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1 Introduction

Researchers often compare forecasts made by different models to determine whether

one model is significantly more accurate than another. Recent examples that compare

the predictive content of non-nested models include Corradi, Swanson and Olivetti

(2001), Rich et al. (2005), Rapach and Wohar (2007), Naes, Skjeltorp, and Ødegaard

(2011), and Fornari and Mele (2011). In each of these papers the authors use what

is commonly referred to as a Diebold-Mariano (1995) statistic for equal mean square

error (MSE). West (1996) showed the asymptotic distribution of the test applied

to forecasts from estimated models to be asymptotically standard normal. Hence,

conducting inference is straightforward.

In our previous work on nested model comparisons, we showed that this statistic

is typically not asymptotically standard normal and in fact has an asymptotic dis-

tribution that has a representation as a function of stochastic integrals of quadratics

of Brownian motion.1 While inference is made much harder than just using normal

critical values, in certain instances simulated critical values are available (McCracken

2007). For general conditions, Clark and McCracken (2011) provide a simple to use

bootstrap that provides asymptotically valid critical values. Recent examples that

compare the predictive content of nested models using the Diebold-Mariano statistic

include Hong and Lee (2003), Faust, Rogers, and Wright (2005), Wright and Zhou

(2009), and Wegener, von Nitzsch, and Cengiz (2010).

One type of model comparison that does not seem to have penetrated this lit-

erature is the comparison of overlapping models. Overlapping models is a concept

introduced in Vuong (1989) in the context of comparing the relative fit of two (pos-

sibly) misspecified likelihood functions. To get a feel for the problem we address in

this paper, let’s abstract from likelihood functions and focus on two linear regression

functions that are intended to forecast excess returns r of some stock index

rt+1 = β0,dy + βdydyt + εdy,t+1

rt+1 = β0,ep + βepept + εep,t+1,

where dy and ep denote the dividend yield and earnings-price ratio, respectively.

1This result obtains under large R, large P asymptotics, which permit recursive, rolling, and
fixed estimation schemes. Giacomini and White (2006) obtain a null asymptotic distribution that is
standard normal, under asymptotics that treat R as fixed and P as large, permitting just the rolling
and fixed estimation schemes.
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As Vuong notes, these two models can have equal predictive content two distinct

ways. In the first, both βdy and βep are non-zero and it happens to be the case that

E(ε2dy,t+1 − ε2ep,t+1) = 0. If this is the case we say the models are non-nested. In

the second, both βdy and βep are zero and hence E(ε2dy,t+1 − ε2ep,t+1) = 0 but in the

trivial sense that not only are the two models equally accurate but they are identical

in population and hence εdy,t+1 = εep,t+1. If this is the case we say the models are

overlapping.

As Vuong notes, testing the null hypothesis that the two models are equally ac-

curate (i.e., E(ε2dy,t+1 − ε2ep,t+1) = 0) becomes much harder when one allows for the

possibility that the two models are overlapping. The problem is that the null hy-

pothesis does not uniquely characterize the null asymptotic distribution. If the two

models are non-nested the likelihood ratio statistic is asymptotically normal under

the null. But if the models are overlapping, the likelihood ratio statistic is mixed

chi-square under the null. If one wants to conduct inference with a prespecified type

1 error α, it is not clear which critical values should be used – those from a standard

normal or those from a mixed chi-square.

Because of this dichotomy, Vuong suggests a two-step procedure for testing the

null hypothesis, using in-sample (as opposed to out-of-sample) statistics. In the first

stage, a variance test, conducted at the α1-percent level, is used to test the null that

the population forecast errors are identical and hence the two models are overlapping.

If we fail to reject, the procedure stops. Otherwise, if we reject the null (concluding

that the two models are not overlapping), we conduct a test of equal accuracy at

the α2-percent level assuming the two models are non-nested. Vuong (1989) argues

that this procedure controls the size of the test at the maximum of the nominal sizes

used in each stage — i.e., controls max(α1, α2) — and hence the testing procedure is

conservative.

Building on West’s (1996) results for non-nested models and Clark and Mc-

Cracken’s (2001, 2005) and McCracken’s (2007) results for forecasts from nested

models, this paper examines the asymptotic and finite-sample properties of tests of

equal forecast accuracy applied to predictions from estimated linear regression models

that may be overlapping. We first derive the asymptotic distribution of the Diebold-

Mariano-West statistic (that we refer to as the MSE-t statistic) when the models

are overlapping. With nested model comparisons, in general, we find this statistic
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typically has a non-standard distribution that has a representation as a function of

stochastic integrals of quadratics of Brownian motion. As a corollary to this result,

we are also able to derive the asymptotic distribution of the out-of-sample variant

of what Vuong (1989) refers to as a variance statistic. When the distribution of

the MSE-t statistic is non-normal and one is interested in testing the null of equal

accuracy between two overlapping models, we provide a simple-to-use bootstrap that

yields asympotically valid critical values. The bootstrap is also applicable for the

variance statistic.

Interestingly, there are a few special cases in which the MSE-t statistic is asymp-

totically standard normal. As we found in our previous work on nested model com-

parisons, the MSE-t statistic is asymptotically standard normal when: (i) the number

of out-of-sample forecasts P is small relative to the number of in-sample observations

R used to estimate model parameters, such that P/R → 0; or (ii) the fixed scheme

is used to estimate model parameters and hence the parameters used for forecasting

are not updated as we proceed across each forecast origin. When one of these two

special cases is applicable, a two-step procedure is no longer necessary. We can test

for equal forecast accuracy between two possibly overlapping models in just one step

using standard normal critical values and still obtain an accurately sized test of equal

accuracy.

In addition, under the asymptotics of Giacomini and White (2006), the MSE-t

statistic is asymptotically standard normal. As we show, under a somewhat different

null hypothesis than the one we focus on (specifically, under equal accuracy in the

finite sample rather than equal accuracy in population), the results of Giacomini and

White (2006) permit the direct use of the MSE-t test and standard normal critical

values, under a rolling or fixed estimation scheme.

To assess the practical efficacy of our proposed procedures, we conduct a range

of Monte Carlo experiments, and we include an empirical application to forecasts

of U.S. GDP growth generated from competing models that could be overlapping.

The Monte Carlo analysis shows that the fixed regressor bootstrap developed in this

paper has good size and power properties when the models are overlapping under the

null hypothesis. Confirming our theoretical work, the simulation results also show

our proposed two-step procedure to be conservative and the one-step procedure to be

accurately sized when it should be.
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The remainder of the paper proceeds as follows. Section 2 introduces the no-

tation, assumptions, and asymptotic results for testing equal accuracy between two

overlapping models. Section 3 discusses testing procedures when the models are not

known to be overlapping or non-nested. Section 4 presents Monte Carlo results on

the performance of our testing procedures, and section 5 applies our tests and boot-

strap approach to inference to forecasts of quarterly U.S. real GDP growth. Section

6 concludes.

2 Overlapping Models

We begin by laying out our testing framework when comparing the forecast accu-

racy of two overlapping models. One of the primary difficulties of working with the

overlapping case is that the null hypothesis of equal forecast accuracy typically does

not uniquely characterize the asymptotic distribution. In one case, the two models

degenerate into a baseline model consisting of only those predictors the two models

share. In the latter, the two models have their own distinct predictive content and

hence are best thought of as non-nested. In the latter case, the asymptotic distri-

bution is asymptotically standard normal following West (1996). The former case is

the one we are interested in within this section. We’ll return to the more general case

of inference when one doesn’t know which case holds in section 3.

2.1 Environment

The sample of observations {yt, x�
t}Tt=1 includes a scalar random variable yt to be pre-

dicted, as well as a (k0+k1+k2 = k×1) vector of predictors xt = (x�
0,t, x

�
12,t, x

�
22,t)

�. The

two models are linear regressions with predictors x1,t and x2,t that share a common

component x0,t: x1,t = (x�
0,t, x

�
12,t)

� and x2,t = (x�
0,t, x

�
22,t)

�.

For each time t the variable to be predicted is yt+1. The sample is divided into

in–sample and out–of–sample portions. The total in–sample observations (on yt and

xt) span 1 to R. Letting P denote the number of 1–step ahead predictions, the

total out-of-sample observations span R + 1 through R + P . The total number of

observations in the sample is R + P = T .

Forecasts of yt+1, t = R, . . . , T − 1, are generated using the two linear models

yt+1 = x�
1,tβ

∗
1 + u1,t+1 (model 1) and yt+1 = x�

2,tβ
∗
2 + u2,t+1 (model 2). Under the null
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hypothesis of equal forecast accuracy between (degenerate) overlapping models, model

2 and model 1 collapse on one another for all t, and hence models i = 1, 2 include

ki excess parameters, respectively. Since this implies β∗
i = (β∗�

0 , 0
�)�, the population

forecast errors are identical under the null and hence u1,t+1 = u2,t+1 ≡ ut+1 for all t.

Because of this degeneracy, we again obtain the result that the hypothesis of equal

population predictive ability is trivially true since Eu2
1,t+1 = Eu2

2,t+1 ≡ Eu2
t+1 for all

t.

Both model 1’s and model 2’s forecasts are generated recursively using estimated

parameters. Under this approach both β∗
1 and β∗

2 are reestimated with added data

as forecasting moves forward through time: for t = R, . . . , T − 1, model i’s (i = 1, 2)

prediction of yt+1 is created using the parameter estimate β̂i,t based on data through

period t. Models 1 and 2 yield two sequences of P forecast errors, denoted û1,t+1 =

yt+1 − x�
1,tβ̂1,t and û2,t+1 = yt+1 − x�

2,tβ̂2,t, respectively.

Finally, the asymptotic results for overlapping models presented below use the

following additional notation. Let ht+1 = ut+1xt, H(t) = t−1
�t−1

s=1 hs+1, Bi =

(Exi,tx�
i,t)

−1, B = (Extx�
t)

−1, and Eu2
t+1 = σ2. For selection matrices

J �
1 =




Ik0×k0 0k0×k1

0k1×k0 Ik1×k1

0k2×k0 0k2×k1



 and J �
2 =




Ik0×k0 0k0×k2

0k1×k0 0k1×k2

0k2×k0 Ik2×k2



 (1)

and a (k1 + k2 × k) matrix Ã satisfying Ã�Ã = B−1/2(−J �
1B1J1 + J �

2B2J2)B−1/2, let

h̃t+1 = σ−1ÃB1/2ht+1, H̃(t) = σ−1ÃB1/2H(t) and Sh̃h̃ = Eh̃t+1h̃�
t+1. Let W (ω)

denote a (k1 + k2 × 1) vector standard Brownian motion.

Given the definitions and forecasting scheme described above, the following as-

sumptions are used to derive the limiting distributions in Theorem 2.1. The assump-

tions are intended to be only sufficient, not necessary and sufficient.

(A1) The parameters of the forecasting models are estimated using OLS, yielding

β̂i,t = argminβi
t−1

�t−1
s=1(ys+1 − x�

i,sβi)
2, i = 1, 2.

(A2) (a) Ut+1 = [ut+1, x�
t − Ex�

t, h
�
t+1]

� is covariance stationary. (b) EUt+1 = 0. (c)

E(ht+1|ht+1−j) = 0 for j > 0. (d) Extx�
t < ∞ and is positive definite. (e) For

some r > 8, Ut+1 is uniformly Lr bounded. (f) For some r > d > 2, Ut+1 is strong

mixing with coefficients of size −rd/(r − d). (g) With Ũt+1 denoting the vector of

nonredundant elements of Ut+1, limT→∞T−1E(
�T−1

s=1 Ũs+1)(
�T−1

s=1 Ũs+1)� = Ω < ∞ is
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positive definite.

(A3) limR,P→∞ P/R = π ∈ (0,∞); define λ = (1 + π)−1.

(A3�) limR,P→∞ P/R = 0; define λ = 1.

The assumptions provided here are nearly identical to those of Clark and Mc-

Cracken (2005). We restrict attention to forecasts generated using parameters es-

timated by OLS (Assumption 1) and we do not allow for processes with either unit

roots or time trends (Assumption 2). We provide asymptotic results for situations

in which the in-sample and out-of-sample sizes R and P are of the same order (As-

sumption 3) as well as when the in-sample size R is large relative to the out-of-sample

size P (Assumption 3�). The assumptions differ only in so far as the notation has

changed to accommodate the comparison of overlapping rather than nested models.

With these assumptions we are able to use Hansen’s (1992) and Davidson’s (1994)

theoretical results regarding weak convergence of partial sums to Brownian motion

and averages of these partial sums to stochastic integrals of Brownian motion. As

we will see below, the null limiting distributions bear a strong resemblance to those

in Clark and McCracken (2001, 2005) and McCracken (2007).

2.2 Tests and asymptotic distributions

In the context of non-nested models, Diebold and Mariano (1995) propose a test for

equal MSE based upon the sequence of loss differentials d̂t+1 = û2
1,t+1 − û2

2,t+1. If we

define MSEi = P−1
�T−1

t=R û2
i,t+1 (i = 1, 2), d̄ = P−1

�T−1
t=R d̂t+1 = MSE1 −MSE2, and

Ŝdd = P−1
�T−1

t=R (d̂t+1 − d̄)2, the statistic takes the form

MSE-t = P 1/2 d̄�
Ŝdd

. (2)

Under the null that both x12,t and x22,t have no predictive power for yt+1, the

population difference in MSEs will equal 0. Under the alternative that at least one

element of either subvector has predictive power, the population difference in MSEs

can be either positive or negative. As a result, when comparing two overlapping

models, the MSE-t test is two-sided.

While West (1996) proves directly that the MSE-t statistic can be asymptotically

standard normal when applied to non–nested forecasts from models with estimated
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parameters, Clark and McCracken (2005) and McCracken (2007) show that this is

typically not the case when applied to nested models. The primary issue is that

West’s (1996) results require the population–level long run variance of d̂t+1 to be

positive (under the null). This requirement is violated with nested models, and as

we will see below, with overlapping models. Intuitively, for both the nested and

overlapping case, the null hypothesis implies the population errors of the competing

forecasting models are exactly the same. As a result, in population dt+1 = 0 for

all t, which makes the corresponding variance also equal to 0. Because the sample

analogues (for example, d̄ and its variance) converge to zero at the same rate, the

test statistic has a non–degenerate null distribution, that is typically not normal.

As we will see below, in the case of overlapping models the MSE-t statistic con-

verges in distribution to a function of stochastic integrals of quadratics of Brownian

motion, with a limiting distribution that depends on the sample split parameter

π and the number of exclusion restrictions k1 and k2, as well as certain unknown

nuisance parameters that depend upon the second moments of the data. In the

following define Γ1 =
� 1

λ ω−1W (ω)�Sh̃h̃dW (ω), Γ2 =
� 1

λ ω−2W (ω)�Sh̃h̃W (ω)dω, and

Γ3 =
� 1

λ ω−2W (ω)�S2
h̃h̃
W (ω)dω. In addition let V0 and V1 denote (k1 + k2 × 1) inde-

pendent standard normal vectors.

Theorem 2.1. (a) Let Assumptions 1− 3 hold. MSE-t →d (Γ1 − (0.5)Γ2)/Γ
1/2
3 .

(b) Let Assumptions 1, 2, and 3� hold. MSE-t →d V �
0Sh̃h̃V1/[V �

1S
2
h̃h̃
V1]1/2 ∼ N(0, 1).

The results in Theorem 2.1 bears a strong resemblance to those discussed in Clark

and McCracken (2005). In fact, notationally they are identical. The primary dif-

ference is in the definition of the orthogonality condition h̃t+1 and subsequent un-

known nuisance parameter Sh̃h̃. Here, h̃t+1 = σ−1ÃB1/2ht+1, where B = (Extx�
t)

−1,

ht+1 = ut+1xt, and Ã satisfies Ã�Ã = B−1/2(−J �
1B1J1 + J �

2B2J2)B−1/2. In the case in

which model 2 nests model 1, h̃t+1 = σ−1ÃB1/2
2 h2,t+1, with Bi = (Exi,tx�

i,t)
−1, h2,t+1 =

ut+1x2,t, and Ã satisfies Ã�Ã = B−1/2
2 (−J �B1J+B2)B

−1/2
2 , where J = (Ik1×k1 , 0k1×k2)

�.

With such a minor difference in the structure of the problem it is not surprising that

the asymptotic distributions are so similar.

Algebraically, the dependence upon Sh̃h̃, which in turn depends upon the second

moments of the forecast errors ut+1, the regressors xt, and the orthogonality conditions
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ht+1, arises because, in the presence of conditional heteroskedasticity an information

matrix-type equality fails. Similarly, in the context of likelihood-ratio statistics,

Vuong (1989, Theorem 3.3) shows that the limiting distribution of the likelihood ratio

statistic has a representation as a mixture of independent χ2
(1) variates (in contrast to

our integrals of weighted quadratics of Brownian motion). This distribution is free of

nuisance parameters when the information matrix equality holds but in general does

depend upon such nuisance parameters.

In Theorem 2.1 there are two special cases for which the dependence on Sh̃h̃ is

asymptotically irrelevant for the MSE-t statistic. First, in the perhaps unlikely

scenario in which each of the eigenvalues of Sh̃h̃ are identical, one can show that

the limiting distribution no longer depends upon the value of Sh̃h̃. If this is the

case we obtain McCracken’s (2007) results for MSE-t and thus are able to utilize the

estimated asymptotic critical values provided in that paper to conduct inference.2

Second, in the special case in which π = limR,P→∞ P/R = 0, the MSE-t statistic is

asymptotically standard normal despite the presence of Sh̃h̃.

Although it may not be immediately apparent, Theorem 2.1 also provides us with

the asymptotic distribution of an out-of-sample version of what Vuong referred to

as a “variance” statistic. Specifically, in the first step of his two-step procedure for

testing equal accuracy in the presence of possibly overlapping models, he uses the in-

sample likelihood-based version of PŜdd =
�T−1

t=R (d̂t+1 − d̄)2 to determine whether or

not the two models are overlapping. The following corollary provides the asymptotic

distribution for our proposed out-of-sample version of the statistic.

Corollary 2.1. (a) Let Assumptions 1 − 3 hold. PŜdd →d 4σ4Γ3. (b) Let

Assumptions 1, 2, and 3� hold. RŜdd →d 4σ4V �
1S

2
h̃h̃
V1.3

In Corollary 2.1 we find that the asymptotic distribution of the variance statistic

takes the form of a stochastic integral when limR,P→∞ P/R > 0 but takes the form

of a weighted quadratic of vector standard normals when limR,P→∞ P/R = 0. The

latter result is similar to that in Vuong insofar as the asymptotic distribution is a

mixed central chi-square variate. Regardless, in either case (a) or (b), inference is

2McCracken (2007) provides critical values associated with the upper 90th, 95th and 99th per-
centiles. Only upper critical values are given because the models were nested. Critical values
associated with the lower tail are available upon request from the author.

3The terms 4σ4 do not appear in Theorem 2.1 because they cancel with similar terms in the
numerator of the MSE-t.
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complicated by the presence of the unknown nuisance parameter Sh̃h̃.

2.3 Extensions

For brevity, and to facilitate comparison with the results in Vuong (1989), we have

focused attention on methods for inference when the forecasts are one-step ahead

and the recursive scheme is used. Most if not all of the results in Theorem 2.1 and

Corollary 2.1 can be generalized to situations in which the rolling or fixed schemes

are used or when direct multi-step forecasts are made at horizons greater than 1.4

Rather than delineate all of these permutations we emphasize two that may prove

useful for conducting inference. First, as was the case for nested model comparisons

in Clark and McCracken (2005) and McCracken (2007), the recursive, rolling, and

fixed schemes are all asymptotically equivalent when limR,P→∞ P/R = 0. Stated

more precisely, the MSE-t statistic is not only asymptotically standard normal for

each of these schemes when limR,P→∞ P/R = 0, but also the difference between (say)

the MSE-t statistics constructed using the rolling scheme and constructed using the

recursive scheme is op(1). We immediately conclude that standard normal critical

values can be used to conduct inference when limR,P→∞ P/R = 0 for each of the

schemes when the models are overlapping.

Second, when the fixed scheme is used for model estimation, the MSE-t statistic is

asymptotically standard normal regardless of whether assumption 3 or 3� holds . In

particular we find that when the fixed scheme is used to construct forecasts, the MSE-

t statistic converges in distribution to V �
0Sh̃h̃V1/[V �

1S
2
h̃h̃
V1]1/2 ∼ N(0, 1) regardless of

whether limR,P→∞ P/R is zero so long as limR,P→∞ P/R is finite. As described in

the next section, this result could be used directly for inference.

3 Testing Procedures

In this section we consider various approaches to testing for equal forecast accuracy

when the models may be overlapping. The first two approaches are similar in the

4Under the fixed scheme the model parameters are estimated once using the first R obser-
vations and then never updated as we move across forecast origins and hence β̂i,t = β̂i,R for
all t. Under the rolling scheme the model parameters are re-estimated in much the same way
as for the recursive scheme but only using the most recent R observations and hence β̂i,t =

argminβi
R−1

�t−1
s=t−R+1(ys+1 − x�

i,sβi)
2.
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sense that they provide a conservative test. The third approach provides accurately

sized tests but is only applicable in special instances.

3.1 A conservative two-step procedure

One approach to conducting inference is an out-of-sample version of the two-step

procedure suggested by Vuong (1989). In the first stage, PŜdd (or RŜdd) is used to

test whether or not the two models are overlapping at the α1-percent level. If we

fail to reject, the procedure stops. If we reject the null (concluding that the two

models are not overlapping) we conduct a test of equal accuracy at the α2-percent

level assuming the two models are non-nested using the MSE-t statistic and standard

normal critical values. If we reject, we can conclude that the two models are not

equally accurate. Vuong (1989) shows that such a two-step procedure controls the

size of the test at the maximum of the nominal sizes used in each stage max(α1, α2)

and hence the testing procedure is conservative while still remaining consistent.

One weakness of this approach is that the critical values for the first step of the

procedure are not readily tabulated due to the presence of the unknown nuisance

parameter Sh̃h̃. Instead, here we suggest a bootstrap-based approach to estimating

asympotically valid critical values. For nested model comparisons, Clark and Mc-

Cracken (2011) prove that under the null of equal MSE, the resulting critical values

are consistent for their population values, while, under the alternative, the test is

consistent. Here we delineate the version of the bootstrap appropriate for overlap-

ping models without explicitly proving its asymptotic validity for the comparison of

overlapping models. The fixed regressor bootstrap’s steps consist of the following.

1. (a) Use OLS to estimate the parameter vector β∗
0 associated with the restricted

model (the restricted model includes just the variables common to forecasting models

1 and 2). Store the fitted values x�
0,sβ̂0,T , s = 1, ..., T − 1. (b) Use OLS to estimate

the parameter vector β∗ associated with the unrestricted model that contains all the

regressors. Store the residuals v̂s+1, s = 1, ..., T − 1.

2. Let ηs, s = 1, ..., T, denote an i.i.d N(0, 1) sequence of simulated random

variables. Form a time series of innovations �v∗s+1 = ηs+1�vs+1.

4. Form artificial samples of y∗s+1 using the fixed regressor structure, y∗s+1 =

x�
0,sβ̂0,T + �v∗s+1.

5. Using the artificial data, construct forecasts and an estimate of the test statistic
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as if these were the original data.

6. Repeat steps 2-5 a large number of times: j = 1, ..., N .

7. For the variance (PŜdd) test, reject the null hypothesis, at the α% level, if the

test statistic is greater than the (100 − α)%-ile of the empirical distribution of the

simulated test statistics. For the MSE-t test and a significance level of α, compute

the lower and upper tail critical values as the (100 − α/2) and (α/2) percentiles of

the bootstrap distribution.

Simulation evidence provided in section 4 indicates that the bootstrap works very

well in the overlapping model context, providing accurately sized tests under the null

while still providing considerable power under the alternative.

3.2 A conservative one-step procedure

In most instances, the MSE-t statistic does not have an asymptotically standard

normal distribution when the models are overlapping and hence it does not have

critical values that are easily accessible. But suppose we knew that qα/2 and q1−α/2

were the lower and upper α/2-percentiles of the null asymptotic distribution of the

MSE-t statistic when the models are overlapping. If we knew the models were

overlapping we would conduct an α% test by rejecting when either MSE-t < qα/2 or

MSE-t > q1−α/2. Suppose instead that we knew the models were non-nested. We

would conduct an α% test by rejecting when either MSE-t < zα/2 or MSE-t > z1−α/2,

where zα denotes the α quantile of the standard normal distribution. Unfortunately,

the null hypothesis does not tell us which set of critical values should be used to

achieve an accurately sized test: qα/2 and q1−α/2 or zα/2 and z1−α/2.

To avoid this problem one option is to forego the need for an exact test and

simply require a conservative test as we did above, using an out-of-sample version

of the two-step procedure recommended by Vuong (1989). In our out-of-sample

environment it turns out that the conservative two-step procedure can be replaced

with a conservative one-step procedure. This reduction in the number of steps occurs

because the same test statistic, applied to either the overlapping or non-nested case,

happens to be Op(1). This was not the case for the likelihood-ratio based methods

used in Vuong (1989). There, Vuong restricted the perspective of his inference to

only considering likelihood ratio statistics. In that environment he showed that the

likelihood ratio statistic was Op(T−1/2) when the models were non-nested but was
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Op(T−1) when the models were overlapping. Clearly, if one happened to correctly

guess which case held, one could conduct valid inference. But if one guessed wrong,

the critical values used would be off by an order of magnitude.

But since in our case the MSE-t statistic is bounded in probability under either

regime, one could simply use the minimum of the two lower quantiles min(qα/2, zα/2)

as the upper bound of the lower rejection region and the maximum of the two upper

quantiles max(q1−α/2, z1−α/2) as the lower bound of the upper rejection region. This

approach would not lead to an exact test at the α% level but it would be guaranteed

to yield a conservative test in large samples.

One weakness of this approach is that we don’t actually know the quantiles qα/2

and q1−α/2. To get around this issue we exploit the bootstrap described in the pre-

vious subsection. Simulation evidence provided in section 4 indicates that the boot-

strap works very well in this overlapping context, providing accurate estimates of the

relevant quantiles under the null while still providing considerable power under the

alternative.

3.3 An exact one-step procedure

As we noted in the introduction, there are very special cases in which the MSE-t

statistic is asymptotically standard normal when the models are overlapping. If either

limP,R→∞ P/R = 0 or the fixed scheme is used to construct forecasts, it is not only the

case that the MSE-t test is standard normal when the models are overlapping, it is also

the case that the test is standard normal when the models are non-nested. Hence,

regardless of whether the models are overlapping or non-nested, standard normal

critical values can be used to conduct accurately sized inference without having to

use a conservative test like those described above.

We should note, however, that this approach is not without its drawbacks. First,

in any finite sample it is never the case that P/R = 0, and hence it is not obvious how

well the standard normal approximation will work when the forecasts are constructed

using the recursive scheme and the models are overlapping. It may be the case that

the actual size of the test is far from its nominal size and more importantly may

not be conservative — one advantage that the other two procedures have. Second,

while it is convenient to use standard normal critical values to conduct inference in

a one-step procedure, that is hardly a reason to justify using the fixed scheme under
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the conditions given in this paper. Recall that in our assumptions we essentially

assume that the observables are covariance stationary. In this environment one

would likely want to use the recursive scheme to evaluate the accuracy of models,

since the recursive scheme updates the parameter estimates at each forecast origin as

more information is gathered and likely leads to more accurate forecasts.

3.4 Inference under Giacomini andWhite (2006) asymptotics

All of the results developed above obtain under large R, large P asymptotics, which

permit recursive, rolling, and fixed estimation schemes. In this section we show that

the results of Giacomini and White (2006), developed under asymptotics that treat R

as fixed and P as large, imply the MSE-t statistic applied to forecasts from overlapping

models to have an asymptotically standard normal distribution. However, the null

hypothesis is somewhat different under the Giacomini and White approach than under

our approach. In addition, the Giacomini and White results apply only to forecasts

generated with rolling and fixed sample estimation schemes.

As above, suppose we are comparing forecasts from two models:

yt+1 = x�
1,tβ

∗
1 + u1,t+1

yt+1 = x�
2,tβ

∗
2 + u2,t+1.

Forecasts from the models could be equally accurate if either (a) E(u2
1,t+1−u2

2,t+1) = 0

and u2
1,t+1 − u2

2,t+1 = 0 (the overlapping case), or (b) E(u2
1,t+1 − u2

2,t+1) = 0 and

u2
1,t+1 − u2

2,t+1 has a non-degenerate distribution (the non-nested case).

In the next two subsections we show how the Giacomini and White (2006) results

apply, under a null that differs from the one we consider. In both cases the proof of

asymptotic normality follows directly from Giacomini and White (2006).

3.4.1 Models are actually overlapping

When the models are actually overlapping we know the two models are the same in

population and take the form

yt+1 = x�
0,tβ

∗
0 + ut+1.
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In this framework straightforward algebra yields

û2
1,t+1 − û2

2,t+1 = −2ut+1[x
�
1,t(β̂1,t − J1β

∗
0)− x�

2,t(β̂2,t − J2β
∗
0)]

+[(β̂1,t − J1β
∗
0)

�x1,tx
�
1,t(β̂1,t − J1β

∗
0)− (β̂2,t − J2β

∗
0)

�x2,tx
�
2,t(β̂2,t − J2β

∗
0)],

where Ji, i = 1, 2, denote selection matrices that satisfy x�
0,t = x�

i,tJi.

Under Giacomini and White (2006) asymptotics, neither of these two pieces van-

ishes as the sample size increases. This is where the null hypothesis is different than

the one we focus on. Under their asymptotics, for the MSE-t statistic to be asymp-

totically standard normal, it must be the case that E(û2
1,t+1 − û2

2,t+1) = 0, which

requires

−2E(ut+1[x
�
1,t(β̂1,t − J1β

∗
0)− x�

2,t(β̂2,t − J2β
∗
0)])

+E[(β̂1,t − J1β
∗
0)

�x1,tx
�
1,t(β̂1,t − J1β

∗
0)− (β̂2,t − J2β

∗
0)

�x2,tx
�
2,t(β̂2,t − J2β

∗
0)]

= 0.

In this setting, the null hypothesis is one of equal accuracy in the finite sample

(forecasts evaluated at estimated parameters), rather than equal accuracy in popula-

tion (forecasts evaluated at population values of parameters). Equal accuracy in the

finite sample requires that the forecasts from the competing overlapping models are

equally affected by some sort of noise that is not exactly the same in the two forecasts.

For example, if the overlapped, true model were somehow misspecified, such that ut+1

were serially correlated, there could be a bias-variance tradeoff occurring between the

first and second terms in the above expression for the expected difference in forecast

errors.

We can provide a simpler intuition for the applicability of Giacomini and White’s

(2006) results to overlapping models if we treat x�
0,tβ

∗
0 as the true conditional mean.

With this condition, the first term in the above expansion is zero mean since ut+1

is a martingale difference. As a result, for the MSE-t statistic to be asymptotically

standard normal under Giacomini-White asymptotics, it must be the case that

E(û2
1,t+1−û2

2,t+1) = E[(β̂1,t−J1β
∗
0)

�x1,tx
�
1,t(β̂1,t−J1β

∗
0)−(β̂2,t−J2β

∗
0)

�x2,tx
�
2,t(β̂2,t−J2β

∗
0)] = 0.

The condition of equal accuracy — that is, E(û2
1,t+1 − û2

2,t+1) = 0 — is satisfied if the

two models have equally variable forecasts, where variability is evaluated around the

true conditional mean x�
0,tβ

∗
0.
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3.4.2 Models are actually non-nested

When the competing models are non-nested, they are fundamentally distinct. If we

maintain our stationarity assumptions and define β∗
i = p limR→∞ β̂i,R and ui,t+1 =

yt+1 − x�
i,tβ

∗
i , straightforward algebra yields

û2
1,t+1 − û2

2,t+1 = [u2
1,t+1 − u2

2,t+1]

−2[u1,t+1x
�
1,t(β̂1,t − β∗

1)− u2,t+1x
�
2,t(β̂2,t − β∗

2)]

+[(β̂1,t − β∗
1)

�x1,tx
�
1,t(β̂1,t − β∗

1)− (β̂2,t − β∗
2)

�x2,tx
�
2,t(β̂2,t − β∗

2)].

We now have three terms laying around that need to be accounted for in the Giacomini-

White framework. Given the definition of the population errors, this equation sim-

plifies a little bit when we take expectations:

E(û2
1,t+1 − û2

2,t+1) = E[u2
1,t+1 − u2

2,t+1]

−2E[u1,t+1x
�
1,tβ̂1,t − u2,t+1x

�
2,tβ̂2,t]

+E[(β̂1,t − β∗
1)

�x1,tx
�
1,t(β̂1,t − β∗

1)− (β̂2,t − β∗
2)

�x2,tx
�
2,t(β̂2,t − β∗

2)].

The first term is the difference in population-level MSEs, the second term is the

difference in forecast efficiency, while the third is the difference in the variability of

the forecasts where variability is evaluated around x�
1,tβ

∗
1 and x�

2,tβ
∗
2, respectively. A

sufficient, although not necessary, set of conditions for the null hypothesis of equal

accuracy in the finite sample (for forecasts evaluated at estimated parameters) to

be satisfied would be that the forecasts are equally accurate in population, equally

efficient, and equally variable. The MSE-t statistic is then asymptotically standard

normal under Giacomini-White asymptotics.

4 Monte Carlo Evidence

To evaluate the finite sample properties of the above approaches to testing for equal

accuracy of forecasts from models that may be overlapping, we use simulations of

multivariate data-generating processes (DGPs) with features of common macroeco-

nomic applications. In these simulations, two competing forecasting models include

a common set of variables and another set of variables unique to each model. The

null hypothesis is that the forecasts are equally accurate. This null will be satisfied if
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the models are overlapping (the true model includes the common set of variables but

none of the additional variables in the competing forecasting models) or if the models

are non-nested (neither model is the true one, but the models’ forecasts are equally

accurate). The alternative hypothesis is that one forecast is more accurate than the

other.

In the interest of brevity, we focus on forecasts generated under a recursive es-

timation scheme. However, we have verified that using a rolling estimation scheme

yields very similar results. As to testing approaches, we focus on the efficacy of the

one-step and two-step testing approaches described above. In light of the validity of

the MSE-t test compared against standard normal critical values under certain cir-

cumstances or against fixed regressor bootstrap critical values in other circumstances,

we also include results for these tests. To help interpret the behaviors of the one-step

and two-step procedures, we also provide results for the PŜdd test that is used in the

two-step procedure.

We proceed by first detailing the DGPs and then presenting size and power results,

for a forecast horizon of 1 period and a nominal size of 10% (results for 5% are

qualitatively the same). Our reported results are based on 10,000 Monte Carlo draws

and 499 bootstrap replications.

4.1 Monte Carlo design

For all experiment designs, we generate data using independent draws of innovations

from the normal distribution and the autoregressive structure of the DGP.5 With

monthly and quarterly data in mind, we consider a range of sample sizes (R,P ), for

all possible combinations of R = 50, 100, 200, and 400 and P = 20, 50, 100, and 200.

All experiments use the following general DGP, based loosely on the empirical

properties of GDP growth (corresponding to the predictand y), the spread between

5The initial observations necessitated by the lag structure of each DGP are generated with draws
from the unconditional normal distribution implied by the DGP.
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10-year and 1-year yields, and the spread between AAA and BBB corporate bonds:

yt+1 = 0.3yt + b1x1,t + b2x2,t + ut+1

xi,t = 0.9xi,t−1 + ei,t, i = 1, 2 (3)

var




ut

e1,t
e2,t



 =




10.0
0.0 0.1
0.0 0.0 0.1



 .

In all experiments, the competing forecasting models are:

model 1: yt+1 = α0 + α1yt + α2x1,t + α3x1,t−1 + u1,t+1 (4)

model 2: yt+1 = β0 + β1yt + β2x2,t + β3x2,t−1 + u2,t+1. (5)

We consider four different sets of experiments based on this DGP. In the first

set, the competing forecasting models are truly overlapping and equally accurate: we

parameterize the DGP with b1 = b2 = 0. In the second set, the competing models

are equally accurate, but non-nested instead of overlapping: we use b1 = b2 = -2.0

in the DGP. In the third set of experiments, the competing models are also equally

accurate and non-nested, but with smaller coefficients on the x variables, such that

the variance-based test PŜdd has less power than in the second set of experiments: in

this case, we set b1 = b2 = -0.7 in the DGP. In the fourth set of experiments, model

1 is more accurate than model 2, with model 1 corresponding to the DGP: we use b1

= -2.0 and b2 = 0.0.

4.2 Results

4.2.1 Truly overlapping models

The results in Table 1 indicate that, when the models are truly overlapping, our pro-

posed one- and two-step procedures behave as might be expected under the asymp-

totic logic described above. The one-step procedure is conservative, yielding an em-

pirical rejection rate that is slightly to somewhat below the nominal size of 10 percent

(where nominal refers to the use of 10% critical values from both the standard normal

and bootstrap distributions). This one-step test is less undersized when P is small

than when P is large. For example, with R = 100, the one-step rejection rate is 8.7%,

7.4%, 5.4%, and 3.6% with P = 20, 50, 100, and 200, respectively.

The behavior of the one-step approach reflects the properties of individual tests

based on comparing the MSE-t statistic against standard normal and bootstrap criti-
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cal values. Using bootstrap critical values with the MSE-t statistic consistently yields

a rejection rate of about 10%. Using standard normal critical values yields a rejection

rate that is slightly to somewhat below the intended rate of 10%. Consistent with our

asymptotics that imply the MSE-t test to have a standard normal distribution when

P/R is close to 0, this testing approach yields a rejection rate closer to 10% when P

is small relative to R than when it is large. For example, with R = 200, comparing

MSE-t against normal critical values yields empirical size of 11.7% when P = 20 and

5.3% when P = 200.

In these experiments in which the models are truly overlapping, the two-step

procedure is clearly more conservative than the one-step test. Across experiments,

the rejection rate is consistently close to 0.1%, which is the product of the 10% nominal

sizes of the two tests that enter the two-step approach. The first test in the procedure,

the variance-based test PŜdd, is generally correctly sized, except when R and P are

both small. As noted above, across all Monte Carlo draws (not just those yielding

a rejection by the variance test) the second test in the procedure, MSE-t compared

to standard normal critical values, is slightly to modestly undersized. Applying the

MSE-t test to the roughly 10 percent of draws in which the variance test yields a

rejection leads to rejection in about 10 percent of those draws, for an overall rejection

rate of about 1 percent of total draws.

4.2.2 Truly non-nested models

The results in Table 2 show that, when the competing forecasting models are in truth

non-nested and equally accurate, our proposed one- and two-step testing procedures

behave as intended.

When the coefficients on the x variables are large, as in panel A’s experiments,

both the one-step and two-step procedures are correctly sized to slightly oversized,

yielding a rejection rate of 10 percent or a bit more. For example, with R = P = 200,

both procedures yield a rejection rate of 10.6%; with R = 100 and P = 50, the one-

and two-step rejection rates are, respectively, 11.9& and 12.1%. The behavior of the

two-step test reflects the very high power of the PŜdd test and an MSE-t test that

is modestly oversized (except for large P ) when compared against standard normal

critical values. Finally, note that comparing the MSE-t test against critical values

from the fixed regressor bootstrap yields a rejection rate of more than 10%, as should
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be expected given that the forecasting models are non-nested, not overlapping.

When the DGP’s coefficients on the x variables are non-zero but not large, as

in panel B’s experiments, our proposed one-step procedure is about correctly sized

in experiments with small P and slightly to modestly oversized with large P . The

two-step testing approach is generally more conservative than the one-step approach,

except when R and P are both large. For example, with R = 100 and P = 20, the

one-step and two-step rejection rates are 9.9 and 4.4%, respectively. With R = 100

and P = 200, the corresponding rejection rates are 8.9 and 6.7%. With R = 400

and P = 200, the one-step and two-step rejection rates are both 9.9%. Again, the

behavior of the two-step test is driven in part by the power of the PŜdd test, which,

in most sample size settings, is not as high as in the corresponding experiments with

large coefficients on the x variables. Note, though, that these experiments show that

the power of the PŜdd test rises with both R and P .

In these experiments, the behavior of the MSE-t test compared against standard

normal critical values across sample sizes doesn’t seem to entirely square with asymp-

totics that imply the test to have a standard normal distribution when P is small

relative to R. In our experiments, when P is small relative to R, using standard

normal critical values yields a slightly oversized test. For example, in experiments

with large coefficients on the x variables and with P = 20, comparing the MSE-t test

against standard normal critical values yields a rejection rate of 12.8% and 12.5%

when R = 200 and 400, respectively. It may be that both P and R need to be larger

for the small P/R asymptotics to kick in.

4.2.3 Model 1 more accurate than model 2

The results in Table 3 indicate that our proposed one- and two-step testing procedures

have comparable power when, in truth, one model is more accurate than another. For

example, with R = 50 and P = 100, the one-step and two-step tests yield rejection

rates of 56.2% and 52.5%, respectively. Power rises with both R and P . For instance,

with R = 50 and P = 200, both procedures have power of about 86%. Again, the

behavior of these procedures reflects the properties of the component tests, including

the PŜdd test and the MSE-t test compared against standard normal and bootstrap

critical values. In these experiments, the PŜdd test has high power, and the power of

the MSE-t test based on the normal and bootstrap critical values is comparable to
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its power in the one-step and two-step procedures.

4.2.4 Summary of findings

Based on these results, we can recommend both the 1-step and 2-step testing ap-

proaches. When the models are overlapping and equally accurate for forecasting,

these approaches will reject at a rate at or below nominal size. When the models are

non-nested and equally accurate, these two approaches perform comparably. Overall,

consistent with the theory, the two-step procedure is conservative while the one-step

procedure can be accurately sized when appropriate. Finally, when one model is more

accurate than the other, the tests have similar power.

5 Application

In this section we illustrate the use of our proposed testing approaches with an ap-

plication to forecasts of quarterly U.S. real GDP growth. With model 1, we forecast

GDP growth with a constant, one lag of GDP growth, and two lags of a credit spread

defined as the BBB corporate bond rate (from Moody’s) less the AAA rate.6 Model

2 replaces the lags of the credit spread with two lags of growth in real stock prices,

where the real stock price is the S&P500 index divided by the price index for personal

consumption expenditures less food and energy.7 We consider one-quarter ahead fore-

casts for 1985:Q1-2010:Q4. The forecasting models are estimated recursively, with an

estimation sample that starts with 1960:Q1.

The results, provided in Table 4, indicate that the two models yield quite similar

MSEs. Under our two-step testing procedure for testing equal accuracy, we first com-

pare the test based on the variance of the loss differential to critical values obtained

with the fixed regressor bootstrap. For simplicity, we use the simple variance Ŝdd

rather than the scaled version PŜdd that has a non-degenerate asymptotic distribu-

tion; ignoring the scaling has no effect on the inferences drawn under the bootstrap.

In this application, the Ŝdd statistic takes the value of 23.664, which exceeds the 90%

critical value, but not the 95% critical value. At the 5% significance level, we cannot

reject based on the variance statistic; we conclude the models to be overlapping and

6GDP growth is computed as 400 times the log difference of GDP.
7We obtained all the data for this application from the FAME database of the Federal Reserve

Board of Governors.
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equally accurate for forecasting.

If we proceed with inference at the 10% significance level, we reject the null that

the models are overlapping. Having rejected at the first stage of the test, we proceed

to the second stage, of comparing the MSE-t statistic against standard normal critical

values, as appropriate with non-nested models. With the MSE-t test taking the value

of -0.165, it falls far short of normal critical values at a 10 percent confidence level,

so we cannot reject the null of equal accuracy.

Our one-step procedure also implies the forecasts from the two models to be

equally accurate. Under this approach, we compare the t-test for equal MSE to the

critical values shown in the last two rows of the table. The lower tail critical value is

the minimum of the lower tail critical values from the standard normal and bootstrap

distributions; the upper tail critical value is the maximum of the upper tail critical

values from the standard normal and bootstrap distributions. With the MSE-t test

statistic not close to these critical values, we cannot reject the null of equal forecast

accuracy.

6 Conclusion

This paper extends our previous results on nested model comparisons to comparisons

of models that may be overlapping. As was the case for Vuong (1989), the main

difficulty is handling the fact that the null of equal accuracy does not uniquely char-

acterize the asymptotic distribution of our test statistic, a t-test for equal MSE. In

those cases where the models are truly overlapping, the asymptotic distribution is

typically non-standard and involves unknown nuisance parameters. A simple-to-use

bootstrap is recommended for conducting inference. If it is unknown whether the two

models are overlapping, we show how to conduct inference using a conservative two-

step procedure akin to that in Vuong (1989). In addition, we show that in certain

circumstances an exact one-step procedure is asymptotically valid.

We then conduct a range of Monte Carlo simulations to examine the finite-sample

properties of the tests. These experiments indicate our proposed bootstrap has good

size and power properties when the models are overlapping under the null. The results

generally support the theoretical results: the two step procedure is conservative while

the one-step procedure is accurately sized when applicable. In the final part of our
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analysis, we illustrate the use of our tests with the comparison of forecasting models

of real GDP growth.
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7 Appendix: Proofs

After adjusting for the change in the definition in h̃t+1 and Sh̃h̃, the proofs are nearly

identical to those for nested model comparisons in Clark and McCracken (2005). As

such we provide only a sketch of the proofs, noting differences where relevant.

Proof of Theorem 2.1: (a) Maintain Assumption 3 and first consider the numer-

ator of the MSE-t statistic. Extensive algebra and the definition of h̃t+1 imply that
�T−1

t=R (û2
1,t+1 − û2

2,t+1) = 2σ2
�T−1

t=R H̃ �(t)h̃t+1 − σ2T−1
�T−1

t=R (T 1/2H̃ �(t))(T 1/2H̃ �(t)) +

op(1). Given Assumption 2, Corollary 29.19 of Davidson (1994) implies T 1/2H̃(t) ⇒
ω−1S1/2

h̃h̃
W (ω). The Continuous Mapping Theorem and Theorem 3.1 of Hansen (1992)

then imply T−1
�T−1

t=R (T 1/2H̃ �(t))(T 1/2H̃ �(t)) →d Γ2 and
�T−1

t=R H̃ �(t)h̃t+1 →d Γ1 and

hence
�T−1

t=R (û2
1,t+1 − û2

2,t+1) →d 2σ2Γ1 − σ2Γ2.

Now consider the denominator of the MSE-t statistic. Extensive algebra and

the definition of h̃t+1 imply that PŜdd = 4σ4
�T−1

t=R H̃ �(t)[Eh̃t+1h̃�
t+1]H̃(t) + op(1).

Since Assumption 2 and Corollary 29.19 of Davidson (1994) suffice for T 1/2H̃2(t) ⇒
ω−1S1/2

h̃h̃
W (ω), the Continuous Mapping Theorem implies

T−1
T−1�

t=R

T 1/2H̃ �(t)⊗ T 1/2H̃ �(t) →d

� 1

λ

ω−2[W �(ω)S1/2

h̃h̃
⊗W �(ω)S1/2

h̃h̃
]dω.

Since (
� 1

λ ω−2[W �(ω)S1/2

h̃h̃
⊗W �(ω)S1/2

h̃h̃
]dω)vec[Sh̃h̃] = Γ3, we obtain the desired result.

(b) Maintain Assumption 3� and first consider the numerator of the MSE-t statis-

tic. Extensive algebra and the definition of h̃2,t+1 imply that
�T−1

t=R (û2
1,t+1 − û2

2,t+1) =

2σ2(P/R)1/2[R1/2H̃ �(R)][P−1/2
�T−1

t=R h̃t+1]+op((P/R)1/2). Given Assumption 2, Corol-

lary 29.19 of Davidson (1994) suffices for (P−1/2
�T−1

t=R h̃�
t+1, R

1/2H̃ �(R))� →d (V �
0S

1/2

h̃h̃
, V1S

1/2

h̃h̃
)�

for independent (k1 + k2 × 1) standard normal vectors V0 and V1 and hence

(P/R)−1/2
T−1�

t=R

(û2
1,t+1 − û2

2,t+1) →d 2σ2V �
0Sh̃h̃V1.

Now consider the denominator of the MSE-t statistic. Extensive algebra and the

definition of h̃t+1 imply that PŜdd = 4(P/R)σ4[R1/2H̃ �(R)][Eh̃t+1h̃�
t+1][R

1/2H̃(R)] +

op(P/R). Since R1/2H̃(R) →d S1/2

h̃h̃
V1 we immediately find that (P/R)−1PŜdd →d

4σ4V �
1S

2
h̃h̃
V1 and we obtain the desired result.

Proof of Corollary 2.1: Follows immediately from the proof of Theorem 2.1.
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Table 1: Monte Carlo Rejection Rates: Overlapping Models

(nominal size = 10%)

R P two-step one-step MSE-t vs. MSE-t vs. PŜdd

test test N(0,1) bootstrap
50 20 0.015 0.081 0.104 0.098 0.164
50 50 0.009 0.059 0.068 0.091 0.146
50 100 0.006 0.039 0.042 0.091 0.128
50 200 0.002 0.023 0.023 0.088 0.113
100 20 0.011 0.087 0.109 0.099 0.129
100 50 0.010 0.074 0.084 0.099 0.126
100 100 0.007 0.054 0.057 0.094 0.120
100 200 0.005 0.036 0.037 0.092 0.113
200 20 0.010 0.095 0.117 0.101 0.104
200 50 0.010 0.089 0.097 0.102 0.106
200 100 0.009 0.072 0.077 0.100 0.109
200 200 0.007 0.053 0.053 0.098 0.108
400 20 0.008 0.100 0.120 0.105 0.091
400 50 0.008 0.093 0.102 0.102 0.097
400 100 0.009 0.085 0.092 0.104 0.099
400 200 0.007 0.064 0.066 0.099 0.098

Notes:
1. The data generating process is defined in equation (3). In these experiments, the coefficients b1 = b2 = 0, such that the
competing forecasting models are overlapping and equally accurate in forecasting.
2. For each artificial data set, forecasts of yt+1 are formed recursively using estimates of equations (4) and (5). These
forecasts are then used to form the indicated test statistics. R and P refer to the number of in–sample observations and
1-step ahead forecasts, respectively).

3. The test statistics MSE-t and PŜdd are defined in section 2.2. The fixed regressor bootstrap and the one- and two-step
procedures are defined in sections 3.1 and 3.2.
4. The number of Monte Carlo simulations is 10,000; the number of bootstrap draws is 499.
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Table 2: Monte Carlo Rejection Rates: Non-Nested Models

(nominal size = 10%)

R P two-step one-step MSE-t vs. MSE-t vs. PŜdd

test test N(0,1) bootstrap
A. Large x coefficients: b1 = b2 = −2.0
50 20 0.103 0.117 0.132 0.153 0.831
50 50 0.113 0.116 0.121 0.199 0.940
50 100 0.110 0.111 0.113 0.230 0.988
50 200 0.107 0.106 0.107 0.263 0.999
100 20 0.118 0.114 0.130 0.134 0.942
100 50 0.121 0.119 0.123 0.170 0.989
100 100 0.117 0.115 0.117 0.194 0.999
100 200 0.124 0.124 0.124 0.239 1.000
200 20 0.125 0.113 0.128 0.122 0.990
200 50 0.117 0.113 0.117 0.140 1.000
200 100 0.124 0.123 0.124 0.168 1.000
200 200 0.106 0.106 0.106 0.183 1.000
400 20 0.125 0.112 0.125 0.117 0.999
400 50 0.119 0.113 0.119 0.127 1.000
400 100 0.124 0.122 0.124 0.146 1.000
400 200 0.117 0.116 0.117 0.165 1.000

B. Small x coefficients: b1 = b2 = −0.7
50 20 0.032 0.089 0.115 0.114 0.338
50 50 0.031 0.082 0.090 0.132 0.387
50 100 0.033 0.073 0.075 0.154 0.468
50 200 0.040 0.068 0.068 0.198 0.610
100 20 0.044 0.099 0.121 0.115 0.422
100 50 0.048 0.094 0.102 0.129 0.510
100 100 0.051 0.089 0.091 0.152 0.612
100 200 0.067 0.089 0.090 0.193 0.757
200 20 0.065 0.108 0.126 0.117 0.586
200 50 0.071 0.099 0.107 0.122 0.709
200 100 0.087 0.106 0.109 0.146 0.811
200 200 0.084 0.094 0.095 0.160 0.902
400 20 0.096 0.114 0.131 0.119 0.804
400 50 0.100 0.105 0.112 0.120 0.908
400 100 0.106 0.107 0.111 0.133 0.959
400 200 0.099 0.099 0.101 0.142 0.987

Notes:
1. The data generating process is defined in equation (3). In the experiments in panel A, the DGP coefficients are set to
b1 = b2 = −2.0. In the experiments in panel B, the DGP coefficients are set to b1 = b2 = −0.7.
2. See the notes to Table 1.
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Table 3: Monte Carlo Rejection Rates: Model 1 Is DGP

(nominal size = 10%)

R P two-step one-step MSE-t vs. MSE-t vs. PŜdd

test test N(0,1) bootstrap
50 20 0.132 0.167 0.197 0.204 0.670
50 50 0.264 0.306 0.320 0.402 0.797
50 100 0.525 0.562 0.567 0.707 0.911
50 200 0.860 0.869 0.869 0.954 0.987
100 20 0.185 0.191 0.222 0.209 0.838
100 50 0.356 0.358 0.374 0.420 0.940
100 100 0.595 0.599 0.605 0.694 0.983
100 200 0.883 0.884 0.884 0.945 0.999
200 20 0.216 0.199 0.228 0.209 0.958
200 50 0.391 0.376 0.393 0.408 0.994
200 100 0.620 0.614 0.620 0.675 1.000
200 200 0.892 0.891 0.892 0.932 1.000
400 20 0.237 0.208 0.239 0.215 0.995
400 50 0.405 0.384 0.405 0.403 1.000
400 100 0.642 0.632 0.642 0.669 1.000
400 200 0.890 0.889 0.890 0.918 1.000

Notes:
1. The data generating process is defined in equation (3). In these experiments, the DGP coefficients are set to b1 = −2.0,
b2 = 0.
2. See the notes to Table 1.
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Table 4: Results of Application to Forecasts of GDP Growth

MSE1 4.900
MSE2 4.978
MSE1 − MSE2 -0.078

Ŝdd 23.664
90%, 95% bootstrap critical values for Ŝdd 16.376, 24.183

MSE-t -0.165
90% bootstrap critical values for MSE-t -1.707, 1.494
95% bootstrap critical values for MSE-t -1.972, 1.758
1-step procedure 90% critical values for MSE-t -1.707, 1.645
1-step procedure 95% critical values for MSE-t -1.972, 1.960

Notes:
1. As described in section 5, 1-quarter ahead forecasts of real GDP growth (defined as 400 times the log difference of real
GDP) are generated recursively from competing models including either a credit spread (model 1) or growth in real stock
prices (model 2). Forecasts from 1985:Q1 through 2010:Q4 are obtained from models estimated with a data sample starting
in 1960:Q1.
2. The test statistics MSE-t and Ŝdd are defined in section 2.2. The fixed regressor bootstrap and the one- and two-step
procedures are defined in sections 3.1 and 3.2.
3. The number of bootstrap draws is 4999.
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