships and credit relationships:

g′t
kh(θt)

= (1− ρx)Et

{
c1t+1 [ϑv1t+1 − p1t+1u1t+1]− g′t+1 +

g′t+1

kh(θt+1)

}
(77)

g′t
kh(θt)

= (1− ρx)Et

{
c2t+1 [ϑv2t+1 − p2t+1u2t+1]− g′t+1 +

g′t+1

kh(θt+1)

}
(78)

• The (two different) advertising conditions for cash relationships and credit relationships:

γ

kf (θt)
= β(1− ρx)Et

{
Ξt+1|t

(
p1t+1c1t+1 −mct+1c1t+1 +

γ

kf (θt+1)

)}
(79)

γ

kf (θt)
= β(1− ρx)Et

{
Ξt+1|t

(
p2t+1c2t+1 −mct+1c2t+1 +

γ

kf (θt+1)

)}
(80)

• Nash-pricing equations to pin down p1t and p2t:

p1tc1,t = (1− η)

(
ṽ1(c1t)
u1t

)
+ η(mctc1,t − γθ1t) (81)

p2tc2,t = (1− η)

(
ṽ2(c2t)
u2t

)
+ η(mctc2,t − γθ2t) (82)
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• Aggregate laws of motion for active cash and credit customer relationships:

N1t+1 = (1− ρx)(N1t +m(s1t, a1t)) (83)

N2t+1 = (1− ρx)(N2t +m(s2t, a2t)) (84)

• Condition describing nominal price inflation:

πt

[
x1t + p1tN1tc1t

x1t−1 + p1t−1N1t−1c1t−1

]
= µt, (85)

• Efficient labor market:

wt = zt (86)

D Derivation of PVIC

The derivation of the Ramsey present-value implementability constraint (PVIC) proceeds quite

similarly to derivations in standard flexible-price Ramsey models. Unlike standard flexible-price

Ramsey models, and as we mentioned in Section 3, the PVIC in our model does not encode all of the

equilibrium conditions of the economy; in particular, it does not encode the conditions describing

search and pricing activity in the cash and credit search markets.

To derive the PVIC, start as usual with the household flow budget constraint in symmetric

equilibrium. Diving each term through by Pt−1, multiplying each term by βtφt, and summing from

t = 0 to infinity gives

∞∑
t=0

βtφtx1t−1 +
∞∑

t=0

βtφtx2t−1 +
∞∑

t=0

βtφtp1t−1N1t−1c1t−1 +
∞∑

t=0

βtφtp2t−1N2t−1c2t−1 +
∞∑

t=0

βtφt
Mt

Pt−1

+
∞∑

t=0

βtφt
Bt

Pt−1
=

∞∑
t=0

βtφt(1− τ l
t−1)wt−1lt−1 +

∞∑
t=0

βtφt
Mt−1

Pt−1
+

∞∑
t=0

βtφtRt−1
Bt−1

Pt−1
+

∞∑
t=0

βtφtdt−1.

Use the household first-order condition (51) to substitute into the last term on the first line and

use the household first-order condition (52) to substitute into the first term on second line; this

yields

∞∑
t=0

βtφtx1t−1 +
∞∑

t=0

βtφtx2t−1 +
∞∑

t=0

βtφtp1t−1N1t−1c1t−1 +
∞∑

t=0

βtφtp2t−1N2t−1c2t−1

+
∞∑

t=0

βtλt
Mt

Pt
+

∞∑
t=0

βtβφt+1
Mt

Pt
+

∞∑
t=0

βtβφt+1Rt
Bt

Pt

=
∞∑

t=0

βtφt(1− τ l
t−1)wt−1lt−1 +

∞∑
t=0

βtφt
Mt−1

Pt−1
+

∞∑
t=0

βtφtRt−1
Bt−1

Pt−1
+

∞∑
t=0

βtφtdt−1.
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Canceling like summations, pulling out the t = 0 terms from several summations, and adjusting

indices of summation yields

∞∑
t=0

βtβφt+1x1t +
∞∑

t=0

βtβφt+1x2t +
∞∑

t=0

βtβφt+1p1tN1tc1t +
∞∑

t=0

βtβφt+1p2tN2tc2t +
∞∑

t=0

βtλt
Mt

Pt

=
∞∑

t=0

βtβφt+1(1− τ l
t )wtlt +

∞∑
t=0

βtβφt+1dt

+ φ0

[
M−1 +R−1B−1

P−1
+ (1− τ l

−1)w−1l−1 − x1,−1 − x2,−1 − p1,−1N1,−1c1,−1 − p2,−1N2,−1c2,−1 + d−1

]
.

Define

A0 = φ0

[
M−1 +R−1B−1

P−1

]
+φ0

[
(1− τ l

−1)w−1l−1 −mc−1N1,−1c1,−1 −mc−1N2,−1c2,−1 − γ(a1,−1 + a2,−1)− x1,−1 − x2,−1

]
.

(87)

With this definition, substitute into the previous expression the symmetric equilibrium expression

for real dividend payments of the firm, dt = (p1t −mct)N1tc1t + (p2t −mct)N2tc2t − γ(a1t + a2t),

which gives

∞∑
t=0

βtβφt+1x1t +
∞∑

t=0

βtβφt+1x2t +
∞∑

t=0

βtβφt+1p1tN1tc1t +
∞∑

t=0

βtβφt+1p2tN2tc2t +
∞∑

t=0

βtλt
Mt

Pt

=
∞∑

t=0

βtβφt+1(1− τ l
t )wtlt +

∞∑
t=0

βtβφt+1(p1t −mct)N1tc1t

+
∞∑

t=0

βtβφt+1(p2t −mct)N2tc2t −
∞∑

t=0

βtβφt+1γ(a1t + a2t) +A0.

Using the cash-in-advance constraint holding with equality, Mt
Pt

= x1t + p1tN1tc1t, to substitute out

the term involving Mt
Pt

yields

∞∑
t=0

βtβφt+1x1t +
∞∑

t=0

βtλtx1t +
∞∑

t=0

βtβφt+1x2t +
∞∑

t=0

βtβφt+1p1tN1tc1t +
∞∑

t=0

βtλtp1tN1tc1t

+
∞∑

t=0

βtβφt+1p2tN2tc2t =
∞∑

t=0

βtβφt+1(1− τ l
t )wtlt +

∞∑
t=0

βtβφt+1(p1t −mct)N1tc1t

+
∞∑

t=0

βtβφt+1(p2t −mct)N2tc2t −
∞∑

t=0

βtβφt+1γ(a1t + a2t) +A0.

Next, using the household first-order conditions βEtφt+1 = u2t and βEtφt+1 + λt = u1t, we have

∞∑
t=0

βtu1tx1t +
∞∑

t=0

βtu2tx2t +
∞∑

t=0

βtu1tp1tN1tc1t +
∞∑

t=0

βtu2tp2tN2tc2t

=
∞∑

t=0

βtu2t(1− τ l
t )wtlt +

∞∑
t=0

βtu2t(p1t −mct)N1tc1t +
∞∑

t=0

βtu2t(p2t −mct)N2tc2t −
∞∑

t=0

βtu2tγ(a1t + a2t) +A0.

Finally, use the consumption-leisure optimality condition to substitute g′t = u2t(1 − τ l
t )wt and
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rearrange terms to arrive at the PVIC,

E0

∞∑
t=0

βt [u1tx1t + u2tx2t − g′tlt + (u1t − u2t)p1tN1tc1t + u2tmctN1tc1t + u2tmctN2tc2t + u2tγ(a1t + a2t)
]
= A0,

(88)

which is expression (32) in the text.

When we allow for the profit tax and search taxes, the household flow budget constraint is

modified to

Mt −Mt−1 +Bt −Rt−1Bt−1 = τ s1
t−1s1t−1 + τ s2

t−1s2t−1 (89)

+ (1− τ l
t−1)Wt−1lt−1 − Pt−1x1t−1 − Pt−1x2t−1 (90)

−
∫ Nh

1t−1

0
Pi1t−1ci1t−1di−

∫ Nh
2t−1

0
Pi2t−1ci2t−1di+ (1− τpr

t−1)Pt−1dt−1.

Proceeding just as before, except refraining from combining the equilibrium expression for dt as we

did above, we have that the PVIC is

∞∑
t=0

βt [u1tx1t + u2tx2t + u1tp1tN1tc1t + u2tp2tN2tc2t − g′tlt − u2tτ
s1s1t − u2tτ

s2s2t
]

(91)

−
∞∑

t=0

βt [(1− τpr
t ) (u2t(p1t −mct)N1tc1t + u2t(p2t −mct)N2tc2t − u2tγ(a1t + a2t))] = A0.(92)

Setting τ s1
t = τ s2

t = τpr
t = 0 ∀t and combining several terms collapses this modified PVIC back to

expression (32).
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