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1 Introduction

Accommodating unobserved heterogeneity is critical for studying discrete

response models and more importantly in using these models to construct

counterfactuals. The mixed logit model is a highly flexible discrete choice

framework that incorporates unobserved heterogeneity in a general way by

allowing the unobserved error structure of the utility maximization problem

to be arbitrarily correlated across choices and time. In theory, the mixed

logit model is extremely powerful as McFadden and Train (2000) show that

with a flexible enough error structure, it can approximate any random utility

model with arbitrary degree of accuracy.1

However, unlike the standard logit framework, which has a well known

simple iterative solution, the computational challenges of estimating mixed

logit models are substantial, making it difficult for researchers to fully realize

the potential of this flexible discrete choice framework. First, these mod-

els are estimated by maximizing an integrated likelihood function, which

requires numerical simulation to evaluate the integral. This entails costly

computations on a simulated data set, much larger than the original dataset.

Second, the complicated likelihood function is difficult to maximize, so re-

searchers typically rely on optimizers that compute a numerical approxima-

tion to the gradient of the likelihood. Approximating the gradient is an ex-

tremely costly activity, requiring an enormous amount of likelihood function

evaluations at each iteration, typically equal to the number of parameters

in the model or more.

In order to feasibly estimate these models using numerical gradient based

methods, researchers search for a balance between the number of parameters

in the model and the number of simulation draws used to approximate the

integral. If too few simulation draws are used, Lee (1992) shows that the

estimates are biased. With many simulation draws, the simulated dataset

may not be storable in read/write memory, generating a tremendous amount

1McFadden and Train (2000) likewise show that this result is true for the probit frame-
work. This paper will focus on the mixed logit model because it is by far the most widely
used discrete choice framework. However, the methodological contribution of this paper
can be applied to the mixed probit model as well.
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of overhead to repeatedly read and write this dataset to the hard disk.

Unfortunately the balance between model specification and the number of

simulation draws is often dictated by computational tractability and not the

economic model or asymptotic consistency.

This paper outlines a new estimator for the general class of mixed multi-

nomial logit models that yields a solution that is as simple as the procedure

for estimating standard logit models. In contrast to other methods, where

each iteration requires multiple simulated likelihood evaluations (increas-

ing in the number of parameters), the premier benefit of the estimator is

that each iteration of the algorithm is equivalent to only one evaluation of

the simulated likelihood function. This makes the estimator computation-

ally tractable for models with both many parameters and many simulation

draws.

The estimator is rooted in the Expectation and Maximization (EM) algo-

rithm, a widely used method for computing maximum likelihood estimates

in the presence of unobserved data. Conventional numerical optimizers,

like gradient descent or Newton-Raphson, form a sequence of linear (or

quadratic) local approximations to the objective function and take steps

along the these approximations towards the solution. These local approxi-

mations require the computation of the gradient of the objective function,

which generates the computational challenges discussed above. In contrast,

the EM algorithm at each step forms a lower bound to the objective func-

tion and iteratively maximizes this sequence of lower bounds, converging to

a local maximum of the objective function.2

The advantages of the EM approach are that it does not require the

computation of the gradient, the lower bound objective function is easy to

calculate, and in many cases this lower bound is easy to maximize. Unfortu-

nately, one such case where the lower bound is difficult to maximize is latent

variable models like logit and probit. This has inhibited the widespread use

of the EM algorithm for these models because while the EM algorithm avoids

the computation of the gradient, it requires a costly procedure to optimize

2See Lange et al. (2000) and Minka (1998) for a description of the lower bound deriva-
tion of the EM algorithm and Dempster et al. (1977) for the original proof.
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Figure 1: Monte Carlo Results
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the lower bound function at each iteration.

The estimator takes a very simple approach to this problem. It forms

an alternative lower bound to the one offered by the conventional EM al-

gorithm, whose maximum has a simple closed form solution. Importantly,

the existence of this alternative lower bound is based off of the nature of

discrete choice models, not the form of the unobserved heterogeneity. This

implies that this simple optimization routine can be applied to any discrete

choice framework and allows for a wide degree of complexity of unobserved

variables. Formally, the algorithm constitutes a Generalized Expectation

and Maximization (GEM) algorithm described in Dempster et al. (1977).

Since it is part of the EM family, it is not only easy to compute, but it is

consistent, efficient, and globally convergent.

To gain insight into the performance of the estimator, a number of Monte

Carlo experiments are conducted. Figure 1 previews the results from one of
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these experiments, which shows the effect on the computation time as the

number of exogenous covariates are increased in the model. In this simple

example, including additional exogenous covariates had little effect on the

number of iterations it took MSL to to converge, but because each iteration

required more likelihood evaluations to approximate the gradient, doubling

the number of parameters effectively doubled the computation time. In

contrast, because the GEM algorithm only requires one likelihood evaluation

for each iteration, it experienced only a mild increase in computation time,

such that the GEM estimator with more than 100 parameters was faster

than the MSL estimator with 17 parameters.

An extension of the estimator to dynamic discrete choice models is in

James (2012). One straightforward application is to quasi-structural models

(see Bernal and Keane (2010)). In these dynamic models, observations on

discrete choices are observed in conjunction with observations on a contin-

uous outcome variable that contains information on the unobserved mixing

component (e.g. wages or output). In these cases, Arcidiacono and Miller

(2010) argue that consistent estimates of the model parameters, with ex-

ception to the structural choice parameters, can be found by replacing the

dynamic choice probabilities with a reduced form policy function, resulting

in the estimation of a static mixed logit model. The key component is that

these reduced form policy functions must represent the dynamic problem

well, so they likely contain many parameters. A common approach is to use

McFadden (1975) universal logit (including all variables in all choice func-

tions). This approach is infeasible with current methods because it contains

too many parameters, however it can be tractably estimated with the GEM

algorithm.

A primary benefit of the proposed method for estimating these compli-

cated models is that it is implemented in a manner that is nearly identical to

the very simple solution to the standard logit model. To put the simplicity

of the estimator in context, it is beneficial to first review the rudimentary

procedure for estimating standard logit models. This is done for the binary

logit model in section 2. Section 3 briefly describes the mixed logit frame-

work in the context of the binary choice model and discusses the current
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approaches to estimating these models and their computational challenges.

The estimator is derived in section 4, first for the binary mixed logit case

and then extended to the multinomial mixed logit model. Section 5 discusses

the results from the Monte Carlo experiments. And section 6 concludes.

2 Review of Standard Logit

In the binary logistic model with panel data, we assume the discrete outcome

dit ∈ {0, 1} occurs when dit = argmax
j∈{0,1}

Uit(j) and U is a latent variable

represented by,

Uit(0) = εit(0)

Uit(1) = Xitα1 + εit(1)

Where Xit are observables and α1 are parameters to be estimated. The un-

observed random utility shock ε is assumed distributed i.i.d. type-I extreme

value.

The logistic model is by far the most widely used approach for studying

discrete response data because the choice probabilities for the observed out-

comes yield a simple closed form expression. In the binary model they are

defined as.

Pit(1|α1) = Pr(dit = 1|Xit, α1) =
exp(Xitα1)

1 + exp(Xitα1)

Pit(0|α1) = Pr(dit = 0|Xit, α1) = 1− Pit(1|α1)

With these choice probabilities, the parameters α1 are estimated by max-

imizing the log-likelihood function, summing over individuals and time pe-

riods,

α̂1 = argmax
α1

N∑
i=1

T∑
t=1

[
Xitα1dit − ln

(
1 + exp(Xitα1)

)]
(1)

The solution to eq. (1) does not have a closed form expression so an opti-
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mization routine is required. Given that the log-likelihood function is a large

sum, the first and second derivatives are easy to calculate. Therefore, the

most common and computationally efficient method for estimating standard

logit models is Newton-Raphson. With starting values α0
1 Newton-Raphson

entails iteratively computing,

αm+1
1 = αm1 −

[
N∑
i=1

Hm
i

]−1 [ N∑
i=1

gmi

]
(2)

Where gmi and Hm
i are individual i’s contribution to the gradient and the

hessian of the log-likelihood function conditional on the mth iteration pa-

rameter estimates. They are given by,

gmi =
T∑
t=1

X ′it

[
dit − Pit(1|αm1 )

]
Hm
i =

T∑
t=1

[
Pit(1|αm1 )× (1− Pit(1|αm1 ))

]
X ′itXit (3)

The Newton-Raphson procedure for the standard logit model is typically

referred to as Iteratively Re-weighted Least Squares (IRLS), since it bears

many similarities to the least squares solution, but includes the weights,

Pit(1|αm1 ), which are re-computed at each iteration. Solving these models

is straightforward since the components of the Newton-Raphson algorithm

can be easily calculated.3

3 Binary Mixed Logit Model

The mixed logit model shares a similar structure to the standard logit model

except that, in addition to the logit error, there is another element which

is unobserved that needs to be integrated out of the likelihood function in

3Newton-Raphson continually iterates on eq. (2) until gm
i gets close to zero. In general,

convergence of Newton-Raphson is not guaranteed since it is not a stable algorithm. In
practice the steps are often scaled to assure convergence to a local maximum and is stopped
if their is little change in the parameters or objective function value.
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estimation.4 The nature of this additional unobservable is quite general,

which allows mixed logit models to represent a broad class of discrete choice

utility maximization problems. The estimator applies to a general mixed

multinomial logit model, however, to emphasize the insights and implemen-

tation of the estimator, it is instructive to outline it in a more stylized

model. We will modify the individual’s latent utility by including an addi-

tional unobserved component zi which is a vector of unobserved error terms,

zi = {zi(1), . . . , zi(T )}, such that,

Uit(0) = εit(0)

Uit(1) = Xitα1 + zi(t) + εit(1)

In this specification, z represents the ”mixing” component of the unob-

served error, which is arbitrarily correlated across time, and we maintain the

assumption that the remaining component of the error, ε, is i.i.d. over time.

We will assume that z is distributed multivariate normal zi ∼ N (γ,∆) with

associated probability density function f(z|γ,∆). Once the main insights of

the estimator are derived in this setting, a discussion of other distributional

assumptions is presented in appendix A.5

Given observed outcomes Di = {di1, . . . , diT } and Xi = {Xi1, . . . , XiT }
for individual i = 1, . . . , N , the probability of the data conditional on z by

the product of logits.

Pr(Di|Xi, z, α1) =

T∏
t=1

[
1

1 + exp(Xitα1 + z(t))

]dit=0[
exp(Xitα1 + z(t))

1 + exp(Xitα1 + z(t))

]dit=1

To estimate this random utility model with maximum likelihood we form

the incomplete data likelihood by integrating over the unobserved com-

ponent, z, using the density f(z|γ,∆), summing over the individual log-

4See Train (2009) ch 6 for a discussion on mixed logit models.
5Alternatively, the mixing component could be represented by a random coefficient

model, such that zi(t) = Zitβi, where Zit are observed regressors and βi are unobserved
individual specific random coefficients with distribution f(β|Γ).
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likelihood functions. The maximum likelihood estimator solves,

Ψ̂MLE = argmax
Ψ∈{α1,γ,∆}

N∑
i=1

ln

(∫
z

Pr(Di|Xi, z, α1)f(z|γ,∆) dz

)
(4)

Where Ψ represents the collective set of parameters.

The integration does not have a closed form solution, so it must be eval-

uated using numerical simulation. This constitutes a maximum simulated

likelihood (MSL) estimator, which is the most widely used approach for es-

timating these models. Assuming straight forward Monte Carlo integration,

for each person draw R values of z randomly from N (γ,∆), labeled zir, then

solve,

Ψ̂MSL = argmax
Ψ∈{α1,γ,∆}

N∑
i=1

ln

(
1

R

R∑
r=1

Pr(Di|Xi, zir, α1)

)
(5)

where zir ∼ N (γ,∆)

The mixed logit objective function is much more complicated than the

standard logit objective function in eq. (1). The primary issue is that inte-

gration is located inside of the log operator, which prevents the log operator

from linearizing the products in Pr(Di|·). Because of this, analytical ex-

pressions for the first and second derivative are very difficult to derive, so

in practice estimation of these models often relies on Quasi-Newton meth-

ods that form an approximation to the gradient and the hessian. These

approximations are calculated by preforming many evaluations of the likeli-

hood function at different points in the state space, typically requiring one

likelihood evaluation for each parameter in the model to approximate the

gradient in all directions.

Unfortunately, the gradient approximation is necessary at each iteration

of the algorithm, resulting in an enormous number of likelihood evaluations.

Evaluating the likelihood in eq. (5) may consist of a number of simple

computations, however, even these simple computations can become slug-

gish when the data is multiplied by a factor of R. If the original dataset is
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large to begin with, one may quickly approach memory capacity, requiring

the extremely expensive task of reading and writing data to the hard disk

or looping over individuals and recomputing the simulated values at each

evaluation of the likelihood. Approximating the gradient requires so many

evaluations of the simulated likelihood function that the costs of simula-

tion rapidly compound. As the number of parameters increases, so does

the number of likelihood evaluations required to approximate the gradient,

which quickly becomes intractable with more than a few parameters.

4 The Estimator

This section describes the estimator for the binary mixed logit model and

then extends it to the multinomial choice framework. The estimator is

rooted in a Generalized Expectation and Maximization (GEM) algorithm,

so we begin by describing the EM algorithm in the mixed logit framework

and then move to the specifics of the GEM estimator.

4.1 Review of the EM Algorithm

The Expectation and Maximization (EM) algorithm formalized in Demp-

ster et al. (1977) is a popular method for computing maximum likelihood

estimates in the presence of unobserved data.6 The EM algorithm entails

repeatedly maximizing, in many cases, a simpler augmented data likelihood,

which as shown below bears a close resemblance to the complete data like-

lihood.

Instead of directly maximizing this very complicated likelihood function

in eq. (4), each step of the EM algorithm forms a lower bound to this

function and maximizes this simpler function.7 This lower bound has two

special properties. First it is simple to compute, and second it touches

the likelihood function at any arbitrary value, Ψm. This implies that the

parameters that maximize the lower bound function necessarily increase the

6For a review of the EM algorithm see Train (2009) and McLachlan and Krishnan
(1997).

7This derivation of the EM algorithm borrows from that outlined in Minka (1998).
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likelihood function. Using this as the next point in forming the lower bound

and repeating this process, the EM algorithm converges to a local maximum

of the likelihood.

Let h∗i (z) indicate an arbitrary density function (i.e.
∫
z h
∗
i (z)dz = 1 and

h∗i (z) ≥ 0). The EM algorithm is based on the following principle.

ln

(∫
z

Pr(Di|Xi, z, α1)f(z|γ,∆)h∗i (z)

h∗i (z)
dz

)
≥

ln

(∏
z

(
Pr(Di|Xi, z, α1)f(z|γ,∆)

h∗i (z)

)h∗i (z)
)

(6)

Where
∏
z

represents the continuous product, analogous to the integral over

an infinite support. Equation (6) follows from Jensen’s inequality which

states that the arithmetic mean (the inside of the log on the left hand-

side) is never smaller than the geometric mean (the inside of the log on

the right-hand side). We will re-write this statement more compactly as

L(Ψ) ≥ Q(Ψ).

Equation (6) holds for any density function h∗i (z). However, the EM

algorithm chooses a very particular density function. Namely, for any ar-

bitrary value of parameters, Ψm, hi(z|Ψm) is chosen so that eq. (6) holds

with equality at Ψm (i.e. L(Ψm) = Q(Ψm), the lower bound touches the

likelihood at Ψm). Using hi(z|Ψm), the lower bound function can be ex-

pressed as Q(Ψ|Ψm). Given these conditions, any value of Ψ such that

Q(Ψ|Ψm) ≥ Q(Ψm|Ψm) implies that L(Ψ) ≥ L(Ψm), with equality at

Ψ = Ψm. The E-step of the algorithm is to form this lower bound func-

tion, and the M-Step is to find new parameters Ψm+1 = argmax
Ψ

Q(Ψ|Ψm).

Because the bound improves at each iteration, the sequence of parameter

estimates are guaranteed to converge to a local maximum of L(Ψ). This

bounding approach is sketched in figure 2.
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Figure 2: Sketch of EM Algorithm
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Conditional on Ψm, the density function is defined as,

hi(z|Di, Xi,Ψ
m) = Pr(z = zi|Di, Xi,Ψ

m)

=
Pr(Di|Xi, z, α

m
1 )f(z|γm,∆m)∫

z′ Pr(Di|Xi, z′, αm1 )f(z′|γm,∆m) dz′

This function is described as the density of the individual’s unobserved

information, z, conditional on the individual’s observed data and a given

value of the parameters. This density does not have an analytical form, so

for each individual is is approximated by R points labeled zir with associated

weights wmir , where m highlights that the weights are a function of parame-

ters Ψm. Because these densities are approximated, the EM applied to the

mixed logit framework is more formally a Simulated EM (SEM) algorithm,

which preserves all of the properties of the EM algorithm with the identical

condition to MSL that the number of simulation draws rise at a rate faster

than the sample size.8

To compute the weights, for each individual i = 1, . . . , N , draw R values

of z randomly from f(z|γm,∆m) labeled zir and then compute the choice

8McLachlan and Krishnan (1997) provide a survey of Simulated EM algorithms.
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probability,

Pmirt(1) =
exp(Xitα

m
1 + zir(t))

1 + exp(Xitαm1 + zir(t))

The weights are then calculated using Bayes’ Rule.

wmir =

∏T
t=1(1− Pmirt(1))(dit=0)Pmirt(1)(dit=1)∑R

r′=1

(∏T
t=1(1− Pmir′t(1))(dit=0)Pmir′t(1)(dit=1)

) (7)

Using these approximations to hi(z|Ψm), the lower bound of the objec-

tive function (or augmented data likelihood) for the EM step is,

Q(Ψ|Ψm) =
N∑
i=1

ln

(
R∏
r=1

(
Pr(Di|Xi, zir, α1)f(zir|γ,∆)

wmir

)wm
ir

=

N∑
i=1

R∑
r=1

wmir ln
[

Pr(Di|Xi, zir, α1)f(zir|γ,∆)
]

−
N∑
i=1

R∑
r=1

wmir ln
[
wmir

]
(8)

As described, the main computational challenge of the mixed logit is

the presence of the very large integral inside of the log function in eq. (4).

Jensen’s inequality allows us to replace this integral with a sequence of

products, which the log operator transforms into the sum of a sequence of

logs. This linearizes the objective function in a very desirable way, making

this function easier to maximize.

Equation (8) is a simpler function to maximize for two reasons. First, the

parameters α1 are independently maximized from γ and ∆ because the log

operator makes these values additively separable in the objective function.

This feature of the EM algorithm is discussed in Arcidiacono and Jones

(2003). Therefore maximizing the objective function involves maximizing
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two simpler functions,

αm+1
1 = argmax

α1

N∑
i=1

R∑
r=1

wmir ln
[

Pr(Di|Xi, zir, α1)
]

(9)

γm+1,∆m+1 = argmax
γ,∆

N∑
i=1

R∑
r=1

wmir ln
[
f(zir|γ,∆)

]
(10)

Second, eq. (9)-(10) represent expected complete data likelihoods where

the values zir and weights wmir are treated as data. Often the maximum like-

lihood solution when all of the data is observed has a closed form expression.

For example, because of the normality assumption on z, the maximum like-

lihood estimates of the mean, γ, and covariance, ∆, given observations on

z, are simply the mean and covariance of the sample. Similarly, eq. (10) is

equivalent to the likelihood of weighted observations on z and has a simple

closed form solution.9

γm+1 =
1

N

N∑
i=1

R∑
r=1

wmir zir

∆m+1 =
1

N

N∑
i=1

R∑
r=1

wmir zirz
′
ir − γm+1γm+1′

The fact that the EM algorithm typically produces analytical expressions

for the distributional parameters in mixed logit models is well established

(see Train (2008)).10 The drawback of the EM algorithm for estimating these

9The closed form solution is not driven by the normality assumption, but by the fact
that the maximum likelihood estimates in the full information case are related to the
sample moments in the data. This is true for other distributions as well, for example the
exponential distribution. Appendix A discusses estimation of these parameters when a
closed form solution is not apparent.

10Using this result, Train (2007) proposes an EM algorithm for estimating random
coefficient models that contain only unobserved distributional parameters and no fixed
parameters in the logit (i.e. no α terms). Estimation in this case requires iteratively
maximizing an equation similar to eq (10). When this maximization has a closed form,
Train (2007) shows computational gains of the EM algorithm over MSL with numerical
gradients on the order of 25 times.
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models is that no closed form exists for maximizing the objective function in

eq. (9) for the parameters α1. This objective function is conceptually sim-

ple to maximize as it represents a weighted standard logit model, which, as

discussed in section 2, can be solved with an iterative Newton-Raphson algo-

rithm. However, performing this expensive inner iterative routine within the

outer routine of the EM algorithm substantially reduces the attractiveness

of this approach for estimating mixed logit models.

4.2 The GEM Algorithm

The main contribution of this paper is to derive a simple method for imple-

menting the EM algorithm that circumvents this inner routine. The method

is based off of an important result in Bohning and Lindsay (1988) which says

that for a twice differentiable, concave function l(θ), if there exists a sym-

metric, negative definite matrix B such that B ≤ 52l(θ0) for all values of

θ0, then for any value θ, the following is true.

l(θ) ≥ l(θ0) + (θ − θ0)′ 5 l(θ0) + (θ − θ0)′B(θ − θ0)/2 (11)

Similar to the bounding approach of the EM algorithm, the results in

Bohning and Lindsay (1988) show that finding θ1 that maximizes the right

hand side of eq. (11) implies that l(θ1) ≥ l(θ0) with equality only at θ1 = θ0.

Repeating this process, the parameters converge monotonically to a local

maximum of the function l(θ)

This result relates to the EM algorithm for the mixed logit model in an

important way. Turning to the EM objective function for the logit parame-

ters in eq. (9) and incorporating the expression for Pr(Di|·), gives,

Q(α1|Ψm) =

N∑
i=1

R∑
r=1

wmir

T∑
t=1

[(
Xitα1 + zir(t)

)
dit − ln

(
1 + exp(Xitα1 + zir(t))

)]
(12)

This objective function is functionally equivalent to the standard logit in eq.

(1) except with the addition of the weights, wmir .
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Since eq. (12) is difficult to maximize, the estimator will instead use

the results of Bohning and Lindsay (1988) and bound the complicated

function with a simpler function. Letting Q̃(α1|Ψm) ≤ Q(α1|Ψm) denote

the bound such that Q̃(αm1 |Ψm) = Q(αm1 |Ψm) = L(Ψm).11 Then by con-

struction, choosing αm+1
1 = argmax

α1

Q̃(αm1 |Ψm) implies that Q(αm+1
1 |Ψm) ≥

Q(αm1 |Ψm) and more importantly L(αm+1
1 , γm,∆m) ≥ L(αm, γm,∆m). This

approach maintains the necessary condition of the EM procedure, that the

objective function is maximized at each iteration. This constitutes a general-

ized EM algorithm defined in Dempster et al. (1977) since the EM objective

is merely improved at each iteration rather than maximized.12 We can illus-

trate this idea by adding this new bound to the augmented data likelihood

in figure 3.

Forming this second bound requires that the hessian of eq. (12) is

bounded from below. Bohning and Lindsay (1988) indeed show that such a

lower bound exists for discrete choice models. The hessian of eq. (12) for

individual i is similar to the formula in the standard logit model in eq. (3)

with the exception of the additional weights.

Hm
i =

R∑
r=1

wmir

T∑
t=1

[
Pmirt(1)× (1− Pmirt(1))

]
X ′itXit

Since the probabilities Pmirt(1) ∈ (0, 1), then Pmirt(1)× (1−Pmirt(1)) ≥ −(1/4)

for all values of Xit, α1, and zir. Additionally, the weights wmir represent

a density, which must sum to one. Therefore it is easy to show that the

11These equalities are not completely correct as eq. (12) has dropped the constant and
other parts of the function in eq. (8). More formally the necessary condition required to
increase the likelihood is that Q(Ψ|Ψm)− L(Ψ) is smallest at Ψ = Ψm, which still holds.
Lange et al. (2000).

12Another possibility is to follow the approach of Rai and Matthews (1993), which
proposes conducting a single cycle of a scaled Newton-Raphson step on the objective
function in eq. (12) to update the parameters, adjusting the scale parameter to guarantee
that the likelihood increases. The scaling is necessary to maintain monotonicity since
Newton-Raphson is an unstable algorithm and a single cycle does not guarantee that
the augmented likelihood function will be improved as pointed out in Meng and Rubin
(1993). This approach is likely inferior to the one outlined here because it requires the
computation of the hessian matrix and the optimal scale factor. The proposed methods
requires neither.
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Figure 3: Sketch of GEM Algorithm
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hessian is bounded from below by, Bi defined as,

Hm
i ≥ −(1/4)

T∑
t=1

X ′itXit = Bi (13)

We can define the lower bound Q̃(α1|Ψm) as,

Q̃(α1|Ψm) =

Q(αm1 |Ψm) + (α1 − αm1 )′

[
N∑
i=1

gmi

]
+ (α1 − αm1 )′

[
N∑
i=1

Bm
i

]
(α1 − αm1 )/2

(14)

Where gmi is individual i’s contribution to the gradient of eq. (12) defined

as

gmi =

R∑
r=1

wmir

T∑
t=1

X ′it (dit − Pmirt(1))) (15)

The maximum of equation (14) gives a simple closed form expression by

17



taking the derivative with respect to α1 and setting it equal to zero.

αm+1
1 = argmax

α1

Q̃(α1|Ψm)

=αm1 −

[
N∑
i=1

Bm
i

]−1 [ N∑
i=1

gmi

]
(16)

So far the description of the estimator has largely focused on it’s con-

vergence properties. Since it is based on the EM algorithm it is globally

convergent, consistent, and efficient. There has been little discussion re-

garding whether it is easy to implement.

In simple terms, each iteration of the GEM algorithm requires the com-

putation of the weights, wmir in eq. (7), the gradients gmi in eq. (15), and the

parameter updates αm+1
1 in eq. (16). This procedure is very similar to the

Iteratively Re-weighted Least Squares procedure for the standard logit out-

lined in eq. (2). In the standard logit model, the least squares weights, the

choice probabilities, are re-computed at each iteration. Likewise these choice

probabilities are also used in eq. (15). The main difference between these

two methods is that the mixed logit also requires the computation of the

weights, wmir . Conveniently, these weights are functions of the choice proba-

bilities, which are already used in the calculation of the gradient. Therefore,

the GEM algorithm requires no more additional computations than the stan-

dard logit model, except that these computations are done on a data set that

is R times the original data.

In fact, in some ways, implementing the estimator is simpler than Newton-

Raphson because it does not require the computation and inverse of the hes-

sian at each iteration. By construction, the lower bound of the hessian Bi

described in eq. (13) is independent of both the parameters and the weights,

so it can be computed and inverted outside of the algorithm all together.

Finally, how does one iteration of the GEM algorithm compare to one

iteration of MSL? Importantly, each iteration of the GEM algorithm is ap-

proximately equal to only one evaluation of the simulated likelihood func-

tion. This is seen by looking at the denominator of eq. (7), which is identical
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to value inside of the log of eq. (5). The source of intractability of these

models was that conventional methods required at each iteration an exten-

sive number of simulated likelihood evaluations, either to approximate the

gradient or as an iterative routine inside of the traditional EM algorithm.

The estimator completely circumvents this issue.

4.3 GEM for Multinomial Mixed Logit

Extending the GEM algorithm from the binary case to the multinomial logit

is straightforward. This requires computing additional choice probabilities

and redefining the lower bound of the EM objective function. Modify the

choice set to J + 1 and set j = 0 as the normalizing choice. We will redefine

zi to be a J×T dimensional vector of unobserved values which are arbitrarily

correlated across choices and time, maintaining the notation that f(z|γ,∆).

Utility for j ∈ {1, . . . , J} is described as, Uit(j) = Xitαj + z(j, t) + εit(j).

The lower bound of the hessian for the multinominal logit equivalent to

eq. (13) is,13

Bi = −(1/2)(eye(J)− ones(J)/(J + 1))⊗

(
T∑
t=1

X ′itXit

)
(17)

Where eye(·) is the identity matrix and ones(·) is a matrix of ones.

The algorithm entails: First computing, B−1 =

[
N∑
i=1

Bi

]−1

from eq.

(17). Then given current iteration estimates, αm, γm, and ∆m,

1. Draw R values of z randomly from f(z|γm,∆m) and label them zir for each

individual i = 1, . . . , N .

2. Compute choice probabilities Pm
irt(0 : J), for each draw r

Pm
irt(0) =

1

1 +
∑J

j′=1 exp(Xitαm
j′ + zir(j′, t))

13The proof is in Bohning (1992). This expression is correct when all characteristics
enter all choice equations and must be modified when this is not the case.
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Pm
irt(j) =

exp(Xitα
m
j + zir(j, t))

1 +
∑J

j′=1 exp(Xitαm
j′ + zir(j′, t))

3. Compute

wm
ir =

∏T
t=1

∏J
j=0 P

m
irt(j)

(dit=j)∑R
r′=1

(∏T
t=1

∏J
j=0 P

m
ir′t(j)

(dit=j)
)

4. Compute gradient contribution:14

gm
i =

R∑
r=1

wm
ir

T∑
t=1

X ′it (yit − Pm
irt(1 : J))

5. Update parameters,

αm+1 = αm −B−1
[

N∑
i=1

gm
i

]

6. Update γm+1 =
1

N

N∑
i=1

R∑
r=1

wm
irzir

7. Update ∆m+1 =
1

N

N∑
i=1

R∑
r=1

wm
irzirz

′
ir − γm+1γm+1′

When the parameters reach some converge criteria, i.e. ||Ψm+1−Ψm||∞ < ε1

or ||(Ψm+1−Ψm)/Ψm||∞ < ε1 , then the algorithm stops.15 Standard errors

for EM algorithms are discussed in Ruud (1991) and outlined in appendix B.

14This calculation of the gradient produces a matrix, which needs to be vectorized in the
modified newton step. yit is a J dimensional vector with yit(dit) = 1 and zero everywhere
else. Pm

irt(1 : J) represents a 1×J vector of choice probabilities. Notice Pm
irt(0) is excluded.

15If the random draws are fixed, then the GEM algorithm will converge deterministi-
cally, and one can use traditional convergence criteria like those stated above (see Nielsen
(2000)). Other methods for simulated EM algorithms calculate new random draws at
each iteration, and the sequence of parameter estimates form a Markov chain converging
to a stable distribution. Further discussion on the differences in these approaches is in
Nielsen (2000). Because detecting convergence for the algorithm is more straightforward
with fixed random draws, this is the approach focused on in this paper.
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5 Monte Carlo Example

This section explores the computational efficiency of the GEM algorithm

through a number of Monte Carlo experiments. The first experiment holds

the model complexity (the number of choices and the number of unobserv-

ables) fixed and increases the number of exogenous covariates in the utility

function. The second experiment allows the model complexity to increase

with the number of parameters and shows the effect on the computation time

as the number unobserved parameters increases from one to five. In both

experiments, the GEM algorithm results in substantial computational sav-

ings over MSL with numerical gradients, but more importantly, the savings

are exponentially increasing with more complex models.

Data for the Monte Carlo experiments are created from the same un-

derlying model but differ in the way the number of parameters are in-

creased. In each period, t = 1, . . . , T individuals make a discrete choice

from j ∈ {0, 1, · · · , J}. Choice specific utility is defined by a vector of ex-

ogenous observables Xit and an observed endogenous vector Hit, defined as

the history of previous choices. i.e.

Hit =

[
t−1∑
t′=1

I · (dit′ = 1), · · · ,
t−1∑
t′=1

I · (dit′ = J)

]

For t > 0. Where dit denotes the choice in period t, and Hi1 = 0.

In addition to these factors, choices are also driven by an unobserved

taste vector zi, where zi(j) is individual i’s persistent unobserved taste for

choice j. Choice specific utility is defined as,

Uijt = Xitα1j +Hitα2j + zi(j) + εijt (18)

H is described as endogenous because it is correlated with unobserved taste

z. Failing to account for z will bias all of the parameter estimates, in par-

ticular, α2j .
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5.1 MC1: Increasing the Number of Observed Covariates

In the first set of experiments the number of choices is set to J = 2, which

fixes the size of the unobserved components, z, and the endogenous vectorH.

More parameters are introduced into the model by increasing the dimension

of Xit, the exogenous regressors. The number of variables are increased from

4 to 48 implying a range of total number of parameters from 17 to 105. Data

is generated and estimated for 100 different samples with N = 1, 000 and

T = 10. Convergence for the GEM is set to a tolerance of ||Ψm+1−Ψm||∞ <

1e− 6 and discussed further in appendix C.

First, table 1 compares a selection of the parameter estimates between

MSL with numerical gradients and the GEM algorithm for the smallest

model (17 parameters total). These include the estimates for the distribu-

tional parameters, γ and ∆, and those for the endogenous covariates, α2j .

Both MSL and the GEM algorithm do very well in estimating the parame-

ters, so the focus of this section will be on the computational differences.

Table 2 compares the key statistics which describe the computational

complexity for each estimator. These include the number of iterations, the

number of simulated likelihood evaluations, and the total computation time.

First, MSL requires many fewer iterations than the GEM algorithm. This

is not surprising given that MSL uses a quasi-Newtown method with super-

linear rates of convergence, while EM algorithms exhibit only linear rates of

convergence. However, the main feature of the GEM algorithm is that one

iteration requires only one simulated likelihood evaluation. This advantage

made the GEM algorithm significantly faster than MSL in all cases and

increasingly so as the parameters increased. These computation times are

plotted in figure 1 in the introduction.

5.2 MC2: Increasing the Model Complexity

The results in MC1 are informative because by holding fixed the choice set,

it abstracts away from other factors influencing the computation time to iso-

late the effect of including more parameters. The experiments here depart

from this approach to study the performance of the estimator as the model
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Table 1: Comparison of Estimates (selected param-
eters) a

True Values MSL GEM

γ(1)
0.5000 0.5159 0.5183

(0.0000) (0.0902) (0.0916)

γ(2)
0.5000 0.5124 0.5144

(0.0000) (0.1014) (0.1025)

∆(1, 1)
2.0000 2.0145 2.0003

(0.0000) (0.2349) (0.2231)

∆(2, 1)
1.1547 1.1678 1.1710

(0.0000) (0.1628) (0.1629)

∆(2, 2)
2.0000 1.9993 1.9949

(0.0000) (0.1797) (0.1817)

α21(1)
0.0000 -0.0034 -0.0023

(0.0000) (0.0240) (0.0236)

α21(2)
0.0000 -0.0003 -0.0020

(0.0000) (0.0337) (0.0340)

α22(1)
0.0000 -0.0038 -0.0048

(0.0000) (0.0304) (0.0310)

α22(2)
0.0000 0.0006 0.0010

(0.0000) (0.0233) (0.0233)

a Numbers averaged over 100 simulations with N = 1, 000
and T = 10. Integration for both methods uses 2,000
random draws. All models use the same starting values,
those generated by the standard logit

23



Table 2: Computational Comparison: MC1 a

Number
of

Parameter

MSL GEM

No.
Iters

No.
Fun.

Evals.

Comp.
Time

(min.)b

No.
Iters/Fun.
Evals.

Comp.
Time
(min.)

17 63 1253 30 157 6
39 79 3492 82 237 9
61 90 6166 145 311 11
83 97 9067 215 430 16
105 103 12008 285 570 21

a Numbers averaged over 100 simulations with N = 1, 000 and
T = 3. Integration for both methods uses 2,000 random draws.
All models use the same starting values, those generated by the
standard logit

b The replications where conducted on a shared computing cluster.
To benchmark the computation time, each experiment was run
once on an isolated processor to calculate the average time per
function evaluation and then multiplied by the average number of
function evaluations for the 100 replications.

complexity increases simultaneously with the number of parameters. This

is accomplished by changing the size of the choice set. As the choice set

increases, the likelihood becomes more difficult to calculate because more

choice probabilities need to be computed. In addition, increasing J increases

the dimension of both the unobserved taste vector z and endogenous observ-

ables H. Collectively for J = 1, 2, . . . , 5, the number of parameters range

from 5 to 95.16

Increasing the number of parameters as well as the model complexity

substantially increases the computation time of both estimators. These re-

sults are shown in table 3. For MSL, not only are the number of simulated

likelihood evaluations increasing with the number of parameters but so are

the number of iterations, causing the computation time to explode. Figure 4

plots the computation time between the two estimators. While the compu-

tation time increases with the GEM algorithm, the effects are much more

mild compared to MSL.

16The dimension of X is set to 2× J .
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Table 3: Computational Comparison: MC2 a

Number
of

Parameter

MSL GEM

No.
Iters

No.
Fun.

Evals.

Comp.
Time

(min.)b

No.
Iters/Fun.
Evals.

Comp.
Time
(min.)

5 25 172 2 56 1
17 63 1253 30 157 6
36 91 3796 122 220 12
62 119 8597 355 591 41
95 138 15188 765 1591 138

a Numbers averaged over 100 simulations with N = 1, 000 and
T = 10. Integration for both methods uses 2,000 random draws.
All models use the same starting values, those generated by the
standard logit

b The replications where conducted on a shared computing cluster.
To benchmark the computation time, each experiment was run
once on an isolated processor to calculate the average time per
function evaluation and then multiplied by the average number of
function evaluations for the 100 replications.

These Monte Carlo experiments showcase the substantial computational

gains that can be realized by the GEM algorithm. Most importantly, these

gains are strongest where current methods become increasingly intractable,

potentially making accessible entire classes of models which have been avoided

for computational reasons.

6 Conclusion

This paper outlines a simple routine for estimating complex mixed logit

models. The estimator is based off of a Generalized Expectation and Maxi-

mization algorithm. The primary benefit of the estimator is that it requires

drastically fewer evaluations of the likelihood function than conventional

methods, making the estimator computationally tractable for models with

complicated error structures and many parameters. This paper applies the

estimator to static discrete choice models. These insights are extended to

dynamic discrete choice models in James (2012).
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Figure 4: Computation Time MC2
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A Solutions with Non-Normal Distribution

The derivation of the GEM algorithm assumed that the mixing distribution
was multivariate normal. This lead to a simple closed form expression for
the solution to the objective function. While normality may be an appropri-
ate assumption in many applications, there may be instances where other
distributions are desired, or a closed form solution is not apparent.

First, a number of important distributions are related to normal distri-
butions and as shown by Train (2007) can be seamlessly incorporated into
the estimator. He discuses a number of distributions, for example log-normal
and censored normal. To accommodate the log-normal the only modifica-
tion of the algorithm is in step two where the choice probabilities are instead
calculated as,

Pmirt(j) =
exp(Xitα

m
j + ln(zir(j, t)))∑J

j′=0 exp(Xitαmj′ + ln(zir(j, t)))

And zir is still drawn from the normal distribution, but transformed in the
utility function.

Second, similar to the normal, any distribution which has a closed form in
the complete data case will also have a closed form solution in the weighted
EM objective function, for example the exponential distribution.

Finally, if the maximization over the distributional parameters does not
admit a closed form or a closed form is not apparent, then the objective func-
tion must be numerically optimized. In some cases, a numerical optimizer
can be implemented in a very efficient manner, producing a negligible in-
crease in computation time. In particular, the weights of the augmented data
likelihood form an expectation. If this expectation can be passed through
the likelihood, then the dimension of the problem can be reduced from N×R
back to N . Numerically optimizing this much smaller dataset is much faster
and in addition, since we use the previous iterations parameter estimates as
starting values, we begin very close to the solution, where most numerical
optimizers have super-linear rates of convergence. Outlining this procedure
in the case of the multivariate normal, the augmented likelihood function
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can be modified in the following way.

argmax
Γ,∆

N∑
i=1

R∑
r=1

wmir ln
[
f(zir|Γ,∆)

]
= argmax

Γ,∆

N∑
i=1

R∑
r=1

wmir

[
− 1

2
ln(|∆|)− 1

2
(zir − Γ)′∆−1(zir − Γ)

]
= argmax

Γ,∆
−N

2
ln(|∆|)−

N∑
i=1

1

2

[
tr

(
(

R∑
r=1

wirzirz
′
ir)∆

−1

)

− 2 tr

(
(
R∑
r=1

wirzir)Γ∆−1

)
+ tr(ΓΓ′∆−1)

]
Which takes advantage of the exchangeability of expectations in the trace
operator. The elements within the trace can be computed outside of the
maximization, reducing the data fromN×R back toN , avoiding maximizing
over the entire simulated data set.

B Standard Errors

Train (2007) describes the computation of standard errors in simulated EM
algorithms using the information matrix, which is constructed from the sim-
ulated scores at the solution Ψ∗. With K parameters let Si be a 1×K vector
of simulated scores for individual i, such that Si = [Si(α

∗) Si(γ
∗) Si(∆

∗)].
Then the covariance of the parameter estimates is described by V = (S′S)−1

where S is an N ×K matrix whose ith row contains Si.
Si(α) is already computed in step 4 of the algorithm such that Si(α) =

(gm
∗

i )′. Finally,

Si(γ) =
R∑
r=1

wm
∗

ir (∆∗)−1 (zir − γ∗)

Si(∆) = −.5
R∑
r=1

wm
∗

ir

(
(∆∗)−1 − (∆∗)−1(zir − γ∗)(zir − γ∗)′(∆∗)−1

)

C A Simple Accelerator

The GEM algorithm produces a sequence of estimates Ψ1,Ψ2, . . . ,Ψm which
converge to a value Ψ∗. The algorithm is typically terminated when the
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difference or percentage change between successive parameter estimates is
less than some tolerance. Kuroda and Sakakihara (2006) propose a novel
convergence criteria for the EM algorithm which exploits a vector epsilon
algorithm. Given a linearly converging vector sequence, the vector epsilon
algorithm generates an alternative sequence that converges to the same sta-
tionary value. Using the sequence of EM parameter estimates, Ψm, the
vector epsilon sequence, ψm is defined as,

ψm+1 = Ψm +
[[

Ψm−1 −Ψm
]−1

+
[
Ψm+1 −Ψm

]−1
]−1

(19)

Where x−1 =
x

||x||2
with the denominator representing the dot product of

vector x. Kuroda and Sakakihara (2006) show that this sequence ψ1, ψ2, . . . , ψm

converges to the same stationary value as the EM sequence, Ψ∗, but uses
the magnitude and direction of the EM sequence to extrapolate to the con-
vergence point, requiring significantly fewer iterations. Implementing this
requires no modification to the EM code, and it is important to highlight
that the sequence ψm never enters any of the parts of the algorithm. It is
a sequence which is computed in tandem with the algorithm and provides
a stopping criteria in the same manner one would use the EM sequence to
form a stopping criteria, i.e. once ||ψm+1−ψm||∞ < ε1, then ψm+1 ≈ Ψ∗.17

17Kuroda and Sakakihara (2006) originally describe their estimator as an EM accel-
erator. However, since it requires no modification to the EM code it is perhaps better
characterized as a stopping criteria. A number of accelerators have been proposed for the
EM algorithm. McLachlan and Krishnan (1997) provides a good introduction to some of
these methods. Even though the GEM algorithm overcomes the main source of compu-
tational tractability for the mixed logit model, it is worthwhile to consider incorporating
these accelerators to improve the speed of these methods even further. Caution should
be used with some accelerators as computational speed is often achieved at the expense
numerical stability or significant additional coding. In addition, all EM accelerators do
not apply to accelerating simulated EM algorithms.
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