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1 Introduction

Understanding the dynamics of the term structure of interest rates is of great signi�cance

in macroeconomics. Bond prices contain important information about expectations of

future monetary policy and in�ation. With regards to the latter, the development of

in�ation-indexed bond markets in several countries in recent years has provided a useful

observation of real rates and risk-adjusted in�ation expectations. We make use of these

data to better evaluate the ability of theoretical models to explain the link between the

economy and the yield curve. In addition to its signi�cance for the conduct of monetary

policy, studying the term structure can provide insights into the asset pricing implications

of macroeconomic models.

The question our paper is concerned with is what can explain the slope of the nominal

yield curve. Is it the term structure of real interest rates or the term structure of in�ation

compensation (which itself re�ects both in�ation expectations and in�ation risk premia)?

So far there has been considerable disagreement about this issue in the literature, with

most structural macro models pointing to the former and many atheoretical empirical

�nance models pointing to the latter explanation. Our goal is to decompose the nominal

yield curve into its three constituent parts. We de�ne in�ation risk premia (henceforth,

IRP�s) as the di¤erence between nominal yields and the sum of real yields and in�ation

expectations. In other words, IRP�s measure the departure from the Fisher hypothesis

of interest rate parity.

We are interested in explaining the recently observed upward slope of in�ation com-

pensation in UK data as well as determining the relative roles of real rates and in�ation

compensation in the dynamics of the nominal term structure. In particular, even after

the adoption of in�ation targeting in the UK in 1992, long term in�ation compensation

has been signi�cantly higher than short term in�ation compensation. To the extent that

unconditional in�ation expectations are constant (as one might expect in an in�ation tar-

geting setting), an upward (or downward) average slope of in�ation compensation should

re�ect in�ation risk premia rising (or falling) with maturity. Producing IRP in that

magnitude within the structural models has been unsuccessful in the structural macro

models.

Alternatively, we propose a di¤erent explanation of the observed term structure of

in�ation compensation, namely, regime switching in the conditional expectations of long-

run in�ation. We take advantage of the relatively long history of observed in�ation-linked

treasury yields in the UK, spanning a period over which there was at least one well-

documented discrete change in the conduct of monetary policy in that country. The
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results from an estimated DSGE model with Markov switching in the central bank�s

in�ation target indicate that the observed average slope of in�ation compensation re�ects

long-run expectations of rather infrequent regime changes rather than risk premia. We

�nd that the change in monetary policy can explain the observed change in the slope of

in�ation compensation in the UK. We also �nd that before the introduction of in�ation

targeting in 1992, the variation in the nominal slope primarily re�ected the variation of

the term structure of in�ation compensation, whereas after that time it was substantially

a¤ected by changes in the real slope. The paper proceeds as follows. In section 2 we

discuss the recent literature. In section 3 we document the empirical facts that we focus

on in the paper. In section 4 we present our structural model and estimation results.

Section 5 concludes.

2 Explaining the nominal slope

Our paper attempts to throw light on the decomposition of in�ation compensation into

an expectations part and a risk premium part. With regards to the implications for

in�ation risk premia, there seems to be a disagreement between the literature on New

Keynesian (henceforth, NK) models on the one hand and the no-arbitrage macro-�nance

VAR literature on the other. Because the latter uses a very �exible speci�cation for the

stochastic discount factor that prices all assets, it has estimated signi�cant in�ation risk

premia in the nominal term structure. Models with micro-founded stochastic discount

factors however, either have di¢ culty matching this empirical �nding or face serious

trade-o¤s in their �t to other variables when they do.

Before we continue, we need to introduce precise de�nitions of the terms we use

throughout the paper. If ynt is the continuously compounded yield on a n-period nominal

bond and rnt is the yield on the corresponding real bond, then in�ation compensation is

simply the di¤erence between the two: ynt � rnt . The IRP is that quantity less in�ation
expectations: IRP nt = y

n
t � rnt � 1

n

Pn
i=1Et�t+i, where �t+i is the in�ation rate in period

t.

What we refer to as the "term spread" is the simple di¤erence between long-term and

short-term yields: ynt � y1t . Conditional on information at a certain point in time the
term spread could in general depend on expectations of the future path of real short rates

and in�ation. Unconditionally, however, real short rates and in�ation should be constant

in a stationary setting and therefore the average term spread re�ects only investors�

preferences for holding a long-term bond over investing in short-term bonds and rolling
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those over a period equal to the maturity of the long-term bond. We call this quantity

the "term premium". It is simply the di¤erence between the current long-term yield and

the average of expected short term rates: ynt � 1
n

Pn�1
i=0 Ety

1
t+i.

Therefore, the nominal term spread or slope can be decomposed into three compo-

nents: the real slope (rnt �r1t ), the slope of in�ation expectations ( 1n
Pn

i=1Et�t+i�Et�t+1)
and the slope of in�ation risk premia (IRP nt � IRP 1t ). We now present a summary of
alternative views on this decomposition.

Hordahl et al. (2007) (henceforth, HTV) construct a theoretical NKmodel which they

try to calibrate to data in terms of its implications for the term structure and moments

of macro variables. They �nd that the average term premia in the nominal yield curve

have little to do with in�ation risk and are due to real risk premia. Ravenna and Seppala

(2007a, 2007b) (henceforth, RS) perform a similar calibration exercise, working with a

NK model in the same class with habits, no in�ation indexation, persistent technology

and preference shocks and a transitory monetary policy shock. Like HTV, they �nd that

real term premia account almost entirely for the upward average slope of the yield curve

and that in�ation risk premia are negligible and even negative.

Piazzesi and Schneider (2006) use an endowment-economy model with exogenous

consumption and in�ation processes. Their model generates signi�cant in�ation risk

premia that rise with maturity. This is achieved through the combined e¤ect of two

features. First, they estimate the joint process for consumption growth and in�ation using

US postwar data and �nd that the correlation between consumption growth and lagged

in�ation is negative. Then, by introducing recursive utility for the representative agent,

they obtain a real pricing kernel that depends negatively on revisions in expectations

of future consumption growth. This way, higher in�ation can have opposite e¤ects on

the yields of real and nominal bonds respectively. Feeding the estimated process for

consumption and in�ation through their preference structure, Piazzesi and Schneider

�nd that the average nominal curve is upward sloping and the average real curve is

downward sloping.

Rudebusch and Swanson (2008a, 2008b) have recently claimed that the relatively bet-

ter success of endowment-economy models is mainly due to the fact that unlike many

production-based models they use the "right" covariance between consumption and in-

�ation by construction. On the other hand, models with endogenous production and

labor supply fail to produce enough volatility in the consumption process and speci�cally

in conditional expectations of long-run consumption growth. Therefore the long-term

marginal rate of substitution of the representative agent is not volatile enough and those
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models do not generate substantial risk premia. Models such as Piazzesi and Schneider

(2006) also employ more exotic preference speci�cations to translate the "right" process

for consumption into the "right" process for marginal utility.

In contrast to NK models, the empirical no-arbitrage macro-�nance VAR literature

often �nds signi�cant in�ation risk premia. In particular, Ang, Bekaert and Wei (2008)

�nd that the US real term structure has been �at on average while the upward sloping

nominal term structure has re�ected high in�ation risk premia that increase with matu-

rity. They use a no-arbitrage VAR with a Markov regime switching speci�cation for the

joint dynamics of the state variables, without imposing any economic structure on the

correlation of in�ation and the unobservable real factors.

Their results are consistent with what one �nds in studies from countries such as the

UK. In particular, Evans (1998) estimates the real term structure for the UK and, using

EH regressions, �nds evidence for in�ation risk premia. Risa (2001) also uses UK nominal

and index-linked bond data and estimates a no-arbitrage VAR. He �nds a variable and

high on average in�ation risk premium for the UK, which has however fallen over time.

Empirical evidence for sizeable and time-varying in�ation risk premia was also found

by Hordahl and Tristani (2007) for European data as well as by D�Amico, Kim and Wei

(2008) for US data. Both papers rely on no-arbitrage macro-�nance VAR�s for their

results and the latter also utilizes in�ation indexed bond data.

Our paper also draws on previous empirical studies estimating term structure models

with regime shifts. We already mentioned the empirical �ndings of Ang et al. (2008).

From Bansal and Zhou (2002) we borrow the bond pricing methodology for our regime-

switching model. Our paper is also close in spirit to Bikbov (2005), who estimates a

linearized NK model with regime switching. Where we depart from his study is in our

use of a micro-founded rather than an exogenous pricing kernel. In addition, we focus

our attention on the model�s ability to produce an upward sloping term structure on

in�ation compensation. To the extent that we estimate a production-based model with

a Markov-switching in�ation target for the central bank, our exercise resembles that of

Liu et al. (2008), the main di¤erence being that we utilize term structure data in our

estimation.
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3 A �rst look at the data

Our goal in this section is to document the salient features of the data which a good model

should be expected to reproduce. We demonstrate that in�ation compensation has been

upward sloping on average in recent UK data. We also show that in�ation compensation

appears to have been relatively stable in recent years with most of the variation in the

nominal slope coming from the real slope. On the other hand, it appears that variations

in in�ation compensation played a much larger role in determining variations in nominal

bond yields in previous periods in the UK.

Establishing the "stylized facts" has been relatively straightforward for nominal yields,

where previous studies have focused on replicating the average slope of the yield curve,

the term structure of yield volatilities and rejections of the EH as demonstrated by OLS

regressions. Data on these variables is readily available and the statistics are easily

computable.

With real yields and in�ation compensation, de�ned as the di¤erence between nomi-

nal and real yields, agreeing on those "stylized facts" is a bit more di¢ cult. The reason

for that is that in�ation compensation as de�ned above (also referred to by bond market

participants as "breakeven in�ation") contains expectations as well as risk premia. Sep-

arating the two is very di¢ cult in the data (e.g. using in�ation forecasts from surveys)

and previous studies has often relied on speci�c modeling assumptions.

3.1 Data description

We focus on the UK data in this study, because of the availability of longer time series for

real yields. We use data on UK zero-coupon yields compiled and computed by the Bank

of England and available on the Bank�s web site. These go back to 1985 for real yields and

1978 for nominal yields. We end the sample period at December 2007 so as to exclude

the �nancial crisis period. The yields have been estimated from the prices of traded

securities using a spline methodology and in�ation-linked yields have been adjusted for

the indexation lag and for seasonality.1

For the estimation of our DSGE model for the UK we use quarterly data on Retail

Price Index (henceforth, RPI) in�ation and household consumption take from the O¢ ce

1For more details on the methodology, please refer to Anderson and Sleath (2001). They report

that their method produces very stable yield curves in the sense that they show little sensitivity to

measurement error in the prices of the underlying bonds.
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of National Statistics (ONS). We motivate the choice of the RPI for measuring the price

level by the fact that this is the index which UK in�ation protected bonds are linked to.

Because the original series is not seasonally adjusted we follow Risa (2001) and adjust it

using the X-12 method.

3.2 Yield curve slope

Table 1 shows the means of the yield levels in the UK for di¤erent periods. Clearly,

the levels of real and nominal yields and breakeven in�ation all decreased in the recent

subsample. However, we are less interested in the levels, which might re�ect secular

trends in in�ation, than in the di¤erences between yields at long and short maturities.

The slopes of the di¤erent yield curves contain a lot more information about expectations

and risk premia.

We focus on the slope between 10-year and 2-year yields because in�ation-indexed

yields with shorter maturities su¤er from measurement error issues and are not reliably

estimated. Securities with less than 2 years to maturity have been excluded from the

�tting procedure due to their erratic behavior resulting from the e¤ects of seasonality

and indexation lag. In particular, prices for bonds with little time remaining to maturity

become more sensitive to in�ation accretion and short term in�ation expectations can be

extremely volatile.

Figure 1 presents the data for our two subsamples - before and after October 1992. We

can see that in di¤erent periods, characterized by di¤erent types of monetary policy, the

nominal curve slope has been driven by di¤erent components. In particular, the slope of

in�ation compensation has been a lot more stable in recent times. A comparison between

the �rst two panels shows that the movements of the nominal slope have been more

correlated with the movements in the breakeven in�ation slope in the �rst subsample and

more correlated with movements in the real curve slope in the second. The correlations in

the �rst subsample were 0.63 between the nominal and breakeven slope and 0.26 between

the nominal and real slope. In the second subsample these �gures stood at 0.39 each. If

we restrict the second subsample to only the period after the Bank of England acquired

operational independence in 1997, the correlations become 0.27 and 0.49 respectively,

thus reversing their relative magnitude.

That being said, the last panel of Figure 1 indicates that while more stable, in�ation

compensation has been upward sloping in recent times. The di¤erence between 2-year

and 10-year breakeven in�ation has averaged about 40 basis points. Our main goal in this
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paper is to explain this fact given the Bank of England�s commitment to a low in�ation

target.

One can see in the third panel of Figure 1 that before October 1992 the breakeven

in�ation slope (as well as the nominal curve slope) has been negative on average. This has

partly preceded and partly coincided with a period of steady decline in UK in�ation rates

and nominal interest rates. As the �gure shows, UK long-term interest rates decreased

gradually throughout the 1990�s.

Therefore it seems reasonable to hypothesize that the slope of breakeven in�ation in

our �rst subsample has re�ected expectations of future in�ation rates rather than risk

premia. By the same token it could be the case that the slope of breakeven in�ation in

the second subsample also has re�ected certain expectations about in�ation. The UK

evidence may suggest a shift from a period with relatively high in�ation and expectations

of decreasing in�ation to a period characterized by low in�ation and expectations of

increasing in�ation. This would have dramatically steepened the slope of the in�ation

compensation term structure from possibly very negative to positive.

4 DSGE Model Estimation

4.1 Markov regime switching in the in�ation target

In this paper, we propose a mechanism whereby the average term structure of in�ation ex-

pectations can have a positive slope for a prolonged period of time. This can be achieved

through a level of in�ation that alternates between di¤erent regimes with relatively low

frequency. This way, in each regime the current level of in�ation is below or above the

long-term expectations of in�ation, which eventually converge to the ergodic mean of the

regime-switching process. Hence, the observed slope of in�ation compensation depends

on the level of in�ation in each regime and on the probabilities of moving from one regime

to another.

We have already seen that the behavior of bond yields has been quite di¤erent over

di¤erent periods in time. It could be argued these periods coincide with changes in the

behavior of macroeconomic variables. For example, many authors document the so called

"Great Moderation" in the US, while still disagreeing on its ultimate causes �improved

monetary policy or reduced exogenous volatility. Other papers, such as Schorfheide

(2005), make a case that there have been di¤erent regimes for the Fed�s in�ation target.

The work of Bekaert et al. (2001) and Bansal and Zhou (2002) also suggest that regime
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switching can be useful in explaining the historical evolution of yields and bond returns.

All of this serves as motivation to explore the role of Markov regime switching in

accounting for the term structure. We explore this issue in the context of a DSGE model,

because we wish to take account of the way in which the dynamics of real variables as well

as in�ation should be di¤erent as a consequence of the switches between policy regimes

(and awareness of the possibility of switches), and we need a structural model in order

to analyze this. We estimate our model using UK data because it provides us with a

good case study. Besides the availability of data on real yields, it is characterized by a

well de�ned break in the way monetary policy was conducted - the adoption of in�ation

targeting.

After the "Black Wednesday" of 16 September 1992, on 8 October that year the UK

government announced it was leaving the European ERM mechanism and that it would

adopt an in�ation target in a wide band between 1% and 4% annually, based on the retail

price index excluding mortgage interest payments (RPIX). The stated objective was to

have in�ation below the mid-point of this range (2.5%) by the end of the 1992-1997 par-

liament. On 14 June 1995 the Chancellor of the Exchequer announced an in�ation target

of 2.5% or less. In May 1997 the Bank of England was given operational independence in

achieving the government�s in�ation objective, which was itself amended to a symmetri-

cal target of 2.5% annual RPIX in�ation. Finally, in April 2003 the targeted price level

measure was changed to the harmonized index of consumer prices (HICP or CPI) and on

12 December that year the target was lowered to 2%. One might conjecture that more

than of these events could correspond to a change in policy regime. In our empirical

work, we do not pre-judge the timing of any regime changes, and instead estimate the

likelihood that a regime change has occurred at any date.

4.2 Model Description

The model we consider consists of three building blocks - a representative consumer who

maximizes utility and supplies labor, a private sector with monopolistically competitive

�rms and a central bank that sets monetary policy. We focus on the most basic version of

the sticky price model discussed in Woodford (2003), abstracting from investment, �scal

policy and a number of other features such as certain types of nominal and real frictions.
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4.2.1 Consumers

The representative household has a time-separable utility function with internal habits

and additively separable disutility of labor.

U = maxE0
1P
t=0

�t

"
(Ct � �Ct�1)1��

1� � �t � �L!t

#
(1)

Its preferences over the consumption stream are characterized by the subjective discount

factor �, the risk aversion parameter � and the internal habit persistence parameter �.

We also tried using external habits and found that this does not materially change the

results. The curvature of the disutility of labor is determined by the ! parameter. Here

Et denotes the expectation operator conditional on information up to time t. There is

also a preference shock to the consumer�s marginal utility. It follows an autoregressive

process in logs with a zero mean.

log �t+1 = �� log �t + �
�"�t+1 (2)

Here and afterwards �i and �i denote the �rst-order autocorrelation and conditional

volatility of the exogenous process i respectively. "it is an i.i.d. zero-mean shock.

Consumers maximize utility subject to a budget constraint whereby the nominal value

of their consumption and investments in assets must be less than or equal to their current

labor income and asset returns from previous periods. We assume households have access

to a set of securities spanning all possible contingencies and including shares of all �rms

in the economy.

4.2.2 Firms

There is a continuum of producers indexed by i, each producing a di¤erentiated good.

All producers have access to the same linear technology where output is given by

Yt (i) = AtLt (i) (3)

where Lt (i) is the labor demand of �rm i. Since the equilibrium wage is the same for all

sectors and �rms, we implicitly assume that the labor supply of each type i is determined

by the labor demand so that the market is cleared. The level of technology is stationary

and follows an AR(1) process.

logAt+1 = �A logAt + �
a"at+1 (4)
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In order to have a non-trivial role for monetary policy, we assume that �rms follow Calvo

(1983) pricing with a probability of not optimizing prices in a given period equal to �.

In addition, we allow �rms who do not optimize prices to index them to lagged in�ation

Pt (i) = Pt�1 (i)�

t�1 (5)

 is the parameter governing the degree of indexation and can take values from 0 to

1. Firms maximize the discounted stream of expected nominal pro�ts, valuing future

cash �ows with the representative consumer�s stochastic discount factor. The resulting

�rst order conditions of the �rms�and consumers�maximization problem are used to

determine the equilibrium in the economy and solve for the dynamics.

4.2.3 Monetary policy

Finally, to close the model, we specify monetary policy as follows. The nominal short

interest rate is set by a central bank that follows a Taylor rule with monetary policy

inertia where �I is the weight on the lagged interest rate.

It =

"
��

�

�
�t
��t

��� �
�
Yt
Y nt

��y#1��I
I�It�1�t (6)

�� and �y are parameters governing the systematic response of the bank to deviations of

in�ation and output from the target ��t and the natural rate of output Y
n
t respectively.

Y nt is de�ned as equilibrium output in an economy where � = 0. � is the inverse of

the steady-state output gap, which depends on the steady-state level of in�ation. �t is a

transitory monetary policy shock:

log �t = �
m"mt (7)

The value of the target ��t = �
� (st) depends on the current state of an unobserved

discrete-valued S-state Markov switching variable st (st = 1; 2; ::S). We assume that

regime changes are governed by aMarkov chain with a transition matrix P , whose element

pij = P (st = ij st�1 = j) is the probability of moving to regime i given that the current
state is j such that

PS
i=1pij = 1 for all j. In our estimation we allow for two regimes in

the in�ation target of the central bank and set S = 2.

4.3 Model solution and bond price computation

Detailed derivations of the �rst order conditions for the model can be found in Appendix

A. We log-linearize them around the non-stochastic steady state of the model, where we
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set in�ation equal to its ergodic mean. In its log-linear form, the model can be written

as

BXt =M (st) + AEtXt+1 + CXt�1 +D"t (8)

where Xt is a vector containing the model�s endogenous variables. Besides the Markov

chain shock that determines the regime every period we have three additional shocks,

"at ; "
m
t and "

�
t , which are collected in the vector "t. As shown in Appendix B.1, the solution

to our model is a regime-switching VAR of the form

Xt+1 = � (st+1) + �Xt + �"t+1 (9)

where the intercept term depends on the regime probabilities pij as well as the regime-

dependent in�ation target �� (st).

Because there is no regime switching in theA, B and C coe¢ cient matrices we can �rst

apply standard linear rational expectations methods to solve for the transition matrix �

and then use the set of equations

[B � A�]� (i) =M (i) + A
P

jpij� (j)

to obtain � (st+1).

Appendix B.2 provides details on the bond price computation algorithm under regime

switching. It is shown by Ang et al. (2008) that when � is not regime-dependent, bond

prices are computed exactly. In the case when � does depend on regimes, bond prices can

be computed approximately (with a very small approximation error) as shown by Bansal

and Zhou (2002). Finally, using the model solution and bond pricing method we can

compute the expectations and variances of yields and in�ation conditional on di¤erent

regimes. Details of the conditional moment computations can be found in Appendix B.3.

The resulting equations for the real and nominal bond yields with n quarters to

maturity are a¢ ne in Xt and with regime dependent intercept terms:

ynt = a
N
n (st) + b

N
n Xt

rnt = a
R
n (st) + b

R
nXt

4.4 Estimation Methodology

We estimate our model using Bayesian techniques, which allow us to specify priors for

the distribution of certain parameters, based on previous studies and on certain data

moments. We use the Hamilton-Kim �lter for computing the likelihood as well for �nding
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the probabilities of the two regimes.2 This allows us to compute the posterior distribution

of the model parameters up to an integrating constant. Here, we show the posterior mode

estimates that maximizes the posterior likelihood of the model.

4.4.1 Likelihood computation

In our estimation we use eight UK time series. These are per capita consumption growth,

RPI in�ation, nominal bond yields with maturities of 1, 2, 5 and 10 years and real bond

yields with maturities of 5 and 10 years. The data, represented by the vector Yt, is related

to the state variables Xt by the observation equation

Yt = A (st) +BXt + �eet (10)

The intercept term A(st) contains the sample means of in�ation and consumption growth

as well as regime-dependent intercept terms for bond yields. The coe¢ cients in B contain

the bond pricing coe¢ cients bNn and b
R
n as well as the identity mapping between the model

variables �yt and �t and their data counterparts: demeaned per capita consumption

growth and RPI in�ation.

We allow for measurement errors in the observation equation represented by the i.i.d.

vector et. We assume that the random vectors et and "t are jointly normal 
et

"t

!
� N

 
0;

"
I 0

0 I

#!

Thus we have a state space system of the form

Yt = A (st) +BXt + �eet

Xt+1 = � (st+1) + �Xt + �"t+1

The matrices A (st), B, � (st), � and � all depend on the model�s structural parame-

ters, which we collect in the vector ~�. In our case

~� =
�
�; �; �; �; !; �; �; ; ��; �y; �i; �a; ��; �

a; �m; ��; � (1) ; � (2) ; p11; p22; �e
�0

Let Y t denote the data up to and including period t: Y t = (Y0; Y1; :::; Yt). Our goal

is to compute the likelihood of the data given the parameters

L
�
Y T
�� ~�� = TQ

t=2

L
�
YtjYt�1; ~�

�
L
�
Y1j ~�

�
2Please refer to Kim(1994) and Hamilton (1989) for details. Our exposition of the methodology

follows Kim and Nelson (1999).
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where Y1 is a function of X1 and s1, which are assumed drawn from their ergodic distri-

butions.

To compute L
�
YtjYt�1; ~�

�
we need to make an inference about the unobserved states

Xt. We do that by using the algorithms proposed by Hamilton (1989) and Kim (1994).

Appendix B.4 provides the details.

4.4.2 Estimating the posterior mode

Given a prior distribution p (�) and the likelihood L
�
Y T
�� ~��, we can compute the value

of the posterior at a given set of parameters up to an integrating constant

p (�jYt) _ L
�
Y T
�� ~�� p (�) (11)

As discussed in Liu et al. (2008), since the posterior density function is in general

non-Gaussian and with a complicated shape, it is important to �nd the its mode by

maximizing (11). This we do as follows.

We �rst make 1,000,000 draws from the prior distribution and estimate the value of

posterior for each one of them. Then we use the �fty with the highest posterior values

as initial parameter vectors for a sequence of non-linear optimizations.3 Our results are

based on the highest local maximum of the posterior that we �nd.

4.4.3 Priors

The dimensionality of ~� is large, with 21 di¤erent parameters. Therefore we split it into

two parts: �, which we estimate, and ��, which we �x a priori. The elements of �� were

determined as follows. We set the discount factor � = 0:995, which corresponds to a

2% steady-state real short rate. We set the CES parameter � = 10 corresponding to a

mark-up of 11%, which is in the neighborhood of the one estimated by previous DSGE

models. We set the Calvo parameter � to 0:75 and the Taylor rule�s output gap response

coe¢ cient �y to 0:1 (corresponding to a 0:4 coe¢ cient for the annualized output gap).

For the remaining sixteen parameters, we give priors that are in line with earlier stud-

ies employing Bayesian methods for estimating DSGE models. The prior distributions

of those parameters are summarized in the �rst three columns of Table 2.

3We used the optimisation routines available on Chris Sims�s web site as well as the fminsearch

function from MATLAB�s Optimization Toolbox, which is based on the Nelder-Mead search method.
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The prior distribution of the utility curvature parameter � is Gamma with a mean of

3 and a standard deviation of 1. We allow for a higher value than usual for the utility

function curvature parameter in order to improve the �t to bond yields.

The inverse Frisch elasticity ! has a mean of 3 and a standard deviation of 0:75 as in

Rabanal and Rubio-Ramirez (2005). The 5%� 95% bounds for the prior distribution of

! correspond to a Frisch elasticity between 0:123 and 0:53.

We allow for a rather loose prior for the monetary policy inertia parameter in the

Taylor rule �I with mean of 0:7 and standard deviation 0:2. The 5% � 95% bounds for

the prior distribution are 0:32 and 0:97 respectively.

The prior for the AR(1) coe¢ cient for the technology process mean value of 0:9

and standard deviation of 0:05. We also tried looser priors for this parameter but the

estimates did not change signi�cantly. The prior for the preference shock persistence has

a mean of 0:6 and standard deviation of 0:2 as in Justiniano and Primicieri (2007).

We use an Inverse Gamma (IG) distribution for all volatility parameters to guarantee

positivity. Our prior for the volatility of the technology shock has a mean value of 2:5%

and a standard error of 1%. The mean level is on the higher end of previous studies

but we have to compensate for the fact that our model lacks other important sources of

volatility such as capital adjustment or variable capacity utilization, which other studies

�nd to add to the volatility of the output and consumption.

For the monetary policy shock we chose a mean of 0:05% implying that the central

bank cannot deviate by more than 0:4% from its target interest rate 95% of the time.

The mean and standard deviation of the volatility of the measurement error were set

to 10 basis points each.

We set the mean values for the in�ation target in each regime close to the mean values

for RPI in�ation in the pre and post ERM crisis subsamples. The standard deviation for

those parameters were set to 0:2% and 0:1% respectively. The low standard deviation for

the high in�ation target is to let the estimation easily distinguish between the low and

high in�ation regimes for a given period.

Finally, we set the mean of the probability of a transition from a low to a low in�ation

regime to 0:9, corresponding to an average duration of 10 quarters. We set a very loose

prior for the transition probability from a high to a high in�ation regime in order to give

the data enough �exibility to distinguish between the low and high regimes. Our prior

mean for p22 is 0:6 corresponding to an average duration of 2:5 quarters.
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4.5 Estimation results

4.5.1 Parameter estimates

We present the medians and standard deviations of the estimated posterior distributions

in Table 2. In general the data is quite informative for the estimated parameters. Given

the relatively �at UK term structure, the estimated median for � of 2:58 is much lower

than the one used by HTV to �t US term premia. The estimated in�ation target in the

high regime (regime 2) is 5:37% , which is close to the 5:48% mean of the �rst subsample.

The median of the in�ation target in regime 1 is estimated at 2:22% which is lower than

the post-1992 sample mean of in�ation of 2:71% but in between the actual announced

in�ation targets of the Bank of England of 2:5% and 2%.

The transition probabilities p11 and p22 have estimated medians of 0:98 and 0:95

respectively. This implies that the low-in�ation regime is more persistent. Despite its

very high persistence it is not an absorbing state. Therefore, even under the current

regime of in�ation targeting there is a non-negligible implied probability of reverting

to a high in�ation regime. This has a signi�cant impact on the shape of the in�ation

compensation term structure.

4.5.2 Model �t

The estimated parameter values are of less interest themselves than their implications for

the model variables behavior. Table 3 gives the correlations between the observed values

of the variables and estimated values of the variables when the measurement errors that

are used in estimation are set to zero. Overall, the �t of the estimated variables are

quite good. However, it has to be underlined that estimating the real yields and longer

maturity nominal yields precisely proved to be harder. This is not surprising given that

the model has itself a short-term nominal variable (the policy rate set by the Central

Bank) and the high correlation between the shorter term yields. Still, the correlation

values suggest that the model is able to explain the movement of the breakeven rates,

which are actually not used in the estimation.

In three panels of the Figure 2 (the fourth is on the lower right panel), we see the �t

of the selected variables again when the measurement error terms are set to zero. It can

be seen that the model has a very good �t to observed consumption growth, in�ation

and 1-year nominal yield. This is not surprising given the large dimensionality of the

parameter vector.
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The last panel of Figure 2 shows the estimated regime probability of low-in�ation

regime. The transition between the high and low regimes is very clear. Our model

estimation suggests an in�ationary target switch happened at the end of 1991. This

seems to be at odds with the fact that the Bank of England adopted in�ation targeting

regime in 1992:Q4. To shed into light for this result, in Figures 3 and 4, we draw the

observed in�ation rate, observed breakeven in�ation spread respectively (de�ned as the

10year minus 5 year breakeven rate) along with the model implied values. It has to be

noted that our identi�cation for the regime switches for the in�ation target basically

exploits the in�ation rate and the breakeven in�ation spread. Given the low (high)

in�ation target regime, in�ation rate will be lower (higher) and because of higher (lower)

future expected in�ation breakeven in�ation rate will be higher (lower).

Although the Bank of England adopted the in�ation targeting in 1992:Q4, Figure

3 shows that the in�ation dropped signi�cantly between 1990:Q2 and 1991:Q3 over 9.6

percent. Hence, the model gives a higher probability of being in the lower in�ation

regime starting from the end of 1991 given this signi�cant drop in in�ation. As we can

see form Figures 2 to 4 that there has been a previous short-lived regime switch from

high in�ation regime to low in�ation regime 1986:Q1. In addition, the estimation suggests

another short-lived switch, this time from low-in�ation regime to high, in 1994:Q4. A

look at Figure4 shows that the break-even in�ation rates are the major culprit for these

short-lived switches as the observed breakeven rate spread nearly coincides with the

model-implied one.

Figure 5 shows the �t to variables that are functions of the variables used in the

observation equation. The �t to the breakeven in�ation rates is quite good whereas the

�t to the nominal and real slope terms is somewhat worse but they still capture the

trends in the data.

4.5.3 Implications for breakeven in�ation

We now compare our results with the observed data moments for the nominal, real and

breakeven in�ation term structures. Figure 6 depicts the subsample averages predicted

values of the term structure for the pre- and post 1992:Q4, where the BOE adopted in�a-

tion targeting. Although, we found that the model shows an earlier date for the regime

switch, we still want to use 1992:Q4 to compare the predicted values from estimation to

the observed values drawn in Figure 1. As earlier, we use the 2 year maturity as the level

term of the term structure and the spreads are computed with this maturity. The only

bit where we di¤er from the data is the slightly positive slope of the estimated real term
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structure in the second sample. This could possibly be a result of the institutional fea-

tures such as the regulations that require UK pension funds to invest in in�ation indexed

assets.

The bottom two panels of Figure 6 show the model implied unconditional average

shape of the term structure in both regimes. While they are slightly di¤erent in magni-

tude (especially for the breakeven in�ation slope in the high in�ation regime) from the

sample means, they do have the same general shape. Hence we can conclude that our

model explains the observed term structure of breakeven in�ation fairly well. It produces

a breakeven slope in the second subsample that is very close to the one observed in data

and generates and even higher slope for the low in�ation regime in the population.

As noted earlier, pre- and post 1992:Q4 contain regime switches. To show that the

predicted values of term structures are not driven by these switches but rather they

conform to model implied unconditional term structures, we also subdivide the top panel

according to the predicted regime probabilities in Figure 7. As the �gure conforms, the

similar patterns are mainly dictated by the fact that a high (low) in�ation regime has a

downward (upward) sloping breakeven in�ation curve.

If we look at Figure 8 we can see the implied IRP�s (which are the same in both

regimes). Note that, given our model structure, unconditional IRP�s do not di¤er across

regimes. They can account for only a tiny fraction of the in�ation compensation slope.

The highest value for the IRP is slightly higher than 5 basis points. This is not surprising

given other structural macro model results. The e¤ect of regime-dependent conditional

expectations clearly dominates.

Finally, Figure 9 shows the comovement of the nominal, real and breakeven 10y-2y

slope in the two subsamples. We can see that in the �rst subsample the �tted nominal

slope is much more correlated with breakeven in�ation. The correlation between the two

is 0.82 whereas the correlation between the nominal and real slope is only 0.29. In the

second subsample the nominal-real correlation increases to 0.72 just like it does in the

data, whereas the nominal-breakeven correlation decreases to 0.66. These correlations

are higher as the ones in the data but the direction of the changes is very similar. We

conclude that the relative role of the real slope in the dynamics of the nominal curve

increased whereas that of in�ation compensation decreased. Thus our model agrees with

our preliminary observations of the data.
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5 Conclusions

In this paper we investigate the term structure of in�ation compensation and its contri-

bution to the nominal curve slope. We attempt to answer the question of why in�ation

compensation in the UK has been upward sloping during the time the Bank of England

has been committed to a low and stable in�ation target and propose a mechanism. In

particular, we estimate a DSGE model with Markov regime-switching in the in�ation tar-

get of the central bank and �nd that the period before the adoption of in�ation targeting

is basically characterized by a high in�ation target regime whereas the period after is

mostly a low-in�ation target regime. However, the model assign the regime switch date

before 1992:Q4 mostly because of a rapid disin�ation in the previous year. The model

also matches the breakeven in�ation slope observed in di¤erent subsamples of UK data.

Thus our results attribute the slope of the UK breakeven in�ation to the conditional

expectations of long-run in�ation which changed substantially with the transition to a

new monetary policy regime.

Our model is a rational expectations model, where economic agents know the structure

of the economy as well as the statistical distributions of the exogenous shock including the

process for the regime-switching in�ation target. Therefore the term structure of in�ation

compensation is primarily determined by expectations. However, we have not ruled out

the existence of larger risk premia than our simple model suggests. For example, one

could incorporate risk premia via di¤erent mechanisms involving the introduction of a

wedge between the beliefs of agents and the actual distribution of the underlying process

for in�ation.

Our regime-switching model can also be extended to allow for subjective transition

probabilities, di¤erent from the ones governing the actual in�ation target process. In this

extended model breakeven in�ation could contain a signi�cant component that is not

related to in�ation expectations under the objective physical measure without a¤ecting

the real term structure to a large extent.
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TABLE 1: Sample means of nominal and real yields 

 1y 2y 5y 10y 
UK (1985:01-1992:10)     
Nominal yield 10.58 10.29 10.09 9.97 
Real yield 2.96 3.19 3.61 3.90 
Breakeven inflation 7.62 7.10 6.48 6.07 
     
UK (1985:01-1992:10)     
Nominal yield 5.35 5.52 5.76 5.81 
Real yield 2.72 2.64 2.58 2.54 
Breakeven inflation 2.63 2.88 2.54 3.27 
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TABLE 2: Model Parameters: Priors and Estimates 

 

  Prior Posterior 
Parameter Distribution Mean Std. Dev. Mode 
σ , Risk aversion Gamma 3.00 1.00 2.58 
δ , Habit Beta 0.40 0.15 0.36 
ω , Curvature for labor disutility Gamma 3.00 0.75 7.03 
γ , Indexation Beta 0.50 0.20 0.27 
φ_{π}, Taylor rule, inflation Gamma 2.00 0.30 2.01 
ρ_{I}, Taylor rule, lagged interest rate Beta 0.70 0.20 0.85 
ρ_{a}, Persistence, Technology shock Beta 0.90 0.05 0.99 
ρ_{ξ}, Persistence, Preference shock Beta 0.60 0.20 0.93 
100*η_{a}, Standard deviation, technology shock IG 2.50 1.00 0.01 
100*η_{m}, Standard deviation, Taylor rule IG 0.05 0.10 0.00 
100*η_{ξ}, Standard deviation, preference shock IG 1.00 0.50 0.03 
π (1), Inflation target, low inflation regime Normal 2.40 0.80 2.22 
π (2), Inflation target, high inflation regime Normal 6.00 0.40 5.37 
p₁₁, Transition probability from low regime to low regime Beta 0.90 0.05 0.98 
p₂₂, Transition probability from high regime to high regime Beta 0.60 0.13 0.95 
100*η_{m}, Standard deviation, measurement error IG 0.10 0.10 0.00 
     
β , Discount rate Fixed 0.995   
χ , Coefficient for labor disutility Fixed 1.00   
α , Calvo parameter Fixed 0.75   
θ , Dixit-Stiglitz CES parameter Fixed 10   
φ_{y}, Taylor rule, output gap Fixed 0.10   
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TABLE 3: Correlations for Observed and Fitted Variables 

 Level Change 
Consumption growth 1.0000 1.0000 
Inflation 0.9985 0.9983 
1 year nominal yield 0.9912 0.9308 
2 year nominal yield 0.9979 0.9692 
5 year nominal yield 0.9898 0.8958 
10 year nominal yield 0.9678 0.8182 
5 year real yield 0.8971 0.5894 
10 year real yield 0.9488 0.6451 
5 year breakeven inflation rate 0.9433 0.4842 
10 year breakeven inflation rate 0.8643 0.2897 
Spread between 10 year and 1 year nominal 
yields 0.6968 0.2815 
Spread between 10 year and 5 year real yields 0.1631 0.1951 
Spread between 10 year and 1 year breakeven 
inflation rates 0.5812 0.7034 
 

 

 



FIGURE 1: UK term structure
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A Model

A.1 Consumers

There is a continuum of goods in the economy indexed by i in the unit interval. Each
good is produced by a separate �rm. The representative consumer�s preferences over the
di¤erent goods are described by the usual CES Dixit-Stiglitz aggregator:

Ct =

�Z 1

0

Ct (i)
��1
� di

� �
��1

(1)

where C (i) is the consumption of good i. � is a preference parameter describing the
elasticity of substitution between good i and good j. Consumer utility depends on the
aggregate consumption good Ct and labor supply Lt (i) to each �rm i in an additively
separable manner. We assume time-separable preferences with constant relative risk
aversion over the consumption aggregate:

U = maxE0
1P
t=0

�t

"
(Ct � �Ct�1)1��

1� � �t � �L!t

#
(2)

Here, � < 1 is a subjective discount factor, � is the inverse of the intertemporal elasticity
of substitution and ! and � are parameters describing the disutility from labor.

The �ow budget constraint of the representative agent is:Z 1

0

Pt (i)Ct (i) di+Bt � wtLt +
Z 1

0

�t (i) di+Wt (3)

where Pt (i) is the nominal price of good i. From the consumer�s intratemporal cost-
minimization problem it can be shown thatZ 1

0

Pt (i)Ct (i) di = PtCt (4)

where the aggregate price index Pt is given by

Pt =

�Z 1

0

Pt (i)
1�� di

� 1
1��

(5)

�t (i) are the pro�ts of �rm i, wt is the nominal wage paid by �rms,Wt is beginning of
period wealth, consisting of the nominal value of all asset holdings and Bt represents the
value end of period asset holdings. Complete markets imply the existence of a stochastic
discount factor Qt;t+1 such that

Bt = Et [Qt;t+1Wt+1] (6)
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The Lagrangian for the consumer�s utility maximization problem is:

L = E0
1P
t=0

�t

"
(Ct � �Ct�1)1��

1� � �t � �L!t di
#

� E0
1P
t=0

�t�t

�
PtCt +Qt;t+1Wt+1 �

�
wtLt +

Z 1

0

� (i) di

�
�Wt

�
(7)

The �rst-order conditions with respect to the control variables Ct, Lt andWt+1 imply:

Qt;t+1 = �
�t+1
�t

= �
Pt
Pt+1

�t+1
�t

(8)

where �t � �tPt = (Ct � �Ct�1)�� �t � ��Et
�
(Ct+1 � �Ct)�� �t+1

�
, and

wt
Pt
=
�!L!�1t

�t
(9)

A.2 Firms

There is a continuum of monopolistically competitive �rms in the economy, each with
some price-setting power. The degree of market power of each �rm depends on the CES
parameter of the representative consumer�s utility function. The demand curve for each
�rm�s product is derived from the consumer�s intratemporal optimization problem and
market clearing. Together, they imply:

Yt (i) =

�
Pt (i)

Pt

���
Yt (10)

Firms are price setters but not all of them get to optimize their price in each period.
Following Calvo (1983) and Christiano et al. (2001), we introduce both staggered price-
setting and in�ation indexation. In particular, in each period every �rm has a probability
1� � of re-optimising its price. Firms who do not get to optimize their price in period
t, set it according to the formula:

Pt (i) = Pt�1 (i)�

t�1 (11)

where

�t �
Pt
Pt�1

Firms maximize pro�ts which are given by

�t (i) = Pt (i)Yt (i)� TCt (i)

where TCt = wt(i)Lt (i), Yt (i) = AtLt (i), At is an exogenous aggregate productivity
shock. Assuming competitive factor markets, �rms take the common wage wt (i) = wt
as given. Firm i�s nominal marginal cost of producing an additional unit of output is:

MCt (i) =MCt =
wt
At

(12)
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Substituting the labor supply condition (9) into the above equation we get that the
real marginal cost is:

mct �
MCt
Pt

=
�!L!�1t

At�t
=
�!

�t

�
Ytst
At

�!�1
At

=
�!

�t

(Ytst)
!�1

A!t

mct �
MCt
Pt

=
�!L!�1t

At�t
=
�!

�t

(Ytst)
!�1

A!t
(13)

From here, we get that in every period t+ s > t, for a �rm that has not re-optimized its
price since period t, the real marginal cost mct+s is:

mct+s �
MCt+s
Pt+s

=
�!

�t+s

(Yt+sst+s)
!�1

A!t+s
(14)

Note that
TCt+s (i) =MCt+sYt+s (i) = mct+sPt+sYt+s (i) (15)

The intertemporal pro�t maximization problem of the �rms optimising their price in
period t is:

max
Pt(i)

Et
1P
s=0

�sQt;t+s [Pt+s (i)Yt+s (i)�mct+sPt+sYt+s (i)]

Yt+s (i) =

�
Pt+s (i)

Pt+s

���
Yt+s

max
Pt(i)

Et
1P
s=0

�sQt;t+s

"
Pt+s (i)

�
Pt+s (i)

Pt+s

���
Yt+s �mct+sPt+s

�
Pt+s (i)

Pt+s

���
Yt+s

#

max
Pt(i)

Et
1P
s=0

�sQt;t+s

"
Pt+s (i)

�
Pt+s (i)

Pt+s

���
Yt+s �mct+sPt+s

�
Pt+s (i)

Pt+s

���
Yt+s

#

max
Pt(i)

Et
1P
s=0

�sQt;t+s

"
Pt (i)

1��
�
Pt+s�1
Pt�1

�(1��)
P �t+sYt+s � Pt (i)

��mct+sP
1+�
t+s

�
Pt+s�1
Pt�1

���
Yt+s

#

The FOC is:

Et
1P
s=0

�sQt;t+s

"
(� � 1)P �t (i)

��
�
Pt+s�1
Pt�1

�(1��)
P �t+sYt+s

#

= Et
1P
s=0

�sQt;t+s

"
�P �t (i)

���1mct+sP
1+�
t+s

�
Pt+s�1
Pt�1

���
Yt+s

#
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(� � 1)P �t (i)
�� Et

1P
s=0

�sQt;t+s

"�
Pt+s�1
Pt�1

�(1��)
P �t+sYt+s

#

= �P �t (i)
���1Et

1P
s=0

�sQt;t+s

"
mct+sP

1+�
t+s

�
Pt+s�1
Pt�1

���
Yt+s

#

�P �t (i)
���1

(� � 1)P �t (i)
�� =

Et
1P
s=0

�sQt;t+s

��
Pt+s�1
Pt�1

�(1��)
P �t+sYt+s

�
Et

1P
s=0

�sQt;t+s

�
mct+sP

1+�
t+s

�
Pt+s�1
Pt�1

���
Yt+s

�
So the optimal price is

P �t (i) =
�

� � 1

Et
1P
s=0

�sQt;t+s

�
mct+sP

1+�
t+s

�
Pt+s�1
Pt�1

���
Yt+s

�
Et

1P
s=0

�sQt;t+s

��
Pt+s�1
Pt�1

�(1��)
P �t+sYt+s

�

P �t (i) =
�

� � 1

Et
1P
s=0

�sQt;t+s

�
mct+sP

1+�
t+s

�
Pt+s�1
Pt�1

���
Yt+s

�
P�1��t

Et
1P
s=0

�sQt;t+s

��
Pt+s�1
Pt�1

�(1��)
P �t+sYt+s

�
P�1��t

P �t (i)

Pt
=

�

� � 1

Et
1P
s=0

�sQt;t+s

�
mct+s

�
Pt+s
Pt

�1+� �
Pt+s�1
Pt�1

���
Yt+s

�
Et

1P
s=0

�sQt;t+s

��
Pt+s�1
Pt�1

�(1��) �
Pt+s
Pt

��
Yt+s

� =
�

� � 1
DCt
DRt

Numerator

DCt � Et
1P
s=0

�sQt;t+s

"
mct+s

�
Pt+s
Pt

�1+� �
Pt+s�1
Pt�1

���
Yt+s

#

DCt+1 = Et
1P
s=0

�sQt+1;t+1+s

"
mct+1+s

�
Pt+1+s
Pt+1

�1+� �
Pt+s
Pt

���
Yt+1+s

#

DCt = mct

�
Pt
Pt

�1+� �
Pt�1
Pt�1

���
Yt+Et

1P
s=1

�sQt;t+s

"
mct+s

�
Pt+s
Pt

�1+� �
Pt+s�1
Pt�1

���
Yt+s

#

DCt = mctYt + Et
1P
s=0

�s+1Qt;t+1+s

"
mct+1+s

�
Pt+1+s
Pt

�1+� �
Pt+s
Pt�1

���
Yt+1+s

#

DCt = mctYt+�EtQt;t+1
1P
s=0

�sQt+1;t+1+s

"
mct+1+s

�
Pt+1+s
Pt

Pt+1
Pt+1

�1+� �
Pt+s
Pt�1

Pt
Pt

���
Yt+1+s

#
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DCt = mctYt

+ �

�
Pt
Pt�1

���
EtQt;t+1

�
Pt+1
Pt

�1+� 1P
s=0

�sQt+1;t+1+s

"
mct+1+s

�
Pt+1+s
Pt+1

�1+� �
Pt+s
Pt

���
Yt+1+s

#

DCt =
�!

�t

(Ytst)
!�1

A!t
Yt + ��

��
t EtQt;t+1�

1+�
t+1DCt+1

DCt = �!
s!�1t

�t

Y !t
A!t

+ ����t EtQt;t+1�
1+�
t+1DCt+1

DCt = �!
s!�1t

�t

Y !t
A!t

+ �����t Et

�
�t+1
�t

��t+1DCt+1

�

Denominator

DRt � Et
1P
s=0

�sQt;t+s

"�
Pt+s�1
Pt�1

�(1��)�
Pt+s
Pt

��
Yt+s

#

DRt+1 = Et+1
1P
s=0

�sQt+1;t+s

"�
Pt+s
Pt

�(1��)�
Pt+1+s
Pt+1

��
Yt+1+s

#

DRt = Yt + Et
1P
s=1

�sQt;t+s

"�
Pt+s�1
Pt�1

�(1��)�
Pt+s
Pt

��
Yt+s

#

DRt = Yt + Et
1P
s=0

�s+1Qt;t+1+s

"�
Pt+s
Pt�1

�(1��)�
Pt+1+s
Pt

��
Yt+1+s

#

DRt = Yt + �EtQt;t+1
1P
s=0

�sQt+1;t+1+s

"�
Pt+s
Pt�1

Pt
Pt

�(1��)�
Pt+1+s
Pt

Pt+1
Pt+1

��
Yt+1+s

#

DRt = Yt+�

�
Pt
Pt�1

�(1��)
EtQt;t+1

�
Pt+1
Pt

�� 1P
s=0

�sQt+1;t+1+s

"�
Pt+s
Pt

�(1��)�
Pt+1+s
Pt+1

��
Yt+1+s

#
DRt = Yt + ��

(1��)
t EtQt;t+1�

�
t+1DRt+1

DRt = Yt + ���
(1��)
t Et

�
�t+1
�t

���1t+1DRt+1

�
Hence the relative price of the optimizing �rm can be expressed in recursive form

with the following equations:
P �t (i)

Pt
=

�

� � 1
DCt
DRt

(16)

DRt = Yt + ���
(1��)
t Et

�
�t+1
�t

���1t+1DRt+1

�
(17)
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DCt = �!
s!�1t

�t

�
Yt
At

�!
+ �����t Et

�
�t+1
�t

��t+1DCt+1

�
(18)

By symmetry, the optimal price P �t (i) for each �rm that gets to optimize in period
t should be the same and denote it by P �t . Finally, note that the aggregate price level
can be written as:

Pt =

"
(1� �)P �(1��)t + �

�
Pt�1

�
Pt�1
Pt�2

��1��# 1
1��

P 1��t =

"
(1� �)P �(1��)t + �

�
Pt�1

�
Pt�1
Pt�2

��1��#

1 = (1� �) P
�(1��)
t

P 1��t

+ �

�
Pt�1
Pt

�
Pt�1
Pt�2

��1��
(1� �) P

�(1��)
t

P 1��t

= 1� �
�
Pt�1
Pt

�
Pt�1
Pt�2

��1��
(1� �)

�
P �t
Pt

�1��
= 1� �

�
��1t �


t�1
�1��

�
P �t
Pt

�1��
=
1� �

�
��1t �


t�1
�1��

1� �
and therefore:

P �t
Pt
=

2641� �
�

�t
�t�1

���1
(1� �)

375
1

1��

(19)

Finally, we get 2641� �
�

�t
�t�1

���1
(1� �)

375
1

1��

=
�

� � 1
DCt
DRt

(20)

DRt = Yt + ���
(1��)
t Et

�
�t+1
�t

���1t+1DRt+1

�
(21)

DCt = �!
s!�1t

�t

�
Yt
At

�!
+ �����t Et

�
�t+1
�t

��t+1DCt+1

�
(22)
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A.3 Monetary policy

The central bank�s policy is described by an interest rate rule of the type:

It = �I1��It I�It�1�t

where �It is de�ned by

�It =
��

�

�
�t
��t

��� �
�
Yt
Y nt

��y
and �t is a monetary policy shock. �I is a parameter governing the degree of monetary
policy inertia. � is de�ned as

��1 �
�
1� ���(��1)(1�)

(1� �)

� �(!�1)+1
��1

1
1�!��

�
1� �� ��(�1)(1��)
1� �� ��(1�)�

� 1
1�!��

�s
!�1

1�!��

so that in steady state

�
Yt
Y nt

= �
�Y
�Y n
= 1

Clearly, when �� = 1 or  = 1, we have � = 1.

A.4 Exogenous disturbances

There are several sources of uncertainty in our baseline model. These are the technology
shock At, the monetary policy shock �t, the preference shock �t and the in�ation target
��t . We assume that the processes for those are given by

logAt+1 = �A logAt + �
a"at+1 (23)

log �t+1 = �
m"mt+1 (24)

log �t+1 = �� log �t + �
�"�t+1 (25)

Here, �A, �� 2 [0; 1] are autoregressive parameters and �a, �m, �� are volatility scaling
parameters. f"at g, f"mt g,

n
"�t

o
and are independent standard normally distributed shock

processes uncorrelated with each other.

In our main model ��t follows a two-state Markov-switching process with transition
probability matrix P . In our alternative model, it follows an autoregressive process given
by

log (��t ) = (1� ��) log
�
��
�
+ �� log

�
��t�1

�
+ ��"

�
t (26)
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A.4.1 Aggregation

Yt(i) =

�
Pt (i)

Pt

���
Yt

AtLt(i) =

�
Pt (i)

Pt

���
Yt

Lt(i) =

�
Pt (i)

Pt

���
Yt
At

Lt(i) =

�
Pt (i)

Pt

��� �
Yt
At

�
Lt =

Z 1

0

Lt(i)di =

�
Yt
At

�Z 1

0

�
Pt (i)

Pt

���
di =

�
Yt
At

�
st

st �
Z 1

0

�
Pt (i)

Pt

���
di

st =

Z 1��

0

�
P �t
Pt

���
di+

Z 1

1��

�
Pt (i)

Pt

���
di

st =

Z 1��

0

�
P �t
Pt

���
di+

Z 1

1��

�
Pt (i)Pt�1
Pt�1Pt

�t�1
�t�1

���
di

Z 1

1��

�
Pt (i)Pt�1
Pt�1Pt

�t�1
�t�1

���
di = ��t

Z 1

1��

�
Pt (i)

Pt�1

�t�1
�t�1

���
di

Z 1

1��

�
Pt (i)Pt�1
Pt�1Pt

���
di = ��t�

��
t�1

Z 1

1��

�
Pt (i)

Pt�1�

t�1

���
di = ���t�

��
t�1 st�1

Pt (i) = Pt�1 (i)�

t�1Z 1

1��

�
Pt (i)Pt�1
Pt�1Pt

���
di = ��t�

��
t�1

Z 1

1��

�
Pt�1 (i)

Pt�1

���
di = ���t�

��
t�1 st�1

Z 1��

0

�
P �t
Pt

���
di =

2641� �
�

�t
�t�1

���1
(1� �)

375
�

��1

st = (1� �)

2641� �
�

�t
�t�1

���1
(1� �)

375
�

��1

+ ���t�
��
t�1 st�1

Yt = AtLts
�1
t
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A.4.2 Natural rate of output

If prices were �exible, the representative agent would optimize Pt (i) in every period in
order to maximize

�t (i) = Pt (i)Yt (i)�mctPtYt (i)

�t (i) = Pt (i)

�
Pt (i)

Pt

���
Yt �mctPt

�
Pt (i)

Pt

���
Yt

The �rst order condition for this maximization problem can be shown to be:

(� � 1)Pt (i)�� P �t Y nt = �
�
Pt (i)

Pt

��(1+�)
mctY

n
t

(� � 1)Pt (i)�� P �t Y nt = �!�
1

�t

�
Pt (i)

Pt

��(1+�)�
Y nt
At

�!
Using the symmety of the individual price setters�decisions, we can deduce that for each
i we have Pt (i) = Pt and the above expression simpli�es to:

(� � 1)Y nt = �!
�

�t

�
Y nt
At

�!
Y nt =

�!

�t

�

� � 1

�
Y nt
At

�!
(Y nt )

1�! =
�!

�t

�

� � 1A
�!
t

When there is no habit formation in the utility function �t = (Y nt )
�� and the above

expression simpli�es to:

(Y nt )
1�!�� = �!

�

� � 1A
�!
t

Hence, the natural rate of output Y nt is de�ned as:

Y nt =

�
�!

�

� � 1A
�!
t

� 1
1�!��

With habit formation �t =
�
Y nt � �Y nt�1

���
�t � ��Et

h�
Y nt+1 � �Y nt

���
�t+1

i
and

n�
Y nt � �Y nt�1

���
�t � ��Et

h�
Y nt+1 � �Y nt

���
�t+1

io
(Y nt )

1�! = �!
�

� � 1A
�!
t

A.5 Model equations

�t = (Ct � �Ct�1)�� �t � ��Et
�
(Ct+1 � �Ct)�� �t+1

�
(27)
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1

It
= Et

�
�

�t+1

�t+1
�t

�
(28)

Yt = AtLts
�1
t (29)2641� �

�
�t
�t�1

���1
(1� �)

375
1

1��

=
�

� � 1
DCt
DRt

(30)

DRt = Yt + ���
(1��)
t Et

�
�t+1
�t

���1t+1DRt+1

�
(31)

DCt = �!
s!�1t

�t

�
Yt
At

�!
+ �����t Et

�
�t+1
�t

��t+1DCt+1

�
(32)

st = (1� �)

2641� �
�

�t
�t�1

���1
(1� �)

375
�

��1

+ ���t�
��
t�1 st�1 (33)

It =

"
��

�

�
�t
��t

��� �
�
Yt
Y nt

��y#1��I
I�It�1�t (34)

n�
Y nt � �Y nt�1

���
�t � ��Et

h�
Y nt+1 � �Y nt

���
�t+1

io
(Y nt )

1�! = �!
�

� � 1A
�!
t (35)

logAt+1 = (1� �A) log �A+ �A logAt + �a"at+1 (36)

log �t+1 = �
m"mt+1 (37)

log �t+1 = �� log �t + �
�"�t+1 (38)

A.6 Steady state

We are interested in model solutions around the non-stochastic steady state value of
in�ation �� which we allow to di¤er from 1. Using the Euler equation (28) we obtain a
relationship between the steady-state interest rate and the representative agent�s discount
factor.

�I0 = �I�1 = ����1

From the equation for Y n we getn�
Y nt � �Y nt�1

���
�t � ��Et

h�
Y nt+1 � �Y nt

���
�t+1

io
(Y nt )

1�! = �!
�

� � 1A
�!
t

h�
�Y n � � �Y n

��� � �� � �Y n � � �Y n���i � �Y n�1�! = �! �

� � 1�
(1� ��) (1� �)��

� �
�Y n
�1�!��

= �!
�

� � 1
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�Y n =

�
�!

�

� � 1
(1� �)�

1� ��

� 1
1�!��

Using the de�nition for the marginal utility of consumption, we get:

�� = (1� ��) (1� �)�� �Y ��

and from the aggregation equation we have:

st = (1� �)

2641� �
�

�t
�t�1

���1
(1� �)

375
�

��1

+ ���t�
��
t�1 st�1

�s = (1� �)
�
1� ���(��1)(1�)

(1� �)

� �
��1

+ ����(1�)�s

�s = (1� �)
�
1� ���(��1)(1�)

(1� �)

� �
��1 �

1� ����(1�)
��1

�L = �Y �s

From the �rm�s FOC�s for discounted pro�ts maximization we obtain:

DRt = Yt + ���
(1��)
t Et

�
�t+1
�t

���1t+1DRt+1

�
DR = �Y + �� ��(1��) ����1DR

DR =
�Y

1� �� ��(�1)(1��)

DCt = �!
s!�1t

�t

�
Yt
At

�!
+ �����t Et

�
�t+1
�t

��t+1DCt+1

�
DC = �!

�s!�1

��
�Y ! + ������ ���DC

DC = �!
�s!�1

��

�Y !

1� �� ��(1�)�

DC = �!
�Y !

1� �� ��(1�)�
(1� �)�

1� ��
�Y ��s!�1

Also we have that 2641� �
�

�t
�t�1

���1
(1� �)

375
1

1��

=
�

� � 1
DCt
DRt
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Hence

DR =

�
1� ���(��1)(1�)

(1� �)

� 1
��1 �

� � 1DC

DR =

�
1� ���(��1)(1�)

(1� �)

� 1
��1 �

� � 1�!
�s!�1

��

�Y !

1� �� ��(1�)�

�Y

1� �� ��(�1)(1��)
=

�
1� ���(��1)(1�)

(1� �)

� 1
��1 �

� � 1�!
�s!�1

��

�Y !

1� �� ��(1�)�

�Y 1�!�� =

�
1� ���(��1)(1�)

(1� �)

� 1
��1 1� �� ��(�1)(1��)

1� �� ��(1�)�
�!

�

� � 1
(1� �)�

(1� ��) �s
!�1

�Y =

�
1� ���(��1)(1�)

(1� �)

� 1
��1

1
1�!��

�
1� �� ��(�1)(1��)
1� �� ��(1�)�

� 1
1�!��

�
�!

�

� � 1
(1� �)�

(1� ��) �s
!�1
� 1
1�!��

�Y =

�
1� ���(��1)(1�)

(1� �)

� 1
��1

1
1�!��

�
1� �� ��(�1)(1��)
1� �� ��(1�)�

� 1
1�!��

�s
!�1

1�!�� �Y n

�Y = ��1 �Y n

��1 =

�
1� ���(��1)(1�)

(1� �)

� 1
��1

1
1�!��

�
1� �� ��(�1)(1��)
1� �� ��(1�)�

� 1
1�!��

�s
!�1

1�!��
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B Regime switching models

B.1 Model set-up

We log-linearize the model equations de�ned in Appendix A to obtain the following linear
system

B (st)Xt =M (st) + A (st)EtXt+1 + C (st)Xt�1 +D (st) �t

If we conjecture the solution

Xt+1 = � (st+1) + � (st+1)Xt + �(st+1) �t+1

EtXt+1 = Et� (st+1) + Et� (st+1)Xt

and plug into the model equations, we match coe¢ cients and get

[B (st)� A (st)Et� (st+1)]Xt =M (st) + A (st)Et� (st+1) + C (st)Xt�1 +D (st) �t

� (st) = [B (st)� A (st)Et� (st+1)]�1 [M (st) + A (st)Et� (st+1)]

� (st) = [B (st)� A (st)Et� (st+1)]�1C (st)
� (st) = [B (st)� A (st)Et� (st+1)]�1D (st)

This can also be written ash
B (i)� A (i)

P
j�ij� (j)

i
� (i) =M (i) + A (i)

P
j�ij� (j)h

B (i)� A (i)
P

j�ij� (j)
i
� (i) = C (i)h

B (i)� A (i)
P

j�ij� (j)
i
� (i) = D (i)

The key equation to solve ish
B (i)� A (i)

P
j�ij� (j)

i
� (i) = C (i)

and the rest follow. If, like in our model, A, B and C do not depend on the regime, then
� does not depend on regime either. The equation simpli�es to a well-known generalized
eigenvalues problem. We re-write it as

A���B� + C = 0

and could apply familiar solution algorithms. Then we solve for � (st) and � (st) using

[B � A�]� (i) =M (i) + A (i)
P

j�ij� (j)

[B � A�]� (i) = D (i)

14



B.2 Bond prices with regime switching

Here we present the most general case for computing bond prices, adapted from Bansal
and Zhou (2002). The state vector follows the process

xt+1 = � (st+1) + � (st+1)xt + �(st+1)
p
	t"t+1

	t = diag fA+ Bxtg

A 2 Rn"

B 2 Rn"�nx

In our model, we have � (st+1) = �, � (st+1) = �, A = I, B = 0.

The reduced form equation for the pricing kernel is

qt;t+1 = �t+1 � �t � �t+1 � �zt+1

qt;t+1 = (e� � e� � �ez)� (st+1)+[(e� � e� � �ez) � (st+1)� e�]xt+(e� � e� � �ez) � (st+1)
p
	t"t+1

qt;t+1 = m (st+1) + f (st+1)xt + �m (st+1)
p
	t"t+1

exp (bnt (st)) = E
�
exp

�
qt;t+1 + b

n�1
t+1

�
jFt
�

Et (�) � E [�jFt]

n = 1) bn�1t+1 = 0

exp
�
b1t (st)

�
= E [exp (qt;t+1) jFt] = E [E [exp (qt;t+1)j Ft; st+1]j Ft]

exp
�
b1t (i)

�
=
P

j�ijE [exp (qt;t+1)j Ft; j]

exp
�
b1t (i)

�
=
P

j�ij exp

�
E (qt;t+1j Ft; j) +

1

2
V ar (qt;t+1j Ft; j)

�

exp
�
b1t (i)

�
=
P

j�ij exp

�
m (j) + f (j)xt +

1

2
�m (j)diag (�m (j)) [A+ Bxt]

�

15



exp
�
b1t (i)

�
=
P

j�ij exp

�
m (j) +

1

2
�m (j)diag (�m (j))A

�
� exp

��
f (j) +

1

2
�m (j)diag (�m (j))B

�
xt

�

b1t (i) �
P

j�ij

�
m (j) +

1

2
�m (j)diag (�m (j))A+

�
f (j) +

1

2
�m (j)diag (�m (j))B

�
xt

�

A1 (i) =
P

j�ij

�
m (j) +

1

2
�m (j)diag (�m (j))A

�
B1 (i) =

P
j�ij

�
f (j) +

1

2
�m (j)diag (�m (j))B

�

We guess that prices are of the form

bnt (st) = An (st) +Bn (st)xt

exp (bnt (st)) = E
�
E
�
exp

�
qt;t+1 + b

n�1
t+1 (st+1)

���Ft; st+1���Ft	
Conditional on fFt; st+1g, qt;t+1 and bn�1t+1 are jointly normal since both depend on the

normal shock "t+1. Then the log of the inner expectation is

log
�
E
�
exp

�
qt;t+1 + b

n�1
t+1

���Ft; st+1�� = E �qt;t+1 + bn�1t+1 (st+1)
��Ft; st+1�

+
1

2
V ar

�
qt;t+1 + b

n�1
t+1 (st+1)

��Ft; st+1�

qt;t+1+b
n�1
t+1 (st+1) = m (st+1)+f (st+1)xt+�m (st+1)

p
	t"t+1+An�1 (st+1)+Bn�1 (st+1)xt+1

qt;t+1 + b
n�1
t+1 (st+1) = m (st+1) + f (st+1)xt + �m (st+1)

p
	t"t+1 + An�1 (st+1)

+Bn�1 (st+1)
h
� (st+1) + � (st+1)xt + �(st+1)

p
	t"t+1

i

16



qt;t+1 + b
n�1
t+1 (st+1) = m (st+1) + An�1 (st+1) +Bn�1 (st+1)� (st+1)

+ [f (st+1) +Bn�1 (st+1) � (st+1)]xt

+ [�m (st+1) +Bn�1 (st+1) � (st+1)]
p
	t"t+1

E
�
qt;t+1 + b

n�1
t+1 (st+1)

��Ft; st+1� = m (st+1) + An�1 (st+1) +Bn�1 (st+1)� (st+1)
+ [f (st+1) +Bn�1 (st+1) � (st+1)]xt

1

2
V ar

�
qt;t+1 + b

n�1
t+1 (st+1)

��Ft; st+1� = 1

2
[�m (st+1) +Bn�1 (st+1) � (st+1)]

� diag [�m (st+1) +Bn�1 (st+1) � (st+1)] [A+ Bxt]

1

2
V ar

�
qt;t+1 + b

n�1
t+1 (st+1)

��Ft; st+1� = 1

2
[�m (st+1) +Bn�1 (st+1) � (st+1)]

� diag [�m (st+1) +Bn�1 (st+1) � (st+1)]A

+
1

2
[�m (st+1) +Bn�1 (st+1) � (st+1)]

� diag [�m (st+1) +Bn�1 (st+1) � (st+1)]Bxt

� (Ft; st+1) � E
�
exp

�
qt;t+1 + b

n�1
t+1

���Ft; st+1�

log [� (Ft; st+1)] = m (st+1) + An�1 (st+1) +Bn�1 (st+1)� (st+1)

+
1

2
[�m (st+1) +Bn�1 (st+1) � (st+1)]diag [�m (st+1) +Bn�1 (st+1) � (st+1)]A

+

�
[f (st+1) +Bn�1 (st+1) � (st+1)]

+1
2
[�m (st+1) +Bn�1 (st+1) � (st+1)]diag [�m (st+1) +Bn�1 (st+1) � (st+1)]B

�
xt

exp (bnt (st)) = E f� (Ft; st+1)j Ftg

exp (bnt (i)) =
P

j�ij� (i; j)

bnt (i) �
P

j�ij log [� (i; j)]

17



An (i) +Bn (i)xt �
P

j�ij log [� (i; j)]

An (i) =
P

j�ij

�
m (j) + An�1 (j) +Bn�1 (j)� (j)

+1
2
[�m (j) +Bn�1 (j) � (j)]diag [�m (j) +Bn�1 (j) � (j)]A

�

Bn (i) =
P

j�ij

�
[f (j) +Bn�1 (j) � (j)]

+1
2
[�m (j) +Bn�1 (j) � (j)]diag [�m (j) +Bn�1 (j) � (j)]B

�

B.3 Computing model moments

B.3.1 Conditional expectation E (Xtj st)

Xt+1 = � (st+1) + �Xt + �(st+1) "t+1

E (Xt+1j st+1) = E (� (st+1)j st+1) + �E (Xtj st+1)

E (Xtj st+1 = i) =
Pns

j=1E (Xtj st)P (st = jj st+1 = i)

P (st = jj st+1 = i) � bij = pji
�j
�i

pji = P (st+1 = ij st = j)
�j = P (st = j)

E (Xt+1j st+1 = i) = E (� (st+1)j st+1) + �
Pns

j=1E (Xtj st = j) bij

[E (Xt+1j st+1 = i)]nx�1 = [E (� (st+1)j st+1)]nx�1+[�]nx�nx
hPns

j=1 [E (Xtj st = j)]nx�1 [bij]1�1
i

~E (Xt+1j st) �
�
E (Xt+1j st = 1) � � � E (Xt+1j st = ns)

�
nx�ns

~� (st) �
�
� (1) � � � � (ns)

�
nx�ns

18



h
~E (Xtj st)

i
nx�ns

= [~� (st)]nx�ns + [�]nx�nx

h
~E (Xtj st)

i
nx�ns

[B0]ns�ns�
E (Xtj 1) � � � E (Xtjns)

�
=
�
� (1) � � � � (ns)

�

+ �
�
E (Xtj 1) � � � E (Xtjns)

�
2666664
b11 � � � bi1 � � � bns1
...

. . .
...

. . .
...

b1j � � � bij � � � bnsj
...

. . .
...

. . .
...

b1ns � � � bins � � � bnsns

3777775
~E (Xtj st) = ~� (st) + �~E (Xtj st)B0

B � [bij]

vec
h
~E (Xtj st)

i
= vec [~� (st)] + vec

h
�~E (Xtj st)B0

i
vec

h
~E (Xtj st)

i
= vec [~� (st)] + [B 
 �] vec

h
~E (Xtj st)

i
vec

h
~E (Xtj st)

i
= [I �B 
 �]�1 vec [~� (st)]

B.3.2 Conditional variances

Xt+1X
0
t+1 = [� (st+1) + � (st+1)Xt + �(st+1) "t+1] [� (st+1) + � (st+1)Xt + �(st+1) "t+1]

0

E
�
Xt+1X

0
t+1

�� st+1� = � (st+1)� (st+1)0 + �(st+1) � (st+1)0 + �(st+1)E [XtX
0
tj st+1] � (st+1)

0

+ � (st+1)E [Xtj st+1]0� (st+1)0 + �(st+1)E [Xtj st+1]� (st+1)0

E
�
Xt+1X

0
t+1

�� i� = �(st+1)E [XtX
0
tj st+1 = i] � (st+1)

0 + � (i)� (i)0 + �(i) � (i)0

+ � (i)E [Xtj st+1 = i]0� (i)0 + �(i)E [Xtj st+1 = i]� (i)0

E
�
Xt+1X

0
t+1

�� i� = �(i)E [XtX
0
tj st+1 = i] � (i)

0 +G (i)

G (i) � � (i)� (i)0 + �(i) � (i)0 + � (i)E [Xtj st+1 = i]0� (i)0 + �(i)E [Xtj st+1 = i]� (i)0
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E
�
Xt+1X

0
t+1

�� i� = G (i) + � (i)PjE [XtX
0
tj j]P (st = jj st+1 = i) � (i)

0

E [XtX
0
tj i] = G (i) +

P
jbij� (i)E [XtX

0
tj j] � (i)

0

vec (E [XtX
0
tj i]) = vec (G (i)) +

P
jbijvec

�
� (i)E [XtX

0
tj j] � (i)

0�
vec (E [XtX

0
tj i]) = vec (G (i)) +

P
jbij (� (i)
 � (i)) vec (E [XtX

0
tj j])

vec (E [XtX
0
tj i]) = vec (G (i)) + (� (i)
 � (i)) vec

�P
jbijE [XtX

0
tj j]
�

E [XtX
0
tj i] � V (i)

vec (V (i)) = vec (G (i)) + (� (i)
 � (i)) vec
�P

jbijV (j)
�

vec (V ) =

264
...

vec (V (i))
...

375

~V �
�
� � � vec (V (i)) � � �

�
vec

�
~V
�
= vec (V )

vec (G) =

264
...

vec (G (i))
...

375

� �

264
. . . 0 0
0 � (i)
 � (i) 0

0 0
. . .

375
vec (V ) = vec (G) +�vec

�
~V B0

�
vec (V ) = vec (G) +�vec

�
In2x
~V B0

�
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vec
�
Inx ~V B

0
�
=
�
B 
 In2x

�
vec (V )

vec (V ) = vec (G) +�
�
B 
 In2x

�
vec (V )

vec (V )��
�
B 
 In2x

�
vec (V ) = vec (G)

vec (V ) =
�
Insn2x ��

�
B 
 In2x

���1
vec (G)

B.4 Model estimation with the Hamilton-Kim �lter

Here we present our likelihood computation algorithm, adapted from Kim and Nelson
(1999).

B.4.1 Model speci�cation

Measurement equation

Yt = A (st) +B (st)Xt + et

Transition equation We here present the general case where there is regime switching
in all of the model�s parameters.

Xt = � (st) + � (st)Xt�1 + �(st) �t�
et
�t

�
� N

�
0;

�
R 0
0 I

��
The parameters are dependent on unobserved discrete-valued S-state Markov switching
variable st (st = 1; 2; :::; S) with transition probability matrix

� =

0BBB@
p11 p12 � � � p1S
p21 p22 � � � p2S
...

...
. . .

...
pS1 pS2 � � � pSS

1CCCA
where pij = P [st = ij st�1 = j] with

PS
i=1pij = 1 for all j: In what follows we denote

� (st = j) with �j, A (st = j) with Aj and B (st = j) with Bj.
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B.4.2 Algorithm

To compute L
�
YtjYt�1; ~�

�
we need to make an inference about the unobserved states

Xt. The proposed algorithm is based on the Kalman �lter and calculates S2 forecasts for
each date t corresponding to every possible combination of past and future states i and
j; as well as S2 di¤erent mean squared error matrices. Let X i;j

tjt�1 denote the predicted
values for the states given the information at time t�1 and given that st = j and st�1 = i.

X
(i;j)
tjt�1 = E

�
XtjY t�1; st = j; st�1 = i

�
Let P i;jtjt�1 denote their mean square error:

P
(i;j)
tjt�1 = E

h�
Xt �X tjt�1

� �
Xt �X tjt�1

�0���Y t�1; st = j; st�1 = ii
Conditional on st�1 = i and st = j the Kalman �lter algorithm works as follows

Prediction
X
(i;j)
tjt�1 = �j + �jX

i
t�1jt�1

P
(i;j)
tjt�1 = �jP

i
t�1jt�1�

0
j + �j�

0
j

The conditional forecast errors of the observations are

�
(i;j)
tjt�1 � Yt � Aj �BjX

(i;j)
tjt�1

and the conditional variance of forecast errors is

�
(i;j)
tjt�1 � BjP

(i;j)
tjt�1B

0
j +R

Updating We denote the updated state by

X i;j
tjt = E

�
XtjY t; st = j; st�1 = i

�
and its mean square error by

P i;jtjt = E
��
Xt �X i;j

tjt

��
Xt �X i;j

tjt

�0����Y t; st = j; st = i�
The updated state conditional on the current regime only is denoted by

Xj
tjt = E

�
XtjY t; st = j

�
and its mean square error by

P jtjt = E
��
Xt �X i;j

tjt

��
Xt �X i;j

tjt

�0����Y t; st = j�
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Then we can compute those quantities as follows:

X
(i;j)
tjt = X

(i;j)
tjt�1 + P

(i;j)
tjt�1B

0
j

h
�
(i;j)
tjt�1

i�1
�
(i;j)
tjt�1

P
(i;j)
tjt = P

(i;j)
tjt�1

�
I �B0j

h
�
(i;j)
tjt�1

i�1
Bj

h
P
(i;j)
tjt�1

i0�
As can be seen each iteration produces an S-fold increase in the number of cases to
consider. The key is to collapse terms in the right way at the right time. It remains
to somehow reduce the (S � S) posteriors

�
X
(i;j)
tjt ; P

(i;j)
tjt

�
into S posteriors

�
Xj
tjt; P

j
tjt

�
Consider the following approximation. If X(i;j)

tjt represented E [XtjYt; st�1 = i; st = j],
then

Xj
tjt =

PS
i=1P [st�1 = i; st = jjY t]X

(i;j)
tjt

P [st = jjY t]
where Xj

tjt would represent E [XtjY t; st = j]. In this case denote

�t =
P [st�1 = i; st = jjY t]

P [st = jjY t]

P jtjt, the mean-squared error matrix of Xt conditional on Y t and st = j could be derived
in the following way:

P jtjt = E
h�
Xt � E

�
XtjY t; st = j

�� �
Xt � E

�
XtjY t; st = j

��0���Y t; st = ji
= E

��
Xt �Xj

tjt

��
Xt �Xj

tjt

�0����Y t; st = j�
=

SP
i=1

�tE
��
Xt �Xj

tjt

��
Xt �Xj

tjt

�0����Y t; st�1 = i; st = j�
=

SP
i=1

�tE
��
Xt �X(i;j)

tjt +X
(i;j)
tjt �Xj

tjt

��
Xt �X(i;j)

tjt +X
(i;j)
tjt �Xj

tjt

�0����Y t; st�1 = i; st = j�
Note that given the information set (Y t; st�1 = i; st = j) the only unknown is Xt: Then
we have

P jtjt =
SP
i=1

�tE
��
Xt �X(i;j)

tjt +X
(i;j)
tjt �Xj

tjt

��
Xt �X(i;j)

tjt +X
(i;j)
tjt �Xj

tjt

�0����Y t; st�1 = i; st = j�
=

SP
i=1

�t

��
E
��
Xt �X(i;j)

tjt

��
Xt �X(i;j)

tjt

�0����Y t; st�1 = i; st = j��+ �Xj
tjt �X

(i;j)
tjt

��
Xj
tjt �X

(i;j)
tjt

�0�
+

SP
i=1

�t

�
E
h�
Xt �X(i;j)

tjt

����Y t; st�1 = i; st = ji��X(i;j)
tjt �Xj

tjt

�0
+

SP
i=1

�t

�
X
(i;j)
tjt �Xj

tjt

��
E
h�
Xt �X(i;j)

tjt

����Y t; st�1 = i; st = ji�0
=

SP
i=1

�t

��
E
��
Xt �X(i;j)

tjt

��
Xt �X(i;j)

tjt

�0����Y t; st�1 = i; st = j��+ �Xj
tjt �X

(i;j)
tjt

��
Xj
tjt �X

(i;j)
tjt

�0�
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E
��
Xt �X(i;j)

tjt

��
Xt �X(i;j)

tjt

�0����Y t; st�1 = i; st = j� = P (i;j)tjt

P jtjt =
SP
i=1

�t

�
P
(i;j)
tjt +

�
Xj
tjt �X

(i;j)
tjt

��
Xj
tjt �X

(i;j)
tjt

�0�

P jtjt =

SP
i=1

P [st�1 = i; st = jjY t]
�
P
(i;j)
tjt +

�
Xj
tjt �X

(i;j)
tjt

��
Xj
tjt �X

(i;j)
tjt

�0�
P [st = jjY t]

So at the end of each iteration we collapse S�S posteriors into S posteriors using this ap-
proximation to make the �lter operable. Notice however, that these collapsed posteriors
involve approximations, as X(i;j)

tjt and P (i;j)tjt (in the updating equations above) are not ex-

actly equal to E [XtjY t; st = j; st�1 = i] and E
��
Xt �Xj

tjt

��
Xt �Xj

tjt

�0����Y t; st = j; st�1 = i�
since Xt conditional on Y t�1; st = j; and st�1 = i is a mixture of normals for t > 2.
However, this updating equation is still the linear projection of Xt on Y t and X i

t�1jt�1
given st�1 and st. However, this updating equation is still not a linear projection of Xt

on Y t � fYt; Yt�1; :::g : since X i
t�1jt�1 is a non-linear function of Y

t�1 � fYt�1; Yt�2; ::g :

Inference on the probability terms via the Hamilton �lter
STEP 1: At the beginning of t-th iteration, given P [st�1 = ijY t�1] for i = 1; 2; :::S,

we can calculate

P
�
st = j; st�1 = ijY t�1

�
= P [st = jj st�1 = i]P

�
st�1 = ijY t�1

�
for i; j = 1; 2; :::S: where P [st = jj st�1 = i] is of course the transition probability.

STEP 2: Consider the joint density of Yt; st and st�1 :

f
�
Yt; st = j; st�1 = ijY t�1

�
= f

�
Ytj st = j; st�1 = i; Y t�1

�
P
�
st = j; st�1 = ijY t�1

�
for i; j = 1; 2; :::S from which the marginal density of Yt is obtained by

f
�
YtjY t�1

�
=

SP
j=1

SP
i=1

f
�
Yt; st = j; st�1 = ijY t�1

�
=

SP
j=1

SP
i=1

f
�
Ytj st = j; st�1 = i; Y t�1

�
P
�
st = j; st�1 = ijY t�1

�
where the conditional density f (Ytj st = j; st�1 = i; Y t�1) is obtained based on the pre-
diction error decomposition

f
�
Ytj st = j; st�1 = i; Y t�1

�
= (2�)�

N
2

����(i;j)tjt�1

���� 1
2
exp

�
�1
2

�
�
(i;j)
tjt�1

�0 �
�
(i;j)
tjt�1

��1
�
(i;j)
tjt�1

�
for i; j = 1; 2; :::S:where �(i;j)tjt�1 are computed from the above prediction equations.
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STEP 3: Once Yt is observed at the end of time t;we can update the probability
term P [st = j; st�1 = ijY t�1] to get

P
�
st = j; st�1 = ijY t

�
= P

�
st = j; st�1 = ijY t�1; Yt

�
=
f (Yt; st = j; st�1 = ijY t�1)

f (YtjY t�1)

=
f (Ytj st = j; st�1 = i; Y t�1) f [st = j; st�1 = ijY t�1]

f (YtjY t�1)

=
f (Ytj st = j; st�1 = i; Y t�1)P [st = j; st�1 = ijY t�1]

f (YtjY t�1)

for i; j = 1; 2; :::S and

P
�
st = jjY t�1

�
=

SP
i=1

P
�
st = j; st�1 = ijY t�1

�
Full procedure
Then the likelihood computation procedure works as follows. Given the parameter

vector ~�, we start with an initial guess for the state vector Xj
0j0 and its mean square

error P j0j0. Then, from period 1 to period T , we run the �lter, which consists of three
stages:

STAGE 1: Compute X i;j
tjt�1; P

i;j
tjt�1; �

i;j
tjt�1 and �

i;j
tjt�1 as well as the updates X

i;j
tjt; P

i;j
tjt

by running the Kalman �lter conditional on the regimes st = j and st�1 = i for each i
and j.

STAGE 2: Compute P (st; st�1jY t�1), the likelihood of the current observation yt,
L (ytjY t�1;�), P (st; st�1jY t) and P (stjY t) using the Hamilton �lter.

STAGE 3: Use the approximations suggested by Kim (1994) to get Xj
tjt; P

j
tjt and go

back to Step 1.

Finally, we sum up the log-likelihood for each period to get the log-likelihood for the
whole sample.
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