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1. INTRODUCTION

We consider an environment where money is necessary to support exchange, and

where an economic agents may be imperfectly informed about the future exchange

opportunities of their trading partners. This leads to an inefficiency, relative to full

information, and monetary policy can potentially alter this inefficiency. The role of

monetary policy in this context depends critically on the ability of the central bank

to intervene differentially across markets.

The basic structure of the model builds on Lagos and Wright (2005). Here, there

is segmentation in centralized markets, and the price of goods in terms of money will

in general differ across these markets. In the decentralized market, there is random

bilateral matching and monetary exchange, and agents who meet will be privately

informed concerning their centralized market location in the next period. Thus, there

is asymmetric information concerning how trading partners value money. There are

elements of the bargaining problem in the decentralized market that conform to the

features of standard adverse selection environments, such as Maskin and Riley (1984).

However, a key element of the problem is that cash constraints alter the outcomes,

and in this way our analysis shares something with the work of Ennis (2007).

The model is also related to Lucas (1972). In Lucas’s competitive environment,

producers can be fooled by the central bank into producing more or less than what

is optimal, as these producers have imperfect information about relative prices. In

our model, buyers of goods are imperfectly informed concerning how sellers value the

money offered in exchange for goods. This implies that contracts are distorted in order

to induce self-selection, and these distortions will vary with monetary intervention by

the central bank.

In general, prices will differ in equilibrium across the segmented centralized mar-

kets, and this creates a private-information inefficiency in decentralized trade. If the
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central bank can intervene in all centralized markets, then a Friedman rule equalizes

prices across centralized markets and corrects the standard intertemporal monetary

distortion, even if the central bank is constrained to making the same lump-sum

money transfer to all agents. If there is financial trading (essentially a federal funds

market) across centralized markets, then prices are equalized across markets and a

Friedman rule is optimal, no matter who is on the receiving end of the central bank’s

lump-sum transfers.

The interesting case is the one where the central bank can intervene in only one

centralized market. The central bank would like to intervene in such a way as to

alter the distribution of money balances across centralized markets in each period,

and to correct the intertemporal monetary distortion. However, the central bank

cannot correct both the private information friction and the intertemporal monetary

distortion simultaneously, and a Friedman rule is in general suboptimal.

2. THE MODEL

The basic structure of the model is derived from Lagos and Wright (2005), and

we add some locational and informational frictions. Time is discrete and there is a

continuum of agents with unit mass. Each agent is infinite-lived and maximizes

E0

∞X
t=0

βt[u(ct)− lt],

where β ∈ (0, 1), ct is consumption of the unique perishable consumption good,

and lt is labor supply. Assume that u(·) is twice continuously differentiable, strictly

increasing, and strictly concave, with u(0) = 0, u0(0) = ∞, and u0(∞) = 0. Let q∗

denote the solution to u0(q∗) = 1. Each agent possesses a technology which permits

the production of one unit of the consumption good for each unit of labor supplied,

and no agent can consume his or her own output.

In periods t = 0, 2, 4, ..., agents are randomly allocated between two locations
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indexed by i = 1, 2. Let ρ denote the probability that an agent goes to location 1,

and 1− ρ the probability of going to location 2, where 0 < ρ < 1. Goods and agents

cannot be moved between the two locations. Exchange occurs competitively in even

periods in each location. At the beginning of periods t = 1, 3, 5, ..., an agent learns

whether he or she will be a buyer or a seller during the current period. For an agent

who is in location i during period t, for t even, the probability of being a buyer in

period t+1 is αi, and the probability of being a seller is 1−αi, where 0 < αi < 1 for

i = 1, 2. Assume that α1 > 1
2
, and that

α2 =
1− 2α1ρ
2(1− ρ)

,

which guarantees that half the population consists of buyers (and the other half

consists of sellers) during an odd period. We need to assume that

α1ρ <
1

2
,

which assures that α2 > 0. Thus, agents in location 1 during an even period have

a higher probability of being buyers during the next odd period than is the case for

agents in location 2.

At the beginning of an odd period, each agent first learns whether he or she is a

buyer or seller during the current period, and then each buyer is randomly matched

with a seller. Trade is anonymous in these pairwise matches, so if exchange is to take

place the seller must be willing to accept money for the consumption goods that he

or she can produce. When an agent learns if he or she is a buyer or seller at the

beginning of an odd period, he or she also learns what his or her location will be in

the next even period, and this is assumed to be private information.

The setup of the model is illustrated in Figure 1.
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CENTRALIZED EXCHANGE

Let W i
t (m) be the value function of an agent with m units of money at location

i, for t = 0, 2, 4, ..., and let V i
t (m) be the value function of an agent with m units

of money in decentralized market who resided in location i in period t − 1 (before

learning period t buyer/seller status and period t+ 1 location), for t = 1, 3, 5, .... We

then have

W i
t (m) = max

(ct,lit,mi
t+1)∈R3+

£
u (ct)− lit + βV i

t+1

¡
mi

t+1

¢¤
subject to

ct + φitm
i
t+1 = lit + φitm+ φitτ

i
t. (1)

Here, φit is the value of money in units of consumption goods in location i = 1, 2, and

τ it is a lump-sum money transfer from the central bank which we allow at this stage

to depend on the agent’s location. Suppose there is an interior solution for ct and lit

in every even period. Then, for each i = 1, 2, we have

W i
t (m) = φitm+W i

t (0) (2)

where

W i
t (0) = u (q∗)− q∗ + φitτ

i
t + max

mi
t+1∈R+

£
−φitmi

t+1 + βV i
t+1

¡
mi

t+1

¢¤
(3)

Note from (2) that, as in Lagos and Wright (2005), the value function W i
t (m) is

linear in m. Further, since agents are randomly allocated to locations 1 and 2 in even

periods, the per capita stock of money must always be the same in each location in

even periods. Ultimately we will show that, as in Lagos and Wright (2005), all agents

(regardless of location) choose to hold the same quantity of nominal money balances

at the end of any even period.
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DECENTRALIZED EXCHANGE

There will be four kinds of meetings that can occur between buyers and sellers

during an odd period t, which we will index by (i, j), where i, j = 1, 2, with i denoting

the type of the buyer, and j the type of the seller. Here, “type” refers to the period

t+ 1 location of the agent. Let qijt denote the quantity of goods provided by a type

j seller to a type i buyer, in exchange for dijt units of money. In a meeting between

a buyer and a seller, let the buyer have m units of money, and assume that he or she

makes a take-it-or-leave-it offer to the seller. Recall that type is private information,

so the buyer does not know the location that the seller will take up next period. This

information is critical, as the agent’s location in the next centralized market will tell

the buyer how the seller values the money that the buyer offers in exchange for goods.

The problem that the buyer faces when meeting a seller is much like the problem of a

monopolist selling goods to heterogeneous buyers whose types are private information,

as captured for example in the adverse selection model of Maskin and Riley (1984).

A key difference in this problem, however, is that the money balances held by the

buyer potentially constrain the array of contracts that can be offered to the seller.

Now, consider the problem faced by a buyer of type i. In general, this buyer will offer

a choice of two contracts to the seller, (qi1t , d
i1
t ) and (q

i2
t , d

i2
t ), intended respectively for

buyers of types 1 and 2. The utility received by the buyer from an accepted contract

is u(qijt )− βφit+1d
ij
t , given (2). Buyer i then chooses the two contracts to maximize

ρ[u(qi1t )− βφit+1d
i1
t ] + (1− ρ)[u(qi2t )− βφit+1d

i2
t ]. (4)

Each contract must be individually rational for each type of seller, or

−qijt + βφjt+1d
ij
t ≥ 0, for j = 1, 2, (5)

and each contract must be incentive compatible for each type of seller, or

−qijt + βφjt+1d
ij
t ≥ −qikt + βφjt+1d

ik
t , for j = 1, 2 and k 6= j. (6)
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Further, the quantities of money that can be offered in exchange to each type of seller

cannot exceed m, that is the cash constraints

dijt ≤ m, for j = 1, 2, (7)

must hold.

Now, conjecture that

φ1t+1 > φ2t+1, (8)

which we will later show holds in equilibrium. We can then characterize the optimal

contracts offered by a type i buyer with the following lemmas.

Lemma 1 The optimal contract offered by a type i buyer to a type 2 seller yields zero

surplus to the seller. That is, the individual rationality constraint holds with equality

for the type 2 seller, or

−qi2t + βφ2t+1d
i2
t = 0 (9)

Proof. Suppose −qi2t + βφ2t+1d
i2
t > 0 at the optimum. Then, from (6) and (8), we

have

βφ1t+1d
i1
t − qi1t ≥ βφ1t+1d

i2
t − qi2t > βφ2t+1d

i2
t − qi2t > 0

so that the optimal contracts offered by the buyer to each seller give both sellers

strictly positive surplus. This implies that both di1t and di2t can be reduced, holding

constant qijt , j = 1, 2, in such a way that constraints (5)-(7) continue to hold, while

increasing the value of the objective function in (4). Thus the contracts are not

optimal, a contradiction.

Lemma 2 The incentive constraint for the type 1 seller binds at the optimum. That

is,

−qi1t + βφ1t+1d
i1
t = −qi2t + βφ1t+1d

i2
t (10)
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Proof. Suppose −qi1t +βφ1t+1d
i1
t > −qi2t +βφ1t+1d

i2
t at the optimum. Then, given (8),

we have

βφ1t+1d
i1
t − qi1t > 0,

which implies that di1t can be reduced in such a way that the constraints (5)-(7)

continue to hold, while increasing the value of the objective function in (4). Thus the

contracts are not optimal, a contradiction.

Lemma 3 The optimal contract offered to the type 1 seller gives the seller strictly

positive surplus. That is, the individual rationality constraint for the type 1 seller

holds as a strict inequality, or

−qi1t + βφ1t+1d
i1
t > 0. (11)

Proof. From (10), (8), and (9) we get

−qi1t + βφ1t+1d
i1
t = −qi2t + βφ1t+1d

i2
t > −qi2t + βφ2t+1d

i2
t = 0

Lemma 4 At the optimum, the type 1 seller supplies more goods and receives more

money in exchange than does the type 2 seller. That is, qi1t ≥ qi2t and d
i1
t ≥ di2t at the

optimum, and qi1t > qi2t if and only if d
i1
t > di2t .

Proof. Adding the two incentive constraints, i.e. constraint (6) for (j, k) = (1, 2),

(2, 1), we obtain

β(φ1t+1 − φ2t+1)(d
i1
t − di2t ) ≥ β(φ1t+1 − φ2t+1)(d

i2
t − di1t ),

which, given (8) implies di1t ≥ di2t . Then, it is immediate from equation (10) that

qi1t ≥ qi2t , and that q
i1
t > qi2t if and only if d

i1
t > di2t .

Thus, in spite of the cash constraints (7) that make this problem different from

standard adverse selection problems in the literature, from lemmas 1-4 the solution
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will have some standard properties. The type 2 seller, who has a low value of money

in the following period, receives zero surplus from the contract offered by the buyer,

while the type 1 seller, who has a high value of money, receives strictly positive

surplus. The incentive constraint binds for the type 1 seller, and larger quantities are

exchanged between the buyer and a type 1 seller than between the buyer and a type

2 seller. These features allow us to solve the optimal contracting problem (4) subject

to (5)-(7) in a more straightforward way. In particular, substitute in the objective

function in (4) and in the cash constraints (7) for di1t and di2t using (9) and (10), and

then solve the problem as

max
qi1t ,qi2t

ρ

∙
u(qi1t )−

φit+1q
i1
t

φ1t+1
−
µ
φit+1
φ2t+1

− φit+1
φ1t+1

¶
qi2t

¸
+ (1− ρ)

∙
u(qi2t )−

φit+1q
i2
t

φ2t+1

¸
(12)

subject to the cash constraints

qi1t + qi2t

µ
φ1t+1
φ2t+1

− 1
¶
≤ βφ1t+1m (13)

qi2t ≤ βφ2t+1m (14)

From the proof of Lemma 3, since we have imposed (9) and (10), therefore both indi-

vidual rationality constraints hold, and we need only check that the second incentive

constraint, (6) for (j, k) = (2, 1), holds. In turn, from the proof of Lemma 4, we then

only need to check that the solution has the property qi1t ≥ qi2t .

Case 1: Cash Constraints Bind for Both Contracts

In this case the two contracts that the buyer offers the seller are both constraint

by the quantity of money m that the buyer possesses. That is, (13) and (14) both

hold with equality. Solving for qi1t and qi2t from (13) and (14) we obtain

qi1t = qi2t = βφ2t+1m, (15)
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and so, since the buyer gives up all his or her money balances irrespective of the

seller’s type, the payoff to the buyer as a function of m is

ψi1
t (m) = u(βφ2t+1m) (16)

Thus, in this case the buyer is constrained to offering the same contract to each type

of seller, and the type 1 seller who values money highly extracts some surplus from

the buyer.

In Figure 2, we show the equilibrium contract in Case 1. Note that both equilibrium

contracts involve a distortion from full-information quantities. In this case, the buyer

has sufficiently low money balances that it is inefficient for him or her to induce the

seller to reveal his or her type.

Case 2: Cash Constraint Binds Only for the Type 1 Seller

Recall from Lemma 4 that di1t ≥ di2t at the optimum, so if one cash constraint

binds, it must be the one for the type 1 seller. Thus, substituting for qi1t in the (12)

using (13) with equality, in case 2 we can write the buyer’s optimization problem as

max
qi2t

ρ

½
u

∙
−qi2t

µ
φ1t+1
φ2t+1

− 1
¶
+ βφ1t+1m

¸
− βφit+1m

¾
+(1−ρ)

∙
u(qi2t )−

φit+1q
i2
t

φ2t+1

¸
(17)

subject to (14). The first-order condition for an optimum is then

−ρ
µ
φ1t+1
φ2t+1

− 1
¶
u0
∙
−qi2t

µ
φ1t+1
φ2t+1

− 1
¶
+ βφ1t+1m

¸
+(1−ρ)

∙
u0(qi2t )−

φit+1
φ2t+1

¸
= 0. (18)

Now, let ϕ(qi2t ,m) denote the function on the left-hand side of (18).

Proposition 5 There is a unique q∗t (m) that solves ϕ(q∗t (m),m) = 0, with 0 <

q∗t (m) < (βφ
1
t+1m)/

³
φ1t+1
φ2t+1
− 1
´
.

Proof. Nonnegativity of consumption for the buyer implies that

0 ≤ qi2t ≤ (βφ1t+1m)/
µ
φ1t+1
φ2t+1

− 1
¶
.
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Given (8), and the strict concavity of u(·), ϕ(qi2t ,m) is strictly decreasing in qi2t

on
³
0, (βφ1t+1m)/

h
φ1t+1
φ2t+1
− 1
i´
for fixed m > 0. Further, limq→0ϕ(q,m) = ∞, and

lim
q→(βφ1t+1m)/

φ1t+1

φ2t+1
−1

ϕ(q,m) = −∞.

Proposition 6 The solution q∗t (m) satisfies the cash constraint (14) if and only if

ϕ(βφ2t+1m,m) ≤ 0.

Proof. Since ϕ(qi2t ,m) is strictly decreasing in qi2t and ϕ(q∗(m),m) = 0, therefore

q∗(m) ≤ βφ2t+1m iff ϕ(βφ2t+1m,m) ≤ 0.

Further, since at the case 2 optimum the quantity of money exchanged with the

type 2 seller cannot exceed the quantity exchanged with the type 1 seller, from (10)

we must have qi1t ≥ qi2t , and so the incentive constraint for the type 2 seller is satisfied.

This last proposition gives us a necessary restriction on m for the optimum to have

case 2 characteristics. That is, from (18), ϕ(βφ2t+1m,m) ≤ 0 givesµ
1− ρ

φ1t+1
φ2t+1

¶
u0(βφ2t+1m)− (1− ρ)

φit+1
φ2t+1

≤ 0 (19)

Now, assume for now (we will later establish conditions which guarantee that this

holds) that

1− ρ
φ1t+1
φ2t+1

> 0, (20)

and let ω(m) denote the function on the left-hand side of inequality (19). Note that

ω(m) is strictly decreasing and continuous in m with ω(0) =∞ and ω(m) < 0 for m

sufficiently large. Therefore, there is some m1 > 0 such that ω(m1) = 0, ω(m) < 0

for m > m1 and ω(m) > 0 for m < m1. Therefore, if the optimum is case 2, then it

is necessary that m ≥ mi1
t , where m

i1
t is the solution toµ

1− ρ
φ1t+1
φ2t+1

¶
u0(βφ2t+1m

i1
t )− (1− ρ)

φit+1
φ2t+1

= 0. (21)

Finally, since when we have a case 2 optimum, the buyer gives up all of his or her

cash balances to a type 1 seller and only some of his or her cash balances to a type 2
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seller, the expected payoff to the buyer as a function of m is

ψi2
t (m) = ρu

∙
−q∗t (m)

µ
φ1t+1
φ2t+1

− 1
¶
+ βφ1t+1m

¸
(22)

+(1− ρ)

∙
u [q∗t (m)] + βφit+1

µ
m− q∗t (m)

βφ2t+1

¶¸
We illustrate the equilibrium contracts in Figure 3. Here, note that the binding cash

constraint implies that the contracts for both types are distorted from what would be

achieved with full information. Relative to Case 1, the buyer has enough cash that

he or she optimizes by inducing self-selection by the seller, but has insufficient cash

to offer a non-distorted contract to the type 1 seller.

Case 3: Neither Cash Constraint Binds

In this case qi1t and qi2t are chosen by the buyer to solve (12) ignoring the cash

constraints. The first-order conditions characterizing an optimum are

u0(qi1t )−
φit+1
φ1t+1

= 0, (23)

and

(1− ρ)u0(qi2t )−
µ
φit+1
φ2t+1

− ρ
φit+1
φ1t+1

¶
= 0. (24)

Now, let q̄i1t and q̄
i2
t denote the solutions to equations (23) and (24), respectively. First,

note that (8) implies that q̄i1t > q̄i2t , which implies that the incentive compatibility

constraint for the type 2 seller is satisfied. Further, note that q̄i1t would be the

quantity traded in a full information contract between the buyer and a type 1 seller,

unconstrained by the buyer’s cash holdings. As well, given (8) q̄i2t is smaller than

the quantity traded with a full information contract between the buyer and a type 2

seller, again unconstrained by the buyer’s cash holdings. This is a standard feature

of adverse selection models with two types, whereby the type 2 contract is distorted

from what it would be with full information, so as to induce the type 1 seller to

self-select.
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The next step is to establish conditions on m that guarantee that there is a case

3 optimum. That is, we want m to be sufficiently large that neither cash constraint

binds. Since q̄i1t > q̄i2t , a larger quantity of cash is traded in the type 1 contract, so

if the cash constraint does not bind for the type 1 contract it will not bind for the

other contract. Therefore, neither cash constraint binds if and only if, from (13),

m ≥ q̄i1t
βφ1t+1

+ q̄i2t

µ
1

βφ2t+1
− 1

βφ1t+1

¶
, (25)

and we let mi2
t denote the quantity on the right-hand side of (25).

The payoff to the buyer if there is a case 3 optimum is

ψi3
t (m) = ρ

½
u
¡
q̄i1t
¢
+ βφit+1

∙
m− q̄i1t

βφ1t+1
− q̄i2t

µ
1

βφ2t+1
− 1

βφ1t+1

¶¸¾
(26)

+(1− ρ)

∙
u(q̄i2t ) + βφit+1

µ
m− q̄i2t

βφ2t+1

¶¸
In Figure 4, we show the equilibrium contracts in Case 3. Here, as cash constraints

do not bind, the type 1 seller receives a contract that is not distorted, but the type

2 contract is distorted to induce self-selection, just as in Maskin and Riley (1984).

In Figure 5, we show how contracts differ across the three cases. Note that, as the

money held by the seller declines, the surplus received by the type 1 seller falls, and

the distortion in each contract rises.

Odd-Period Value Functions

Now that we know the payoffs to the buyer as a function of the buyer’s cash balances

m, and the constraints on m that are necessary to obtain the cases 1-3 above, we can

proceed to construct the value functions V i
t (m), for i = 1, 2. Recall that V

i
t (m) gives

the value of money at the beginning of period t (before learning buyer/seller status)

of money balances m to an agent who resided in location i in period t− 1, where t is

an odd period.
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It is straightforward to show that, given (8), mi1
t < mi2

t for i = 1, 2. Then, since a

necessary condition for a case 2 optimum is that m ≥ mi1
t , and a necessary condition

for a case 3 optimum is m ≥ mi2
t , we will have a case 1 optimum when 0 ≤ m ≤ mi1

t ,

a case 2 optimum when mi1
t ≤ m ≤ mi2

t , and a case 3 optimum when m ≥ mi2
t .

Above, we calculated the payoffs to a buyer as a function of m in the three different

cases. For a seller’s payoff, note that seller does not give up any money balances no

matter who he or she meets in the decentralized market, and the surplus received by

the seller is independent of his or her money holdings. Therefore, we can write the

odd-period value function as

V i
t (m) = αivt(m) + (1− αi)

©
βm[ρφ1t+1 + (1− ρ)φ2t+1] + σ

ª
, (27)

where

vt(m) = ρ
3X

k=1

I1kt (m)ψ
1k
t (m) + (1− ρ)

3X
k=1

I2kt (m)ψ
2k
t (m) (28)

In (27), σ is a constant, and in (28) the indicator functions I ikt (m), for k = 1, 2, 3, are

defined by

I i1t (m) = 1 if 0 ≤ m ≤ mi1
t ; I

i1
t (m) = 0 otherwise.

I i2t (m) = 1 if m
i1
t ≤ m ≤ mi2

t ; I
i2
t (m) = 0 otherwise.

I i3t (m) = 1 if m ≥ mi2
t ; I

i3
t (m) = 0 otherwise.

Proposition 7 The function vt(m) is continuously differentiable for m ≥ 0, concave

for m ≥ 0, and strictly concave for 0 ≤ m < m22
t .

Proof. Note that vt (·) is clearly continuously differentiable at every point m ≥ 0

except possibly at the critical points mi1
t ,m

i2
t , for i = 1, 2. It remains to show that

vt (·) is continuously differentiable at these points. Observe that

dψi1
t

dm
→ βφ2t+1u

0 ¡βφ2t+1mi1
t

¢
14



as m→ mi1
t from below. On the other hand, using (18) and (21), we find that

dψi2
t

dm
→ βφ2t+1u

0 ¡βφ2t+1mi1
t

¢
as m → mi1

t from above. Therefore, we conclude that vt (·) is continuously differ-

entiable at mi1
t . Consider now the critical point m

i2
t . As m → mi2

t from below, we

have
dψi2

t

dm
→ βφit+1

where we have used (23). For any m > mi2
t , it follows that

dψi3
t (m)

dm
= βφit+1

so that we conclude that vt (·) is continuously differentiable at mi2
t .

To show that vt (·) is concave, define hi,t (m) =
P3

k=1 I
ik
t (m)ψ

ik
t (m), for i = 1, 2.

We have the following: h00i,t (·) < 0 for any m ∈ (0,mi1
t ) ∪ (mi1

t ,m
i2
t ); h

00
i,t (·) = 0 for

any m > mi2
t ; and h0i,t (·) is continuous at mi1

t and mi2
t . This implies that hi,t (·) is

concave for m ≥ 0 and strictly concave for 0 ≤ m < mi2
t .

We illustrate the value function in Figure 6.

This proposition then implies that, from (3), and similarly to Lagos and Wright

(2005), it is optimal for each agent in a given location in an even period to hold the

same quantity of money at the end of the period. Since our assumptions guarantee

that the quantity of money per capita is the same in each location in an even period,

each agent in the economy holds the same quantity of money at the end of an even

period.

CENTRAL BANK INTERVENTION IN BOTH CENTRALIZED

MARKETS

Suppose that the central bank can make lump-sum transfers, but that these trans-

fers are constrained to be the same in each location in a given period, as well as being
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identical across agents in a given location. This constraint could arise if, for example,

the transfers are made electronically, an agent’s location is private information, and

the central bank has no memory of an agent’s past transfers. Further, for simplicity

assume that the money stock grows at a constant rate from one even period to the

next. That is, let Mt denote the aggregate money stock during an even period t,

where

Mt+2 = μ2Mt,

for t = 0, 2, 4, ..., with M0 normalized to unity and μ > 0. Note that there are no

money transfers in odd periods while agents are engaged in decentralized exchange.

The money transfer that each agent receives in an even period t is then

τ 1t = τ 2t = (μ
2 − 1)Mt−2.

Now, confine attention to stationary equilibria having the property that φit =
φi

μt
,

for i = 1, 2, where φi is a constant for i = 1, 2. From (3) and (27), the following

first-order conditions must be satisfied for each t = 0, 2, 4, ...,

φi

μt
= β

½
αiv

0
t+1(m

i
t+1) +

(1− αi)β[ρφ
1 + (1− ρ)φ2]

μt+2

¾
, for i = 1, 2. (29)

Then, imposing the equilibrium condition that mi
t+1 = Mt = μt for i = 1, 2, and

rearranging, we get

1 =
αiβμ

tv0t+1(μ
t)

φi
+ (1− αi)

β2

μ2
[ρφ1 + (1− ρ)φ2]

φi
, for i = 1, 2. (30)

Proposition 8 If μ > β, then φ1 > φ2 in a stationary equilibrium.

Proof. If μ > β, we must have mi
t+1 < m22

t+1 for each i = 1, 2. To see this, note that,

as m→ m22
t+1 from below,

−φit + β
dV i

t+1

dm
→ 1

μt

½
−φi + β2

μ2
£
ρφ1 + (1− ρ)φ2

¤¾
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where we have used (23). When μ > β, we have

φi >
β2

μ2
£
ρφ1 + (1− ρ)φ2

¤
for each i = 1, 2 in a stationary equilibrium. Therefore, the optimal choice of money

balances in location i in an even period t is such that mi
t+1 < m22

t+1 for each i = 1, 2.

This means that at least one cash constraint must bind when μ > β.

Notice that v0t+1(·) is a decreasing function and that

v0t+1(m) ≥
β

μt+2
£
ρφ1 + (1− ρ)φ2

¤
for all m ≥ 0. In fact, it holds with strict inequality when m < m22

t+1. Therefore,

whenever μ > β, we have that

βμtv0t+1(m
i
t+1) >

β2

μ2
£
ρφ1 + (1− ρ)φ2

¤
for each i = 1, 2. Since α1 > α2 and mi

t+1 = μt in equilibrium, it follows that

α1βμ
tv0t+1(μ

t) + (1− α1)
β2

μ2
£
ρφ1 + (1− ρ)φ2

¤
> α2βμ

tv0t+1(μ
t) + (1− α2)

β2

μ2
£
ρφ1 + (1− ρ)φ2

¤
so that φ1 > φ2 in a stationary equilibrium as claimed.

If μ > β, this implies that some cash constraint must bind in equilibrium, and that

a buyer faces a higher marginal payoff to holding money than does a seller in the

decentralized market. Since an agent in location 1 in an even period has a higher

probability of being a buyer in the next decentralized market, this agent then must

have a higher expected marginal payoff to holding money in an even period. Since the

quantities of money per capita are identical in the two locations in an even period,

money must have a higher value in location 1 than in location 2 in equilibrium.

Thus, when the rate of money growth is larger than the discount rate, prices are

different in the two locations, and we know that this induces a private information
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friction in monetary exchange in this model. That is, there is a friction here, in

addition to what would occur with full information, due to the fact that a seller with

a high value of money can extract some surplus from the buyer because the buyer

needs to induce self-selection.

Proposition 9 μ = β yields an optimal equilibrium allocation.

Proof. As μ→ β from above, it follows that

βμtv0t+1(μ
t)→ ρφ1 + (1− ρ)φ2

From (30), it follows that

φi = ρφ1 + (1− ρ)φ2

for each i = 1, 2, which holds if and only if φ1 = φ2 = φ. Then, as μ→ β from above,

we have
βμtv0t+1(μ

t)

φ
→ 1 = u0 (q∗)

so that agents in both locations acquire enough money in order to get q∗ in the next

decentralized market in case they are buyers in a bilateral match.

Under a Friedman rule, all cash constraints are relaxed, and there is a stationary

equilibrium where φ1 = φ2 so that prices are equalized in the two locations in even

periods. The private information friction is eliminated and the economy collapses to

essentially the same allocation studied by Lagos and Wright (2005), for the special

case where buyers have all the bargaining power. The efficient quantity of output is

produced and consumed in every bilateral match in the decentralized market.

FINANCIAL MARKET TRADE BETWEEN LOCATIONS

We have assumed that, in even periods, there is no trade between agents in location

1 and those in location 2. Here, we will continue to assume that neither goods or

18



people can move across the two locations. However, we will permit a bond market in

even periods where agents in the two locations can exchange outside money (say, in

electronic form) for claims to money in the next even period. This of course requires

that a bond issuer in period t can be found in period t + 2 and that the financial

claim can be enforced.

Assume a market in an even period t for two-period bonds, each of which sells for

one unit of money and is a claim to Rt+2 units of money in period t+2.We can then

rewrite the budget constraint (1) of an agent in location i in an even period as

ct + φitm
i
t+1 + φitbt+2 = lit + φitm+ φitRtbt + φitτ

i
t, (31)

where bt denotes the quantity of bonds acquired by the agent that mature in period

t. Given quasilinear utility, equilibrium requires that each agent in each location be

indifferent about the bond holdings in any even period t, or

φit = β2Rt+2

£
ρφ1t+2 + (1− ρ)φ2t+2

¤
for i = 1, 2. (32)

But these two conditions clearly imply that φ1t = φ2t in equilibrium, so that prices

are equalized across the two locations. This economy then collapses to a basic Lagos-

Wright structure with take-it-or-leave-it offers by buyers, and with no private infor-

mation friction.

Now, if the aggregate money stock grows at a constant rate in a stationary equi-

librium, as in the previous section, then (29) must hold, but now φ1 = φ2 = φ in

equilibrium, and now the stocks of money in each location are endogenous. That is,

in a stationary equilibrium, the quantity of money in location i is M iμt in period t

even, where from (30) and the equilibrium condition ρM1+(1−ρ)M2 = 1, we obtain

α1βμ
tv0t+1(μ

tM1) + (1− α1)
β2

μ2
φ = α2βμ

tv0t+1

∙
μt
1− ρM1

1− ρ

¸
+ (1− α2)

β2

μ2
φ, (33)

which solves forM1, giving us the equilibrium distribution of money balances between

locations 1 and 2.
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Proposition 10 If μ > β, then M1 > M2 in equilibrium, and the equilibrium allo-

cation is inefficient.

Proof. If μ > β, we have that mi
t+1 < μt+2q∗/ (βφ) and

βμtv0t+1(m
i
t+1)

φ
>

β2

μ2

for each i = 1, 2. Since α1 > α2 and mi
t+1 =M iμt for each i = 1, 2 in equilibrium, it

follows from (33) that

v0t+1(M
1μt) < v0t+1(M

2μt)

Since v0t+1(·) is strictly decreasing for 0 ≤ m < μt+2q∗/ (βφ), we have that M1 > M2.

The fact that μ > β implies that it is not optimal for agents in each location to take

enough money to the next decentralized market in order to get q∗ in case they are

buyers in a bilateral match.

Proposition 11 If μ = β there is an optimal equilibrium allocation.

Proof. When μ→ β from above, we have

βμtv0t+1(μ
tM i)

φ
→ 1 = u0 (q∗)

for each i = 1, 2. This implies the efficient quantity is traded in each bilateral match

in the decentralized market.

Just as in the previous section, a Friedman rule is optimal here, but trading in

this cross-location bond market serves to equalize prices in the two locations by

moving money balances to where they would otherwise have a higher value. Thus,

there is no private information friction, even when money growth is higher than the

Friedman rule rate. The bond market plays a role much like the federal funds market

in the United States, except that in our model we have assumed that all economic

agents have access to this market. Note that, given trading on the bond market, it
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is irrelevant what market the central bank intervenes in. Agents could receive money

transfers from the central bank in location 1, location 2, or both locations, but the

actions of the central bank can have no effect on the end-of-period distribution of

money balances between locations 1 and 2 in an even period.

NO INTER-LOCATION TRADE, AND CENTRAL BANK

INTERVENTION IN ONLY ONE LOCATION

In this section we will set up the environment so that the central bank will have

more difficulty in dealing with the distortions arising from monetary exchange. In

particular, assume that there is no trade between locations during an even period, and

that the central bank can intervene at only one location, through lump-sum money

transfers.

Central Bank Intervention Confined to Location 1

Here, let M i
t denote the even-period t per-capita money stock at location i. Given

that the central bank intervenes only at location 1, M1
t can be treated as exogenous,

and we will have

M2
t+2 = ρM1

t + (1− ρ)M2
t , t = 0, 2, 4, ... (34)

Now, consider monetary policies such that M i
t+2 = μ2M i

t for t = 0, 2, 4, ..., with
M1
t

M2
t
= δ, where from (34), we have

δ =
μ2 − 1 + ρ

ρ
(35)

As should be clear, equation (35) reflects the fact that the central bank cannot inde-

pendently determine the money growth rate and the distribution of money balances

across the two locations.

Normalize M1
0 to unity. Then, a stationary equilibrium is determined in a manner
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similar to the previous two sections, with φi for i = 1, 2 determined by

1 =
α1βμ

tv0t+1(μ
t)

φ1
+ (1− α1)

β2

μ2
[ρφ1 + (1− ρ)φ2]

φ1

and

1 =
α2βμ

tv0t+1

³
μt ρ

μ2−1+ρ

´
φ2

+ (1− α2)
β2

μ2
[ρφ1 + (1− ρ)φ2]

φ2

Here, prices can be equalized across locations in each period for some μ > 1. This

eliminates the private information friction, but there is a welfare loss from inflation.

Note that a Friedman rule with equalized prices presumably does not work since this

implies that agents have to indefinitely postpone taking leisure because someone is

carrying unspent money balances forward in every period.

Central Bank Intervention Confined to Location 2

Here, we can just make some minor changes in the previous analysis. In this case,

if we determine a similar stationary equilibrium to what we derived in the previous

section, then the φi for i = 1, 2 are determined by

1 =
α1βμ

tv0t+1

³
μt ρ

μ2−1+ρ

´
φ1

+ (1− α1)
β2

μ2
[ρφ1 + (1− ρ)φ2]

φ1

and

1 =
α2βμ

tv0t+1(μ
t)

φ2
+ (1− α2)

β2

μ2
[ρφ1 + (1− ρ)φ2]

φ2

Here, we need μ < 1 to get constant prices, and it is possible that constant prices are

not feasible, as this would imply μ < β. It seems clear that in the previous case the

Friedman rule will never be optimal, but in this case it might.
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Figure 1: Timing
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Figure 3: Case 2
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Figure 4: Case 3
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Figure 5
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Figure 6: Value Function
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