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Abstract

When agents are cash constrained, two options exist — borrow or sell assets. We compare

the welfare properties of these options in two economies: in one, agents can borrow (issue

inside bonds) and in the other they can sell ‘illiquid’ government bonds (outside bonds). All

transactions are voluntary, implying no taxation or forced redemption of private debt. We show

that any allocation in the economy with inside bonds can be replicated in the economy with

outside bonds. Moreover, under the best policies, the allocation with outside bonds strictly

dominates the allocation with inside bonds.

∗The paper has benefitted from comments by participants at several seminar and conference presentations. We
thank the Federal Reserve Bank of Cleveland, and the Kellogg Institute at the University of Notre Dame for research
support.
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1 Introduction

In monetary models, agents often face binding cash constraints. Two solutions have been proposed

for improving on the monetary allocation. Kocherlakota (2003) shows that the presence of ‘illiquid’

nominal government bonds (outside bonds) allows those who are in need of cash to sell bonds which

improves the allocation. Using a different monetary model, Berentsen, Camera and Waller (2006)

show that credit (or inside bonds) improves the allocation since it allows agents to borrow or lend

cash depending on their liquidity needs. These results raise the following three questions: First,

within a common monetary framework, when are the allocations with illiquid outside bonds and

inside bonds the same? Second, when do they differ and why? Third, what is the optimal monetary

policy in each case? Our focus in this paper is to address these questions.1

We construct a general equilibrium monetary model in the spirit of Lagos and Wright (2005)

with fiat money and one-period bonds. Within this framework, we consider two economies, one

in which agents hold government bonds and one in which they hold inside bonds. Each period

consumers receive idiosyncratic preference shocks which creates differential needs for liquidity across

consumers. After these shocks occur, but before the goods market opens, agents can trade bonds for

money. Those with high liquidity needs sell bonds while those with low liquidity acquire bonds. As

in Kocherlakota (2003), we assume that the outside bonds are illiquid in the sense that they cannot

be used as a medium of exchange in the goods market. More importantly, we assume all trades

must be voluntary. This implies that the government cannot imposes taxes or run a deflation since

it requires lump-sum taxation of money balances. It also implies that, in the inside bond economy,

redemption of inside bonds must be voluntary. We study the effects of steady state inflation on the

allocations as opposed to one-time changes in the stock of outside bonds as done by Kocherlakota.

We show that for any positive inflation rate, bonds are essential in both economies, and thus

generate societal benefits.2 With regards to the first and second questions, we find that for suffi-

ciently high inflation rates, the allocations in the two economies are the same but they differ for low

inflation rates. The key result that emerges from our paper is with regard to the third question:

under optimal policies, the optimal allocation with illiquid outside bonds dominates the optimal

1We would like to thank Neil Wallace for suggesting we pursue this line of research.
2By essential we mean that the use of money expands the set of allocations (see Kocherlakota (1998) and Wallace

(2001)).
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allocation with inside bonds. To prove this result, we first show that any allocation attained in

the economy with inside bonds can be replicated in the economy with outside bonds and that the

converse is not true. In particular, the best allocation with outside bonds cannot be replicated with

inside bonds. The crucial friction that drives this result is lack of enforcement. To verify this, we

also show that if redemption of loans can be forced in the economy with inside bonds, then the

best allocation with ouside bonds can be replicated with inside bonds.

Our results are in contrast to Wallace’s (1981) famous Modigliani-Miller result for open market

operations which is that the money/bond composition of a government’s debt portfolio does not

affect the equilibrium allocation. They also differ from the results of a recent paper by Kocherlakota

(2007). He considers various models of asset trade. In these models agents can either trade a

privately issued one-period bond, a publicly issued one-period bond, or a publicly issued money.

He proves that there are enforcement policies such that the allocations are equivalent.3 As noted

by Kocherlakota the crucial assumptions for these results are that the government has access to

lump-sum taxes, which require collection power, and absence of a transaction advantage of money

over bonds. In contrast, in our model the money/bond composition affects the allocation and the

allocations in the economies with inside or outside bonds can differ. The reason is that in our

economies money provides transaction services and we neither allow for public enforcement, i.e., no

lump-sum taxes, nor private enforcement of credit contracts. In his paper, Kocherlakota emphasizes

that many results in the literature rely on asymmetric collection powers of private and government

entities. To eliminate this asymmetry he assumes equal and positive collection powers of private

agents and the government. We eliminate it by assuming neither has any collection power.

Several papers are related to what we do here. Kehoe and Levine (2001) compare allocations in

a dynamic economy when agents can acquire consumption goods in one case by selling their capital

holdings and in another case by issuing debt subject to a borrowing constraint. They show that

if agents are sufficiently patient, the allocations are the same in a deterministic environment but

if they are sufficiently impatient, then the debt constrained allocation leads to a better allocation.

Shi (2006) examines the implications of illiquid bonds in a monetary search model where there are

legal restrictions preventing bonds from being used as a medium of exchange in some transactions

but not others. The legal restrictions make outside bonds illiquid relative to money. He finds that

3 In an earlier paper Taub (1994) derived a related equivalence result between money and credit.
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having illiquid bonds can be welfare improving. In Boel and Camera (2006) bonds are illiquid in

the sense that there is a transaction fee for converting them into cash. Since agents have different

discount factors and trading opportunities, for some parameter configurations, there is a welfare

improving role for illiquid bonds under the optimal monetary policy. Finally, our work is also

related to Lagos and Rocheteau (2003) who study the use of illiquid bonds in a variant of the

LW model. They find that under the optimal monetary policy (zero inflation) illiquid bonds are

inessential.4

Finally, the paper is also related to Cavalcanti and Wallace (1999a, 1999b) who study the

relation between inside and outside money. Their model is related to ours since some buyers

are able to relax their cash constraint by issuing personal liabilities to sellers which improves the

allocation. However, the inefficiency associated with holding idle cash balances is not eliminated.

In our model agents can lend their idle cash balances and earn interest. In particular, we find that

the welfare gain associated with inside bonds is not due to relaxing buyers’ cash constraints rather

it arises from generating a positive rate of return earned on idle cash balances.5

The structure of the paper is as follows. In Section 2 we describe the environment. Section 3

contains analysis of the economy with outside bonds. Section 4 examines the economy with inside

bonds and Section 5 compares the allocation of the two economies. Section 6 concludes.

2 The environment

The environment builds on Lagos and Wright (2005) and Berentsen, Camera and Waller (2006).6

Time is discrete and in each period three perfectly competitive markets open and close sequentially.7

There is a [0,1] continuum of infinitively-lived agents.

The timing of the model is as follows. The first market is a financial market where agents trade

money for bonds. The second market is a goods market where agents trade money for market 2

4Furthermore, there are a number of papers that study the coexistence of money and bonds (i.e. Diaz-Perrera-
Tallo (2007), Ferris and Watanabe (2007), Telyukova and Wright (2007), Marchesiani and Senesi (2007). The key
difference to our work is that they never compare the allocative effects of different bonds.

5This shows that being constrained is not per se a source of inefficiency. In any general equilibrium model, agents
face binding budget constraints. Nevertheless, the equilibrium is efficient if all gains from trade are exploited.

6An alternative framework would be Shi (1997) which we could amend with preference and shocks and bond
markets to generate the same results.

7Competitive pricing in the Lagos-Wright framework has been introduced by Rocheteau and Wright (2004) and
further investigated in Berentsen, Camera and Waller (2005) and Lagos and Rocheteau (2005).
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goods. In the third market all agents can produce and consume goods. At the beginning of the

first market, agents get a preference shock that determines whether they can produce or consume

in the second market. With probability 1−n an agent can consume and cannot produce. We refer

to these agents as buyers. With probability n, an agent can produce and cannot consume. These

are sellers.

Moreover, buyers receive an idiosyncratic preference shock to utility. They learn that they

will get utility εu(q) from q consumption in the second market, where u0(q),−u00(q) > 0. The

shock ε has a continuous distribution F (ε) with support [0, εH ], is serially uncorrelated and has

expected value ε̄ =
R εH
0 εdF (ε).8 Producers in the second market incur a utility cost c(q) = q from

producing q units of output. All trades in market 2 are anonymous and agents’ trading histories in

this market are private information, thus no trade credit exists. Hence there is a role for money,

as sellers require immediate compensation for their production effort.

Following Lagos and Wright (2005) we assume that agents receive utility U(x) from x consump-

tion, with U 0(x),−U 00(x) > 0, U 0(0) = ∞, and U 0(+∞) = 0. They can also produce these goods

with a constant returns to scale production technology where one unit of the consumption good

is produced with one unit of labor h generating one unit of disutility.9 The discount factor across

periods is β.

2.1 First-best allocation

The expected steady state lifetime utility of the representative agent at the beginning of the period

before types are realized is

(1− β)W =

Z εH

0
[(1− n) εu (qε)− nqs] dF (ε) + U (x)− h. (1)

where qε is consumption and qs production in market 2. We use (1) as our welfare criteria.

To derive the welfare maximizing quantities we assume that all agents are treated symmetrically.

8All of our results go through with a non-zero lower bound. Setting the lower bound of ε to zero simplifies the
presentation of the results.

9As in Lagos and Wright (2005), these assumptions allow us to get a degenerate distribution of money holdings
at the beginning of a period. The different utility functions U (.) and u (.) allow us to impose technical conditions
such that in equilibrium all agents produce and consume in the last market.
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The planner then maximizes (1) subject to the feasibility constraint

Q ≡ (1− n)

Z εH

0
qεdF (ε) = nqs. (2)

where Q is aggregate consumption. The first-best allocation satisfies

U 0 (x∗) = 1 and

εu0 [q∗ (ε)] = 1 for all ε. (3)

These are the quantities chosen by a social planner who could force agents to produce and consume.

2.2 Outside bonds versus inside bonds

We analyze equilibria of the model under two different bond markets — a market for outside bonds

and one for inside bonds. We do so in order to see if one of the bond markets generates a superior

allocation relative to the other. Outside bonds are nominal government debt obligations whereas

inside bonds are private debt obligations. We assume that the government has a record-keeping

technology over bond trades and acts as the intermediary in the bond market. Consequently,

bond holdings can simply be book-keeping entries — no physical object exists. This makes bonds

incapable of being used as media of exchange hence they are illiquid. However, the government has

no record-keeping technology over goods exchange and a buyer’s promise to deliver outside bonds

to a seller in the next market is not credible. Hence, fiat money is essential for trade in market 2.

Because of this structure, agents must hold non-negative quantities of outside bonds.

Inside bonds are financial claims on private agents issued in a private bond market. Conse-

quently, issuing inside bonds is equivalent to receiving credit as in Berentsen, Camera and Waller

(2006). We assume a perfectly competitive financial market exists where intermediaries have a

record-keeping technology over financial trades. The intermediaries acquire nominal debt obliga-

tions from agents and issue nominal debt obligations on themselves, which are securitized by their

acquired claims on private agents. In this sense, private agents are still anonymous to each other

but not to the financial intermediary.10 However, this record-keeping technology does not exist in

10An example is a bank who accepts nominal deposits and makes nominal loans. While the bank knows who it
trades with, borrowers do not know the identity of depositors and vice versa.
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the goods market thus ruling out trade credit between buyers and sellers of goods.

In any model of credit, default is a serious issue. We consider an environment where repayment

is voluntary — creditors have no powers to collect unpaid debts. The only punishment for default is

exclusion from the financial sector in all future periods. Given this punishment, we derive conditions

to ensure voluntary redemption and show that this may involve binding borrowing constraints, i.e.

credit rationing. We assume the financial intermediaries honor their debt obligations.

2.3 Government

In the model with outside bonds, we assume a government exists that controls the supply of fiat

currency and issues one-period nominal bonds. Government bonds are perfectly divisible, payable

to the bearer and default free. One bond pays off one unit of currency at maturity. Denote Mt the

per capita money stock and Bt the per capita stock of newly issued bonds in market 3 in period t.

The change in the money stock is given by

Mt −Mt−1 = τ tMt−1 +Bt−1 − ρtBt + PtGt (4)

where PtGt is the nominal amount of government spending in period t in the centralized market

and Pt is the money price of goods in market 3. The total change in the money stock is comprised

of three components: first, a lump-sum transfer of cash (a ‘gift’ of cash); second, the net difference

between the cash created to redeem bonds, Bt−1, and the net cash withdrawal from selling Bt

units of bonds at the price ρt; and finally, the cash printed to pay for government goods. We

assume there are positive initial stocks of money and outside bonds M0 and B0. For τ t < 0, the

government must be able to extract money via lump-sum taxes from the economy. Throughout the

paper we assume that τ t < 0 is not feasible because, as for the private sector, the government has

no collection power.11 We can then write this expression as

Mt = γtMt−1 (5)

11The inability to impose lump-sum taxes occurs in environments with limited enforcement. In such environments
all trades must be voluntary and so lump-sum taxes of money are not feasible because the central bank cannot impose
any penalties on the agents. If she could impose such penalties there would be no role for money since "producers
could be forced to produce for households" (Kocherlakota 2003, p. 185). This implies that the government cannot
run the Friedman rule which would implement the first-best allocation in this environment.
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where γt is the gross growth rate of the money supply in period t.

To simplify the analysis, we assume Gt = 0 for all t. This implies that all money creation comes

from paying off net nominal bond obligations Bt−1−ρtBt and the lump-sum gifts of money τ tMt−1.

For the case of outside bonds we assume that τ t = 0. Consequently, 4) reduces to12

Mt −Mt−1 = Bt−1 − ρtBt. (6)

This allows us to focus solely on how ‘open market operations’ affect the equilibrium allocation

and allows us to ignore optimal taxation issues to finance government spending. Using (4) and (5)

yields

(γt − 1)
Mt−1
Bt−1

= (1− ρtηt) (7)

where ηt ≡ Bt/Bt−1 is the gross growth rate of bonds. This equation relates the gross growth rate

of money γt to the gross growth rate of bonds ηt. For a given ratio of bonds to money and a given

discount on bonds an increase in ηt requires a decrease in γt.

In the model with inside bonds, we assume that Bt = 0 in all periods but the government still

controls the amount of fiat currency in the economy. In this case, agents receive lump-sum gifts of

money τ tMt−1 ≥ 0 and the money supply grows according to Mt = (1 + τ t)Mt−1 = γtMt−1.

2.4 Stationary equilibria

In period t, let φt = 1/Pt be the real price of money in market 3. For notational ease, variables

corresponding to the next period are indexed by +1, and variables corresponding to the previous

period are indexed by −1. We focus on symmetric and stationary equilibria where all agents follow

identical strategies and where real allocations are constant over time. In a stationary equilibrium

end-of-period real money balances are time-invariant

φM = φ+1M+1. (8)

Moreover, we restrict our attention to equilibria where γ is time invariant which implies that

φ/φ+1 = P+1/P =M+1/M = γ.

12All our results continue to hold for τ t > 0. The case τ t < 0 is not feasible. See the previous footnote.
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3 Outside bonds

In this Section we analyze the economy with outside bonds. Let V1(m, b) denote the expected value

from entering market 1 withm units of money and b outside bonds, V2j(m, b), j = ε, s, the expected

value from entering market 2 with m units of money and b bonds, and V3(m, b) the expected value

from entering market 3 with m and b. For notational simplicity we suppress the dependence of the

value function on the time index t. In what follows we look at a representative period t and work

backward, from the third to the first market.

The third market In the third market, the problem of a representative agent is:

V3 (m, b) = max
x,h,m+1,b+1

U (x)− h+ βV1 (m+1, b+1)

s.t. x+ φm+1 + φρb+1 = h+ φm+ φb.

where ρ is the money price of bonds in the third market. Using the budget constraint to eliminate

h in the objective function, one obtains the first-order conditions U 0 (x) = 1 and

βV m
1 (m+1, b+1) ≤ φ ( = 0 if m+1 > 0 ) (9)

βV b
1 (m+1, b+1) ≤ φρ ( = 0 if b+1 > 0 ). (10)

V m
1 (m+1, b+1) is the marginal value of taking an additional unit of money into period t+1. Since

the marginal disutility of working is 1, −φ is the utility cost of acquiring one unit of money in

the third market of period t. V b
1 (m+1, b+1) is the marginal value of taking additional bonds into

period t+1. Here, −φρ is the utility cost of acquiring a bond in the third market of period t. The

implication of (9) and (10) is that all agents enter the following period with the same amounts of

money and bonds.

The envelope conditions are

V m
3 = φ;V b

3 = φ (11)

As in Lagos-Wright (2005) the value function is linear in wealth.
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The second market Let qε denote the quantities consumed by a type ε buyer and qs the quantity

produced by a seller trading in market 2. Let p be the nominal price of goods in market 2.

A seller who holds m money and b bonds at the opening of the second market has expected life-

time utility V2s(m, b) = maxqs [−qs + V3(m+ pqs, b)]. Using (11), the first-order condition reduces

to

p = 1/φ. (12)

Consequently, sellers are indifferent on how much they produce. Nevertheless, in a symmetric

equilibrium they all produce the same amount.

A type ε buyer has expected lifetime utility V2ε(m, b) = maxqε [εu(qε) + V3(m− qε/φ, b)] s.t.

qε ≤ φm where (12) has been used to eliminate p. Using (11) and (12) the buyer’s first-order

conditions can be written as

εu0(qε) = 1 + λε (13)

where λε is the multiplier of the buyer’s budget constraint. If the budget constraint is not binding,

λε = 0. If it is binding, then εu0(qε) > 1 which means trades are inefficient. In this case the buyer

spends all of his money.

Using the envelope theorem, the marginal values of bonds and the marginal values of money

for buyers and sellers at the beginning of the second market are

V b
2ε = V b

2s = φ (14)

V m
2ε = φεu0(qε) and V m

2s = φ. (15)

Finally, market clearing satisfies (2).

The first market Let yj denote the quantity of outside bonds bought by an agent of type j = ε, s

in market 2. Let a be the price of bonds in market 1, consequently the nominal interest rate earned

by acquiring a bond in this market is i = (1− a) /a, which is greater than zero if and only if a < 1.

Note that there are two short-selling constraints: agents cannot sell more bonds or money than

they hold.

An agent who holds m money and b bonds at the opening of the first market has expected
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lifetime utility

V1(m, b) = (1− n)

Z εH

0
V2ε [m− yε/ (1 + i) , b+ yε] dF (ε)

+nV2s [m− ys/ (1 + i) , b+ ys] (16)

where, for j = ε, s, yj = argmaxy V2j [m− y/ (1 + i) , b+ y] s.t. m− y/ (1 + i) ≥ 0 and b+ y ≥ 0.

The first-order condition is

−V m
2j / (1 + i) + V b

2j − φμj/ (1 + i) + φθj = 0 (17)

where φμj is the Lagrange multiplier on the short-selling constraint m− yj/ (1 + i) ≥ 0 and φθj is

the Lagrange multiplier on b+ yj ≥ 0. Obviously, both can not bind at the same time.

Consider first an agent who will be a producer in market 2. If i < 0, then ys = −b and goods

producers sell their bonds for money in market 1. This obviously cannot be an equilibrium and is

ignored for the remainder of the paper which means that θs = 0. We can then use (14) and (15) to

substitute V m
2j and V b

2j in (17) to get

μs = i (18)

If i > 0, it is optimal to sell the entire money holdings for bonds. If i = 0, the producer is indifferent

on how much money to supply. Thus, a producer’s bond demand is

ys ∈ [−b,m (1 + i)] if i = 0

ys = m (1 + i) if i > 0
(19)

Consider next an agent who will be a buyer in market 2. Since Inada conditions are assumed on

u(q) a buyer will always carry some money from market 1 to market 2. Thus, με = 0. Accordingly,

we can use (14) and (15) to write (17) as follows

εu0(qε) = (1 + θε) (1 + i) . (20)

If εu0(qε) = 1 + i, then θε = 0 and yε ≤ b. In this case the buyer is indifferent between holding

bonds or money. In this case, an increase in i makes bonds more attractive relative to holding onto
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the cash for consumption in market 2. Consequently, buyers trade more of their money balances

for illiquid outside bonds, which reduces qε.

Finally, if εu0(qε) > 1 + i, then θε > 0 and he sells all of his bonds implying yε = −b. Thus, a

buyer’s bond demand is

yε ∈ [−b,m (1 + i)] if εu0(qε) = 1 + i

yε = −b if εu0(qε) > 1 + i.
(21)

Because a buyer’s desired consumption is increasing in ε, there is a critical value for the taste index

ε̃ such that

ε̃u0(q̃) = 1 + i (22)

If ε ≤ ε̃, he does not sell all his bonds while if ε ≥ ε̃ he sells all his bonds and consumes

q̃ = φm+ φb/ (1 + i) . (23)

Accordingly, a buyer’s consumption satisfies

qε =

⎧⎪⎨⎪⎩ u0−1 [(1 + i) /ε] if ε ≤ ε̃

u0−1 [(1 + i) /ε̃] if ε ≥ ε̃
(24)

Finally, applying the envelope theorem to equation (16), and using equations (14) and (15), the

marginal values of money and bonds satisfy

∂V1(m, b)

∂m
= (1− n)

Z εH

0
φ
£
εu0(qε) + με

¤
dF (ε) + nφ (1 + μs) (25)

∂V1(m, b)

∂b
= (1− n)

Z εH

0
φ(1 + θε)dF (ε) + nφ (1 + θs) (26)

3.1 Equilibrium

To derive the symmetric stationary equilibrium we have to solve for the equilibrium quantities and

prices. In any symmetric equilibrium m = M−1 and b = B−1. Then use (25) and the first-order
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conditions (9) along with a = 1/ (1 + i) to get

aγ

β
= (1− n)

Z εH

0
(1 + θε)dF (ε) + n (27)

and (10) and (26) to get
ρ−1γ

β
= (1− n)

Z εH

0
(1 + θε)dF (ε) + n. (28)

This implies that in any symmetric stationary equilibrium ρ−1 = a and so from now on we set

ρ−1 = a and ignore the second equation. Using (18), (20) and (27) we obtain

γ − β

β
= (1− n)

Z εH

0

£
εu0(qε)− 1

¤
dF (ε) + ni. (29)

Using (24) and rearranging yields

γ − β (1 + i)

β (1 + i)
= (1− n)

Z εH

ε̃

³ε
ε̃
− 1
´
dF (ε) . (30)

This is an equation in i and ε̃. We now derive a second equation i and ε̃ which we can then use to

define the equilibrium.

In any stationary equilibrium the stocks of bonds B and money M must grow at the same

rate γ implying a is constant so a = 1/ (1 + i) = ρ. We can then rewrite the government budget

constraint (6) to solve for 1 + i as a function of γ and M−1/B−1

1 + i =
γ

1− (γ − 1) M−1B−1

(31)

If γ = 1, then i = 0. In a stationary equilibrium M−1/B−1 = M0/B0 for all t. A non-negative

nominal interest rate requires the denominator to be positive or 1+B0/M0 > γ, and γ ≥ 1. Thus,

for a given ratio of nominal outside bonds to outside money, the range of feasible γ is bounded by

this expression. Thus, define γ̄ ≡ 1 + B0/M0 and as γ → γ̄, i → ∞ and all quantities go to zero.
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Substitute (31) into (22) and (30) to get

ε̃u0(q̃) =
γ

1− (γ − 1) M0
B0

(32)

1− (γ − 1)M0/B0
β

− 1 = (1− n)

Z εH

ε̃

³ε
ε̃
− 1
´
dF (ε) (33)

For given values of γ and M0/B0, the first equation pins down q̃ as a function of ε̃ while the

second determines ε̃. Thus, if a unique value 0 ≤ ε̃ ≤ εH solves this equation then we have a unique

stationary equilibrium. Given q̃ and ε̃ we can then solve for all endogenous quantities and prices.

Definition 1 A stationary monetary equilibrium is an ε̃ that satisfies (33).

In what follows define γH ≡ 1 + (1− β)B0/M0 < γ̄.

Proposition 1 For 1 ≤ γ < γ̄ a unique stationary monetary equilibrium exists. If γ ≤ γH , then

ε̃ ∈ (0, εH ]. If γH < γ < γ̄ then ε̃ > εH .

The essence of this proposition is that for sufficiently low inflation rates, high ε buyers will face

binding bond sale constraints and so εu0(qε) > 1 + i. Thus, on the margin they would like to sell

more bonds but do not have them. For sufficiently high inflation rates, no buyers face binding bond

sales constraints and so εu0(qε) = 1 + i for all ε and from (33) we have 1 + (1− γ)M0/B0 = β and

so from (31)

i =
γ − β

β
. (34)

Note that illiquid bonds trade at a discount if and only if γ > 1. If γ = 1, then i = 0 (a = 1).

3.2 Policy implications

We now discuss three policy implications of our model. First, we explore whether the allocation

with illiquid bonds differs from the allocation when they are liquid. Second, we would like to know

whether inflation can be welfare improving and, third, what is the optimal monetary policy when

bonds are illiquid.

Liquid bonds Suppose now that instead of book-keeping entries, bonds are tangible objects that

can be used as a medium of exchange in market 2, i.e., they are liquid. One can show that in this
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environment, the allocation is the same as the allocation without bonds. The intuition and proof

for this result is straightforward and provided in Kocherlakota (2003, p. 184): "If bonds are

liquid as money, then people will only hold money if nominal interest rates are zero. But then the

bonds can just be replaced by money: there is no difference between the two instruments at all."

An interesting implication of this result is that "any essentiality of nominal bonds can be traced

directly to their (relative) illiquidity (Kocherlakota 2003, p. 184)."

It is straightforward to show that with liquid outside bonds the quantities solve

γ − β

β
= (1− n)

Z εH

0

£
εu0 (qε)− 1

¤
dF (ε) (35)

Comparing (29) and (35) it is clear that for i = 0 the quantities solving these expressions are

the same so the allocations are identical regardless of the bonds’ liquidity properties. For i > 0

the right-hand side of (29) is larger than (35) because the marginal value of money is higher with

illiquid outside bonds. The reason is that now, if an agent brings in money and does not need it,

either because they are a seller or a low ε buyer, he can effectively trade the money for an interest

bearing asset that compensates them for bringing ‘idle’ money into market 1. This increases the

demand for money in market 3 and thus the real value of money balances. As a result, there is

higher expected consumption in market 2. Thus, illiquid bonds will improve the allocation relative

to the liquid bonds case if i > 0. However, i > 0 requires γ > 1.

Figure 1 illustrates the point made here.13 It compares steady-state welfare when bonds are

illiquid or liquid for different inflation rates. At γ = 1 the welfare levels are the same. For γ > 1,

the allocation with illiquid bonds dominates the one where bonds are illiquid. Note that welfare

is increasing for low values of γ when bonds are illiquid. In the range where welfare is increasing

the short-selling constraint is binding. We next explore under which condition it is optimal to set

γ > 1.

13Figure 1 is drawn for the utility function u (q) = (1− α)−1 q1−α with α = 0.5. We also used a uniform distribution
of preference shocks on [0, 2] and set the measure of buyers to n = 0.5 and the discount factor to β = 0.95. We will
use the same specification in all figures that follow. Finally, for Figure 1 we have assumed that the money/bonds
ratio is M0/B0 = 0.5.
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Figure 1: Illiquid vs Liquid Bonds
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Is inflation welfare improving? Since illiquid outside bonds do not improve the allocation at

γ = 1, is it optimal for the monetary authority to create inflation by setting γ > 1? Doing so has

two effects. Raising γ above 1 makes illiquid bonds essential and allows those with low liquidity

needs to be compensated for holding idle balances. This improves welfare. However, the higher

inflation reduces real money balances, expected consumption and welfare. We would like to know

under what conditions inflation is welfare improving.

Proposition 2 Given M0/B0, there exists a critical value ε̆ ∈ (0, εH), which is decreasing in

M0/B0, such that positive steady state inflation is welfare improving if εH > ε̃ > ε̆.

The intuition behind this result is the following. At γ = 1, i = 0 buyers with ε ≤ ε̃ consume

their first-best quantities while others do not. Consequently, if there is a sufficient measure of these

agents (ε̃ > ε̆), then there is a first-order welfare gain from moving some consumption from those

buyers at their first-best quantities to those who are not. However, buyers giving up consumption

on the margin have to be compensated, which can be achieved by giving them interest bearing

bonds. This requires raising γ marginally above one so that i > 0. Thus, for sufficiently large

values of ε̃, the gain from this redistribution of consumption dominates the reduction in average

consumption that occurs from the erosion of real money balances.14 However, at a sufficiently high

14Note that a necessary condition for the welfare improving role of illiquid bonds is that there is more than one
buyer type. With only one buyer type, in equilibrium, all buyers consume less than their first-best quantities for
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inflation rate, γ > γH , then ε̃ = εH and no buyers are constrained on the margin since εu0(q) = 1+i

for all ε. Thus, increasing inflation raises i lowering q for all buyers, which reduces welfare.
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Figure 2: Inflation vs MêB
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Figure 2 compares steady-state welfare in the economy with illiquid bonds for several values

of the money/bonds ratio as a function of inflation γ. At γ = 1 all welfare levels are equal. The

dots correspond to the inflation rates at which the economy switches from being constrained to

unconstrained. One can see that the cutoff value ε̆ is a function of the ratio M0/B0. For small

values of M0/B0 (e.g. M0/B0 = 0.1 in Figure 2) we have ε̆ > ε̃ and so inflation is not welfare

improving. For higher values (e.g. M0/B0 = 0.4) ε̆ falls and the inequality reverses. Consequently,

some inflation is beneficial. In this example, the dots for M0/B0 = 0.4, 0.8, 1.6 also corresponds to

the optimal inflation rate for each economy. It is evident that increasing the ratio M0/B0 is never

welfare decreasing. We discuss the optimal choice of M0/B0 below.

Optimal choice of M0/B0 From (31) there are two factors that affect i: the inflation rate and

the relative supply of money to nominal bonds. Any optimal allocation requires that the marginal

utility of consumption is equalized across all buyers. This requires that the left-hand side of (33)

equals zero implying

γ = 1 +
B0
M0

(1− β) (36)

γ = 1. Consequently, no beneficial redistribution of consumption can occur and inflation merely lowers the quantities
consumed for all buyers, thus lowering welfare.
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Using this expression and (32) we get

εu0 (qε) = γ/β ∀ε.

It is easy to see that the optimal policy is to choose γ to be as small as possible yet keep it above

one. Thus, from (36) this can be achieved by letting B0 → 0 implying γ is arbitrarily close to one.

The reason for having B0 being very small is similar to the arguments given by Kocherlakota (2003).

The intuition is that if the stock of outside bonds is low, the government needs small amounts of

money to redeem them. This means that it can keep the inflation rate low while still keeping the

interest rate positive. To summarize, under the optimal policy the limiting allocation satisfies

εu0 (qε) = 1/β ∀ε. (37)

Thus, when the money-bond ratio is also a policy instrument, the optimal policy makes the nominal

interest rate equals the real interest rate.

The optimal policy is depicted in Figure 2. From (36), for any ratio M0/B0 there is an optimal

inflation rate γ. If we move in tandem the ratio M0/B0 and the inflation rate γ, increasing the

former and decreasing the latter optimally, we trace up the dashed grey curve in Figure 2. In the

limit we obtain the welfare level characterized by the grey dot in Figure 2. This welfare level is

strictly higher than the welfare level obtained when bonds are liquid or if there are no bonds at all.

Why does an increase in M0/B0 improve welfare? For a given value of γ, an increase in M0/B0

means that for the same amount of money creation, more money must be paid out to a smaller stock

of maturing nominal bonds. This means the nominal interest rate increases (see (31) to verify this).

The increase in the nominal interest rate has two positive welfare effects and a negative welfare

effect. First, sellers and low ε buyers receive a higher compensation for carrying idle balances.

This raises the demand for money and thus its real value. Second, as i increases, fewer buyers are

constrained, thereby reducing the inefficiency associated with εu0(q̃) > 1 + i. On the downside, an

increase in i reduces consumption of low ε buyers. However, because these buyers are buying small

quantities of goods, the welfare loss is small. So, on net, the first two effects dominate and welfare

increases in M0/B0.
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Finally, one might ask: how can illiquid bonds rise the level of welfare even though the quantity

in the limiting case approaches zero? In particular, how can they raise the purchasing power of

the agents to such an extend? The trick to understand this is to see that the presence of illiquid

bonds raises the demand for money and hence it’s value even if the quantity is negligible small.

This allows buyers to consume more and thereby improving the allocation in a non-negligible way.

4 Inside Bonds

In this section we analyze the model where there are no outside bonds but inside bonds can be

traded in market 1. In market 1, sellers and low ε buyers can use their idle cash balances to acquire

nominal bonds from the financial intermediary, which are redeemed in market 3. High ε buyers can

issue nominal bonds in market 1 to the financial intermediary and redeem them in market 3. Inside

bonds are perfectly divisible and one inside bond pays off 1 + i units of fiat currency in market 3.

Again, we focus on symmetric and stationary equilibria where all agents follow identical strategies

and where real allocations are constant over time. In a stationary equilibrium end-of-period real

money balances are time-invariant.

Since inside bonds are not held across periods, let V1(m) denote the expected value from entering

market 1 with m units of money, V2j(m, b), j = ε, s, the expected value from entering market 2

with m units of money and b inside bonds, and V3(m, b) the expected value from entering market

3 with m and b.

In the third market, the problem of a representative agent is:

V3 (m, b) = max
x,h,m+1

U (x)− h+ βV1 (m+1)

s.t. x+ φm+1 = h+ φm+ φb (1 + i) .

again yielding the first-order conditions U 0 (x) = 1, φ = βV m
1 (m+1) and the envelope conditions

V m
3 = φ and V b

3 = φ (1 + i).

In the second market, the agents’ problems are unaffected by the types of bonds they hold

so (12)-(13) are unaffected. Using the envelope theorem, the marginal values of bonds and the
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marginal values of money for buyers and sellers at the beginning of the second market are

V b
2ε = V b

2s = φ (1 + i) (38)

V m
2ε = φεu0(qε) and V m

2s = φ. (39)

The first market The first market differs somewhat from the case with outside bonds so we

discuss it in more detail. Let bj denote the quantity of inside bonds purchased by an agent of

type j = ε, s in market 2. If bj < 0, the agent is issuing inside bonds, i.e., he is borrowing. Note

that there is only one short-selling constraint: agents cannot sell more money than they hold.

However, because of the possibility of default agents cannot borrow more than b̄, which implies the

constraint b ≥ −b̄. Agents take this constraint as given. However, in equilibrium the upper bound

b̄ is determined endogenously.

An agent who holds m units of money at the opening of the first market has expected lifetime

utility

V1(m) = (1− n)

Z εH

0
V2ε [m− bε, bε] dF (ε)

+nV2s [m− bs, bs] (40)

where for j = ε, s maxbj V2j [m− bj , bj ] s.t. m− bj ≥ 0 and bj ≥ −b̄. The first-order condition is

−V m
2j + V b

2j − φμj + φθj = 0 (41)

where φμj is the Lagrange multiplier on the short-selling constraint m − bj ≥ 0 and φθj is the

Lagrange multiplier on b ≥ −b̄. Obviously, both can not bind at the same time.

Consider first an agent who will be a producer in market 2. If i < 0, then bs = −b̄ and goods

producers issue bonds to acquire money in market 1. This obviously cannot be an equilibrium and

is ignored for the remainder of the paper which means that θs = 0. If i > 0, it is optimal to spend

your entire money holdings to acquire inside bonds. We can then use (14) and (15) to substitute

V m
2j and V b

2j in (41) to get

μs = i (42)
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If i = 0, a producer is indifferent on how much money to supply. Thus, a producer’s bond demand

is

bs ∈
£
−b̄,m

¤
if i = 0

bs = m if i > 0
(43)

Consider next an agent who will be a buyer in market 2. Since Inada conditions are assumed on

u(q) a buyer will always carry some money from market 1 to market 2. Thus, με = 0. Accordingly,

we can use (14) and (15) to write (41) as follows

εu0(qε) = 1 + i+ θε. (44)

If εu0(qε) = 1 + i, then θε = 0 and bε > −b̄. Finally, if εu0(qε) > 1 + i, then θε > 0 and bε = −b̄.

Thus, a buyer’s bond demand is

bε ∈
£
−b̄,m

¤
if εu0(qε) = 1 + i

bε = −b̄ if εu0(qε) > 1 + i.
(45)

As was the case in the outside bonds economy, because a buyer’s desired consumption is increasing

in ε, there is a critical value for the taste index ε̃ such that

ε̃u0(q̃) = 1 + i (46)

If ε ≤ ε̃, he does not issue the maximal amount of inside bonds while if ε ≥ ε̃ he issues the maximal

amount and consumes

q̃ = φm+ φb̄. (47)

Accordingly, a buyer’s consumption satisfies

qε =

⎧⎪⎨⎪⎩ u0−1 [(1 + i) /ε] if ε ≤ ε̃

u0−1 [(1 + i) /ε̃] if ε ≥ ε̃
(48)

Finally, apply the envelope theorem to equation (40) and using (15) the marginal value of money
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satisfies
∂V1(m, b)

∂m
= (1− n)

Z εH

0
φ
£
εu0(qε) + με

¤
dF (ε) + nφ (1 + μs) (49)

4.1 Stationary equilibria

To derive the symmetric stationary equilibrium we have to solve for the equilibrium quantities

and prices. In any symmetric equilibrium m = M−1. Then use (44), (48) and (49), to write

φ = βV m
1 (m+1) as follows

γ − β (1 + i)

β (1 + i)
= (1− n)

Z εH

ε̃

³ε
ε̃
− 1
´
dF (ε) . (50)

Comparing (50) to (30) we see that the cutoff values and thus the allocations for the outside bond

and inside bond economies will be the same if the nominal interest rate in each economy is the

same. Hence, what needs to be determined is whether or not the nominal interest rates will differ

across the two economies.

We now derive the value of b̄. Since b̄ is a nominal variable what we really want is the real

value ¯≡ φb̄. This quantity is the maximal real amount that an agent is willing to repay in the last

market. For buyers entering the last market with no money, who redeem their bonds, the expected

discounted utility in a steady state is

V3 (m, b) = max
x,h,m+1

U (x)− hε + βV1 (m+1)

where hε is a buyer’s production in market 3 if he redeems his bonds. A defaulting buyer’s expected

discounted utility is bV3 (m, b) = U (bx)− bhε + β bV1 (bm1,+1 )

where the hat indicates the optimal choice by a defaulter. The real borrowing constraint makes

the agent indifferent between redeeming his bonds or defaulting so that V3 (m, b) = bV3 (m, b).

Defaulter When no enforcement exits, agents must voluntarily redeem their bonds. The only

punishment for default is permanent exclusion from the inside bond market. Let bqε denote the
quantity purchased by an agent with preference shock ε who is excluded from the inside bond
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market. It is straightforward to show that the marginal value of money for a defaulter satisfies

γ − β

β
= (1− n)

Z εH

0

£
εu0 (bqε)− 1¤ dF (ε) (51)

while (50) continues to determine the value of money for a non-defaulter. Since an agent who

defaults can only use the money balances he brings into the period to buy goods, then there is a

critical value ε̂ such that

ε̂u0 (bq) = 1 (52)

His consumption is

bqε =
⎧⎪⎨⎪⎩ q∗ε if ε ≤ ε̂

u0−1 (1/ε̂) if ε ≥ ε̂
(53)

which means that he consumes the first-best quantity q∗ε for ε ≤ ε̂ and the same quantity u0−1 (1/ε̂)

for all ε ≥ ε̂.

Real borrowing constraint Given a borrowing constraint there are two possibilities: 1) the

borrowing constraint is nonbinding for all agents or 2) it binds for some agents. The following

Lemma is used for the remainder of this section.

Lemma 1 The real borrowing constraint is

¯=
β

(1 + i) (1− β)

∙
(1− n)Ψ (qε, bqε) +µγ − β

β

¶
(q̂ −Q)

¸
(54)

where

Ψ (qε, q̂ε) =

Z εH

0
[εu (qε)− qε] dF (ε)−

Z εH

0
[εu (q̂ε)− q̂ε] dF (ε) .

We can now define a monetary equilibrium with inside bonds.

Definition 2 A monetary equilibrium with unconstrained borrowing is a set
©
qε, bqε, ,̄ i, ε̂, ε̃

ª
sat-
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isfying ε̃ ≥ εH , (48), (53), (54) and

0 < H < ¯ (55)

γ − β

β
= i (56)

γ − β

β
= (1− n)

Z εH

ε̂

³ε
ε̂
− 1
´
dF (ε) (57)

Equation (56) is obtained by using (46) in (50) while (57) results from substituting (52) in (51).

Definition 3 A monetary equilibrium with constrained borrowing is a set
©
qε, bqε, ,̄ i, ε̂, ε̃

ª
satisfying

(48), (53), (54) and

¯ = u0−1 [(1 + i) /ε̃]−Q (58)

γ − β (1 + i)

β (1 + i)
= (1− n)

Z εH

ε̃

³ε
ε̃
− 1
´
dF (ε) (59)

γ − β

β
= (1− n)

Z εH

ε̂

³ε
ε̂
− 1
´
dF (ε) (60)

Equation (58) comes from a credit constrained borrower’s cash constraint in market 2 while

(59) is derived using (48) for ε ≤ ε̃ in (50) and u0 (qε) = u0 (q̃) for ε > ε̃. Note that from (59) and

(60) since the right-hand sides are decreasing functions of ε that ε̃ > ε̂ if i > 0.

Proposition 3 For a value β̄ sufficiently close to one, if β ∈
£
β̄, 1

¢
then there is an ı̂ > 0 such

that:

(i) If i ≥ ı̂, then a unique monetary equilibrium with unconstrained borrowing exists.

(ii) If 0 < i < ı̂, then a monetary equilibrium with constrained borrowing may exist.

(iii) If i = 0 a unique monetary equilibrium without borrowing exists.

Since i = 0 at γ = 1 inside bonds are not traded and the allocation is the same as the illiquid

outside bonds allocation at i = 0 at γ = 1.

4.2 Is inflation welfare improving?

In an unconstrained borrowing equilibrium, it is straightforward to show that inflation is always

welfare reducing since it reduces the real value of money balances and consumption for all agents.
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However, in a constrained borrowing equilibrium, it may be optimal for the monetary authority to

set γ > 1. As was the case with outside bonds, at γ = 1 and i = 0 some buyers consume their first-

best quantities while others do not. Consequently, there is a first-order welfare gain from moving

some consumption from those buyers at their first-best quantities to those who are not. In addition

to this welfare gain, there is another positive welfare effect from raising γ above 1 — it increases the

cost of being excluded from the banking system. This relaxes the borrowing constraint and creates

a first-order welfare gain. However, the higher inflation reduces real money balances and expected

consumption, which lowers welfare.15 We can thus state the following

Proposition 4 In a constrained borrowing equilibrium, if β >
h
1 + n+ (1− n)

R ε̃
0 dF (ε̃)

i−1
, then

a positive steady state inflation rate maximizes welfare ∀ε̃.

Propositions 3 and 4 are illustrated in Figure 3. It displays welfare as function of γ for the

economy with inside bonds and an economy without bonds. One can see that the welfare levels are

equal at γ = 0. Then for γ ∈ (0, γ∗) welfare is increasing in γ, and for γ > γ∗ it is decreasing. The

grey dot represents the inflation rate γ̃ at which the economy switches from being constrained to

unconstrained.
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Figure 3: Inside Bonds
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15BCW show that for a degenerate distribution for ε, inflation is always welfare increasing for sufficiently high
values of β. In this section we extend those results to the case of a non-degenerate distribution of ε.
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5 Inside vs outside bonds

In what follows we compare the economy with inside bonds with the one with outside bonds. For

this comparison two facts are key. First, at γ = 1 the allocations in both economies are the same.

Second, for sufficiently high inflation rates (34) and (56) are the same so the allocation in an

unconstrained borrowing equilibrium is the same as the illiquid outside bond allocation when γ is

sufficiently high. Thus, differences arise for low inflation rates only.

Proposition 5 Any allocation attained in the economy with inside bonds can be replicated in the

economy with outside bonds. The converse is not true.

The proof of Proposition 5 is as follows. Consider any allocation in the economy with inside

bonds for some γI . This allocation is characterized by some interest rate, say iI . Choose the same

inflation γ = γI for the economy with outside bonds and some ratio M/B. From (31), this yields

some interest rate i. Then, by changing M/B, one can attain the same interest rate i = iI as in

the inside bonds economy. Since γ and i are the same in both economies, from (30) and (59), the

cutoff values ε̃ are also the same. It then follows, from (24) and (48), that all quantities qε are the

same. The converse is not true, since there are allocations in the outside bonds that cannot be

attained in the inside bonds economy. This is illustrated in Figure 4.

Corollary 1 The best allocation with outside bonds dominates the best allocation with inside bonds.

Corollary 1 is illustrated in Figure 4. The dashed line plots steady-state welfare in the outside

bonds economy for different values of γ when M0/B0 → ∞. It is clear that welfare is strictly

decreasing in γ and the optimal value of γ is positive but infinitesimally close to 1. The solid line

plots welfare in the inside bonds economy without enforcement. It is clear that when borrowing

constraints bind, welfare is strictly lower than in the outside bond economy.
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What is the intuition for this result? In the inside bond economy, there is only one instrument, γ,

to solve two inefficiencies — the intensive margin of consumption and the distribution of consumption

across agents. Furthermore, γ affects the individual decisions to default. In the outside bond

economy where M0/B0 is endogenously chosen means the government now has two instruments to

deal with two inefficiencies and individual default is not an issue. Thus, it is not surprising that

the allocation with outside bonds dominates inside bonds in this case.

5.1 Enforcement of inside bonds

We now depart from one of our main assumptions by assuming that in the inside bonds economy

redemption of inside bonds can be forced on agents. This allows us to state an equivalence result.

When redemption can be forced, default is not feasible and agents have no borrowing constraints. It

is straightforward to show that in a stationary equilibrium, the interest rate and all of the quantities
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qε are determined by16

γ − β

β
= i (61)

εu0 (qε) = 1 + i (62)

The first equation comes from the agent’s decision of how much money to bring into the period. In

equilibrium they are indifferent between acquiring an additional unit of money in the centralized

market or borrowing it in the inside bond market. The second equation comes from the buyers’

decisions of how much to borrow. Since qε is unambiguously decreasing in i, it follows that γ = 1

generates the best allocation. This immediately implies that the best allocation with enforcement

satisfies

εu0 (qε) = 1/β ∀ε. (63)

This immediately implies the following:

Proposition 6 Assume repayment of loans can be enforced in the inside bonds economy. Then,

the best allocation that can be attained in the economy with outside bonds can be replicated in the

economy with inside bonds.

The proof follows from comparing (??) with (63).

6 Conclusion

When agents are liquidity constrained, two options exist to relax this constraint: sell assets or issue

debt. We have analyzed and compared the welfare properties of these two options in a model where

agents can either issue nominal inside bonds or sell nominal outside bonds. The key assumption of

our analysis is the absence of collection powers by private agents and the government. The following

results emerged from our analysis. First, for any positive inflation rate, bonds are essential in both

economies, and thus generate societal benefits. Second, we showed that for sufficiently high inflation

rates, the allocations in the two economies are the same but they differ for low inflation rates. Third,

any allocation attained in the economy with inside bonds can be replicated in the economy with

16See BCW (2006) for the derivation.
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outside bonds. The converse is not true. Finally, under the optimal policies, the optimal allocation

with illiquid outside bonds dominates the allocation with inside bonds.
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7 Appendix

Proof of Proposition 1. Consider γ < γ̄. From (33) define

f (ε̃) ≡ (1− n)
1

ε̃

Z εH

ε̃
εdF (ε)− (1− n)

Z εH

ε̃
dF (ε) .

We have f 0 (ε̃) < 0 with limε̃→0 f (ε̃) = +∞ and f (εH) = 0 so if 1 + (1− γ)M0/B0 ≥ β or

γH = 1+ (1− β)B0/M0 ≥ γ then a unique 0 < ε̃ ≤ εH solves (33). Otherwise, for γ̄ > γ > γH we

have ε̃ > εH and

qε = u0−1

⎛⎝ γ

ε
h
1 + (1− γ) M0

B0

i
⎞⎠

for all ε.

Proof of Proposition 2. Substitute (2) into (1) and differentiate (1− β)W with respect to γ

to get

(1− β)
dW
dγ

¯̄̄̄
γ=1

= (1− n)

Z εH

0

£
εu0 (qε)− 1

¤ dqε
dγ

¯̄̄̄
γ=1

dF (ε) > 0.

Note first that for all ε ≤ ε̃, εu0 (qε) − 1 = 0 at γ = 1 since qε = q∗ε . It remains to show that

dqε
dγ

¯̄̄
γ=1

> 0 for all ε > ε̃ since εu0 (qε)−1 > 0 for all ε > ε̃. Since qε = qε̃ for all ε ≥ ε̃ it is sufficient

to show that dqε̃
dγ

¯̄̄
γ=1

> 0.

Totally differentiate (32)

u0(q̃)dε̃+ ε̃u00(q̃)dq̃ =
1 + (1− γ) M0

B0
+ γM0

B0h
1 + (1− γ) M0

B0

i2 dγ

so

dq̃

dγ
=
−1

ε̃u00(q̃)

⎧⎪⎨⎪⎩u0(q̃)
dε̃

dγ
− 1h

1 + (1− γ) M0
B0

i2 µ1 + M0

B0

¶⎫⎪⎬⎪⎭ (64)

Totally differentiate (33)

− M0

βB0
dγ = − (1− n)

1

ε̃2

Z εH

ε̃
εdF (ε) dε̃

dε̃

dγ
=

M0

βB0 (1− n)

ε̃2R εH
ε̃ εdF (ε)

> 0
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Substitute into (64) to get

dq̃

dγ
=
−1

ε̃u00(q̃)

⎧⎪⎨⎪⎩u0(q̃)
M0

βB0 (1− n)

ε̃2R εH
ε̃ εdF (ε)

− 1h
1 + (1− γ) M0

B0

i2 µ1 + M0

B0

¶⎫⎪⎬⎪⎭
Evaluate at γ = 1 and ε̃u0(q̃) = 1

dq̃

dγ

¯̄̄̄
γ=1

=
−1

ε̃u00(q̃)

M0

B0

∙
ε̃

β (1− n)
R εH
ε̃ εdF (ε)

− 1− B0
M0

¸

which is positive if
ε̃

β (1− n)
R εH
ε̃ εdF (ε)

> 1 +
B0
M0
≡ γ̄

Define

z (ε̃) ≡ ε̃

β (1− n)
R εH
ε̃ εdF (ε)

with

z0 (ε̃) ≡
R εH
ε̃ εdF (ε) + ε̃2dF (ε̃)

β (1− n)
£R εH

ε̃ εdF (ε)
¤2 > 0

Note that z (ε̃) is continuous with z (0) = 0 and z (εH) → +∞. Thus, a unique value ε̆ solves

z (ε̆) = γ̄ so if ε̃ > ε̆ then inflation is welfare improving.

Proof of Lemma 1. Consider a borrower who borrowed −b̄ in market 1 and is considering

defaulting on his issued bonds in market 3.

If he redeems his bonds, he gets the equilibrium expected discounted utility in a steady state is

V3 (m, b) = U (x∗)− hε + βV1 (m1,+1 )

where hε is his production in the market 3 if he repays his loan. A defaulter’s expected discounted

utility is bV3 (m, b) = U (bx)− bhε + β bV1 (bm1,+1 )

where the hat indicates the optimal choice by a defaulter. The real borrowing constraint ¯ = φb̄
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satisfies V3 (m, b) = bV3 (m, b) or

U (x∗)− hε + βV (m1,+1 ) = U (bx)− bhε + β bV (bm1,+1 )

Since bx = x∗ we have hε − bhε = β
h
V (m1,+1 )− bV (bm1,+1 )

i
. The continuation payoffs are

(1− β) bV (bm1,+1 ) =

Z εH

0
[(1− n) εu (bqε)− nbqs] dF (ε) + U (x∗)− bh

(1− β)V (m1,+1 ) =

Z εH

0
[(1− n) εu (qε)− nqs] dF (ε) + U (x∗)− h.

where h is expected hours worked for a nondefaulter. Accordingly, we have

hε − bhε = β

1− β

h
(1− n)Ψ (qε, bqε) + bh− h

i
. (65)

where Ψ (qε, bqε) = R εH
0 [εu (qε)− qε] dF (ε) −

R εH
0 [εu (bqε)− bqε] dF (ε) > 0. We get this expression

for Ψ (qε, bqε) because costs are linear sellers are indifferent as to how much they produce thus we
just assume that the deviator produces in the decentralized market q̂s =

¡
1−n
n

¢ R εH
εL
bqεdF (ε) in each

period. Furthermore, from market clearing we have nqs = (1− n)
R εH
0 qεdF (ε) .

Deriving hε − bhε: If the buyer redeems his bonds he works
hε = x∗ + φm1,+1 − φ

£
m1 + b̄− pqε

¤
− φτM−1 + φb̄ (1 + i)

= x∗ + φm1,+1 − φ [m1 − pqε]− φτM−1 + φb̄i

= x∗ + qε + ī

where we use the equilibrium condition m1,+1 = m1 + τM−1 = γm1. If he defaults on his bonds,

he works

bhε = x∗ + φbm1,+1 − φ
£
m1 + b̄− pqε

¤
− φτM−1

= x∗ + φ (bm1,+1 −m1,+1)− ¯+ qε

= x∗ + φγ (bm1 −m1)− ¯+ qε

where we use the equilibrium condition that a defaulter’s money balances must grow at the rate γ
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so bm1,+1 = γ bm1. Thus

hε − bhε = (1 + i) ¯− φγ (bm1 −m1) (66)

Deriving bh− h: Once the agent defaults, as a buyer he spent pbqε units of money so his hours
worked are

bhε = x∗ + φm̂1,+1 − φ (bm1 − pbqε)− φτM−1

= x∗ + φ (bm1,+1 − bm1) + φpbqε − φ (m1,+1 −m1)

= x∗ + (γ − 1)φ (bm1 −m1) + φpbqε
For a seller we have

bhs = x∗ + φbm1,+1 − φ (bm1 + pbqs)− φτM−1

= x∗ + (γ − 1)φ (bm1 −m1)− φp

µ
1− n

n

¶Z εH

0
bqεdF (ε)

So for a defaulter expected hours worked are

bh = (1− n)bhε + nbhs = x∗ + (γ − 1)φ (bm1 −m1)

while if he does not deviate he works h = x∗ and so

bh− h = (γ − 1)φ (bm1 −m1) (67)

Solving for :̄ Using (65)-(67) we get

¯=
β

(1− β) (1 + i)

∙
(1− n)Ψ (qε, bqε) +µγ − β

β

¶
(φbm1 − φm1)

¸

In equilibrium φbm1 = bq, and using market clearing φm1 = φM−1 = Q ≡ (1− n)
R εH
0 qεdF (ε). So

we have

¯=
β

(1− β) (1 + i)

∙
(1− n)Ψ (qε, bqε) +µγ − β

β

¶
(bq −Q)

¸
To know whether ¯> 0 we need to determine the sign of right hand side. Substituting for Ψ (qε, bqε)
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and Q we need

(1− n)

Z εH

0
[εu (qε)− qε] dF (ε)− (1− n)

Z εH

0
[εu (bqε)− bqε] dF (ε)+µ

γ − β

β

¶ ∙bq − (1− n)

Z εH

0
qεdF (ε)

¸
> 0

We have
γ − β

β
= (1− n)

Z εH

0

£
εu0 (bqε)− 1¤ dF (ε) (68)

Substitute in to get

(1− n)

Z εH

0
[εu (qε)− qε] dF (ε)− (1− n)

Z εH

0
[εu (bqε)− bqε] dF (ε)

+ (1− n)

Z εH

0

£
εu0 (bqε)− 1¤ dF (ε) ∙bq − (1− n)

Z εH

0
qεdF (ε)

¸
> 0

Z εH

0
[εu (qε)− qε] dF (ε)−

Z εH

0
[εu (bqε)− bqε] dF (ε)

+

Z εH

0

£
εu0 (bqε)− 1¤ dF (ε) ∙bq − (1− n)

Z εH

0
qεdF (ε)

¸
> 0

In an unconstrained borrowing equilibrium we have

γ − β

β
=

Z εH

0

£
εu0 (qε)− 1

¤
dF (ε) (69)

So (68) and (69) yield

1− n =

R εH
0 [εu0 (qε)− 1] dF (ε)R εH
0 [εu0 (bqε)− 1] dF (ε) < 1

Substitute this in

Z εH

0
[εu (qε)− qε] dF (ε)−

Z εH

0
[εu (bqε)− bqε] dF (ε)

+

Z εH

0

£
εu0 (bqε)− 1¤ dF (ε) ∙bq − R εH0 [εu0 (qε)− 1] dF (ε)R εH

0 [εu0 (bqε)− 1] dF (ε)
Z εH

0
qεdF (ε)

¸
> 0
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Z εH

0
[εu (qε)− qε] dF (ε)−

Z εH

0
[εu (bqε)− bqε] dF (ε)

+bq Z εH

0

£
εu0 (bqε)− 1¤ dF (ε)− Z εH

0
qεdF (ε)

Z εH

0

£
εu0 (qε)− 1

¤
dF (ε) > 0

Rewrite as

Z εH

0
[εu (qε)− qε] dF (ε)−

Z εH

0
[εu (bqε)− bqε] dF (ε)

>

Z εH

0
qεdF (ε)

Z εH

0

£
εu0 (qε)− 1

¤
dF (ε)− bq Z εH

0

£
εu0 (bqε)− 1¤ dF (ε)

Divide by sides by
R εH
0 qεdF (ε)−

R εH
0 bqεdF (ε) to get

R εH
0 [εu (qε)− qε] dF (ε)−

R εH
0 [εu (bqε)− bqε] dF (ε)R εH

0 qεdF (ε)−
R εH
0 bqεdF (ε)

>

Z εH

0

£
εu0 (qε)− 1

¤
dF (ε)

R εH
0 qεdF (ε)− bq εH

0 [εu0(qε)−1]dF (ε)
εH
0 [εu0(qε)−1]dF (ε)R εH

0 qεdF (ε)−
R εH
0 bqεdF (ε)

which always holds because the LHS is greater than
R εH
0 [εu0 (qε)− 1] dF (ε) and

R εH
0 qεdF (ε)− bq εH

0 [εu0(qε)−1]dF (ε)
εH
0 [εu0(qε)−1]dF (ε)R εH

0 qεdF (ε)−
R εH
0 bqεdF (ε) < 1

So ¯> 0 in an unconstrained equilibrium.

Proof of Proposition 3. In an unconstrained equilibrium we have unique values for qε and

i = (γ − β) /β. All that is left is to show is that H ≤ ¯ or

H ≤
β

(1− β) (1 + i)
(1− n)Ψ (qε, bqε) + βi (bq −Q)

(1− β) (1 + i)

Since all agents (including the one with εH) are unconstrained we have H = qεH − φM−1 and

φM−1 = Q so we have

(1− β) (1 + i) (qεH −Q) ≤ β (1− n)Ψ (qε, bqε) + iβ (bq −Q) (70)
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Define

∆ (i, β) ≡ (1− β) (1 + i) (qεH −Q)− β (1− n)Ψ (qε, bqε)− iβ (bq −Q)

So we need∆ (i, β) ≤ 0 in an unconstrained borrowing equilibrium. Note that∆ (0, β) = (1− β)
¡
q∗εH −Q∗

¢
>

0 since Ψ (q∗ε , bq∗ε) = 0 at i = 0. Thus, (70) is violated at the Friedman rule.
Consider solutions to ∆ (i, β) = 0. Note that ∆(0, 1) = 0 since qε|(0,1) = bqε|(0,1) = q∗ε and

Ψ (q∗ε , bq∗ε) = 0. Let ∆i (i, β) ≡ ∂∆(i,β)
∂i . Then, we have

∆i (i, β) = (1− β) (qεH −Q) + (1− β) (1 + i)

µ
∂qεH
∂i
− ∂Q

∂i

¶
−β (1− n)

∂Ψ (qε, bqε)
∂i

− β (bq −Q)− βi

µ
∂bq
∂i
− ∂Q

∂i

¶

Since the partial derivatives in this expression are all continuous∆i (i, β) is continuous and non-zero

with

∆i (0, 1) = −β (bq −Q)|(0,1) = −
∙
q∗εH − (1− n)

Z εH

0
q∗εdF (ε)

¸
< 0.

since ∂Ψ(qε,qε)
∂i

¯̄̄
(0,1)

= 0 and bq|(0,1) = q∗εH .

Let ∆β (i, β) ≡ ∂∆(i,β)
∂β . Then, we have

∆β (i, β) = −(1 + i) (qεH −Q) + (1− β) (1 + i)

µ
∂qεH
∂β
− ∂Q

∂β

¶
− (1− n)Ψ (qε, bqε)− β (1− n)

∂Ψ (qε, bqε)
∂β

− i (bq −Q)− iβ

µ
∂bq
∂β
− ∂Q

∂β

¶

Therefore ∆β (0, 1) is continuous and

∆β (0, 1) = −
∙
q∗εH − (1− n)

Z εH

0
q∗εdF (ε)

¸
< 0.

since ∂Ψ(qε,qε)
∂β

¯̄̄
(0,1)

= 0. By the implicit function theorem, it follows that, for β arbitrarily close to

one, the expression ∆(i, β) = 0 defines i as an implicit function of β, i.e., i = ı̂(β).

Furthermore, we have
di

dβ

¯̄̄̄
(0,1)

= −∆β (0, 1)

∆i (0, 1)
= −1,

so that as β falls i grows. It follows from the implicit function theorem that ∆(̂ı, β) = 0 for a
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unique ı̂ > 0 and β sufficiently close to one.

Establishing existence and uniqueness of the unconstrained credit equilibrium for i > ı̂. Above

we established that ∆ (0, β) > 0 for all 0 < β < 1. Fix β close to 1. We have established that

∆ (̂ı, β) = 0 for some ı̂ > 0. By continuity, we have that if i > ı̂ then ∆ (0, β) < 0 and so an

unconstrained equilibrium exists. For 0 ≤ i < ı̂, then ∆ (i, β) ≥ 0 which violates (70). This

establishes the first part of Proposition 3.

Consider 0 ≤ i < ı̂. In general we cannot prove existence or uniqueness. We now characterize

the properties of (54) and (58)-(60). At i = 0, (59)-(60) imply ε̃ = ε̂ so q̃ = bq and Ψ (qε, bqε) = 0.
Then from (54) and (58) we have γ = 1. This implies there is one and only one monetary policy

consistent with a nominal interest rate of zero and also satisfies (58). Thus, a monetary equilibrium

with credit does not exist at γ = 1.

Furthermore, we have
di

dγ

¯̄̄̄
γ=1

=
1

1− β
> 0 (71)

To obtain this, use (58) to replace ¯ in (54) and then totally differentiate the resulting expression:

(q̃ −Q) (1 + i) =
β (1− n)

1− β
Ψ (qε, bqε) +µγ − β

1− β

¶
(bq −Q)

(1 + i) (dq̃ − dQ) + (q̃ −Q) di

=
β (1− n)

1− β

½∙Z εH

0
εu0 (qε) dqε − dqε

¸
dF (ε)−

∙Z εH

0
εu0 (q̂ε) dbqε − dbqε¸ dF (ε)¾

+
β

1− β

∙µ
γ − β

β

¶
(dbq − dQ) +

1

β
(bq −Q) dγ

¸

Evaluate at i = 0 and γ = 1 to get

(dq̃ − dQ) + (q̃ −Q) di

=
β (1− n)

1− β

½∙Z εH

ε̃
εu0 (qε)− 1

¸
dF (ε) dq̃ −

∙Z εH

ε̂
εu0 (q̂ε)− 1

¸
dF (ε) dbq¾

+
β

1− β

∙µ
γ − β

β

¶
(dbq − dQ) +

1

β
(bq −Q) dγ

¸
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Note
£R εH

ε̃ εu0 (qε)− 1
¤
dF (ε) =

£R εH
ε̂ εu0 (q̂ε)− 1

¤
dF (ε) = 1−β

β and use q̃ = bq and (59)-(60) to get
dq̃ − dQ+ (bq −Q) di =

β

1− β

µ
1− β

β
dq̃ − 1− β

β
dbq¶

+
β

1− β

∙µ
1− β

β

¶
(dbq − dQ) +

1

β
(bq −Q) dγ

¸

This expression reduces to (71).

Proof of Proposition 4. In equilibrium, welfare is given by (1). Again, using (2) differentiate

(1) with respect to γ to get

(1− β)
dW
dγ

¯̄̄̄
γ=1

= (1− n)

Z εH

0

£
εu0 (qε)− 1

¤ dqε
dγ

¯̄̄̄
γ=1

dF (ε) > 0.

Since εu0 (qε)− 1 = 0 for all ε ≤ ε̃ at γ = 1, and qε = q̃ for all ε ≥ ε̃, welfare will be increasing in γ

if dq̃
dγ

¯̄̄
γ=1

> 0.

Using εu0 (qε) = 1 + i for all ε ≤ ε̃ and qε = q̃ for all ε ≥ ε̃ (50) can be written as

γ − β

β
= (1− n)u0 (q̃)

Z εH

ε̃
εdF (ε) + (1− n) (1 + i)

Z ε̃

0
dF (ε)− 1 + n+ ni (72)

Totally differentiate (72):

1

β
dγ = (1− n)u00 (q̃) dq̃

Z εH

ε̃
εdF (ε)− (1− n)

£
ε̃u0 (q̃)− (1 + i)

¤
dF (ε̃) dε̃

+

∙
n+ (1− n)

Z ε̃

0
dF (ε)

¸
di

Using ε̃u0 (q̃) = 1 + i we have

1

β
dγ = (1− n)u00 (q̃) dq̃

Z εH

ε̃
εdF (ε) +

∙
n+ (1− n)

Z ε̃

0
dF (ε)

¸
di (73)

Substituting (71) into (73) gives

1

β
dγ =

∙
(1− n)u00 (q̃)

Z εH

ε̃
εdF (ε)

¸
dq̃ +

∙
n+ (1− n)

Z ε̃

0
dF (ε)

¸
1

1− β
dγ
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Thus

dq̃

dγ

¯̄̄̄
γ=1

=
1− β − β

h
n+ (1− n)

R ε̃
0 dF (ε)

i
β (1− β) (1− n)u00 (q̃)

R εH
ε̃ εdF (ε)

The denominator is negative. So dq̃
dγ

¯̄̄
γ=1

> 0 and (1− β) dW
dγ

¯̄̄
γ=1

> 0 if

β >
1

1 + n+ (1− n)
R ε̃
0 dF (ε)

.
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