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Abstract 

This paper analyzes the optimal investment decisions of insured 

banks under fixed-rate deposit insurance. In the presence of charter 

value, trade-offs exist between preserving the charter and exploiting 

deposit insurance. Allowing banks to dynamically revise their asset 

portfolios has a significant impact on both the investment decisions and 

the fair cost of deposit insurance. The optimal bank portfolio problem 

can be solved analytically for constant charter value. The 

corresponding deposit insurance is shown to be a put option that matures 

sooner than the audit date. An efficient numerical procedure is also 

developed to handle more general situations. 
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1. Introduction 

The current system of fixed-rate deposit insurance in the United 

States gives insured banks the incentive to take on riskier investments 

than they otherwise would. To relate the cost of deposit insurance to 

a bank's investment risk, Merton (1977) shows that deposit insurance 

grants a put option to the insured bank. Under this model, banks tend 

to take on extremely risky projects to exploit the put option. As a 

result, fixed-rate deposit insurance is apt to be underpriced for 

high-risk-taking banks and overpriced for low-risk-taking banks. 

Implementation of option models for valuing deposit insurance can be 

found in Marcus and Shaked (1984) and ROM and Verma (1986). 

In reality, not all banks take extreme risks. Being in business is 

a privilege and is reflected in a firm's charter value or growth option. 

Extreme risk-taking may lead a bank into insolvency, forcing it out of 

business by regulators. The charter value comes from many sources, such 

as monopoly rents in issuing deposits, economies of scale, superior 

information in the financial markets, and reputation. 

Taking into account the charter value, Marcus (1984) shows that 

banks either minimize or maximize their risk exposure as a result of the 

trade-offs between the put option value and the charter value. Under a 

different setting, Buser, Chen, and Kane (1981) show that the trade-offs 

reestablish an interior solution to the capital structure decision. 

They also argue that capital requirements and other regulations serve as 

additional implicit constraints to discourage extreme risk-taking. 

Almost all models of deposit insurance assume that banks' asset 

risk is exogenously given. With the exception of the discussion in 

Ritchken et al. (19911, the flexibility for banks to dynamically adjust 

their investment decisions has been mostly ignored. However, their 

model allows only a finite number of portfolio revisions between audits. 

In this paper, I establish a continuous-trading model to identify 

how an equity-maximizing bank dynamically responds to flat-rate deposit 

insurance schemes and how this affects the actuarially fair value of 

deposit insurance. Since investment decisions are carried out by 
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optimizing the investment portfolio, I model the problem as the optimal 

control of a diffusion process. Upon obtaining the optimal portfolio, 

the actuarially fair cost of insurance can be easily calculated. 

In this model, I use the traditional dynamic programming approach 

(Fleming and Rishel [I9751 1. The disadvantage of this approach is that 

it often reduces the problem to an intractable partial differential 

equation (PDE) where analytical soiutions are rare. Merton* s (1971 

application to the optimal consumption problem is among the few 

cases in which analytical solutions are obtained. Fortunately, in this 

problem the resulting PDE can be explicitly solved provided that the 

charter value is constant. Even though I assume lognormal price to 

warrant an analytical solution, general price distributions can be 

easily built into the model. 

The dynamic programming procedure can also be carried out 

numerically by lattice approximation. This is especially attractive 

when more realistic assumptions are made. As the bank changes its 

portfolio risk over time, the most common binomial model is no longer 

path-independent, and the problem size grows exponentially with the 

number of partitions. This difficulty is resolved by using a trinomial 

lattice. The lattice is set up in such a way that the decision variable 

is incorporated into the transition probabilities rather than into the 

step size. 

This paper is organized as follows: Section 2 formulates the model 

and summarizes the results under no portfolio revision. Section 3 

solves the optimal portfolio problem under continuous portfolio 

revision. The value of deposit insurance is derived based on the 

optimal portfolio decisions. Section 4 presents the trinomial 

approximation of controlled diffusion process. Section 5 extends the 

model to more general situations, and section 6 concludes the paper. 

The proof of the main results can be found in the appendix. 

www.clevelandfed.org/research/workpaper/index.cfm



2. The Static Model - No Portfolio Revision 

Investment Opportunities: Assume that financial markets are complete. 

The bank can invest in both riskless bonds (earning rate r) and a 

portfolio of risky securities that follows a geometric Wiener process 

Capital and Liability: The bank's initial asset X(0) consists of 

capital K(O1 and deposit base D(0). For simplicity, I asshe no net 

external cash inflows into the deposit base, no capital injections, and 

no dividend payments during the time interval [O,TI. Because all 

deposits are insured, I assume that deposits earn the riskless rate r. 

Let L(t1 be the liability at time t; then 

Investment Decisions: Management decides at time zero to put a fraction 

q of its assets in risky securities and the remaining in riskless bonds. 

Without portfolio revision, q is fixed before the audit. 

The market value of the assets at time t is 

where is the standard normal random variable with density and 

distribution function n 0  and N O ,  respectively. 

Auditing and Closure Rules: The regulator conducts an audit at time T: 

If the bank is solvent, i.e., the market value of its assets exceeds its 

liabilities, it claims the residual X(T) - L(T) and keeps its charter. 
If the bank is insolvent, the regulator takes over and equityholders 

receive nothing. Let C(T1 represent the charter value of a solvent bank 

at time T. C(T) is assumed to be a constant fraction of total 

liabilities. Define 

C(t) = fL(t), 0 < f < 1. 

Let V(t;ql be the equity value at time t under policy q. Then 

www.clevelandfed.org/research/workpaper/index.cfm



X(T) - L(T) + G(T) if X(T) > L(T) 
V T  = { ( 5 )  

0 otherwise. 

The equity value at time 0 can be obtained by using standard option 

pricing techniques, 

t qX(OIN(dl)-[L(O)-C(0)-(1-q)X(0)1N(d2) if (l-q)X(O)<L(O) 
V(0.q) = (6  1 

X(0)-L(O)+G(O) otherwise , 

where 

On behalf of the shareholders, management will maximize the equity 

value by choosing the optimal fraction q* such that 

V(O,q*) = max { V(0,q) I. 
9 

(7 

This optimization problem can be solved analytically. Solvent and 

insolvent banks are treated separately. Even though an initially 

insolvent bank would be an unusual case, it is included to complete the 

analysis. I summarize these results in theorems 1 and 2. 

Theorem 1. For an insolvent bank without portfolio revisions, q* = 1 is 

optimal. Consequently, the value of the deposit insurance1 is 

where 

The value of deposit insurance always refers to the actuarially fair 

cost of deposit insurance. 
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Theorem 2. For a solvent bank without portfolio revision, the optimal 

policy is 

where 

Consequently, the value of deposit insurance is 

Theorems 1 and 2 show that without revision opportunities between 

audits, banks always take extreme positions. Regardless of the charter 

value, an insolvent bank always takes the riskiest position. With a 

small charter value, a solvent bank may be better off by taking the 

riskiest position so as to maximize the value of the deposit insurance. 

Only solvent banks with a sufficiently large capital-deposit ratio m or 

a relatively high charter value will invest in fiskless bonds. 2 

The value of insurance for an insolvent bank, or for a solvent bank 

with f < 1 - H(m1, is the same as in Merton (1977) where the charter 

value is zero. When f 2 1 - H(m), risk-taking is discouraged and the 
J 

insurance has no intrinsic value. 

This can be shown from the fact that H(m1 is an increasing function 

of m with H(-1) = 0 and H(m) = 1. 

To be precise, when f = 1 - H(m1, a bank is indifferent between q = 0 

(preserving the charter) and q = 1 (exploiting the insurance). However, 

the bank's actual decision on q does affect the value of insurance. 

This discontinuity in the insurance value is one of the drawbacks of 
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3. Continuous Portfolio Revision 

In this section, I assume that banks can revise their investment 

portfolios continuously over time at no cost. Let X(t) be the market 

value of the assets and q = q(t,X(t)) be the fraction of risky assets in 

the portfolio at time t E [O,Tl. Then X(t) follows a diffusion process 

where V(t) is a standard Brownian motion. The liability and charter 

value are given by equations (2) and (41, respectively. For valuation 

purposes, one can substitute p with r in equation (11). Let J(t,X(t)) 

be the maximum equity value of the bank at time t. Then 

J(t,X(t)) = max Et [J(TnXT)e -r (T-t 1 I. 
'I 

(12) 

It has the boundary condition 

X(T) - L(T) + C(T) if X(T) 2 L(T) 
J(T.X(T) = { (13) 

0 otherwise. 

We are interested in the maximum equity value J(O,X(O)) for any 

given X(O1 = Xo at time zero and the corresponding optimal policy qf(t) 

for all t E [O,Tl. This problem is solved by using dynamic programing. 

The results are presented in the following theorem. 

Theorem 3. Let 7 be the solution of the following equation4 

Suppose the asset value at time t is X(t). Under the assumptions of 

section 2 and continuous portfolio revision, the optimal decision q*(t) 

and the corresponding equity value J(t,X(t)) are as follows. 

static models. 

4 
If the solution is negative, simply let 7 = 0. 
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(I) ~f t E [r,T) and X(t1 2 L(t), then qe(t) = 0, and 

(21 If t E [r,TI and X(t) < L(t1, then q*(tl = 1, and 

where 
ln[X(t)/L(t)l + cr2(~-t1/2 r1 = m 

3 1  If t E [O.t), then $(t) = 1, and 

C(t) X ~ N -  + L(~)N(T~.-~~.P)I J(t.X(t)) = 

+ X(t1N(r31 - [L(t1-C(t)lN(r4) 
where 

and N(x,y,pI is the standard cumulative bivariate normal 

distribution with correlation coefficient p. 

5 
In summary, the optimal policy is 

if t E [T,T) and X(t1 r L(t1 
q* ; t o  

1 if t e [O,r1 or X(t1 < L(t1. 

Theorem 3 clearly illustrates the trade-offs between preserving the 

- - 

Actually, when t E [t,T1 and ~ ( t )  > ~ ( t ) ,  any q is optimal as long as 

q is set at 0 when X(t1 hits the solvency curve ~ ( t 1 .  
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charter and exploiting the deposit insurance. The deposit insurance is 

essentially a put option on the bank's assets that matures at the time 

of the audit. The longer the time before an audit, the higher the value 

of the deposit insurance. Prior to time r, the deposit insurance is 

more valuable than the fixed charter value, and shareholders exploit the 

deposit insurance by choosing q = 1. After time r, since the audit is 

near, the deposit insurance is less valuable than the charter, and 

shareholders will do their best to ensure that the market value of the 

bank's assets remains above the solvency curve L(t) in order to preserve 

its charter. Figure 1 shows this optimal policy where the riskless rate 

is set to zero. 

1 X(t) (Asset Value) 

Figure 1. Optimal Portfolio Policies 

-- 

The critical time r is uniquely determined by equation (14) for any 

0 a f s 1. To see this, rewrite equation (14) with 13 = 6 / 2 :  

Since the left-hand side of (18) decreases from +a, to 1 as /3 goes from 0 

to +a, a positive 6 is uniquely determined. We can also show that r is 

q =  0 

L(0) 
L(t) 

I (Time - > t 
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increasing in c and decreasing in f. However, it depends on neither the 

the riskless interest rate r nor the banks' capital-deposit ratio m. 
As an example, consider an audit period of one year. Suppose the 

volatility of the risky assets is c = 10 percent annually, and the 

charter value is f = 10 percent of the deposit base. Solving equation 

(14) yields r = 0.293. If f drops to 5 percent, r will increase to 

0.834. If there is no charter at all, r equals T, the audit date. 

To obtain the value of the deposit insurance I(O1, note that the 

equity value comes from three sources: namely, the initial capital 

K(O), the deposit insurance I(O1, and the charter value C(O1. That is, 

where P{X(T)kL[T)) is the probability that the bank passes the audit. 

Following the same argument as in the proof of theorem 3, we have 

where the 7's are evaluated at time t = 0. Substituting this into 

equation (191, we have the actuarially fair value of deposit insurance 

for a bank with continuous revision opportunities 

where 7 and 7 are evaluated at time t = 0. 
3 4 

This insurance value can be viewed as a put option on the bank's 

assets with maturity r instead of T. This clearly explains the impact 

of the charter value and the continuous portfolio revision on the value 

of deposit insurance. Since + < T as long as f > 0, the deposit 

insurance is less valuable in the presence of charter value. Compared 

to the static model, the insurance value in equation (20) is continuous 

in terms of charter value and capital-asset ratio. Even for very highly 

capitalized banks, as long as r > 0, the insurance has a positive value. 
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4. Trinomial Approximation 

For general terminal payoff functions other than the one in 

equation (51, analytical solutions may not always exist, and numerical 

procedures must be used to solve the optimal portfolio problem. Without 

portfolio revisions, a simple binomial model can be used to approximate 

the bank's asset value. However, when the portfolio is revised, the 

resulting lattice becomes path-dependent. 

To see this, partition the audit period [O,Tl into n subintervals 

of equal length h = T/n. The asset portfolio may be revised at discrete 

decision points tl= ih, i = O,l, ..., n-1. Let q(tl,X(tl)) be the revised 

fraction of risky investments at time t if the market value of the 
1 

bank's assets is X(tl). Let q be initially set to qo. The portfolio is 

revised at time tl by changing qo to ql at the up state and q2 at the 

down state, respectively. The two-period binomial lattice looks like 

where 

for i = 0,1,2. Obviously, if uod1 # dou2, the lattice is path-dependent. 

To overcome this difficulty, a path-independent lattice is first 

set up as if there is no portfolio revision. Then, when the portfolio 

is revised to a new q value at a revision point, one changes only the 

transition probabilities such that the drift and variance terms match 

locally. This suggests adding one more degree of freedom to the 

lattice. Consider the following trinomial lattice when the asset value 
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at time tl is XI: 

The transition probabilities are set to 

Obviously, zJ pJ = 1 .  The first and second local moments are 

As h -+ 0 ,  these moments converge to the true mean and variance of the 

diffusion process X(t) in equation (11). This ensures that the 

trinomial process converges to the process X(t1 in distribution. 

To find the optimal policy q*, a dynamic programming procedure can 

be applied to the trinomial lattice. A t  the very end-nodes', payoff 

values are given. Working backward, at any node X an optimal policy 
1 * 

q;(h) and equity value can be easily obtained. Under certain smoothness 

conditions on the payoff function, as h + 0 ,  q;(hl will converge to the 

optimal policy q*. The optimal policy of theorem 3 can be easily 

confirmed using this procedure. 
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5. A Second Look at the Charter Value 

In sections 2 and 3, we adopted Marcus's (1984) specification of 

the charter value. The bank either retains or loses the full charter 

value depending on whether or not it is solvent at the audit date. This 

corresponds to the terminal payoff curve OBCD in figure 2. However, 

despite its simplicity, this specification is far from realistic. 

For example, regulators may, for economic or political reasons, 

choose to inJect additional funds into a slightly insolvent bank rather 

than simply to close it. Thus, the payoff curve OBCD in figure 2 should 

stretch farther to the left. As for the equityholders, if the market 

value of the bank's assets is below the liability value Just before the 

audit, it would be to the bank's advantage to inject additional funds in 

order to preserve the charter. It may do so as long as the charter 

value exceeds the liability minus asset value. This suggests the payoff 

curve OAD of a call option with strike price L(T1 - CCT). In this case, 

the charter can be viewed as part of the bank's tangible assets. 

However, when a bank is close to insolvency, it may face financial 

distress or bankruptcy costs, which would decrease the charter value. 

Usually the charter value depends not only on the size of the deposit 

base, but also on the soundness of the bank (such as the capital-deposit 

ratio). When this ratio drops below a certain level, a regulatory tax 

is likely to be charged (Buser, Chen, and Kane [I9811 1. Therefore, a 

more reasonable payoff function would be somewhat like the OEFD curve in 

figure 2. For a highly capitalized bank, the charter value is 

proportional to the deposit base (the F-D segment). As the bank lowers 

its capital, the charter-deposit ratio decreases (the E-F segment). If 

the capital is too low, the charter value is zero (the O-E segment). 

After the payoff curve is specified, we can use the trinomial 

approximation of section 4 to calculate the present value of bank equity 

and the actuarially fair price of deposit insurance. For demonstration 

purposes, suppose the payoff curve has the following form: 

if K(T) r 0 
V(T) = (24 1 

otherwise, 
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where K(T1 = X(T) - (1-f)L(T), a.8 r 0. 

This payoff function contains many interesting special cases. When 

f = 0, it reduces to the case of Merton (19771. When 8 = ioo and a < +cv, 

it reduces the OAD curve in figure 3 where an insolvent bank can inJect 

additional funds at no extra cost in order to retain its charter. When 

a = +OD and 8 < +a, it reduces to that of Marcus (19841, which 

corresponds to the OBCD payoff curve in figure 2. 

V(T1 (Equity Value) 

Figure 2. Alternative Payoff Functions 

Figure 3 shows the payoff function (241 for a = 1, 2, 4 and oo, 

while 8 = 1. The corresponding optimal policies are shown in figure 4, 

where the other parameters are T = 1, r = 0, Xo = Lo = 100, CT = 0.1, and 

f = 0.05. All of the optimal policies are similar to the one in theorem 

3. Banks initially choose q = 1. After a critical time r, there is a 

critical curve K(t1. If asset value X(t1 is above K(t), q = 0 is 

optimal; otherwise q = 1 is optimal. In contrast to theorem 3, the 

critical curve K(t1 is no longer a straight line. It is interesting to 

note that the larger the value of a, the larger the critical time r, 

because the charter value erodes faster as a increases. 
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0 950 1000 1050 

Figure 3. Some Specific Payoff Functions 

T X ( t 1  (Asset Value) 

Figure 4. Optimal Policies Under the Payoff Functions in Figure 3 
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6. Conclusion 

This paper develops a stochastic control model to analyze the 

investment decisions of a bank whose deposits are fully insured under a 

fixed-rate insurance premium. I show how banks dynamically adjust their 

investment portfolios in response to market information and how this 

flexibility affects both investment decisions and the value of deposit 

insurance. The optimal portfolio problem is solved analytically 

assuming lognormal asset price and constant charter value. For general 

payoff patterns, an efficient numerical procedure is presented. 

Under continuous portfolio revision I show that, before some 

critical time T, the bank always takes the riskiest position regardless 

of its solvency situation. The bank may act cautiously only between 

time r and the audit date T. The value of deposit insurance remains a 

put option, but with maturity r instead of T. This critical time r 

depends on the charter value, on the volatility of the risky assets, and 

on the time between audits. This gives the regulators some guidelines, 

at least in theory, on the timing of audits. 

The major limitation of this model is the empirical difficulty in 

specifying the charter value. This is further complicated by other 

factors such as transaction costs, asymmetric information, reputation, 

and economic conditions. 
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Appendix 

Proof of Theorem 1. Since X(0) < L(O), from equation (6) we have 

The equity value V is increasing in q; q* = 1 is optimal. Q. E. D. 

Proof of Theorem 2. For a solvent bank, when q S qmln= 1 L(O)/X(O), 

the riskless bonds alone will be enough to pay off the obligation at 

time T, and the bank will pass the audit with certainty. In this case, 

V(0.q) = X(0) - [L(O) - G(011. 
When q > qmin, 1.e.. L O - 1 - 0  > 0, we have 

Hence, the equity value V(0,q) is flat on interval [O, qmin] and convex 

on interval [qmln, 11. The optimal policy q* is either 1 or any value 

in [O,qml,l. Therefore, from equations (6) and (7) 

v(o,q*) = max { V(0,0), V(0,1) ) 

This leads to equation (10). Q. E. D. 

To prove theorem 3, a few lemma are necessary. Lemma 1 is an 

adaptation of Fleming and Rishel (1975, p. 124, theorem V.S.l). Lemma 2 

is a classic result (Bhattacharya and Waymire [1990, p. 321). In the 

rest of the proof, I use the shorthand notations J and f for J(t ,X(t 1) 

and f(s;t,X(t)), respectively, as long as no confusion arises. 

Leuma 1. (Sufficient optimality condition for discounted stochastic 

dynamic programming) Let X(t) be a diffusion process on [O,Tl 

(A. 1) 
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where p  and c satisfy the linear growth and the Lipschitz conditions. 

Let U ( t , X )  and J ( T , X )  be continuous and satisfy the polynomial growth 

condition. Let J ( t , X )  be the solution of the dynamic programming 

equation 

1 
r J  = max ( J t  + p ( X ) J x  + z ( c ( ~ ) ) 2 ~ ,  + H ( t , X ) )  ( A .  2) 

with boundary value J ( T , X ( T ) ) .  If J ( . t , X )  is twice differentiable for 

t E [ O , T )  and continuous for t E [ O , T l ,  then 

( A .  3) 

for any admissible policy q.  

Lema 2. Let X ( t 1  be a Brownian motion with drift p .  Let T  be the 
Z 

first time the process reaches level z conditioned on X ( 0 )  = x .  Then 

the probability density and distribution functions of T  are 
z 

( z -x -p t  1 2 
f ( t ; x , z )  = ( z - x )  expl- I t > 0 ,  (A. 4 )  

f i c  t 3'2 2 c 2  t 

L e m a  3. The functional J ( t , X ( t ) )  and the policy q* defined in theorem 

3 is optimal if 

(1) when J x x  is continuous at ( t . X ( t ) ) ,  the maximizing q is 

( A .  6 )  

and 

2 r J  = J t +  r X ( t ) J x  + f ( c x ( t ) )  J x x  if q* = 1 ( A .  7 )  

r J  = J t +  r X ( t ) J x  if q* = 0  ( A .  8) 
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(2) when J has a Jump at (t,X(t)), 

q* = 0 

where 

(A. 9a) 

(A. 9b) 

Proof: Part (1) follows immediately from lemma 1 with p(X) = rX. To 

show part (21, note that J(t,X(t)) is twice differentiable except when 

X(t) = L(t) and t E (*,TI where J; > J; = 1 and J; = J' = 0; when t E 
XX 

(r,TI, J(t,X(t)) is convex for X(t) s L(t) and linear for X(t) r L(t) 

(see the proof of theorem 3). To apply lemma 1, add a smoothing term P' 

to J such that JE(t,~(t)) = J(t,X(t)) + ~'(t,~(t)) is twice 

differentiable, convex for X(t) 5 L(t), and concave for X(t) iz L(t) for 
& 

t E (z,T) and for any small number E > 0. For example, one such P is 

AJL 
( -&n7 if X(t)>L(t)+cn and t~(7.T) 

X(t1-L(t) AP pC = { -rx(t)-L(t)+rin( & c I if OsX(t)-L(t)sen and t~(r.7') 

I 0  otherwise, 

where bf = J'(L(~)) - J;(L(~)). Define 
X 

~(P'I = - rpC + P:+ ~x(~IP:. 

Then for any admissible policy q, 

-rJC + J: + r~(t)J: + &(q~(tlo)2JLx'x - # ( f  1 

s - rJC + J: + r~(t)J: + &(q*~(t )o12fx - # ( f  1 

where q* is the policy in theorem 3. Therefore, JE(t,~(t)) = J(t,X(t)) 

+ pE(t ,X(t 1) is the solution of the dynamic programming equation 

& rJC = max [Jt + rx(t)J: + k(q~(t )ol2.fX - #(pF)] 
q 
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for t E (r,T-6) and any small number 6 > 0. Applying lemma 1, we have 

Let e.6 + 0. . The last three terms on the right-hand side all go to 

zero. Then J(t,X(t)) k E [J(T,X(T))I for any q. This implies J(t,X(t)l 
* q 

and q- are optimal. Q. E. D. 

Proof of Theorem 3. We need to show that the given functional J(t,X(t)) 

and the corresponding policy q* satisfy the conditions in lemma 3. 

Case 1. Let t E (r,T1 and X(t) k L(t1. When X(t1 > L(t), q*(t) = 

0 and J(t,X(t)) in equation (15) together satisfy the conditions (A.6) 

and (A.8) in lemma 3. When X(t) = L(t), as we will show later, J is 
X 

not continuous in X(t). However, from lemma 3, q = 0 is optimal if J: 

< J;. Since J: = 1, we need only to show that J- > 1 at X(t) = L(t). 
X 

First note that J(t,X(t)) is continuous at X(t) = L(t). In fact, 

as X(t)?~(t), rl+ - f i / 2  and r2+ f i / 2  in equation (16). Further 

manipulation yields J(t,X(t)) + G(t) = J(t,X(t)). Now differentiate 

J(t,X(t)) in equation (161, and let ~(t)?~(t). Then 

(A. 10) 

Since a~-/at = - 
X 

C(t) n(m/2) < 0, J- is strictly increasing in t. in7 c(~-t l3I2 x 

Noting that J- = 1 at t = r ,  we have J- > 1 for all t E (=,TI. 
X X 

Case 2. Let t E (r,Tl, X(t) < L(t). Differentiating equation 

(16). and noting that X(t)n(rl) = L(t)n(r2), we have 
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(A. 11) 

J is obviously continuous. To show that q (t) = 1 is optimal, we need 
XX 
only to check that condition (A.7) in lemma 3 is satisfied. Toward this 

goal, let Y(t) = ln[X(t)l - rt; then 

The first passage times are the same for the geometric Wiener process 

X(t) to reach L(s) given X(t) at time t and for the Brownian motion Y(t) 

to reach ln[L(s)l - rs given Y(t) = lnX(t) - rt at time t. From lemma 

2, the density function of this first passage time is 

It is easy to show that J(t,X(t)) = C(t)f(s;t,X(t))ds. Since the c 
density function f satisfies the backward Kolmogorov equation 

(A. 12) 

condition (A.7) can be easily checked: 

= -rC(t) fds + [rC(tI fds + G(t) ftds] 
J t  J t  J t  
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Case 3. Let t E [O,T] .  We first show that J ( t , X ( t ) )  in equation 

(17) is the risk-neutral value of a contingent claim with terminal value 

J ( r , X ( r ) )  at time 7. To see this, let 

(A. 1 3 )  

2 1/2 

where X ( T )  = X ( t ) e  ( ru 12) (7-t)W(7-t) Substltutlng equations ( 1 5 )  

and ( 1 6 )  into ( A . 1 3 ) .  

where rl and 7 are evaluated at 7 rather than at t. Carrying out the 
2 

integrations above gives equation ( 1 7 ) .  From ( A . 1 3 )  we have 

2 
-2 /2 

1 - ( ~ ( t ) o ) ~ ~ ~ ~ ( t , ~ ( t ) ) =  2 e -r (7-t) cm ~ [ X ( T ) C I ~ J ~ ~ ( T , X ( T )  I - e d z .  
6 

Since J ( r , X ( r ) )  r 0 from cases 1 and 2, J x x ( t , X ( t ) )  r 0. 
XX 

Now we need only to check condition (A .7 )  in order to show q ( t )  = 

1 is optimal. Let p = p ( r , y ; t , X ( t ) )  be the density function of the 

lognormal price X ( r )  conditioned on X ( t ) .  Rewrite equation (17) as 

~ ( t , x ( t ) )  = e - r  (7-t)  ~ ( T , Y ) P ( T , Y ;  f , X ( t  1 My- (A. 14) 

Then equation ( A . 7 )  can be established by the fact that p ( - c , y ; t , X ( t ) )  

satisfies the backward Kolmogorov equation ( A . 1 0 ) .  Q.E.D. 
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