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1 Introduction

Since neighborhood externalities are widely believed to be a major determinant of outcomes in

the United States, empirical evidence on the existence and magnitude of neighborhood effects has

been of great interest to social scientists (Wilson (1987)). Despite this interest, conclusively docu-

menting the nature of neighborhood effects has proven difficult because it is infeasible to randomly

allocate neighborhood characteristics to individuals. Researchers have yet to agree on the most

appropriate methodology for investigating neighborhood effects under endogenous neighborhood

selection.

The results from the Moving to Opportunity (MTO) housing mobility program are a prominent

example of the difficulties confronted when studying neighborhood effects. In MTO rental vouchers

were randomly assigned to public housing residents of poor neighborhoods that could be used to re-

locate to low-poverty neighborhoods. The lack of large effects from the program were disappointing

(Kling et al. (2007), Sanbonmatsu et al. (2006)), especially given the strong positive effects from

the program serving as its motivation, Gautreaux (Polikoff (2006), Rubinowitz and Rosenbaum

(2000)). Furthermore, there has been disagreement regarding the most appropriate interpretation

of results from MTO. One view interprets Intent to Treat (ITT) and Treatment on the Treated

(TOT) effects from moving with an MTO voucher in terms of neighborhood effects (Ludwig et al.

(2008)), while another view interprets these effects as program effects and is agnostic about their

relationship to neighborhood effects (Clampet-Lundquist and Massey (2008), Aliprantis (2012)).

Despite this disagreement about the interpretation of effects from moving with an MTO voucher,

there have been analyses estimating effects from neighborhood characteristics using the MTO data

(Kling et al. (2007), Ludwig and Kling (2007), Ludwig et al. (2008)).

This paper builds on previous analyses of effects from neighborhood quality using MTO voucher

assignment as an instrumental variable. We take the analysis in Kling et al. (2007) as our starting

point and relax two key identifying assumptions as suggested in Aliprantis (2012). We first relax

the assumption of homogeneous Marginal Treatment Effects (MTEs) from neighborhood quality

over unobservables. We also create and use in our analysis a linear index of neighborhood qual-

ity that uses several neighborhood characteristics in addition to the neighborhood poverty rate.

Neighborhood externalities are captured in the resulting model through this index of neighborhood

quality, with neighborhood effects defined as effects of moving between neighborhoods of varying

quality.

In order to identify neighborhood effects under these relaxed assumptions we specify and esti-

mate a joint model of potential outcomes and selection into a multi-valued treatment. Our model

adapts the assumptions from Heckman et al. (2006) to the specific application of MTO. We identify

the unobservable, idiosyncratic component of each individual’s latent index in an ordered choice

model, something not possible in the case of a binary treatment. After imposing parametric as-

sumptions on expected outcomes, we are able to estimate MTEs over a region of the observed

and unobserved components of the choice model. The region over which we can identify MTEs is

determined by the mobility induced by the experiment, and our parametric assumptions allow us to
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extend this set beyond the subset of compliers used in the estimation of Local Average Treatment

Effects (LATEs).

The estimation results from the ordered choice model indicate that vouchers had strongly het-

erogeneous effects across sites and voucher type. Residents in Los Angeles and New York City

experienced much greater changes in neighborhood quality from the offer of a voucher than did

participants in Baltimore or Chicago. The ordered choice model estimates also show that Section 8

vouchers were more effective at improving neighborhood quality at very low levels, but that MTO

experimental vouchers became equally effective well before the fifth percentile of the national dis-

tribution of neighborhood quality. The experimental voucher was much more effective than the

Section 8 voucher by the 10th percentile of quality and remained so at all higher levels of quality.

Perhaps more important than the heterogeneity in mobility induced by MTO is the fact that

MTO only induced a very small share of participants to move to high quality neighborhoods.

Categorizing neighborhood quality into the deciles of the national distribution, the most common

single move induced by MTO was from the first to second decile. Nevertheless, this move was only

induced for about 11 percent of our restricted sample of MTO volunteers. Since the subgroups

of compliers induced to move across higher margins of quality represent even smaller shares of

our sample, we only estimate MTE and LATE parameters pertaining to moves from the first to

the second decile of the national distribution of neighborhood quality. Even these parameter are

imprecisely estimated due to the fact that voucher assignment induced few individuals into higher

quality neighborhoods.

Effects of neighborhood quality on employment and household income are heterogeneous and

have large magnitudes. For example, even conditioning on having the median unobservable, the

MTE on household income at one extreme of observables is estimated to be over $5,000, while the

MTE at the other extreme is actually negative. Effects were similarly heterogeneous by unobserv-

ables, even accounting for observables.

The heterogeneity we find in MTEs indicates that improving neighborhood quality would have

the most positive effects on individuals with either observed and/or unobserved characteristics that

would make them the least likely to select into higher quality neighborhoods without a voucher.

There is not enough structure in our model to clearly interpret this MTE heterogeneity, but we

hypothesize that other social programs, violence, and information could all play a role in driving this

heterogeneity. Furthermore, one preliminary conclusion from heterogeneity over observables is that

labor market outcomes were affected most positively for individuals in Los Angeles and New York

City, the two sites with the most mobility induced by MTO. We interpret MTE heterogeneity over

unobservables as evidence in favor of selection occurring in a model under essential heterogeneity

rather than strong ignorability. We also broadly interpret MTE heterogeneity over unobservables

to suggest the need for richer models of how neighborhood characteristics impact outcomes.

The remainder of the paper is organized as follows: Section 2 develops the ordered choice model,

defines the treatment effect parameters of interest, and discusses assumptions necessary to identify

these parameters. Section 3 describes the MTO experiment and Section 4 discusses the data used
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in estimation. Sections 5 and 6 present the estimation results, and Section 7 concludes.

2 Model

The model we use is based on the Marginal Treatment Effect (MTE) framework developed in

Heckman et al. (2006) and Heckman and Vytlacil (2005), henceforth referred to as HUV and HV,

respectively, and originally introduced by Björklund and Moffitt (1987). In a multi-valued treat-

ment setting, identification of level-specific MTEs over the whole range of unobserved heterogeneity

would typically be achieved using continuous instruments for each transition. Experimental voucher

assignment from MTO is not such a set of instruments. Thus while we are able to relax some of the

identifying assumptions in Kling et al. (2007), the three-level instrument from MTO only allows us

to identify level-specific parameters related to those transitions induced by the experiment.

2.1 Ordered Choice Model

We are interested in estimating the effects that neighborhood quality has on low-income indi-

viduals’ outcomes such as employment, income, and health. We begin by modeling the way agents

select into different levels of a multi-valued treatment- in this case, neighborhood quality. Consider

a model in which there is a treatment D with J levels (ie, D ∈ {1, . . . , J} ≡ D), a binary instrument

Z (ie, Z ∈ {0, 1}), and individuals have observable characteristics X. We assume that for each

treatment level j ≤ J −1 there is a latent index D∗
j representing the net marginal benefit of moving

to treatment level j + 1 from level j. Agents select level k∗ that maximizes total utility u(D):

k∗ = argmax
k∈{1,...,J}

u(k) (1)

where

u(k) =





u(1) if k = 1;

u(1) +
∑k−1

j=1 D∗
j if k ≥ 2.

We specify the J − 1 latent indeces to be functions of observable characteristics (Z,X) and unob-

servable characteristics V with the following structure:

A1: D∗
ij = µ(Xi) + γjZi − Vi − Cj for j = 1, . . . , J − 1,

A2: Cj < Cj+1 for j = 1, . . . , J − 1 with C0 = −∞ and CJ = ∞,

A3: Cj − γj < Cj+1 − γj+1 for j = 1, . . . , J − 1 with C0 − γ0 = −∞ and CJ + γJ = ∞.

Here µ(X) is the gain from moving up one level and is independent of the level. Cj is a

transition-specific cost that increases at each level. V is an absolutely continuously distributed

random variable representing the unobserved cost for individual i from moving up one level. And

γj can be interpreted as a reduction in the transition specific cost brought about by varying the
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instrument that preserves the cost ranking among levels (A3). Note that the initial level u(1) is

important only as a way of indexing the model.

Let D∗
0 > max{0,D∗

1} and define D∗
J ≡ −∞. Then given Z, the net marginal benefit D∗

j is

decreasing in j, so for k∗ ∈ {1, . . . , J}

D = k∗ ⇐⇒ D∗
k∗ ≤ 0 < D∗

k∗−1. (2)

The model described in Equation 1, together with assumptions A1-A3, allow us to write condition

2 as an ordered choice model in terms of the unobservable characteristics that determine selection

into treatment, V :

D = j ⇐⇒ µ(X) + γjZ − Cj < V ≤ µ(X) + γj−1Z − Cj−1. (3)

Denoting the CDF of V conditional on X by FV |X(·), we can define πZ
j (X) ≡ Pr(D > j|Z,X) =

FV |X(µ(X) + γjZ −Cj) and UD ≡ FV |X(V |X). Defining πZ
0 ≡ 1 for the sake of exposition, we can

alternatively write the model in terms of the conditional quantiles of V , UD:

D(UD,X,Z) =

J∑

j=1

j × 1
{
πZ

j (X) < UD ≤ πZ
j−1(X)

}
.

Figure 1 shows the ordered choice model in A1-A3 graphically. The top panel reflects marginal

utilities D∗
j and the bottom panel illustrates the level of utility. D = k is selected by the agent

with the given realization of (Z,X, V ) since D∗
k−1 > 0 and D∗

k ≤ 0.

2.2 Outcomes and Treatment Effect Parameters

We are interested in learning about features of the joint distribution of some outcome Y

given treatment levels D ∈ {1, . . . , J}, observable characteristics X, and the unobservable com-

ponent of selection into treatment, UD. In this analysis we will focus on the conditional mean

E[Y (D,X)|UD = uD]. We assume potential outcomes are a function of treatment level, observable

characteristics, and level-specific unobservable characteristics as follows:

Yj(X,Uj) = Y (D = j,X,Uj) = µj(X) + Uj for j = 1, . . . , J. (4)

As in HUV we add the following assumptions to A1-A3:

A4 (Uij , UDi) ⊥⊥ Zi|Xi for all j = 1, . . . , J

A5 γj ≥ 0 for all j = 1, . . . , J − 1 and γj > 0 for at least one j ∈ {1, . . . , J − 1}

A6 UDi ∼ U [0, 1]

A7 E[ |Yj | ] < ∞ for all j = 1, . . . , J
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A8 0 < Pr(Di = j|Xi) < 1 for all j = 1, . . . , J for all X ⊂ suppX

Given a realization of (X,UD) = (x, uD), the Marginal Treatment Effect (MTE) for the transition

j to j + 1 is defined as the average effect of moving individuals with (x, uD) from level j to j + 1:

△MTE
j,j+1 (x, uD) ≡ E[Yj+1 − Yj|X = x,UD = uD] for j = 1, . . . , J − 1. (5)

Note that assuming Uj ≡ Ũ for all j, as in the model in Kling et al. (2007), restricts the MTE to

be homogeneous for all UD.1

Given a realization of X = x, the corresponding Local Average Treatment Effect (LATE) for

individuals with UD ∈ (a, b) is defined as the average MTE over that interval:

△LATE
j,j+1 (x, a, b) ≡

∫ b

a
△MTE

j,j+1 (x, uD)duD

b − a
for j = 1, . . . , J − 1. (6)

2.3 Identification of MTE and LATE Parameters

One way of identifying MTE parameters in this model is to augment assumptions A1-A8,

as done by HUV, with an assumption about the ordered choice model. HUV assumes there exist

instrumental variables Wj for each j = 1, . . . , J−1 such that the distribution of Cj(Wj), conditional

on Z, X, and {Ch : h 6= j}, is nondegenerate and continuous. We label this assumption, which

does not hold in our model, A9. Under A9 each margin of choice can be varied exogenously and

independently of all others.

When evaluated at UD = πZ
j (x), △MTE

j,j+1 (x, πZ
j (x)) represents the gross gain of moving from

j to j + 1 for individuals that are indifferent between levels j and j + 1. HUV show that

index sufficiency holds in this model so that E[Y |Z,X] is equivalent to E[Y |πZ(X)], where

π ≡ [πZ
1 (X), πZ

2 (X), . . . , πZ
J−1(X)]. HUV further show that E[Y |πZ ] is differentiable due to As-

sumptions A4, A6, and A7. The j to j +1 MTE can be interpreted as the change in mean outcome

due to externally increasing πZ
j while leaving all other πZ

k ’s fixed for k 6= j:

△MTE
j,j+1 (x, πj) =

∂E[Y |X = x,πZ(x) = π]

∂πj
. (7)

Identification of MTE parameters is achieved in HUV using the exogenous variation in πZ
j (x)

induced by the Wj to estimate the right hand side of Equation 7.

In the context of residential choice, it is difficult to imagine a set of instruments {Wj} each of

which exogenously varies one margin of choice while leaving all other margins of choice unaffected.

In large part, this problem arises because, unlike schooling, neighborhood quality levels are not

clearly defined. Even if they existed, it is doubtful these instruments could be manipulated to

identify the MTE function over the entire support of the distribution of (X,UD). It would be more

likely that each level-specific instrument Wj would vary the choice margin over some interval, but

1This is true even if COV (Ũ , UD) 6= 0|X.
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not over the entire unit interval. A discussion of related issues can be found in Carneiro et al.

(2011) for a binary context.

The discrete instrument of voucher assignment in MTO does not continuously vary πZ
j (X) for

any j nor does it provide an independent source of variation for each of the transitions. Violation

of assumption A9 leads us to adopt an alternative approach to identifying parameters that is based

on the identification of UD in the ordered choice model and is therefore not possible in the binary

model.

Consider first the case of fixing observable characteristics X = x. Two such examples with

D ∈ {1, 2, 3} are illustrated in Figures 2 and 3. Remembering that D = j iff πZ
j < UD ≤ πZ

j−1

and assuming π0
j (x) < π1

j (x) < π0
j−1(x), an implication from the ordered choice model is that when

Z = 0 an individual with X = x and UD ∈ [π0
j (x), π1

j (x)] selects into D = j, but exogenously

changing Z to 1 induces such individuals into D = j + 1. Thus for uD ∈ [π0
j (x), π1

j (x)],

E[Y |x, uD, Z = 1] − E[Y |x, uD, Z = 0] = E[Y (j + 1)|x, uD ] − E[Y (j)|x, uD ] (8)

= △MTE
j,j+1 (x, uD).

We can identify LATEs non-parametrically by averaging MTEs over uD ∈ [π0
j (x), π1

j (x)].

The case when X = x is fixed motivates the more general case in which X is not fixed. The basic

idea of the identification strategy can be seen in Figure 4. Define the intervals M and Y such that

µ(X) ⊂ M ⊂ R and E[Y (D = j)|µ(X), uD ] ⊂ Y ⊂ R for all j ∈ {1, . . . , J}. Then, as illustrated

in Figure 4, we might assume E[Y (D = j)|µ(X), uD ] is a surface in the cartesian product space

Y × M × [0, 1]. The joint distribution of individuals’ (µ(X), UD , Z) will determine the supports

over which we can identify E[Y (D = j)|µ(X), uD ] for each j, and hence which parameters we can

identify from the experiment.

Given a parametrically specified ordered choice model, we estimate parameters based on both

non-parametric and parametric specifications of E[Y (D = j)|µ(X), uD ]. The specific parameteriza-

tions of potential outcomes we adopt are discussed in Section 6.2 and Appendix B, and we provide

an intuitive discussion of identification for fixed observables in greater depth in Appendix A. A

related discussion can also be found in Section VI A of HUV.

2.4 Discussion of Identifying Assumptions

We believe Assumptions A1-A8 represent the weakest assumptions under which we can identify

interesting parameters in a model with a multi-valued treatment. We now consider alternative sets

of identifying assumptions and discuss why we believe these assumptions are either too strong or

too weak relative to A1-A8.

2.4.1 Strengthening A1-A8

One alternative approach would be to strengthen assumptions A1-A8. One particular assump-

tion would allow us to estimate average treatment effects over the support of the distribution of a
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continuous treatment D using the generalized propensity score as developed in Imai and van Dyk

(2004) or Hirano and Imbens (2005). However, while relatively standard, the Strong Ignorability

(SI) assumption necessary for identification in Imai and van Dyk (2004) is restrictive relative to

the framework we have adopted from HV and HUV.2 When f denotes the distribution of potential

outcomes, SI can be written as:

f{yj|X} = f{yj|X,UD ∈ [a, b]} for all j ∈ {1, . . . , J}. (9)

From our specification of potential outcomes in Equation 4, this is the same as:

f{uj|X} = f{uj |X,UD ∈ [a, b]} for all j ∈ {1, . . . , J}, (10)

or

Uj ⊥⊥ UD|X for all j ∈ {1, . . . , J}. (11)

When calculating E[Y (D = j)|UD ] as in Figures 2 and 3, the expectation is taken over the distri-

bution of Uj conditional on X and UD. Thus SI requires that conditional on X, the distribution of

the Yj, and therefore their expected values as well, would have to be the same for all values of UD

as shown in Figure 5. This assumption is most likely to hold when observable characteristics in X

are able to explain most of the variability in choice, so deciding whether to adopt the SI assumption

will depend on the particular application and data available.

Figure 6 shows a binary example to help illustrate the differences between the heterogeneity in

treatment effects allowed under our assumptions A1-A8 and under SI. Let θ = µ(X) be an index of

observable characteristics. The average effect of treatment varies across θ as shown in the top panel

of the Figure. In the center panel we can see a cross section of potential outcomes conditional on

θ = θ∗. Since E[β|θ] = E[Y (1)−Y (0)|θ] is the same for all uD conditional on θ = θ∗, any variation

in treatment identifies E[β|θ]. We could use variation in treatment induced by an instrument, but

we could also simply compare those individuals in the population or control group with uD < π0
1

and those with uD > π0
1 to estimate the treatment effect. That is, although a valid instrument is

likely to make the assumption more plausible, when matching under SI there is no theoretical need

for an instrument.

In contrast to the center panel, the bottom panel shows a possible example of MTEs that depend

on uD even conditional on θ. This is defined in HUV as a model with Essential Heterogeneity (EH).3

In this case we need an instrument to generate variation in treatment status, and the variation gen-

erated by the instrument determines what part of the distribution of Y (2)−Y (1)|θ∗ we can identify.

Since E[Y (2) − Y (1)|θ∗] =
∫ 1
0 △MTE

1,2 (θ∗, uD)duD, in the example in the bottom panel we cannot

identify E[Y (2) − Y (1)|θ∗], but rather only
∫ π1

1

π0
1
△MTE

1,2 (θ∗, uD)duD. That the treatment effects we

2See Imbens (2004) for a discussion of the SI assumption in models with a binary treatment.
3Essential heterogeneity between levels j and j + 1 is defined as

EH COV (Uj+1 − Uj , V ) | X 6= 0.
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can identify are determined by the response of individuals to the instrument re-emphasizes that

the neighborhood effects identified by MTO, or any other housing mobility experiment, depend on

how people endogenously respond to the experiment. That is, under EH it is not possible to clearly

interpret the neighborhood effects we observe through MTO without first understanding how the

experiment impacted selection into treatment (Aliprantis (2012), Clampet-Lundquist and Massey

(2008), Sampson (2008)).

2.4.2 Weakening A1-A8

Another alternative would be to weaken A1-A8, which would allow us to estimate the Average

Causal Response (ACR) parameter introduced in Angrist and Imbens (1995). Under Assumptions

A1-A8 the ACR is:

△ACR(Z = 0, Z = 1) =
E[Y |Z = 1] − E[Y |Z = 0]

E[D|Z = 1] − E[D|Z = 0]
=

∑J−1
j=1 [

∫ π1
j

π0
j

△MTE
j,j+1 (uD)duD]

∑J−1
j=1 (j + 1) × (π1

j − π0
j )

By relaxing Assumptions A2 and A3 we could specify a set of identifying assumptions equivalent

to the assumptions in Angrist and Imbens (1995) (See Vytlacil (2006) for a proof.), and we would

still be allowing for EH. We do not estimate ACRs under these weaker assumptions, however,

because they yield only one summary parameter that is quite difficult to interpret. By imposing

the structure of the choice model in Section 2.1 we are able to allow for EH while at the same time

decomposing the ACR into its contributing LATEs. These components of the ACR are considerably

more interesting than the single ACR parameter by itself. Given our current econometric tools we

believe assumptions A1-A8 strike the right balance of structure for interpretation.

3 Moving To Opportunity (MTO)

Moving To Opportunity (MTO) was inspired by the promising results of the Gautreaux pro-

gram. Following a class-action lawsuit led by Dorothy Gautreaux, in 1976 the Supreme Court

ordered the Department of Housing and Urban Development (HUD) and the Chicago Housing Au-

thority (CHA) to remedy the extreme racial segregation experienced by public-housing residents in

Chicago. One of the resulting programs gave families awarded Section 8 public housing vouchers

the ability to use them beyond the territory of CHA, giving families the option to be relocated

either to suburbs that were less than 30 percent black or to black neighborhoods in the city that

were forecast to undergo “revitalization” (Polikoff (2006)).

The initial relocation process of the Gautreaux program created a quasi-experiment, and its

results indicated housing mobility could be an effective policy. Relative to city movers, suburban

movers from Gautreaux were more likely to be employed (Mendenhall et al. (2006)), and the chil-

dren of suburban movers attended better schools, were more likely to complete high school, attend
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college, be employed, and had higher wages than city movers (Rosenbaum (1995)).4

MTO was designed to replicate these beneficial effects, offering housing vouchers to eligible

households between September 1994 and July 1998 in Baltimore, Boston, Chicago, Los Angeles,

and New York (Goering (2003)). Households were eligible to participate in MTO if they were

low-income, had at least one child under 18, were residing in either public housing or Section 8

project-based housing located in a census tract with a poverty rate of at least 40%, were current in

their rent payment, and all families members were on the current lease and were without criminal

records (Orr et al. (2003)).

Families were drawn from the MTO waiting list through a random lottery. After being drawn,

families were randomly allocated into one of three treatment groups. The experimental group

was offered Section 8 housing vouchers, but were restricted to using them in census tracts with

1990 poverty rates of less than 10 percent. However, after one year had passed, families in the

experimental group were then unrestricted in where they used their Section 8 vouchers. Families in

this group were also provided with counseling and education through a local non-profit. Families

in the Section-8 only comparison group were provided with no counseling, and were offered Section

8 housing vouchers without any restriction on their place of use. And families in the control group

continued receiving project-based assistance.5

4 Data

The first source of data we use in our analysis is the MTO Interim Evaluation. The MTO Interim

Evaluation contains variables listing the census tracts in which households lived at both the baseline

and in 2002, the time the interim evaluation was conducted. These census tracts are used to merge

the MTO sample with decennial census data from the National Historical Geographic Information

System (NHGIS, Minnesota Population Center (2004)), which provide measures of neighborhood

characteristics.

4.1 Variables

A variable measuring neighborhood quality is created as a linear combination of several neigh-

borhood characteristics. Neighborhood characteristics measured by NHGIS variables are first trans-

formed into percentiles of the national distribution from the 2000 census. Principal components

analysis is then used to determine which single vector combines the most information about the

national distribution of the poverty rate, the percent with high school degrees, the percent with

BAs, the percent of single-headed households, the male Employed-to-Population Ratio (EPR), and

the female unemployment rate. Table 1 shows that the resulting univariate index explains 69 per-

4It has also been found that suburban movers have much lower male youth mortality rates Votruba and Kling
(2009) and tend to stay in high-income suburban neighborhoods many years after their initial placement
(DeLuca and Rosenbaum (2003), Keels et al. (2005)).

5Section 8 vouchers pay part of a tenant’s private market rent. Project-based assistance gives the option of a
reduced-rent unit tied to a specific structure.
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cent of the variance of these neighborhood characteristics, and that no additional eigenvector would

explain more than 11 percent of the variance of these variables. Table 2 displays the coefficients

relating each of these variables to the index vector. Note that the magnitudes of the coefficients

for most variables are similar to the magnitude of the coefficient for poverty.

Quality of the baseline and 2002 neighborhood of residence is measured using 2000 Census

data. This measurement does not allow us to account for expected neighborhood change, a factor

that may contribute to the decision to move from one’s baseline neighborhood. Perceived quality

improvements, like new magnet schools in the baseline neighborhood, will reduce the benefit of

moving. Due to this measurement issue, in our model, these components of the {Cj} will be

captured by the unobserved component of choice V .

Besides neighborhood quality, other baseline characteristic of the MTO households used in

this model are whether the respondent had family living in their neighborhood of residence. Also

included were baseline variables stating whether a member of the household was a victim of a crime

in the previous 6 months and whether there were teenage children in the household. Other than

site of residence, no other observable characteristics were not used in the estimation because the

estimated ordered choice model coefficients on other observables all had p-values over 0.10.

Outcome variables for adults from the MTO Interim Evaluation include the self-reported total

household income (all sources summed), the individual earnings in 2001 of the sample adult, the

labor market status of the adult at the time of the interim survey (ie, Whether they were employed,

unemployed, or not in the labor force at all.), welfare benefits, and the respondent’s body mass

index (BMI). Weights are used in constructing all estimates.6

4.2 Sample and Descriptive Statistics

We focus on the adults in the MTO Interim Evaluation sample. Figures 7 and 8 reproduce the

broad result from Aliprantis (2012) that MTO induced small shares of adult participants into high

quality neighborhoods. Similar results for school quality can be seen in Figure 9.

In order to facilitate the estimation of the ordered choice model, the ensuing analysis is fo-

cused on a sample that is restricted in three ways to ensure that we are focusing on a relatively

homogeneous population. We first exclude Boston from the analysis because it is clearly an outlier

relative to the other MTO sites. In Figure 8a we see that unlike all of the other sites, the baseline

neighborhood quality in Boston was not confined to the first percentiles of the national distribution

of neighborhood quality. Table 3 quantifies these differences precisely. We can see that the control

group in Boston looks more like the experimental group in every other site. Observations from

Boston comprised a little less than a quarter of the full sample.

Second, we drop all households living at baseline in a neighborhood above the tenth percentile

6Weights are used for two reasons. First, random assignment ratios varied both from site to site and over different
time periods of sample recruitment. Randomization ratio weights are used to create samples representing the same
number of people across groups within each site-period. This ensures neighborhood effects are not conflated with
time trends. Second, sampling weights must be used to account for the sub-sampling procedures used during the
interim evaluation data collection.
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of the national distribution of quality. Returning to Table 3, we can see that the median baseline

neighborhood quality for MTO participants was below the first percentile of the national distri-

bution. For Chicago, Los Angeles, and New York City, nearly all participants lived at baseline in

neighborhoods below the 10th percentile of the national distribution. In Baltimore, however, at

baseline about 20 percent of participants lived in higher quality neighborhoods, driven mainly by

the male EPR and the share of adults holding a BA in their neighborhoods. These individuals are

also dropped from our sample.

Finally, we drop individuals who moved to neighborhoods in 2002 above the median of the

national distribution of quality in 2000. We can see from Figure 10c that this is a small subsample

to discard.

The resulting sample used in the analysis has approximately 2,500 adults (approximately 65

percent of the original adult sample). Figure 10d shows the distribution of the sample both at the

baseline and in 2002. Seventy five percent of the sample lives in 2002 in a neighborhood below the

10th percentile of the 2000 national distribution of neighborhood quality.

5 Ordered Choice Model Estimates

5.1 Specification

In the ordered choice model from Section 2.1 the marginal benefit of choosing to move from

treatment level j to j + 1 is

D∗
j = µ(X) + Zγj − Cj − V.

We specify

µ(X) = β1X1 + · · · + βmXm (12)

γj = γ0 + γj (13)

Cj = δ0 + δj (14)

where both γ0 and δ0 are site-specific, and we assume V ∼ iid N (0, 1). X is composed of variables

measuring baseline neighborhood quality and whether the respondent had family living in the

neighborhood of residence, whether a member of the household was a victim of a crime in the

previous 6 months and whether there were teenage children in the household.

The instrument Z is an indicator variable for assignment to the experimental voucher group

in the MTO experiment: Zi = 1{i is in experimental group}.7 Like Galiani et al. (2012), we

interpret Z as the random assignment of a reduction in the cost to accessing a better quality

neighborhood.

7We actually define binary instruments for both the experimental and Section 8 groups, (Zexp, ZS8). Much of
the discussion in the paper focuses on comparing the experimental voucher with the control treatment for the sake
of exposition. The Section 8 group is used in generating ordered choice model and parametric MTE estimates, but
is not used in the estimation of semi-parametric LATEs.
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An implication of the ordered choice model that was stated in Equation 3 is:

D = j ⇐⇒ µ(X) + Zγj − Cj < V ≤ µ(X) + Zγj−1 − Cj−1. (15)

So if treatment levels are defined such that D = j for q∗ ∈ [q
j
, qj ], then the probability of observing

D = j is

Pr(D = j) = FV [µ(X) + Zγ(q
j
) − C(q

j
)] − FV [µ(X) + Zγ(qj) − C(qj)],

allowing us to write the log-likelihood of the data as

LL =

N∑

i=1

J∑

j=1

1{Di = j} ln(Pr(Di = j)). (16)

This ordered probit model is estimated with the gologit2 procedure in Stata.

5.2 The Identification of Unobservables

We now discuss how we use the parameter estimates from the discrete ordered choice model

θ̂J ≡ (β̂, γ̂, δ̂) to recover estimates of each individual’s unobservable V . If we take the limit of the

ordered choice model as J → ∞, the benefit of moving to level j + 1 from j, D∗
j , becomes the

marginal benefit of moving to a neighborhood with higher quality. We denote the marginal benefit

of moving to a higher quality neighborhood when in a neighborhood of quality q as

D∗(q) = µ(X) + Zγ(q) − C(q) − V

where the cost and program effect components of marginal benefit are now allowed to be continuous

functions of quality:

µ(X) = β1X1 + · · · + βmXm (17)

γ(q) = f(q) (18)

C(q) = g(q). (19)

Given estimates of γ(qj) = γj from the ordered choice model, we linearly interpolate

γ(q) = γ0 + γj + (q − qj)(
γj+1 − γj

qj+1 − qj

) for q ∈ (qj, qj+1) = (q
j+1

, qj+1)

and an analogous function g for cost. The piece-wise linear functions created by interpolating

between the {γj} and {Cj} located at the {qj}
J−1
j=1 allow for great flexibility in the shape these

functions take. This flexibility is the reason for estimating an ordered choice model rather than a

continuous model. We set the location of the knots {qj}
J−1
j=1 to the cutoffs separating the deciles of

the sample distribution of neighborhood quality.
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If we assume D∗ is strictly decreasing and households maximize their utility at q∗, then q∗

satisfies the following first order condition equivalent to conditions in Equations 2 and 3 in the

multilevel case:

D∗(q∗) = 0. (20)

Given the estimated parameters and functions θ ≡ (β̂, γ̂(q), Ĉ(q)) constructed from the discrete

choice model parameters θ̂J , we use the FOC in Equation 20 to identify unobservables as:8

V̂ = µ̂(X) + Zγ̂(q∗) − Ĉ(q∗).

For each individual we also estimate

π̂0
q (X) = Φ[β̂1X1 + · · · + β̂mXm − Ĉ(qj)] (21)

π̂1
q (X) = Φ[β̂1X1 + · · · + β̂mXm − Ĉ(q) + γ̂(q)] (22)

for several values of q. Note that with the estimated parameters θ we can estimate π̂Z
q for any

q and Z. These define the intervals of uD at which individuals will select into neighborhoods of

a specific quality range, given their observable characteristics and voucher assignment. They also

allows us to determine whether an individual is a complier when given a voucher regardless of the

margins of choice by which a discrete treatment is defined.

5.3 Ordered Choice Model Estimation Results

As a first check on model fit, Figure 11 shows the unconditional average πZ
q from the data

together with fractional polynomial fitting of π̂Z
q estimates as functions of µ̂(X). We can see that

the model fits the data well.

As measured by the estimated µ̂(X), the distributions of observable characteristics conditional

on voucher status confirm that voucher assignment was successfully randomized (Figure 12a). The

distribution of unobservables follows a standard normal distribution very closely (Figure 12b), and

the distributions of unobservables conditional on experimental group status look similar (Figure

12c).

Figures 13a and 13b show that MTO had only modest effects on neighborhood quality. These

Figures show the joint distribution of (µ̂(X), ûD) along with fractional polynomial fittings of π̂Z
q for

several quantiles q as functions of µ̂(X). Even for the experimental group, the vast majority of MTO

volunteers remained in a neighborhood in the first decile of the national distribution of quality. Even

while remembering that our sample does not include those who moved to neighborhoods above the

national median, we still see that in our sample (as in the entire MTO population) only a small

share of volunteers were induced across the 30th percentile of neighborhood quality.

8This is a notable departure from HUV. In the binary case, HUV define the support over which MTEs can be
identified as the intersection of the sets of predicted values of the propensity score obtained from the treated and
untreated samples. With linear interpolation we obtain estimates of UD throughout the entire interval (0, 1).
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When examining the limited mobility induced by MTO, it is important to remember that the

participants in the program were not a random sample from the US population. At baseline,

the MTO volunteers were representative of the one percent living in the left tail of the national

distribution of neighborhood quality (Figure 8a). Although MTO volunteers tended to live in better

neighborhoods by the time of the interim evaluation, it was still the case that less than 15 percent

of the control group in our sample lived in neighborhoods of quality above the 10th percentile of

the national distribution (Figure 10d). Given these distributions, it seems reasonable to note the

mobility that MTO did induce. The cutoffs for moving across the 20th and 30th percentiles of the

national distribution for the experimental group (π̂1
20(X) and π̂1

30(X)) are at times both below the

cutoff for the 10th percentile for the control group (π̂0
10(X)).

Perhaps the most interesting result from the estimation of the ordered choice model is the

strong heterogeneity in the effects of the program as displayed in Figure 14. Those sites with

the highest marginal cost of increasing neighborhood quality in the absence of the program (Los

Angeles and New York City, see Figure 14a.) were also the sites where the MTO experimental

voucher had the largest effect on the marginal benefit of moving (Figure 14c). And not only

were effects heterogeneous by site, but also by voucher type, which is important for the design of

future housing mobility programs (Galiani et al. (2012)). The standard Section 8 housing voucher

was more effective at reducing moving costs than the experimental voucher at very low levels of

neighborhood quality, but this relationship reverses somewhere before the fifth percentile of the

national distribution of neighborhood quality.

Table 4 reports the estimated coefficients in µ(X). There are large differences between sites,

with Los Angeles and New York City being significantly worse than Baltimore and Chicago. We

can also see that all four observables in our model make households more likely to move to a higher

quality neighborhood: someone being a victim of a crime, having no teens in the household, having

no family in the baseline neighborhood, and living in a higher quality neighborhood at baseline.

Of these observables, the effect of baseline neighborhood quality changes the most over its range.

6 Neighborhood Effects Estimates

6.1 Definition of Treatment

We previously estimated the ordered choice model on a discretized neighborhood quality variable

with cutoffs determined by the MTO sample distribution. Through interpolation of the estimated

choice model parameters, we recovered the continuous components of the latent index. This allows

us to estimate the marginal benefit of moving across any margin of quality and thus, we are able

to estimate MTEs and LATEs for any discretization of quality.

When estimating parameters we choose to define treatment levels in terms of deciles of the
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national distribution:

Di =






1 if q∗i ∈ [0, 10);
...

...

5 if q∗i ∈ [40, 50).

We choose this discretization not because we believe treatment should have an effect when crossing

these particular thresholds of neighborhood quality, but because we believe it offers the best balance

between theoretical ideal and practical necessity. The model assumes that moves within a given

level of treatment will not have effects on outcomes. Even if they do, it is enough to assume that

individuals do not select within treatment levels based on rich information regarding neighborhood

quality.9 If these assumptions do not hold within entire deciles of quality, the effects from such

moves will likely enter the estimation results through the Uj . Theoretically, one way to handle

this issue would be to increase the number of bins until moves within a given level do not have

effects on outcomes. Another way to handle this problem would be to reformulate the model to

accommodate a continuous treatment (Florens et al. (2008)).

Due to the limited mobility induced by MTO, we believe deciles of quality offer the smallest

window on which it is feasible to estimate MTEs and LATEs from MTO. Referring back to Figures

13a and 13b, it is not surprising that under this definition of treatment either single-level LATEs

or combinations of several level LATEs are imprecisely estimated. This is especially true as one

moves to higher treatment levels. As we will see, even this discretization leaves us with undesirably

small sample sizes of compliers. As a result, the only MTEs and LATEs we attempt to estimate

are ∆MTE
1,2 and △LATE

1,2 .

6.2 Parametric Specification of Potential Outcomes and Estimation Algorithm

While semi-parametric LATE estimators are identified only over the set of compliers, we are

able to extend the support over which MTEs are estimated by imposing parametric assumptions.

Define the intervals Y and M such that E[Y (D = j)|µ(X), uD ] ⊂ Y ⊂ R for all j ∈ {1, . . . , J} and

µ(X) ⊂ M ⊂ R. Then as illustrated in Figure 4, we assume E[Y (D = j)|µ(X), uD ] = f(µ(X), uD)

defines a surface in the Cartesian product Y × M × [0, 1]. We assume this surface is a plane in

Y ×M× [0, 1] that we parameterize for each j by

E[Y (D = j)|µ(X), uD ] = β
j
0 + β

j
1µ(X) + β

j
2uD. (23)

Figure 15a shows the support of E[Y (D = j)|µ(X), uD ] in M× [0, 1] for D ∈ {1, 2, 3, 4}. The

most important observation from this Figure is so obvious that it may be overlooked; namely, that

most individuals select into D = 1. We can also see that in order to select into a level of treatment

higher than 1, an individual must have had a high µ(X) and low uD.

Since the focus of this analysis is on differences between E[Y (D = j)|µ(X), uD ] for D ∈ {1, 2},

9This can be seen as a stronger version of the central identifying assumption in Bayer et al. (2008).
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Figures 15b and 15c show the support of E[Y (D = j)|µ(X), uD ] in M × [0, 1] for these levels of

treatment. One immediate difference we can see from the previous figure is that the combination

of a very high µ(X) and a very low uD leads individuals to select into levels of treatment above

1 or 2. Thus this region is not in the support of E[Y (D = j)|µ(X), uD ] for D ∈ {1, 2}. The area

of overlapping or near-overlapping support for E[Y (D = 1)|µ(X), uD ] and E[Y (D = 2)|µ(X), uD ]

plays a key role in our estimation algorithm.

Recall that estimation of the ordered choice model has allowed us to estimate counterfactual

propensity scores with and without subsidy, π1
j , π0

j , for specific quality transitions D = j to

D = j + 1. These define the intervals of uD at which individuals will select into neighborhoods

of a specific quality level, given their observable characteristics and voucher assignment, and thus,

are key in defining the support sets over which we will estimate Equation 23 for each j. Let

individuals be defined by their observable and idiosyncratic indices of choice, as well as their

voucher assignment: (µ(X), uD , Z). The algorithm for estimating MTEs specific to transition 1-2

is described below:

Step 1 Select individuals with uD’s such that, given µ(X) and Z, they maximize utility at quality

level D = 1:

I1 =
{
(µ(X), uD , 0)|uD > π0

1(X)
}

∪
{
(µ(X), uD, 1)|uD > π1

1(X)
}

.

Step 2 Select individuals with uD’s such that, given µ(X) and Z, they maximize utility at quality

level D = 2:

I2 =
{
(µ(X), uD , 0)|uD ∈ [π0

2(X), π0
1(X)]

}
∪

{
(µ(X), uD, 1)|uD ∈ [π1

2(X), π1
1(X)]

}
.

Step 3 Trim and/or expand the support sets to obtain regions TI1 and TI2 with the largest region

of overlap subject to the constraint that the parametric assumptions from Equation 23 are

reasonable for each j. Given the distribution of µ(X) in our sample (Figure 12a), we drop

individuals with µ(X) above the 95th percentile for both TI1 and TI2. Given the selection

patterns in our sample (Figure 15), we also impose an upper bound on uD of 0.4 for both

sets. Thus we trim and expand I1 and I2 to obtain TI1 = TI2 = [−0.75, 0.45] × [0, 0.4].

Step 4 Estimate the expected value of outcome Yj at neighborhood quality level D = j as a linear

function of µ(X) and uD over each set TIj for j ∈ {1, 2}:

E[Y (D = j)|µ(X), uD ] = β
j
0 + β

j
1µ(X) + β

j
2uD.

Step 5 Determine the area of common support S ⊂ M× [0, 1] over which parametric assumptions

will be extended and the MTE function estimated. We set S = TI1 = TI2. Looking at

Figure 15c, in our application we extend the parametric assumptions from Equation 23 for

both j = 1 and j = 2 over the support set S = [−0.75, 0.45] × [0, 0.4].

17



Step 6 Use the parameter estimates obtained in Step 4 to estimate the MTE function

∆MTE
1,2 (µ(X), uD) = (β2

0 − β1
0) + (β2

1 − β1
1)µ(X) + (β2

2 − β1
2)uD

over S as:

∆̂MTE
1,2 (µ(X), uD) = (β̂2

0 − β̂1
0) + (β̂2

1 − β̂1
1)µ̂(X) + (β̂2

2 − β̂1
2)ûD.

Step 7 Repeat the following steps T times:

Step a Sample with replacement

Step b Estimate the ordered choice model on the sample

Step c Repeat Steps 1-6 on the sample

Construct standard errors using the T parameter estimates. We set T = 1, 000.

Evaluating ∆MTE
1,2 (µ(X), uD) at a fixed value of µ(X) allows us to trace the MTE over the

quantiles of uD. Likewise, we can see how the MTE varies over the range of µ(X) for any fixed

value of uD. Note that the MTEs computed via this algorithm apply to more individuals than the

compliers, I1,2 = {(µ(X), uD , Z)|uD ∈ [π0
1(X), π1

1(X)]}, over whom we estimate semi-parametric

LATEs. Compliers are individuals with values of uD such that, given µ(X), they would be induced

into a D = 1 to D = 2 transition by manipulating Z = 0 to Z = 1 (ie, by voucher assignment). Thus

the semi-parametric LATE for transition 1-2 is estimated as the expected difference in outcomes in

the experimental and control groups for individuals in I1,2 ⊂ S (See Appendix B for details.).

Identification of MTE and LATE parameters over the larger set S is achieved through the

parametric assumptions in Equation 23. Looking at Figure 15c, since S = [−0.75, 0.45] × [0, 0.4],

we can see that identification of E[Y (D = j)|µ(X), uD ] is based off of functional form assumptions

for high uD when j = 2. Similarly, when j = 1, identification of E[Y (D = j)|µ(X), uD ] comes from

parametric assumptions for high µ(X) and low uD.

6.3 Neighborhood Effects Estimation Results

Parametric MTE estimates are presented in Figures 16 and 17. Focusing first on Figure 16,

we can see how MTE estimates vary over observable characteristics at the median uD for which

MTEs were estimated (uD = 0.2). What we see from these MTEs is that even conditioning on

unobservables, moving to a higher quality neighborhood had highly heterogeneous effects depending

on an individual’s observable characteristics as summarized by µ(X).

Looking at Figure 16a, we can see that the heterogeneity in MTEs across observables is quite

pronounced. The MTE on household income at the lowest values of µ(X) is estimated to be over

$5,000, while the point estimate of the MTE at the highest values of µ(X) is actually negative.

Figure 16d shows similar heterogeneity with respect to employment. As reported in Table 4, the

covariates influencing µ(X) the most are baseline quality and site at which an individual resided.

Thus, one way of interpreting the heterogeneity reported in Figure 16 is that labor market outcomes
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were affected most positively for individuals in Los Angeles and New York City, the two sites with

the most mobility induced by MTO.

Figure 17 shows MTE parameter estimates along with 90 percent confidence intervals over the

range of uD at the median value of µ̂(X) for which MTEs were estimated, µ̂(X) = −0.12. We can

see that even accounting for observables, effects were strongly heterogeneous by unobservables. We

take these results as evidence in favor of selection occurring in a model under essential heterogeneity

rather than strong ignorability. Even under the more relaxed essential heterogeneity conditions,

variation in conditional effects suggests the difficulty of measuring the effect of neighborhood quality

with a one-dimensional index.

After first noticing their strong heterogeneity, three other aspects of the MTE estimates reported

in Figures 16 and 17 merit attention. The first notable characteristic of the MTE estimates is their

large magnitude. For example, effects on household income represent a large share of the sample

average (Table 5). Some effects on adult BMI are extremely large, and effects on employment,

labor force participation, and TANF receipt are all also very large over some regions of S.

A second notable characteristic of the MTEs is their imprecision. Few point estimates are

statistically significant, even for very large effects. The imprecision of the MTE estimates is hardly

a surprise given the limited mobility across neighborhood quality as discuss in Sections 4 and 5. We

also believe that the lack of structure in our model could be contributing to this imprecision. It is

important to note that the linear assumptions on E[Y (D = j)|µ(X), UD ] not only help to identify

MTEs, but also increase the precision of their estimates. The semi-parametric LATE estimates

presented in Appendix B that make no parametric assumptions about E[Y (D = j)|µ(X), UD ] tend

to be more imprecise than our MTE estimates.

A final notable characteristic of the MTE estimates is the precise form taken by the effect

heterogeneity. Why does the MTE function exhibit the type of heterogeneity that it does? Thinking

of the canonical example of MTEs from educational attainment, one would expect the MTE function

to be downward-sloping in UD, which is an empirical finding from Carneiro et al. (2011). Yet in

MTO those individuals most likely to select into treatment were those individuals with the lowest

labor market returns from doing so. The individuals who benefit most from improving neighborhood

quality are those who are most difficult to move to high quality neighborhoods.

Ultimately, our model is limited in its structure to provide an explanation of the heterogeneity

of estimates. It is not clear how to interpret MTE heterogeneity since individuals can exhibit

low µ(X)’s and high uD’s for a number of reasons. Differences in access to other social programs

and opportunities at both the site (captured in µ(X)) or individual (captured in uD) levels could

explain our results. Another explanation for this form of heterogeneity that we find plausible is

violence. Effects on outcomes other than safety may only have a limited influence on selection.

Finally, information could play a key role in generating this heterogeneity. So even if individuals

make their selection of neighborhood quality based on their perceptions of idiosyncratic gains, other

factors outside their information set may ultimately influence outcomes. That these factors are not

explicitly modeled in our analysis points to the limits of our methodology to fully understand effects
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from neighborhood quality. We believe future research into the sources of MTE heterogeneity could

be fruitful.

7 Conclusion

This paper proposed and implemented a new approach to identifying MTE and LATE param-

eters that exploits the identification of unobservables in a multi-level model of treatment. We

developed this estimator in order to identify effects from neighborhood quality using MTO voucher

assignment as an instrumental variable. Neighborhood effects were defined as differences in poten-

tial outcomes when residing in neighborhoods of varying quality. We relaxed two key identifying

assumptions in the analyses: that MTEs are homogenous over unobservables, and that poverty is

a proxy for quality. Neighborhood externalities were captured in the resulting model through an

index of neighborhood quality we created. Because overall changes in neighborhood quality induced

by the voucher were small, neighborhood effects were imprecisely estimated. However, one could

imagine that with other instruments, this approach could more precisely identify neighborhood

quality effects under essential heterogeneity.

Estimation results from the ordered choice model indicated that the Moving to Opportunity

(MTO) housing mobility experiment had strongly heterogeneous effects across sites. As compared

to Baltimore and Chicago, Los Angeles and New York City had higher transition costs to moving

to higher quality neighborhoods without a subsidy. The MTO voucher assignment more or less

eliminated those differences in cost across sites: Los Angeles and New York City displayed the

largest difference in neighborhood quality across control and treated groups by 2002.

Parametric assumptions on expected outcomes allowed us to estimate MTEs over a larger subset

of individuals than just the compliers pertaining to LATEs. Nevertheless, the low mobility induced

by the experiment still made these parameters pertain to a restricted set subset of individuals, and

rendered them imprecisely estimated.

Estimated effects of neighborhood quality on employment and household income were heteroge-

neous and of large magnitudes. For example, even conditioning on having the median unobservable,

the MTE on household income at one extreme of observables was estimated to be over $5,000, while

the MTE at the other extreme was actually negative. Effects were similarly heterogeneous by un-

observables after accounting for observables.

The heterogeneity we found in MTEs indicates that improving neighborhood quality would

have the most positive effects on individuals with either observed or unobserved characteristics that

would make them the least likely to select into higher quality neighborhoods without a voucher. We

hypothesized that other social programs, violence, and information could all play a role in driving

this heterogeneity.

Our model lacked enough structure to make clear conclusions about MTE heterogeneity. How-

ever, we can say that heterogeneity over observables suggests that labor market outcomes were

affected most positively for individuals at the sites in which larger changes in neighborhood quality
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were induced by MTO. And we interpreted MTE heterogeneity over unobservables to suggest the

need for richer models of how neighborhood characteristics impact outcomes.
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8 Appendix A: Identification for Fixed X = x

To discuss the identification and estimation of LATEs, we start by deriving an expression for

E[Y |Z = 1] − E[Y |Z = 0] general enough to allow for any ordering relationship between π
0(X)

and π
1(X). Assumption A5 requires that π1

j (X) ≥ π0
j (X) for all j and π1

j (X) > π0
j (X) for some j,

since the instrument monotonically increases individuals’ latent index. And from A4 the variation

in average outcomes induced by the instrument can be attributed to changing π
Z=0 to π

Z=1 (from

this point forward we keep conditioning on X implicit for the sake of exposition):

E[Y |Z = 1] − E[Y |Z = 0] =

J∑

j=1

∫ 1

0
1{π1

j ≤ uD < π1
j−1}E[Y (D = j)|uD ]duD (24)

−
J∑

j=1

∫ 1

0
1{π0

j ≤ uD < π0
j−1}E[Y (D = j)|uD]duD

=

J∑

j=1

{∫ π1
j−1

π1
j

E[Y (D = j)|uD]duD (25)

−

∫ π1
j−1

π1
j

J∑

k=1

[
1{π0

k ≤ uD < π0
k−1}E[Y (D = k)|uD]

]
duD

}
.

Given equation 6 and since

E[Y (D = j)|uD] − E[Y (D = j − m)|uD] =

j−m+1∑

k=j

{
E[Y (D = k)|uD] − E[Y (D = k − 1)|uD]

}

we can rewrite Equation 24 as:

E[Y |Z = 1] − E[Y |Z = 0] =
J−1∑

j=1

∫ π1
j

π0
j

△MTE
j,j+1 (uD)duD

=

J−1∑

j=1

{
△LATE

j,j+1 (π0
j , π

1
j )

[
π1

j − π0
j

]}
(26)

These expressions can be seen in Figures 2-3 for two examples with J = 3.

Now suppose we tighten Assumption A6 to:

A6* π1
j > π0

j−1 for all j ∈ {1, . . . , J − 1}.

Example I in Figure 2 shows such an ordering when J = 3. Under A6* the right hand side of
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Equation 26 can be derived quickly since

E[Y |Z = 1] =
J∑

j=1

∫ π1
j−1

π1
j

E[Y (D = j)|uD]duD

=

∫ 1

π1
1

E[Y (D = 1)|uD]duD

+

J−1∑

j=1

{∫ π1
j

π0
j

E[Y (D = j + 1)|uD ]duD +

∫ π0
j

π1
j+1

E[Y (D = j + 1)|uD]duD

}

and

E[Y |Z = 0] =

J∑

j=0

∫ π0
j−1

π0
j

E[Y (D = j)|uD]duD

=

∫ 1

π1
1

E[Y (D = 1)|uD]duD

+

J−1∑

j=1

{∫ π1
j

π0
j

E[Y (D = j)|uD ]duD +

∫ π0
j

π1
j+1

E[Y (D = j + 1)|uD]duD

}
.

Thus the difference in expected outcomes due to changes in the instrument is the sum of integrated

MTEs:

E[Y |Z = 1] − E[Y |Z = 0] =

J−1∑

j=1

[∫ π1
j

π0
j

E[Y (D = j + 1)|uD]duD −

∫ π1
j

π0
j

E[Y (D = j)|uD ]duD

]

=
J−1∑

j=1

∫ π1
j

π0
j

△MTE
j,j+1 (uD)duD =

J−1∑

j=1

{
△LATE

j,j+1 (π0
j , π

1
j )

[
π1

j − π0
j

] }
. (27)

Since we can recover π
Z = [πZ

1 , πZ
2 , . . . , πZ

J−1] and we can tell in which [π0
j , π

1
j ] interval uD lies from

the data, we can estimate these LATEs using the semi-parametric estimator discussed in Appendix

B. The variation in treatment induced by the instrument identifies:

△LATE
1,2 (π0

1, π
1
1) =

∫ π1
1

π0
1
△MTE

1,2 (uD)duD

π1
1 − π0

1

= E[Y |uD ∈ [π0
1 , π

1
1], Z = 1] − E[Y |uD ∈ [π0

1, π
1
1 ], Z = 0]

and

△LATE
2,3 (π0

2 , π
1
2) =

∫ π1
2

π0
2
△MTE

2,3 (uD)duD

π1
2 − π0

2

= E[Y |uD ∈ [π0
2 , π

1
2 ], Z = 1] − E[Y |uD ∈ [π0

2 , π
1
2 ], Z = 0].

An important issue to remember is that all of the preceding has been implicitly conditioning on

observable characteristics X. Figure 4 shows that Example I in Figure 2 is just one cross section

taken from an interval of observable characteristics.
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Now suppose that we drop A6* and replace it with the less restrictive original Assumption A6.

In this case it is possible that π1
j > π0

j−1 for some j. Let uD ∈ [π1
m, π1

m−1] and uD ∈ [π0
n, π0

n−1] for

some m,n ∈ {1, . . . , J − 1} where m > n. Then Equation 26 implies

E[Y |uD, Z = 1] − E[Y |uD, Z = 0] =

m−1∑

j=n

△MTE
j,j+1 (uD).

Thus if a = max{π1
m, π0

n} and b = min{π1
m−1, π

0
n−1}, we can identify:

E[Y |uD ∈ [a, b], Z = 1] − E[Y |uD ∈ [a, b], Z = 0] =

∫ b

a

∑m−1
j=n △MTE

j,j+1 (uD)duD

b − a
(28)

This scenario highlights that the precise LATEs identified will be determined by the exogenous

variation in the choice probabilities π
Z induced by the instrument. Note that if π1

j > π0
j−1 for some

j, the corresponding LATE parameter is still separately identified over the interval

[
max{π0

j , π
1
j+1},min{π0

j−1, π
1
j }

]
.

But if max{π0
j , π

1
j+1} 6= π0

j or min{π0
j−1, π

1
j } 6= π1

j , then the level-specific LATE parameters will

not be separately identified over the entire interval [π0
j , π

1
j ].

Comparing Example I and Example II in Figure 3 helps to illustrate how the ordering of the

πZ
j determines identification. Since π1

2 > π1
0 in Example II, the instrument identifies

△LATE
1,2 (π1

2, π
1
1) =

∫ π1
1

π1
2
△MTE

1,2 (uD)duD

π1
1 − π1

2

= E[Y |uD ∈ [π1
2 , π

1
1], Z = 1] − E[Y |uD ∈ [π1

2, π
1
1 ], Z = 0]

However, over the interval [π0
1 , π

1
2 ] = [π0

1 ,min{π1
2 , π

1
1}] we cannot separately identify each level-

specific LATE. Instead the instrument identifies:

△LATE
1,3 (π0

1 , π
1
2) = △LATE

1,2 (π0
1, π

1
2) + △LATE

2,3 (π0
1 , π

1
2)

= E[Y |uD ∈ [π0
1 , π

1
2 ], Z = 1] − E[Y |uD ∈ [π0

1 , π
1
2 ], Z = 0]

=

∫ π1
2

π0
1

(
△MTE

1,2 (uD) + △MTE
2,3 (uD)

)
duD

π1
2 − π0

1

.

But over the interval [π0
2 , π

0
1 ] = [π0

2 ,min{π0
1 , π

1
2}] the instrument does again separately identify the

LATE parameter:

△LATE
2,3 (π0

2 , π
0
1) = E[Y |uD ∈ [π0

2 , π
0
1 ], Z = 1] − E[Y |uD ∈ [π0

2 , π
0
1 ], Z = 0] =

∫ π0
1

π0
2
△MTE

2,3 (uD)duD

π0
1 − π0

2

.

Figure 19 shows these LATEs graphically.
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9 Appendix B: Semi-Parametric LATEs

9.1 Semi-Parametric LATE Estimator

One approach to estimating LATEs is to place no parametric assumptions on the functions

E[Y (D = j)|µ(X), UD ]. To justify such a semi-parametric LATE estimator, we keep conditioning

on µ(X) implicit for the sake of exposition. We assume π0
j < π1

j < π0
j−1 and define U∗

Dj ≡ {UD|UD ∈

[π0
j , π

1
j ]} so that U∗

Dj ∼ U [π0
j , π

1
j ]. By definition

△MTE
j,j+1 (uD) ≡ E[Yj+1 − Yj|UD = uD], and

△LATE
j,j+1 (π0

j , π
1
j ) ≡

1

π1
j − π0

j

∫ π1
j

π0
j

△MTE
j,j+1 (uD)duD.

Thus

△LATE
j,j+1 (π0

j , π
1
j ) =

1

π1
j − π0

j

∫ π1
j

π0
j

△MTE
j,j+1 (uD)duD

=
1

π1
j − π0

j

∫ π1
j

π0
j

{E[Y (D = j + 1)|uD] − E[Y (D = j)|uD]}duD

= EU∗
Dj
{E[Y (D = j + 1)|u∗

Dj ] − E[Y (D = j)|u∗
Dj ]}

= EU∗
Dj
{E[Y (D = j + 1)|u∗

Dj ]} − EU∗
Dj
{E[Y (D = j)|u∗

Dj ]}

= EU∗
Dj
{E[Y (D = j + 1)|u∗

Dj , Z = 1]} − EU∗
Dj
{E[Y (D = j)|u∗

Dj , Z = 0]}, (29)

where 29 follows from random assignment since Z ⊥⊥ (U1, . . . , UJ , UD).

The sample analogue to 29 is

△̂LATE
j,j+1 (π0

j , π
1
j ) =

∑N
i=1 1{ûDi ∈ [π̂0

ji, π̂
1
ji]}∑N

i=1 1{ûDi ∈ [π̂0
ji, π̂

1
ji]}

{∑N
j=1 Zj1{ûDj = ûDi}Yj

∑N
j=1 Zj1{ûDj = ûDi}

}

−

∑N
i=1 1{ûDi ∈ [π̂0

ji, π̂
1
ji]}∑N

i=1 1{ûDi ∈ [π̂0
ji, π̂

1
ji]}

{∑N
j=1(1 − Zj)1{ûDj = ûDi}Yj

∑N
j=1(1 − Zj)1{ûDj = ûDi}

}
.

Assuming ûDj 6= ûDi for all i 6= j in our sample, it follows that:

△̂LATE
j,j+1 (π0

j , π
1
j ) =

∑N
i=1 1{ûDi ∈ [π̂0

ji, π̂
1
ji]} ZiYi

∑N
i=1 1{ûDi ∈ [π̂0

ji, π̂
1
ji]} Zi

−

∑N
i=1 1{ûDi ∈ [π̂0

ji, π̂
1
ji]} (1 − Zi)Yi

∑N
i=1 1{ûDi ∈ [π̂0

ji, π̂
1
ji]} (1 − Zi)

. (30)

Given estimates π̂ and ûD from the ordered choice model we can construct empirical estimates of

LATEs without placing any parametric assumptions on E[Y (D = j)|µ(X), UD ] using the estimator

in Equation 30 when π0
j < π1

j < π0
j−1. As discussed in Appendix A, the precise LATEs identified will

be determined by the exogenous variation in the choice probabilities π
Z induced by the instrument.
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9.2 Semi-Parametric LATE Estimation Results

We also present semi-parametric LATE estimation results in Table 5. We do not analyze these

results in great depth due to their imprecision, which is itself due to the small sample of compliers

(n ≈ 180). Table 5 shows a semi-parametric estimator for △LATE
1,2 derived in the Appendix for

several adult outcomes that are averaged over all observables X together with estimates of the

average interval (max{π̂1
2 , π̂

0
1}, π̂

1
1) to which the LATE pertains. Estimates of the program effects

△ITT on the estimation sample are displayed together with these neighborhood effects to give some

context to these results. The most notable feature of these estimates is that they have very large

standard errors (computed using 1,000 bootstrap replications). Another feature of these estimates

is that the neighborhood effects pertain on average to a very small subset of the sample, with this

11.2 percent being located among those households with low unobservables UD.
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Figure 1: The First Stage Ordered Choice Model
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Observed E[Y (D)|v, Z] when D ∈ {1, 2, 3}

= E[Y |v, Z = 1]

= E[Y |v, Z = 0]
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Figure 2: Example I: Potential Outcomes and Marginal Treatment Effects Given µ(X)
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Example I: Observed E[Y (D)|uD, Z] when D ∈ {1, 2, 3}
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Example II: Observed E[Y (D)|uD, Z] when D ∈ {1, 2, 3}

= E[Y |uD, Z = 1]
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Figure 3: Examples I and II: Potential Outcomes and Marginal Treatment Effects Given µ(X)
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Observed E[Y (D)|uD, Z,X∗] when D ∈ {1, 2, 3}

= E[Y |uD, Z = 1]

= E[Y |uD, Z = 0]
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Figure 4: Example I: Potential Outcomes and Marginal Treatment Effects Given µ(X)
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Alteration of Example I: Observed E[Y (D)|v, Z] when D ∈ {1, 2, 3}

= E[Y |v, Z = 1]

= E[Y |v, Z = 0]
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Alteration of Example II: Observed E[Y (D)|v, Z] when D ∈ {1, 2, 3}
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Figure 5: Altering Examples I and II to Satisfy Strong Ignorability
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E[Y (1) − Y (0)|θ] when D ∈ {1, 2}
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Figure 6: Binary Example with and without Strong Ignorability
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Figure 8: Neighborhood Quality by Site
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Figure 9: School Ranking on State Tests, Weighted Average Percentile over all Schools Attended (by Site)
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Figure 16: Marginal Treatment Effects from D=1 to D=2 at Median uD, 0.2
Confidence intervals are computed using 1,000 bootstrap replications
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Figure 17: Marginal Treatment Effects from D=1 to D=2 at Median µ(X), –0.12
Confidence intervals are computed using 1,000 bootstrap replications
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Figure 18: Marginal Treatment Effects from D=1 to D=2 at Low, Median, and High µ(X)
Confidence intervals are computed using 1,000 bootstrap replications
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Figure 19: Examples I and II: Generalized Local Average Treatment Effects Given µ(X)
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Tables

Table 1: Proportion of Variance Explained by Principal Components Eigenvectors

Eigenvector Eigenvalue Proportion of Variance

1 4.14 0.69
2 0.67 0.11
3 0.51 0.08
4 0.35 0.06
5 0.22 0.04
6 0.12 0.02

Table 2: Principal Components Analysis: First Eigenvector Coefficients

Variable Coefficient

Poverty Rate -0.45
HS Graduation Rate 0.44
BA Attainment Rate 0.40
Percent Single-Headed HHs -0.36
Male EPR 0.41
Female Unemployment Rate -0.39

Table 3: Interim Neighborhood Quality by Site

Mean Median
Site Control Section 8 Experimental Control Section 8 Experimental

Baltimore 8.8 12.8 15.1 2.2 4.4 4.9
Boston 15.1 20.3 25.9 10.9 13.5 17.0
Chicago 8.3 11.2 12.5 2.9 3.6 3.9
Los Angeles 6.0 7.6 13.2 1.2 3.9 6.3
New York City 5.7 8.2 13.7 1.0 1.7 2.6

Table 4: Ordered Choice Model Parameter Estimates

Xk β̂k SE

Baseline Characteristics

HH Member Victim 0.09 0.05
No Teens in HH 0.17 0.05
No Family in Nbd 0.08 0.05
Nbd Quality 0.12 0.01

Site Fixed Effects

Baltimore 0 –
Chicago –0.12 0.12
Los Angeles –0.73 0.13
New York City –0.70 0.12
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Table 5: Adult LATE Estimates Averaged over all µ(X)

Program Effects Neighborhood Quality Effects

Outcome △̂ITT Control Mean △̂LATE
1,2 (max{π̂1

20, π̂
0
10}, π̂

1
10) Control Mean max{π̂1

20, π̂
0
10} π̂1

10

Labor Market

Household Income ($) 856 14,297 3,396 14,319 21.0 31.9
(594) (447) (2,530) (1.3) (1.6)

Earnings ($) –1 8,366 1,413 8,614
(512) (384) (1,928)

Employed (%) 3.8 50.5 4.2 56.9
(2.5) (1.9) (10.3)

In Labor Force (%) 4.5 61.6 7.8 64.4
(2.4) (1.8) (10.3)

Welfare Benefits

Received TANF (%) –3.5 32.9 –10.4 31.2
(2.3) (1.8) (9.7)

Health

BMI (Raw) –0.9 31.0 –2.1 33.0
(0.4) (0.3) (1.5)

Note: Neighborhood quality effects standard errors are computed using 1,000 bootstrap replications.
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