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We investigate how trading frictions in asset markets affect portfolio choices, asset prices 
and efficiency. We generalize the search-theoretic model of financial intermediation of 
Duffie, Gârleanu and Pedersen (2005) to allow for more general preferences and 
idiosyncratic shock structure, unrestricted portfolio choices, aggregate uncertainty and 
entry of dealers. With a fixed measure of dealers, we show that a steady-state equilibrium 
exists and is unique, and provide a condition on preferences under which a reduction in 
trading frictions leads to an increase in the price of the asset. We also analyze the effects 
of trading frictions on bid-ask spreads, trade volume and the volatility of asset prices, and 
find that the asset allocation is constrained-inefficient unless investors have all the 
bargaining power in bilateral negotiations with dealers. We show that the dealers’ entry 
decision introduces a feedback that can give rise to multiple equilibria, and that free-entry 
equilibria are generically inefficient. 
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1 Introduction

Trading takes time. The trading delays (or “frictions”) which are at the foreground of the

economic modeling of many markets, such as labor markets, are also present in asset markets.

Even in equity and bond markets, where the trading arrangements are well developed, executing

a trade requires resources–time being one of them. An investor wishing to rebalance his

portfolio will usually contact a broker. In order to get the order executed, the broker will route

it to an organized exchange, to a dealer or market-maker, or to some electronic trading system.

Regardless of the method chosen, an order cannot be filled until a counterpart for the trade is

found, and finding a counterpart takes time.1

Markets for financial securities have traditionally been the realm of the competitive Wal-

rasian paradigm. Accordingly, trade in these markets, e.g., the matching of buyers to sellers, is

typically regarded as an instantaneous and costless process–and left unmodeled. In this paper

we further the view that trading frictions and the mechanics of trade are important for under-

standing the functioning of asset markets, including many of those for financial securities–and

especially fixed-income securities–which are typically traded in a decentralized manner in over-

the-counter markets.

Financial markets are currently in the midst of a technological revolution that is poised to

reshape their structure and the ways in which they operate. The new electronic trading sys-

tems being introduced allow brokers and dealers to match their orders faster. For example, the

advent of electronic communication networks (ECNs)–private electronic screen-based trading

systems built around computer algorithms that match buy and sell orders through an open

limit-order book–is allowing investors to find trading opportunities more rapidly, and some-

times even directly, without the need for a traditional intermediary. Since traders now have

the option to submit orders to an ECN and trade with others directly instead of having their

1The time it takes to execute an order in an organized exchange such as the New York Stock Exchange
(NYSE) or the National Association of Securities Dealers Automated Quotation System (NASDAQ) can range
from a few seconds to several minutes. These delays vary considerably across market centers; see Boehmer (2005,
Table 6) and Boehmer, Jennings and Wei (2005, Table 2). To an outsider, differences in execution delays of a
few minutes may seem immaterial. But in a high-frequency marketplace where profit opportunities come and
go very fast, a few minutes, or even seconds, can make a big difference to some traders. Boehmer (2005, Table
4, Panel A) reports that the median effective spread is 2.2 cents (0.09 percentage points of the price) larger in
NASDAQ than in the NYSE, but that on average, trades execute 12.2 seconds faster in NASDAQ. This seems
to suggest that traders are willing to pay a significant amount to get a trade executed just a few seconds faster.
Trading delays tend to be longer–ranging from a few minutes to a day–for fixed-income securities traded in
over-the-counter markets; see Schultz (2001) and Saunders, Srinivasan and Walter (2002).
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trades intermediated by dealers, widespread use of these new technologies can drastically reduce

intermediation and transaction costs and accelerate trade execution.2 These large transforma-

tions in trading arrangements are bound to manifest themselves in asset prices and portfolio

allocations and change the nature of financial intermediation, but how exactly?

In this paper we develop an equilibrium search-theoretic model of the exchange process in

an asset market and use it to study how the degree of trading frictions–as determined by the

number of financial intermediaries and available technologies–affects the overall performance

of the market. We focus on the effects that these frictions have on portfolio allocations, interme-

diation costs (e.g., bid-ask spreads, intermediation fees), the level and volatility of asset prices,

various measures of liquidity (e.g., execution delays, trade volumes) and allocative efficiency.

We build on the recent work of Duffie, Gârleanu and Pedersen (2005), and similarly to their

work, our description of the asset market captures some salient features of over-the-counter

markets and telephone-dealer markets such as those for commercial paper and corporate bonds.

From a methodological point of view, we generalize the model in Duffie, Gârleanu and Pedersen

(2005) to allow for more general preferences and structure of idiosyncratic shocks, aggregate

uncertainty, unrestricted portfolio choices and entry of intermediaries. Keeping with the spirit

of the advent of electronic trading systems, in addition we allow investors to sometimes trade

directly with “the market,” without requiring the services of an intermediary.

The paper is structured as follows. In Section 2 we lay out the basic model. Investors receive

idiosyncratic preference shocks that change their desired portfolios and are able to rebalance

their portfolios at random times. These random delays are meant to capture the order-execution

delays that investors or dealers experience while they try to find a counterpart for the trade. In

contrast to investors, dealers have instantaneous access to a competitive interdealer market. In

intermediated trades, intermediation fees (or bid and ask prices) and portfolio allocations are

determined jointly through bargaining in a bilateral match between an investor and a dealer.

2These new technologies are already having a big impact in equity markets. For example, more than 50 percent
of all NASDAQ trades (about 26 percent of the dollar trade volume in the year 2000 according to NASDAQ,
2000) are now executed through ECNs. These technological innovations have been accompanied by changes
in regulations that promote competition among intermediaries. For instance, the New Order Handling Rules
introduced by the Securities Exchange Commission (SEC) in 1997 impose that the public orders posted on ECNs
can compete more directly with NASDAQ market-makers. (See McAndrews and Stefanadis, 2000, for an account
of the emergence of ECNs in U.S. equity markets and Barclay et al., 1999, pp. 4—7, for a detailed description of
the SEC order-handling reforms.) The number of electronic trading systems for fixed-income securities has also
proliferated from 11 in 1997 to 70 in 2000. It is estimated that in the year 2000, 40 percent of U.S. Treasury
securities transactions were done electronically, up twofold from 1999 (see Allen, Hawkins and Sato, 2001).
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Alternatively, when an investor gains direct access to the asset market, he chooses his new

portfolio taking the asset price parametrically and pays no intermediation fee.

In Section 3 we study the model with a constant measure of dealers and show that a

steady-state equilibrium exists and is unique. In Section 3.1 we extend the model to allow for

aggregate uncertainty. Section 3.2 presents a calibrated version of the model used to illustrate

and complement our analytical results.

Section 4 deals with the effects of trading frictions on asset prices. In Section 4.1 we show

that for CRRA preferences, the price of the asset increases (decreases) as trading frictions are

reduced if the coefficient of relative risk aversion is smaller (larger) than one. For a logarithmic

utility function, the asset price is independent of trading frictions and corresponds to the price

that would prevail in a frictionless Walrasian market. In Section 4.2 we use the formulation

with aggregate uncertainty to study the effects of trading frictions on asset-price volatility.

Section 5 deals with the effects that the degree of trading frictions has on the volume of

trade and the allocation of portfolios across investors. In Section 6 we show that intermediation

fees are trade-specific and increase with the size of the portfolio reallocations. For a given trade

size, fees increase with dealers’ bargaining power and decrease with the frequency at which

investors can access the market directly, as well as with the frequency at which they can meet

dealers. Interestingly, since a reduction in the trading frictions increases the size of each trade,

faster trading does not necessarily reduce the dealers’ average profit.

In Section 7 we endogenize trading delays by allowing entry of dealers. We show that an

equilibrium exists, but find that it need not be unique. We provide examples where multiple

(e.g., three) steady states exist. This multiplicity arises because of a strategic complementarity

between the investors’ portfolio choices and the dealers’ entry decisions. When multiple equilib-

ria exist, some exhibit narrow bid-ask spreads, large traded volumes and short execution delays,

while others display wide spreads, small volumes and long delays. We show that a reduction in

trading frictions can remove the multiplicity. Thus, perhaps counter to intuition, it is possible

that a regulatory reform or a technological innovation that gives investors more direct access

to the asset market (such as ECNs) leads to a relatively large increase in market liquidity and

results in a higher volume of intermediated trades.3

3Concerns have been raised that increased competition from alternative trading networks could reduce dealers’
incentives to make markets, and hence adversely affect the liquidity of the market. Since the growth of electronic
trading platforms is a very recent phenomenon, there is only a handful of academic studies that examine their
effects. Weston (2000, 2002), for instance, finds that the increase in competition resulting from the growth of
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Finally, in Section 8 we carry out a normative analysis. We establish that portfolio decisions

tend to be inefficient because of a holdup problem introduced by bargaining. Investors with

high valuations tend to invest too little, while those with low valuations tend to invest too

much. This inefficiency is eliminated when dealers have no market power. When there is entry

of dealers, the measure of dealers is efficient if the bargaining power of dealers coincides with

their contribution to the matching process. Therefore, in this context, the inefficiencies on

the intensive margin (portfolio choices) and extensive margin (number of dealers) cannot be

corrected simultaneously.

Our paper belongs to the new search-theoretic literature on financial markets that includes

Duffie, Gârleanu and Pedersen (2005), Miao (2006), Rust and Hall (2003), Vayanos and Wang

(2002), Weill (2005a,b) and Gârleanu (2005).4 Relative to these papers, our methodological

contributions consist of: (i) relaxing the portfolio restrictions,5 (ii) allowing for more general

preferences and more general forms of investor heterogeneity, (iii) allowing for aggregate un-

certainty, (iv) allowing investors direct, as well as indirect (i.e., dealer-intermediated), access

to a competitive interdealer market, and (v) endogenizing the degree of the trading frictions

by endogenizing the measure of dealers.6 These generalizations yield new insights, e.g., on the

link between trading frictions and the level and volatility of asset prices, on the potential for

multiple equilibria, on the efficiency implications of the degree of market power of dealers, and

on the size of intermediation fees as a function of the trade-size and the degree of trading fric-

tions. From an applied standpoint, the generalizations we develop also allow us to address new

issues, such as the impact that the emergence and growth of alternative trading systems will

have on spreads, trade volumes, the number of financial intermediaries and execution delays.

trading through ECNs in NASDAQ has resulted in larger trade volumes, tighter bid-ask spreads and net entry
of market-makers. See Weston (2002) for references to related work.

4Also related is the work of Spulber (1996), who considers a search environment where middlemen intermediate
trade between heterogeneous buyers and sellers. There is also a large related literature, not search-based, which
studies how exogenously specified transaction costs affect the functioning of asset markets. Recent examples
include He and Modest (1995), Lo, Mamaysky and Wang (2004), Luttmer (1996) and Vayanos (1998), to name
a few. See Heaton and Lucas (1995) for a survey of this body of work.

5As in the early search-theoretic models of money, e.g., Kiyotaki and Wright (1993), Duffie, Gârleanu and
Pedersen (2005) restrict portfolio choices to lie in the set {0, 1}. We impose no restrictions on the quantity of
assets that an investor can hold except that it be nonnegative (i.e., we do not allow for short-selling of assets).
Also as in Kiyotaki and Wright (1993), Duffie, Gârleanu and Pedersen (2005) allow for bilateral trades between
investors. In our model, investors can trade directly with other investors every time they gain direct access to
the competitive market–but these trades are not bilateral.

6Duffie, Gârleanu and Pedersen (2005) consider a search intensity decision by a monopolist dealership, while
we model a market with many small dealers who compete with each other for order flow.
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2 The environment

Time is continuous and the horizon infinite. There are two types of infinitely lived agents: a

unit measure of investors and a unit measure of dealers. (We endogenize the measure of dealers

in Section 7.) There is one asset and one perishable good, which we use as numeraire. The asset

is durable and perfectly divisible. The stock of assets in the economy is A ∈ R+. The numeraire
good is produced and consumed by all agents. The instantaneous utility function of an investor

is U(a, c; i) = ui(a) + c, where a ∈ R+ represents the investor’s asset holdings, c ∈ R is the

net consumption of the numeraire good (c < 0 if the investor produces more of these goods

than he consumes), and i ∈ {1, ..., I} indexes a preference shock. The utility function ui(a)

is continuously differentiable, strictly increasing and strictly concave.7 Each investor receives

a preference shock with Poisson arrival rate δ. This process is independent across investors.

Conditional on the preference shock, the probability the investor draws preference type i is πi,

with
PI

i=1 πi = 1. These preference shocks capture the notion that investors will value the

services provided by the asset differently over time, thereby generating a need for investors to

reallocate their portfolios. Dealers cannot hold positions and their instantaneous utility is c,

their consumption of the numeraire good.8 All agents discount at rate r > 0.

There is a competitive market for the asset and dealers have continuous access to it. An

investor can access this market indirectly through a dealer. Investors contact dealers at random

according to a Poisson process with arrival rate α. Once they have contacted each other, the

dealer and the investor negotiate over the quantity of assets that the dealer will acquire for the

investor and over the intermediation fee that the investor will pay the dealer for his services.

After the transaction has been completed, the dealer and the investor part ways. Investors can

also gain direct access to the competitive asset market according to an independent Poisson

process with arrival rate β. The trading process is illustrated in Figure 1.

We regard this theoretical trading process as a stylized characterization of actual trading

arrangements in some asset markets. We think of the investors in the model as representing

investor-broker pairs who are searching for a counterpart to execute a given trade. A counter-

7One can think of the asset as being a durable good that provides a flow of services to its owner, such as a
house or a car. Also, a could be thought of as shares of a “tree” that yield a real, perishable “fruit” dividend
different from the numeraire good. Alternatively, one may adopt the interpretation of Duffie, Gârleanu and
Pedersen (2005) and consider ui (a) as a reduced-form utility function that stands for the various motives an
investor may have for holding the asset, such as liquidity or hedging needs.

8The restriction that dealers cannot hold assets is of no consequence when analyzing steady-state equilibria,
as we do in most of the paper. See Weill (2005a) for dynamic equilibria where dealers hold positions.
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Figure 1: Trading process

part can typically be found in a traditional intermediary, such as a dealer or market-maker, or

through electronic trading systems that allow investors to trade directly without an interme-

diary. Finding a counterpart by either method involves delays. In the model, these execution

delays correspond to 1/α and 1/β. Bilateral trade and bargaining between investors/brokers

and dealers is a feature of many financial transactions, both in quote-driven and order-driven

markets. The fact that agents trade assets at a competitive price when they gain access to the

market captures the idea that even though there are execution delays, investors and dealers

sometimes interact in large groups and in these instances, they take prices as given.

2.1 Discussion

While our theoretical model is stylized, we believe it captures the salient features of many

financial trades in various contexts. First, as Duffie, Gârleanu and Pedersen (2005) emphasize,

the model incorporates the key elements of over-the-counter (OTC) markets. The defining

feature of OTC markets is that they have no formal organization: they do not have a physical

location and operate in a completely decentralized manner. A typical OTC market consists of

brokers and dealers who can be located all over the country and negotiate directly with one

another over computer networks and by telephone. Unlisted stocks, some derivatives and most

debt instruments, such as commercial paper, corporate and municipal bonds, are examples of

securities traded over the counter.

Trade in an OTC market is a textbook search problem: buyers and sellers seek each other
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out and usually trade in pairs. An investor wishing to trade an OTC security will contact,

electronically or by phone, dealers who are specialized in that particular asset category. It

typically takes a dealer several minutes to generate a quote. After the dealer produces the

initial quote, negotiations will ensue regarding the price quoted and other details of the trade,

in particular the quantity traded.9 In the model, 1/α has a natural interpretation as the average

time it takes the investor/broker to find a dealer with whom they reach an agreement regarding

the terms of the trade. Another key feature of OTC markets is that dealers have access to

interdealer brokered networks where they can manage their inventories. In this spirit, dealers

in our model have access to a competitive asset market where they can continuously manage

their asset positions.10

In some cases, even listed securities may get traded OTC-style, i.e., in a decentralized dealer

network, bilaterally, and with negotiated prices and quantities. Such is the case for large blocks

of stocks and some treasuries. Although these securities may trade in organized exchanges

for small sizes, brokers routinely have to find suitable counterparts for large blocks. The first

problem that block traders face is searching for traders with these latent demands, and once

they have found them, the terms of the transaction will be negotiated bilaterally.11

Bilateral trade with negotiated prices and quantities are also features of some transactions

conducted in the context of organized exchanges. For instance, trade in quote-driven dealer-

organized markets such as NASDAQ is also bilateral, either between two registered dealers–

market-makers–or between an investor/broker and a market-maker. Regarding the terms of

trade, market-makers are typically required to post prices at which they are willing to buy (the

bid price) and sell (the ask price) some quantity of the instrument they are registered for. In

principle, these price quotes can be soft or firm. Dealers who offer soft quotes can revise their

prices when asked to trade, or even refuse to trade. Soft quotes lead to bargaining. Firm quotes

are good only up to the quantity that the dealer specifies in the quote, so they may also coexist

9See Harris (2003) for examples and detailed accounts of real-world trades and Schultz (2001) or Saunders,
Srinivasan and Walter (2002) for a description of over-the-counter corporate bond markets.
10Our competitive interdealer market allows dealers to intermediate transactions instantaneously without hav-

ing to take positions, and hence, without having to assume inventory risk. In reality, in addition to intermediating
between investors, some dealers–position traders–take positions in the hope of making capital gains. In this
paper we abstract from this inventory risk. But there are also pure spread traders, i.e., dealers who–like the
ones in our model–don’t take positions, and profit exclusively from buying low and selling high.
11As an example, the London International Financial Futures and Options Exchange (LIFFE) introduced a

block trading facility in April 1999. LIFFE’s block trading procedures permit its members and their qualified
clients to quickly trade large blocks at bilaterally negotiated prices.
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with elements of bargaining.12

Nowadays, listed stocks also trade in various alternative trading systems–ECNs being the

best known among these electronic exchanges. Accordingly, another key feature of modern

financial exchanges that we try to capture in our formal modeling is that, for many securities,

markets overlap. That is, when a broker receives a trade order for a particular security, he can

route it to a traditional dealer or exchange, or to an alternative trading system. The direct

access to the asset market that we grant investors in our formal modeling is meant to capture the

trade opportunities created by these alternative trading systems that match investors directly.

For example, 1/β in the model can be thought of as the average time it takes for a market order

to fill when routed through an electronic trading system such as an ECN.13

3 Equilibrium

In this section we characterize stationary equilibria where the joint distribution of portfolios and

preferences across investors remains constant over time. Consider an investor with a preference

type i who holds stock of assets a. The value function of the investor, Vi(a), satisfies the

following Bellman equation

rVi(a) = ui(a) + δ
X
k

πk [Vk(a)− Vi(a)] + α[Vi(a
b
i)− Vi(a)− p(abi − a)− φi (a)]

+ βmax
aci
[Vi(a

c
i )− Vi(a)− p(aci − a)], (1)

for a ∈ R+ and i = 1, ..., I . According to (1), the investor enjoys a utility flow ui(a) from

holding portfolio a. He receives a new preference shock with instantaneous probability δ, and

conditional on this shock, he draws a new preference type k with probability πk and enjoys a

capital gain Vk(a)− Vi(a). With instantaneous probability α, the investor meets a dealer who

can help him rebalance his portfolio. Upon contacting a dealer, the investor buys abi − a (sells

12NASDAQ requires its dealers to quote firm two-sided markets, i.e., both a bid and an ask price, for at least
100 shares of the security they are registered for. Notwithstanding, it is not uncommon for dealers to trade at
different prices than those they quote to the public. This happens because market-makers’ posted prices are only
binding up to the quantities specified in the quote, so a trader wishing to trade a larger quantity will end up
negotiating the terms of the trade bilaterally with the dealer.
13 In reality, the cost of sending an order to an ECN is usually small compared to the fees or spreads charged by

traditional dealers. For this reason, the cost of trading directly in the asset market is normalized to zero in the
model. Many interdealer markets are now open to investors (e.g., the trading platforms BrokerTec and E-Speed).
Accordingly, in our formal model, the market where investors can trade directly without being intermediated by
dealers is the same interdealer market where dealers rebalance their asset holdings. Nothing would change if we
modeled them as being distinct marketplaces.
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if negative) and pays the dealer a fee φi (a) ∈ R+ (in terms of the numeraire good) in exchange
for the dealer’s intermediation services. Both the quantity traded, abi , and the fee, φi (a), will

be determined through a bilateral bargaining procedure between the dealer and the investor.14

We use p ∈ R+ to denote the price of the asset in the competitive market (also expressed in
terms of the numeraire good). With instantaneous probability β the investor gains direct access

to the competitive asset market, and he simply chooses a new portfolio aci at cost p(a
c
i − a).

The value function of a dealer, W , satisfies

rW = α

Z
φi(a)dH(a, i), (2)

where H(a, i) is the distribution of portfolios and preference types across investors. A dealer

meets an investor with instantaneous probability α. Random matching implies that this investor

is a random draw from the population of all investors. Thus, (2) simply equates the flow value

of a dealer to the expected intermediation fee.

We now turn to the determination of the intermediation fee and the quantity of assets

traded in a meeting between a dealer and an investor of type i who holds portfolio a. The

change in the investor’s portfolio, abi − a, and the payment to the dealer, φi(a), are taken to be

the outcome corresponding to the Nash solution to a bargaining problem where the dealer has

bargaining power η ∈ [0, 1]. The utility of an investor if an agreement (ab − a, φ) is reached is

Vi(a
b)− p(ab − a) − φ. In case of disagreement, the utility of the investor is Vi(a). Therefore,

the investor’s surplus is Vi(ab)− Vi(a)− p(ab − a)− φ. The dealer’s surplus is equal to the fee,

φ. Hence, the outcome of the bargaining is given by15

(abi , φi) = arg max
(a0,φ)

[Vi(a
0)− Vi(a)− p(a0 − a)− φ]1−ηφη. (3)

The following lemma characterizes the bargaining solution given the value functions {Vi}Ii=1.

14Our notation reflects the fact that both the new portfolio and the intermediation fee may depend on the
preference type of the investor at the time he contacts the dealer. In principle, these variables may also depend
on the investor’s wealth, but anticipating Lemma 1, we do not make this dependence explicit in our notation for
the new portfolio.
15Note that it would be equivalent to set φ = (p̂ − p)(ab − a) and reformulate the bargaining problem as a

choice of (ab − a), the size of the order, and p̂, the transaction price charged or paid by the dealer. So if ab > a,
then the investor is a buyer and p̂ > p can be interpreted as the ask price charged by the dealer. Conversely, if
ab < a, then the investor is a seller and p̂ < p is the bid price paid by the dealer.
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Lemma 1 The outcome of the bargaining problem (3) is (abi , φi) = [ai, φi(a)], where

ai = argmax
a0
[Vi(a

0)− pa0], (4)

φi(a) = ηmax
a0
[Vi(a

0)− Vi(a)− p(a0 − a)]. (5)

According to Lemma 1, the quantity of assets the investor buys, ai − a, is chosen so as

to maximize the total surplus of a match and the intermediation fee, φi(a), is set to split the

surplus of the match according to each agent’s bargaining power. From (4), it is immediate

that the investor’s new portfolio, ai, is independent of a. Interestingly, from the last term of

(1), it is clear that investors choose the same portfolio, ai, regardless of whether their trade is

carried out directly in the asset market or intermediated by a dealer. We can use Lemma 1 to

rewrite (1) as

rVi(a) = ui(a) + δ
X
j

πj [Vj(a)− Vi(a)] + κmax
a0
[Vi(a

0)− Vi(a)− p(a0 − a)], (6)

where κ ≡ α (1− η) + β can be thought of as the rate at which the investor gains effective

direct access to the asset market.

So far we have characterized the bargaining outcome for given value functions and provided

the maximizers corresponding to the right-hand sides of (4) and (5) exist. The following lemma

establishes that the value functions exist, are unique, strictly increasing and strictly concave,

that the ai defined in (4) is unique and that the φi (a) given in (5) is well-defined. For the

analysis that follows, it will be convenient to define

Ui (a) =
r + κ

r + δ + κ
ui(a)+

δ

r + δ + κ

X
j

πjuj(a). (7)

Lemma 2 For each i, suppose that ui (a)−rpa is continuous and bounded above for any rp > 0.
There exists a unique solution {Vi(·)}Ii=1 to (6):

Vi(a) =
Ui (a) + κ(pa+Ωi)

r + κ
, (8)

where Ωi = r+κ
r+δ+κ∆i +

δ
r+δ+κ

P
j πj∆j, and ∆i = maxx [Ui (x)− rpx].

Combining (4) and (8) we find that ai, the optimal portfolio of an investor with preference

type i, is the one that achieves the value ∆i in Lemma 2. Hence, ai satisfies

U 0i (ai) ≤ rp, “ = ” if ai > 0. (9)
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Condition (9) states that an investor who wishes to hold the asset in state i chooses his optimal

portfolio so that the expected (conditional on being in state i) discounted sum of flow marginal

utility from holding the portfolio until the next time it is adjusted, i.e., U
0
i(a)
r+κ , equals p−

κ
r+κp,

namely the cost of buying an additional unit of the asset and holding it until the next time it

can be sold back in the competitive market.

From (7) we see that U 0i (a) is a weighted average of the marginal utilities in the various

states. The weights on the current marginal utility and future ones depend on the transition

rates α, β and δ, on the discount rate r, on the dealer’s bargaining power, η, and on the

probability distribution {πk}Ik=1. If u0i(ai) >
P

k πku
0
k(ai), then ∂ai/∂α > 0 and ∂ai/∂β > 0.

The investor’s demand for the asset increases as trading frictions are reduced. As α or β

increases, it becomes easier for investors to sell parts of their portfolios in case of an adverse

preference shock. Therefore, the investor’s demand for the asset increases in those states in

which his marginal utility from holding the asset is high relative to the average across states.

Conversely, if u0i(ai) <
P

k πku
0
k(ai), i.e., if his marginal utility in the current state is below

average, then ∂ai/∂α < 0 and ∂ai/∂β < 0. As α or β goes to infinity, Ui (a)→ ui (a), and the

optimal portfolio tends to the ai that solves u0i(ai) ≤ rp, namely the portfolio choice that would

prevail in a competitive market where all trades can be executed instantaneously.16

We now turn to the determination of the intermediation fee that an agent in state i who

is holding portfolio a pays the dealer who readjusts his portfolio. From (5), this fee satisfies

φi(a) = η [Vi(ai)− Vi(a)− p(ai − a)], with ai characterized by (9). Using (8),

φi(a) =
η [Ui (ai)− Ui (a)− rp (ai − a)]

r + κ
. (10)

The intermediation fee depends on the dealer’s bargaining power, η, the discount factor, r, and

the transition rates α, β and δ. It also varies with the investor’s asset position at the time the

trade is executed, a, as well as with his desired portfolio, ai.

Next, we characterize the steady-state distribution H(a, i). The individual state of an

investor is a pair (a, i) ∈ R+ × {0, ..., I}, where a is his current portfolio and i his preference

type. First, note that any state (a, i) such that a 6= aj for j ∈ {1, ..., I} is transient, since
whenever an investor adjusts his portfolio he chooses a ∈ {ak}Ik=1. Thus, the set of ergodic
16Note that for α <∞ and β <∞, the asset would appear to be misallocated in the sense that u0i(ai) 6= u0j(aj)

for i 6= j. Specifically, investors with relatively low current marginal valuations, i.e., those with preference types
i such that u0i(ai) <

P
k πku

0
k(ai), hold positions that are too large relative to their optimal portfolios in the

frictionless benchmark. And similarly, investors with high current marginal valuations hold positions that are
too small.
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states is {ak}Ik=1×{1, ..., I}. This allows us to simplify the exposition by denoting state (ai, j) ∈
{ak}Ik=1×{1, ..., I} by ij ∈ {1, ..., I}2. Hence, for state ij, i represents the portfolio the investor
currently has (i.e., the one corresponding to the preference shock he had at the time he last

rebalanced his portfolio), and j represents his current preference shock. The measure of investors

in state ij is denoted nij .

In a steady state, the flow of investors entering state ij must equal the flow of investors

leaving state ij:

δπj
X
k 6=j

nik − δ(1− πj)nij − (α+ β)nij = 0, if j 6= i, (11)

(α+ β)
X
k 6=i

nki + δπi
X
k 6=i

nik − δ(1− πi)nii = 0. (12)

According to (11), the measure of investors in state ij (j 6= i) increases whenever an investor in

some state ik receives a preference shock j (which occurs with instantaneous probability δπj)

and decreases whenever an investor in state ij receives a new preference shock different from j

(which happens with instantaneous probability δ(1−πj)), or whenever such an investor readjusts
his portfolio (either through a dealer, with instantaneous probability α, or by accessing the asset

market directly, with instantaneous probability β). Equation (12) has a similar interpretation.

The pattern of flows between states is depicted in Figure 2 for an example with I = 3. Each circle

represents an individual state. The horizontal arrows represent flows due to preference shocks,

whereas the vertical ones indicate flows due to portfolio readjustments. On the diagonal, the

individual states shaded in grey are those for which there is no mismatch between the investor’s

current preference type and the portfolio he holds. The following lemma characterizes the

stationary distribution of preference shocks and asset holdings.

Lemma 3 The steady-state distribution (nij)Ii,j=1 is given by

nij =
δπiπj

α+ β + δ
, for j 6= i, (13)

nii =
δπ2i + (α+ β)πi

α+ β + δ
. (14)

The marginal distributions ni· =
P

j nij and n·j =
P

i nij are ni· = n·i = πi, i.e., the

measure of investors with preference type i is equal to πi, the probability to draw preference

shock i, conditional on getting a preference shock. Note that the distribution of probabilities

13
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Figure 2: Flows between individual investor states

across states is symmetric, nij = nji. Also, ∂nij/∂(α+ β) < 0 if j 6= i and ∂nii/∂(α+ β) > 0,

i.e., the measure of investors who are matched to their desired portfolio increases as the rate at

which investors get to rebalance their portfolios, either directly or through dealers, increases.

So far we have characterized the optimal portfolio choice, ai, for an investor of type i, with

asset position a, the fee φi (a) that the investor pays if the trade is intermediated by a dealer and

the steady-state distribution of investors across asset holdings and preference types. The only

remaining equilibrium variable to be determined is p, the price of the asset in the competitive

market. This price is the one that equilibrates demand and supply of assets, i.e., the one that

implies
P

i,j nijai = A. Using Lemma 3, this market-clearing condition can be written asX
i

πiai = A. (15)

A steady-state equilibrium is a list {(nij)Ii,j=1 , (ai, φi (·))
I
i=1 , p} such that (nij)

I
i,j=1 satisfies

(13) and (14), (ai, )
I
i=1 and p satisfy (9) and (15), and (φi (·))Ii=1 satisfies (10).

Proposition 1 There exists a unique steady-state equilibrium.
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The distribution of investors over portfolios and preference types is given by (13) and (14).

The individual portfolio choices (ai) in (9) depend on p, the equilibrium price in the interdealer

market. Given these individual demands, the market-clearing condition (15) determines a

unique price.

Hereafter, unless it is specified otherwise, suppose ui is such that (9) holds at equality (e.g.,

suppose that lima→0 u0i (a) = ∞ for some i). To illustrate how a reduction in trading frictions

affects the equilibrium, we consider first the limiting case where search frictions vanish, i.e., as

either α→∞ or β →∞. In either case investors can trade in the asset market continuously, as
they can either find dealers instantly (if α = ∞) or have continuous direct access to the asset
market (if β =∞). In the limit, from (9) we get

u0i(ai)

r
= p (16)

for i = 1, ..., I. Combining (15) and (16), we see that the price of the asset converges to the

p that solves
P

i πiu
0−1
i (rp) = A. From (10) we see that φi (a) → 0 for all a and i. The

limiting distribution of investors across asset holdings and preference types is nii = πi for each

i, and nij = 0 for j 6= i. As frictions vanish, investors choose ai continuously by equating the

present discounted value of the marginal return from the asset to its price. The equilibrium fee,

asset price and distribution of asset positions are the ones that would prevail in a Walrasian

economy.17

Another interesting limiting case results when η = 1 (dealers have all the bargaining power).

In this special case, the equilibrium is still characterized by (9), (10), (13), (14), and (15), but

with

Ui (a) =
r + β

r + β + δ
ui(a)+

δ

r + β + δ

X
k

πkuk(a).

Since investors enjoy no gains from readjusting their portfolios in trades intermediated by

dealers, the demand for assets is the one that would prevail in an economy with α = 0. The

liquidity provided by dealers is irrelevant for investors’ portfolio choices, and investors behave

as if there were no dealers to alleviate the trading frictions.

17For related limiting results, see Duffie, Gârleanu and Pedersen (2005) and Miao (2006). In a different context,
see Gale (1987) and Spulber (1996).
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3.1 Aggregate uncertainty

We now extend the model to allow for aggregate uncertainty. Suppose the economy can be in

one of two states: a high state (H) in which every investor of preference type i enjoys utility

uHi (a) from holding portfolio a and a low state (L) in which every investor of preference type

i enjoys utility uLi (a) from the same portfolio, with ∂uLi (a) /∂a < ∂uHi (a) /∂a. The aggregate

state changes according to a continuous-time Markov chain: while in state s ∈ {H,L}, the time
until the next switch to the other state s0 is an exponentially distributed random variable with

mean 1/λs. So, for example, if we associate state H with “normal times” and state L with

“times of crisis,” a small λH means that crises are very infrequent, and a large λL that they

tend to be short-lived. We specialize the analysis to stochastic steady states where ni (t) = πi

for all t. Let ps denote the price of the asset when the aggregate state is s.

Let V s
i (a) denote the value of an investor with preference type i when the aggregate state

is s ∈ {H,L}. It satisfies a generalized version of (6), i.e.,

rV s
i (a) = usi (a) + δ

X
j

πj [V
s
j (a)− V s

i (a)] + λs[V s0
i (a)− V s

i (a)]

+ κmax
a0
{[V s

i (a
0)− V s

i (a)− ps(a0 − a)]}, (17)

for i = 1, ..., I, s = H,L and s0 ∈ {H,L} \{s}. The novelty in (17) is the third term on the

right side, which captures the capital gain associated with a change in the aggregate state.

The investor’s problem can be characterized following a similar method to the one we used in

Section 3. For the analysis that follows, it will be convenient to define λ ≡ λH + λL and

Us
i (a) =

(r + κ) [usi (a) + vsi (a)] + δ
P

j πj [u
s
j (a) + vsj (a)]

r + δ + κ
,

with vsi (a) =
(r+κ+λ)[us

0
i (a)−usi (a)]+δ

P
jπj [u

s0
j (a)−usj(a)]

(1/λs)(r+κ+λ)(r+κ+δ+λ) , for s = H,L and s0 ∈ {H,L} \{s}. The
following lemma summarizes the portfolio problem that investors face in this environment.

Lemma 4 An investor with preference type i ∈ {1, ..., I} who gains access to the asset market
at a time when the aggregate state is s ∈ {H,L} solves

max
asi
[Us

i (a
s
i )− ξsasi ], (18)

where

ξs = rps − κλs

r + λ+ κ
(ps

0 − ps), (19)

for s = H,L and s0 ∈ {H,L} \{s}.
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Intuitively, Us
i (a

s
i )

r+κ is the present expected discounted utility that the investor obtains from

holding asi over the period of time that elapses until he is next able to rebalance his portfolio,

while ξs

r+κ is the cost of purchasing a unit of the asset today, net of its expected discounted

resale value at the next time he regains access to the market.18 Thus, the portfolio choice of

an investor of type i in state s satisfies

∂Us
i (a

s
i )

∂asi
≤ ξs, “ = ” if asi > 0. (20)

In order to characterize the price of the asset in each state, we turn to the market-clearing

condition. The flow of assets brought by investors who access the market, directly or through a

dealer, is (α+ β)
R
adHt(a, i) = (α+ β)A. Among those investors, a fraction πi of them have

preference type i. Therefore, the aggregate demand for the asset is (α + β)
P

i πia
s
i and the

market-clearing conditions can be written asX
i

πia
s
i = A, for s = H,L. (21)

Since (20) gives asi as a function of ξ
s, (21) can be solved for the pair (ξH , ξL), and given this

pair, asset prices can be obtained from (19), i.e.,

ps =
ξs

r
− κλs

r (r + κ) (r + λ)
(ξs − ξs

0
), (22)

for s = H,L and s0 ∈ {H,L} \{s}. The intermediation fee borne by an investor of preference
type i who purchases (asi − a) through a dealer at a time when the aggregate state is s satisfies

a generalized version of (5), φsi (a) = η[V s
i (a

s
i ) − V s

i (a)− ps (asi − a)]. We can substitute V s
i (·)

(e.g., using (52) in the appendix) to arrive at

φsi (a) =
η [Us

i (a
s
i )− Us

i (a)− ξs (asi − a)]

r + κ
. (23)

A stationary stochastic equilibrium is a list {(ni)Ii=1 , ((asi , φsi (·))
I
i=1 , ξ

s, ps)s=H,L} such that
(ni)

I
i=1 = (πi)

I
i=1; given (ξ

s)s=H,L, a
s
i satisfies (20) for all i, s; (ξ

s)s=H,L satisfy (21); (p
s)s=H,L

are given by (22); and φsi (·) satisfies (23) for all i and s. It is possible to show that a stationary
stochastic equilibrium exists and is unique. For each aggregate state s, (20) and (21) determine

(asi )
I
i=1 and ξs. Given the pair (ξH , ξL), (22) implies the equilibrium prices (pH , pL). Given

((asi )
I
i=1 , p

s)s=H,L, the expression for the intermediation fee is immediate from (23).

18Note that ξs

r+κ
= ps − Es[e−rT pw(T )], where the expectation is over the random variables T and w (T ) ∈

{H,L}, namely the length of time until the date at which the investor will regain access to the market and the
aggregate state that will prevail at that date. (The subscript indicates that the expectation is conditional on the
current aggregate state, s; see the appendix for details.)
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3.2 Numerical analysis

In this section we parametrize the model and use it, here and in subsequent sections, to illustrate

and complement our analytical results. We let a unit of time correspond to a day and normalize

the stock of assets, A = 1. We take the rate of time preference to be 7 percent per year, i.e.,

r = 1.07
1
360 − 1. As a benchmark, we consider a pure dealer market where all trades are

intermediated by dealers, i.e., we set β = 0 (we experiment with a wide range of values for β

in Sections 6 and 7). The average delay of execution for a trade intermediated by a dealer is

taken to be one day, i.e., α = 1.19 We set δ = 1 so that investors receive preference shocks at

the same rate as they encounter trade opportunities. We assume the negotiating parties have

equal bargaining power, i.e., η = 0.5. We let ui (a) = εia
1−σ/ (1− σ) and take σ = 2 as our

baseline, but will report some results for various values of σ. The support for the values of εi is

{ i−1I−1}Ii=1 with I = 50. Our choice of I implies that investors will be distributed among 2, 500

individual states. The preference shock εi = i−1
I−1 is drawn with probability

πi =
λi−1/(i− 1)!PI
j=1 λ

j−1/(j − 1)!
, for i = 1, ..., I. (24)

The parameter λ from this truncated Poisson distribution plays a key role in determining the

size distribution of trades and intermediation fees. We choose λ = 4. This parametrization

implies a yearly turnover rate for the asset that is close to 8 and an average effective volume-

weighted spread of about 0.2 basis points of the asset price.20

Figure 3 illustrates some key features of our economy. The distribution of idiosyncratic

shocks is plotted on the top-left panel. The top-right panel shows investors’ choices of portfolios

as a function of the realization of their individual preference shocks. Not too surprisingly, ai

increases with εi. The bottom-left panel is a three-dimensional histogram of the equilibrium

stationary distribution of investors over individual states, i.e., (nij)
I
i,j=1. The investor’s desired

19According to Saunders, Srinivasan and Walter (2002, p. 97), trading delays in corporate bond markets range
from a minute to a day.
20This value for the effective spread is smaller than estimates found in the literature–see Schultz (2001),

for instance. One reason is that our model abstracts from other components of the bid-ask spread such as
inventory costs and costs associated with asymmetric information between dealers and investors. The expression
for the average bid-ask spread, weighted by volume and expressed as a proportion of the price of the asset,
is given in (33). (See Section 6 for more on spreads.) The turnover in the model is defined as follows. The
flow of investors who can readjust their portfolios per unit of time is α + β. A fraction nji of these investors
readjust their portfolio from aj to ai so that the quantity they trade is |ai − aj |. Thus, the turnover rate is
T = A−1

P
i,j (1/2) (α + β)nji |ai − aj |. Our turnover rate is in the same range as the turnover for the entire

market for U.S. public and private debt. The outstanding debt is $15.8 trillion while the daily trading volume is
$368 billion, so that the daily turnover rate is 0.023, or about 8 yearly (see Joys, 2001).
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portfolio lies on the x axis and his current portfolio on the y axis. Both axes range from a1

to aI , which in this parametrization equal 0.82 and 2.19, respectively. There is a fairly large

concentration of agents on the main diagonal, i.e., many investors hold their optimal portfolio.

Visually, this is the spike that imitates the shape of the primitive distribution of idiosyncratic

shocks. But note that there is also a significant proportion of agents experiencing various

degrees of mismatch with their current portfolios, precisely 43 percent of them. The bottom-

right panel plots the fees φij . Notice that fees are 0 on the main diagonal (φii = 0) and that

they increase as ai (the current portfolio) and aj (the new portfolio) get further apart. Also,

buying and selling fees are not symmetric.

Figure 3: The baseline economy

4 Asset prices

In this section we discuss the effects of parameter changes on the level and volatility of asset

prices. We will pay special attention to α and β, which we interpret as measures of execution

delays. We specialize the analysis to utility functions of the form ui(a) = εiu(a). For this class
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of preferences, Ui (a) = ε̄iu(a), where ε̄i =
(r+κ)εi+δε̄
r+δ+κ and ε̄ =

P
j πjεj . Focusing on interior

solutions, (9) reduces to

ε̄iu
0(a) = rp. (25)

4.1 Level

Differentiating (25) for a given p, we find that ∂ai/∂α has the same sign as (εi − ε̄). That is,

investors with a preference shock above average increase their demand when α increases. To

see why this is so, note that the left side of (25) is a weighted sum of the investor’s marginal

utility from holding the asset. Agents with εi > ε̄ have a current marginal utility that is higher

than what they expect it to be in the future. Consequently, their choice of ai is lower than

u0−1 (rp/εi), which is what they would choose in a world with no trading delays. The reason is

that, since εi is higher than ε̄, the investor anticipates that his preferences are likely to revert

toward ε̄ in the future, and that when this happens, he may be unable to rebalance his portfolio

for some time. A larger α means that it will be easier for the investor to find a dealer in the

future, and this makes him put more weight on his current marginal utility from holding the

asset relative to its expected value. Conversely, investors with a preference shock below average

reduce their demand when α increases. So, for given p, as α increases the dispersion of asset

holdings increases. The same logic applies to changes in β, and for similar reasons, ∂ai/∂δ has

the same sign as − (εi − ε̄).

Since for a given price p, the demands of investors with relatively low valuations (εi < ε̄)

fall, while those of investors with high valuations (εi > ε̄) rise, the effect of an increase in α

on the aggregate demand for assets–and therefore on the equilibrium price of the asset–is

ambiguous in general. The following proposition provides sufficient conditions for the price of

the asset to increase with α.

Proposition 2 If − [u0(a)]2 /u00(a) is strictly increasing in a, then dp/dα > 0. If − [u0(a)]2 /u00(a)
is strictly decreasing in a, then dp/dα < 0. If − [u0(a)]2 /u00(a) is independent of a, then
dp/dα = 0.

Whether an increase in α has a positive effect on the asset price depends on the curvature of

the utility function. The reason is that this curvature determines the curvature of the individual

demand for the asset as a function of ε̄i, i.e., ∂ai/∂ε̄i = − [u0(ai)]2 / [u00(ai)rp]. If u(a) = log a
then ai is linear in ε̄i, and as one aggregates the individual changes in demands induced by an
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increase in α, the increases in ai (for investors with values of εi larger than ε̄) and the decreases

in ai (for investors with values of εi lower than ε̄) cancel each other out. As a result, α has no

effect on the aggregate demand for assets nor on the equilibrium price.21 If u is not too concave,

ai is a convex function of ε̄i. For this case, the increases in ai for relatively large values of εi

outweigh the decreases in ai for relatively low values of εi and the aggregate demand for the

asset increases in response to an increase in α. In turn, this implies that the equilibrium price

of the asset increases with α. Conversely, the asset price is decreasing in α if u is sufficiently

concave.

Proposition 2 is illustrated in Figure 4, where we plot the individual demand for the asset,

ai, as a function of ε̄i for the special case of I = 2. The figure is drawn under the assumption

that − [u0(a)]2 /u00(a) is strictly increasing in a, so that ai is a strictly convex function of ε̄i.

Notice that π1ε̄1 + π2ε̄2 = ε̄ and that π1a1 + π2a2 = A in equilibrium. An increase in α

corresponds to a mean-preserving increase in the spread of the distribution of ε̄i, i.e., ε̄i shifts

to ε̄0i, with ε̄01 < ε̄1, ε̄02 > ε̄2 and π1ε̄
0
1 + π2ε̄

0
2 = ε̄. From Jensen’s inequality, it is clear that

π1a
0
1 + π2a

0
2 > π1a1 + π2a2 (aggregate demand increases with α for given p), so the asset price

has to increase to clear the market.

2ε1ε
iε'1ε '2ε

ia

1a
'1a

2a

'2a

2211 aa ππ +
'' 2211 aa ππ +

Figure 4: Effect of an increase in α on p

If we specialize preferences further by letting u(a) = a1−σ/(1 − σ) with σ > 0, the model

21Gârleanu (2005) derives a similar result in a version of Duffie, Gârleanu and Pedersen (2005) with endogenous
portfolios and CARA preferences.
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can be solved in closed form:

ai =
ε̄
1/σ
iP

j πj ε̄
1/σ
j

A (26)

p =

³P
i πiε̄

1/σ
i

´σ
rAσ

. (27)

As a corollary of Proposition 2, we know that σ > 1 (< 1) implies dp/dα < 0 (> 0) and

u (a) = log a implies dp/dα = 0.

Finally, consider the limit as σ → 0, i.e., as investors’ preferences become linear. From (27),

the price approaches p = ε̄I/r and from (26) ai → 0 for i ∈ {1, ..., I − 1} and aI → A/πI . The

price is a weighted average of the marginal utility of the highest investor type and the average

marginal utility in the market. The weight on the marginal utility of the highest valuation

investor–and hence the asset price–is increasing in α, β and r, and decreasing in η and δ.

4.2 Volatility

We now investigate how trading frictions affect the volatility of asset prices. To this end,

we consider the model with aggregate uncertainty developed in Section 3.1 and let usi (a) =

zsεia
1−σ/(1 − σ) where zs is the realization of the aggregate shock, with zH > zL. Then,

Us
i (a) = ε̄siu(a), where ε̄

s
i is independent of a.

22 Consider an investor with idiosyncratic pref-

erence shock i at a time when the aggregate state is s; his optimal portfolio is asi = (ε̄
s
i/ξ

s)1/σ

and the market-clearing condition implies

ξs =

"P
i πi (ε̄

s
i )
1/σ

A

#σ
. (28)

Consider first the limit that obtains as trading delays vanish. As κ→∞, we have ε̄si → zsεi,

and combining (22) and (28) we find

ps →
¡P

i πiεi
1/σ
¢σ

rAσ

(r + λs
0
)zs + λszs

0

r + λ
, (29)

22Explicitly,

ε̄si =
(r + κ+ λs

0
)zs + λszs

0

r + κ+ λ
ε̄+

r + κ

r + κ+ δ

(r + κ+ δ + λs
0
)zs + λszs

0

r + κ+ δ + λ
(εi − ε̄) ,

for s = H,L and s0 ∈ {H,L} \{s}. Instead of considering aggregate preference shocks, we could assume that
the asset yields a dividend stream z, where z is a random variable. An investor holding portfolio a would enjoy
utility εiu (za) while his idiosyncratic preference type is i.
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for s = H,L and s0 ∈ {H,L} \{s}.
Let us return to the case with finite κ and set σ = 1. Using Lemma 4 and equations

(22) and (28), we find ps = [(r+λs
0
)zs+λszs

0
]ε̄

r(r+λ)A . The price of the asset in state s is independent

of κ, the degree of trading frictions, and it is identical to the frictionless limit (29), with

σ = 1. This finding is a generalization of the last part of Proposition 2 to economies with

aggregate uncertainty: with logarithmic utility and multiplicative shocks, equilibrium prices

are independent of trading frictions. Thus, in this case, trading frictions have no effect on the

volatility of the asset price.

We use numerical simulations to study the effect that changes in the degree of trading

frictions have on the volatility of the asset price for arbitrary values of σ. In a sufficiently

long sample from our economy, the asset price has mean λLpH+λHpL

λ and standard deviation
√
λHλL

λ

¡
pH − pL

¢
. From (29), in a frictionless economy the coefficient of variation (standard

deviation divided by mean, hereafter CV),
√
λHλL

¡
pH − pL

¢
/(λLpH + λHpL), equals

r
√
λLλH(zH − zL)

(r + λ) (λLzH + λHzL)
.

According to this measure, is the volatility of the asset price higher in an economy with trading

frictions?

To address this question we normalize zH = 1, and merely for illustrative purposes, we let

zL = 1/2 and λH = λL = 1/5. The remaining parameter values are as in Section 3.2. For this

parametrization, the ratio of the CV of the price in the economy with trading frictions to the

CV in the frictionless economy is below 1, meaning that the asset price is more volatile in the

frictionless economy than in the one with trading frictions. In fact, the asset price becomes

more volatile as trading delays shrink. This result, however, depends crucially on the curvature

of the utility function. To illustrate this fact, in Figure 5 we plot the level curves of the CV as

a function of σ and β for the baseline parametrization of Section 3.2. This figure shows that

the volatility of the asset price increases with β if σ > 1, decreases with β if σ < 1, and is

independent of β if σ = 1.23

23These results are mainly due to the fact that, in line with Proposition 2, the price of the asset in both
states–and hence the denominator of the CV–is decreasing (increasing) in β for σ > 1 (< 1).
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Figure 5: Asset-price volatility as a function of β and σ

5 Trading frictions and volume

In this section we study the effects of trading frictions on the asset allocation across investors

and the volume of trade. Let Gκ(a) denote the cumulative distribution of asset holdings across

investors in an economy in which they gain direct effective access to the asset market at rate

κ. For a particular class of utility functions, the following proposition establishes that the

equilibrium distributions of asset holdings corresponding to different values of κ can be ranked

according to the second-order stochastic dominance ordering.

Proposition 3 Assume ui(a) = εia
1−σ/(1 − σ) with σ > 0. For any pair (κ, κ0) such that

κ0 > κ, Gκ dominates Gκ0 in the second-order stochastic sense.

Proposition 3 shows that the distribution of asset holdings across investors becomes “riskier,”

in a second-order stochastic sense, when trading frictions are reduced (or when investors have
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more bargaining power). The reason, as discussed in the previous sections, is that if an investor

can access the market more frequently, he will choose a portfolio which is more in line with his

current preference type. Hence, investors with a high εi will raise ai, while investors with a

low εi will reduce ai. We now turn from the effects of trading frictions on the distribution of

individual portfolios to their effects on the total volume of trade.

The flow of investors who can readjust their portfolios per unit of time is α+ β. A fraction

nji of these investors readjust their portfolio from aj to ai so that the quantity they trade is

|ai − aj |. Thus, the total volume of trade is

V = (α+ β) (1/2)
X
i,j

nij |aj − ai| . (30)

(The turnover rate of the asset is defined to be T = V/A.) An increase in κ has three distinct

effects on trade volume. First, the measure of investors in any individual state (i, j) ∈ I2 who

gain access to the market and are therefore able to trade increases, which tends to increase trade

volume. Second, the proportion 1−
P

inii of agents who are mismatched to their portfolio–and

hence the fraction of agents who wish to trade–decreases, which tends to reduce trade volume.

Finally, the distribution of asset holdings spreads out, which–according to Proposition 3–

tends to increase the quantity of assets traded in many individual trades. With (13) and (30),

it is easy to check that the first two effects combined lead to an increase in V. In the case I = 2,
for example, it is also immediate from Proposition 3 that |a2 − a1| increases with κ, so the total
volume of trade unambiguously increases with κ. More generally, in our parametrization of

Section 3.2 with I = 50, we also find ∂V/∂κ > 0. The behavior of the (daily) trade volume, V,
as a function of β is illustrated in the bottom-right panel of Figure 6.

6 Trading frictions and spreads

In this section we study how changes in trading frictions affect intermediation fees, which we

can also interpret as bid-ask spreads.24 We specialize the analysis to ui(a) = εia
1−σ/(1 − σ),

for σ > 0. From (10), the equilibrium fee that a dealer charges an investor who holds portfolio

a and wishes to hold ai is

φi(a) =
η
h

ε̄i
1−σ

¡
a1−σi − a1−σ

¢
− rp (ai − a)

i
r + κ

, (31)

24Recall the discussion in footnote 15.
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with ai and p given by (26) and (27). From (31), we see that an increase in β (or α) has

two opposite effects on the intermediation fee. On the one hand, a higher β implies more

competition among dealers, which tends to reduce the fees they charge for any given trade

size–the competition effect of reduced trading frictions. But on the other hand, a higher β

also induces investors to conduct larger portfolio reallocations every time they trade, and this

translates into larger fees for dealers, on average–the reallocation effect of reduced trading

frictions. Notice that along a stationary equilibrium the only transactions that investors carry

out involve trading aj − ai, for (i, j) ∈ I2. Therefore, we can simplify notation by letting φij

denote φj (ai), namely the intermediation fee borne by an investor who holds portfolio ai and

engages in a trade that leaves him with aj .

Consider the limiting case σ → 0, i.e., investors’ preferences become almost linear. At the

end of Section 4.1 we showed that in this case, ai → 0 for all i 6= I and rp→ ε̄I , so (31) yields

φij → 0 for all (i, j) /∈ {I} × {1, ..., I − 1}. Obviously, dealers obtain no fee when investors do
not want to readjust their portfolios. Perhaps more surprisingly, when investors are buying the

asset (i 6= I and j = I), dealers do not charge a fee either. The reason is that when buying, the

investor is paying his marginal valuation for the asset, and since he has almost-linear utility,

this means that he is indifferent between holding or not holding the asset. Finally, there are

investors in state ij, for i = I and j 6= I. Those investors are holding aI → A/πI but wish to

hold aj → 0. From (31), we find

φIj →
η (εI − εj)A

(r + δ + κ)πI
, (32)

a fee that is proportional to the quantity traded (A/πI).

Since the intermediation fee (32) is linear in the quantity traded, the previous results can

be readily interpreted in terms of bid-ask spreads. The fact that an investor pays no fee when

buying from the dealer is equivalent to a transaction in which the dealer charges an ask-price

pa equal to the price of the asset in the competitive market, i.e., pa = p. When an investor

of type j < I sells his portfolio A/πI through a dealer, he receives pA/πI − φIj . Using (32),

this transaction is equivalent to one in which the dealer pays investors of type j a bid price

pbj = p − η(εI−εj)
r+δ+κ < p. The difference between the effective price at which the dealer sells, pa,

and buys, pbj , is akin to a bid-ask spread:

pa − pbj =
η (εI − εj)

r + δ + κ
.
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This spread is decreasing in the rate of time preference (recall that agents only get returns from

selling in this linear case) and in the rate at which investors can rebalance their portfolios (κ).

It also decreases with δ, since the value of rebalancing the portfolio is lower when preference

shocks are more frequent. The spread increases with the dealer’s bargaining power η, and

also with the difference between the marginal utility of the highest-valuation investor and the

marginal valuation of the investor involved in the trade. (Dealers buy assets at a lower effective

price from investors with low marginal utility of consumption because these investors experience

larger gains from selling the portfolio.)

Although for more general (i.e., nonlinear) preferences intermediation fees are nonlinear

in the quantities traded, one can still compute the effective prices that an investor pays (or

receives) per unit of the asset he buys (or sells). For example, investors with asset position ai

who trade quantity aj − ai through a dealer pay (or receive if aj − ai is negative)

p̂ij = p+
φij

aj − ai

per unit of the asset. The difference between the prices at which investors buy and sell is

sometimes taken as a measure of the liquidity of the market.25 Notice that if aj − ai > 0, then

p̂ij− p̂ji = φij+φji
aj−ai > 0, so for this typical “round-trip” transaction, dealers (investors) trade at a

lower (higher) effective price when they buy than when they sell. A financial analyst collecting

transaction price data in this economy would compute an average effective spread weighted by

volume and expressed as a proportion of the price of the asset as follows:26

S = 1

p

X
i,j

nij |ai − aj |P
k, nk |ak − a |

φij
|ai − aj |

. (33)

To illustrate the effects of trading frictions on intermediation fees, we turn to our baseline

parametrization. The first panel of Figure 6 displays φ1I and φI1 as a proportion of the equi-

librium asset price. The fee φ1I paid by the investor who holds a1 but wishes to trade up to aI

(the top line) is hump-shaped with respect to β. For small β the reallocation effect dominates

and fees are increasing in β, but as β gets larger, the competition effect between dealers begins

25See Harris (2003) for a textbook treatment, for example.
26Alternatively, one could compute the effective spread weighted by the number of transactions, namelyX

j>i

nij
1−

P
k nkk

φij + φji
aj − ai

.
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to dominate, and the fee eventually becomes decreasing in β. In contrast, the fee φI1 is strictly

decreasing with β: the competition effect always outweighs the reallocation effect. Also, notice

from the figure that buying and selling fees need not be symmetric, i.e., φ1I 6= φI1.

A dealer’s expected profit depends on the average fee he charges across the various trades.

(This variable will play an important role when we endogenize the number of dealers in the

following section.) The average fee, φ̄, equals
P

i,j φijnij , or using (10),

φ̄ = η
X
i,j

nji
Ui (ai)− Ui (aj)

r + κ
. (34)

Thus, φ̄ depends on the mismatch between investors’ desired and their actual portfolios, as

measured by Ui (ai) − Ui (aj), as well as on the frequency with which investors gain access

to the asset market. More asset mismatch implies a larger expected return from providing

intermediation services. An increase in the frequency at which an investor can have direct

access to the market has several effects on dealers’ profits. First, it raises investors’ outside

option and therefore reduces the fees dealers can charge in any given transaction. Second, it

reduces the measure of investors who do not hold their desired portfolios (i.e., nii increases for

all i). Third, it raises the dispersion of portfolios and therefore the fees that dealers can charge

to allow an investor to rebalance his portfolio. As a result, the average fee can be non-monotonic

as illustrated in the top-right panel of Figure 6, which reports φ̄ (but normalized by the price of

the asset) as a function of β. For low values of β the dealers’ expected profit increases because

the dispersion of portfolios increases as trading frictions are reduced. But for sufficiently large

values of β the competition effect dominates and the average remuneration of dealers falls. The

bottom-left panel of Figure 6 displays the average spread in (33), which is decreasing in β.

Finally, the bottom-right panel shows that trade volume as defined in (30)–another variable

that practitioners routinely associate with the “liquidity of the market”–is increasing in β.

The theory also has clear predictions for how individual intermediation fees vary with the

size of a transaction. We summarize these implications in the following proposition.

Proposition 4 Consider a trade between a dealer and an investor holding portfolio a and

wishing to hold portfolio ai. The intermediation fee per unit of asset traded paid by this investor,

i.e.,
¯̄̄
φi(a)
ai−a

¯̄̄
, is increasing in the size of the trade.

28



Figure 6: Trading frictions, intermediation costs and turnover

Figure 7 displays the fees per unit of asset traded for all the transactions that take place in

the baseline parametrization of Section 3.2. In other words, it plots all the pairs (aj − ai, φij)
I
j=1

for each i = 1, ..., I. As a corollary of Proposition 4, the intermediation fee per unit of asset

traded tends to increase with the size of the trade.27 Note, however, that two trades of the

same size can pay different per-unit fees, since the associated surpluses for the investors may be

different in the two trades. That is, in general, if ai 6= ak, then φij 6= φks even if aj−ai = as−ak.
There is also an interesting asymmetry in terms of fees that are charged when investors buy

vis-à-vis those they are charged when they sell. For example, an agent who buys aI −a1 pays a
fee that is more than 2.5 times higher than the one the same dealer would charge to an investor

who sells aI − a1. Our analytical insights–e.g., that with linear preferences only sellers pay

27This result is in accordance with Boehmer (2005, Table 7, Panel B), who finds that the effective spread
increases with the size of orders in U.S. equity markets. In contrast, Edwards, Harris and Piwowar (2004) argue
that transaction costs decrease significantly with trade size in corporate bond markets.
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Figure 7: Liquidity premia

fees–suggest that this asymmetry is intimately linked to the value of σ. Our quantitative work

confirms this conjecture: keeping the size of the trade constant, for larger values of σ, buyers

pay larger fees than sellers.28

7 Entry of dealers

In competitive dealer markets, dealer spreads ultimately depend on the costs

that dealers incur in running their business. The free entry and exit of dealers

ensures that spreads will adjust so that dealers just earn normal profits. When

spreads are too high, their competition for order flow will cause spreads to fall, and

as spreads fall, so do expected profits. Harris (2003, p. 298)

In this section we formalize the notion that a dealer’s expected profits depend on the compe-

tition for order flow that he faces from other dealers. Many dealer markets are characterized by

a virtual absence of barriers to entry.29 Accordingly, we extend the model to allow for free entry

28 In terms of this asymmetry, there is nothing special about σ = 1. In fact, buyers pay higher fees than sellers
when σ = 1 in our baseline parametrization.
29See Wahal (1997) or Weston (2000) for an empirical study of the determinants of entry and exit of market-

makers in NASDAQ and their impact on spreads and the level of trading activity, e.g., trade volume and number
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of dealers, thereby endogenizing the speed at which investors can rebalance their portfolios.

Suppose that the Poisson rate at which an investor contacts a dealer, α, is a continuously

differentiable function of the measure of dealers in the market, υ, with α(υ) a strictly increasing

and α(υ)/υ a strictly decreasing function of υ. We specify that α(0) = 0, α(∞) = ∞ and

α(∞)/∞ = 0. Since all matches are bilateral and random, the Poisson rate at which a dealer

serves an investor is α(υ)/υ. For larger υ, investors’ orders are executed faster, but the flow of

orders per dealer decreases due to a congestion effect.

There is a large measure of dealers who can choose to participate in the market. Dealers

who choose to operate incur a flow cost γ > 0 that represents the ongoing costs of running

the dealership, e.g., exchange membership dues, the cost of searching for investors, advertising

their services and so on. Free entry implies α(υ)
υ φ̄ = γ, i.e., that the expected instantaneous

profit of a dealer equals his flow operation cost.30 Using (34), this condition can be rewritten

as
α(υ)

υ
η
X
i,j

nji
Ui (ai)− Ui (aj)

r + β + α(υ) (1− η)
= γ. (35)

A steady-state equilibrium with free entry is a list {(nij)Ii,j=1 , (ai, φi (·))
I
i=1 , p, υ} that sat-

isfies (9), (10), (13), (14), (15), and (35).

Proposition 5 Assume η > 0. There exists a steady-state equilibrium with free entry of deal-

ers, and it has υ > 0.

Proposition 5 establishes the existence of a steady-state equilibrium with free entry provided

dealers have some bargaining power. (If dealers had no bargaining power, intermediation fees

would equal 0 in every trade and dealers would be unable to cover their operation costs.) Our

proof of existence of a nontrivial equilibrium for η > 0 relies on the properties of α (·). As the
measure of dealers becomes large, the instantaneous probability for a dealer to meet an investor

is driven to zero, and given that the cost to participate in the market is strictly positive, the

expected utility of a dealer becomes negative. Conversely, as the measure of dealers approaches

0, the rate at which a dealer meets an investor grows without bound and the expected profit of

dealership becomes arbitrarily large. Consequently, since a dealer’s expected profit is continuous

in the contact rate, there is an intermediate value of υ such that expected profit equals 0.

of trades.
30Our free entry of dealers is analogous to the free entry of firms in Pissarides (2000). Rubinstein and Wolinsky

(1987) also assume free entry of dealers (or middlemen), while Shevchenko (2004) has no entry but allows agents
to choose whether to become middlemen.
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Consider the limiting case where the dealer’s operating cost, γ, tends to 0. Since the average

fee φ̄ is positive and bounded away from 0 for any α < ∞ (see the proof of Proposition 5),

the free-entry condition (35) implies υ → ∞. This in turn implies that α → ∞, so the search
equilibrium converges to the frictionless competitive equilibrium we characterized in Section 3.

That is, {ai} satisfies (16) for i = 1, ..., I , φi (a) = 0 for all a and i, the equilibrium price, p,

solves
P

i πiu
0−1
i (rp) = A, and the distribution of investors across asset holdings and preference

types is nii = πi for each i, and nij = 0 for j 6= i.

Next, we analyze two cases where the equilibrium with entry is unique. First, suppose

η = 1–an economy with monopolist dealers. From (34), the average fee is

φ̄ =
X
i,j

δπiπj
α(υ) + β + δ

Ui(ai)− Ui(aj)

r + β
. (36)

The second factor in (36) is the expected discounted utility gain that an investor of type i who

holds portfolio aj gets from trading ai − aj . The average fee is a weighted average of each of

these gains, with weights given by the proportion of agents of type i who hold portfolio j in the

stationary distribution (the first factor in (36)). Since η = 1 implies that {Ui (·)} and {ai} are
independent of α, in this case the average fee only depends on α (υ) through the distribution

of investors, i.e., the “weights” in (36). As the number of dealers increases, a larger measure

of investors hold their desired portfolios, which reduces dealers’ opportunities to intermediate

trades. Thus, in this case, φ̄ is strictly decreasing in α (and υ). Therefore, the left side of (35)

is strictly decreasing in υ, which implies uniqueness of the steady-state equilibrium with entry.

From (35) with η = 1, we also obtain the following comparative static results: dυ/dγ < 0,

dυ/dβ ≷ 0, dυ/dδ ≷ 0. Higher operation costs reduce expected profits, so fewer dealers choose
to operate. An increase in the rate at which investors get direct access to the asset market,

β, is ambiguous in general because of two opposing effects. On the one hand, the fact that

investors can trade more often without the need for a dealer reduces dealers’ market power,

and therefore also the average fee. This tends to reduce entry. On the other hand, as we saw

in Section 6, with higher β investors are able to rebalance their portfolios more frequently, and

as a result they choose more extreme asset positions. For dealers, more extreme asset positions

mean that on average they will earn higher intermediation fees. This tends to stimulate entry.

The effect of an increase in δ on the measure of dealers is ambiguous for similar reasons.

In Figure 8 we report the behavior of the model with free entry and η = 1. Except for the

value of η, the rest of the parametrization is as in the baseline without free entry. In addition,
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in this formulation we set α(υ) = υ0.75 and γ = 0.0001. The top-left panel displays the dealer’s

expected profits net of the flow cost, γ, illustrating the determination of the mass of dealers

for the economy with β = 0. In the top-right panel, the solid line traces out the equilibrium

measure of dealers as we vary β from 0 to 5. For relatively low values of β, an increase in β raises

the measure of dealers. Over this range, allowing investors to have direct access to the market

increases dealers’ profits and makes them more willing to operate in the market. As a result,

the rate at which investors contact dealers rises, as can be seen in the dashed line. For larger

values of β, both the equilibrium measure of dealers and the rate at which investors contact

dealers are decreasing in β. As a corollary, the bottom-left panel shows that for relatively low

values of β, increases in β can generate sharp reductions in the average execution delay, 1
α(υ)+β .

But for larger values of β, further increases in β crowd out dealers and can cause an increase

in the average execution delay.

The bottom-right panel of Figure 8 shows what happens to investors’ optimal portfolios (for

each level of the idiosyncratic shock εi) as β varies from 0 to 5. When β = 0, investors are able

to rebalance their portfolios very infrequently relative to the frequency of their idiosyncratic

shocks.31 In addition, since η = 1 in these experiments, investors get no surplus whenever

they reallocate their portfolio through a dealer, which together with β = 0, implies that κ = 0.

Hence, the optimal portfolio profile is extremely flat: when they make their portfolio allocation,

investors do not vary their portfolio choice much as a function of their current preference shock.

As β rises, each investor’s optimal portfolio profile becomes steeper: he chooses to hold large

quantities of the asset when his current preference shock is high, and small ones when this

shock is low. This increase in portfolio dispersion means that investors trade large volumes on

average, and since fees are increasing in the size of the trade, this is what stimulates the entry

of dealers.

Next, we consider a second case in which the measure of dealers is uniquely determined.

Consider the limit as investors’ preferences become linear, ui (a) → εia. As in Section 4, let

ε1 < ε2 < ... < εI , and recall that from (9), in this case only investors with the highest marginal

utility want to hold assets. In this limit, the average fee becomes

φ̄ =
ηδ (εI − ε̄)A

[β + δ + α (υ)] [r + β + δ + α (υ) (1− η)]
.

31The condition β = 0 means that investors can never access the market directly, and from the top-left panel
we see that the equilibrium measure of dealers when β = 0 is very small, meaning that investors will have to
wait a long time to be able to rebalance their portfolio through a dealer.
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Figure 8: Model with entry of dealers and η = 1

The average fee is decreasing in υ, so the left side of (35) is decreasing in υ and the equilibrium

is unique. Furthermore, it is straightforward to verify that ∂υ/∂γ < 0, ∂υ/∂η > 0, ∂υ/∂A > 0,

∂υ/∂r < 0, ∂υ/∂β < 0 and dυ/dδ ≷ 0. We discuss these results in turn.
Lower operation costs naturally imply more entry of dealers. Higher bargaining power for

dealers means that they can extract a larger share from the gains from trade in a meeting with

an investor, so the measure of dealers increases. Similarly, if the stock of assets increases, the

size of each trade is larger and dealers make more profit. An increase in the discount rate

reduces the number of dealers because investors benefit less from readjusting their portfolios,

and therefore intermediation fees are lower. (Recall that with linear preferences, the gains from

holding a portfolio are “backloaded,” i.e., they materialize only when the portfolio is sold, and

higher r means these future gains are discounted more heavily.) An increase in β discourages

dealer entry because it strengthens the investor’s outside option and also reduces the degree of

mismatch between investors’ desired and actual portfolios. Finally, an increase in the frequency

of preference shocks has an ambiguous effect on the equilibrium measure of dealers. On the one

hand, a higher δ generates more mismatch, which raises the return to intermediation. But on
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the other hand, since with larger δ preferences revert back to the mean marginal valuation ε̄

faster, an increase in δ lowers the expected utility of the highest-valuation investor relative to

the lower-valuation investors, which implies smaller gains from trade and consequently lower

intermediation fees.

So far, we have discussed two special cases for which the equilibrium with entry is unique.

But in general, the steady-state equilibrium with free entry need not be unique. An increase in

the number of dealers leads to an increase in α (υ). Faster trade means more competition among

dealers, which tends to reduce intermediation fees. But as we have pointed out, an increase in

α (υ) also induces investors to take on more extreme asset positions (i.e., more in line with their

current as opposed to the mean preference shock). This means that dealers will on average

intermediate larger portfolio reallocations, which implies larger fees, since fees are increasing in

the volume traded. The model will exhibit multiple steady states if the second effect is strong

enough. (But for a given value υ, the rest of the equilibrium, {(nij), (φji), (ai), p)}, is uniquely
determined as in the previous sections.)32
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Figure 9: Multiple steady-state equilibria

In Figure 9 we provide a typical representation of a dealer’s expected profit net of operation

32Notice that this type of multiplicity is new, and in fact, unlike the multiplicities in Diamond (1982) or
Vayanos and Weill (2005), it is present even though we did not embed thick-market effects in our matching
technology. That is, by assuming that ∂ [α (υ) /υ] < 0, we in fact assume that dealers reduce the rate at which
other dealers contact investors. Thus, without the general equilibrium effect that operates through the shifts in
portfolio compositions, our equilibrium would be unique. If instead we assumed that for some reason dealers find
it easier to contact investors when more dealers participate in the market, i.e., ∂ [α (υ) /υ] > 0, then the model
could display multiple equilibria even without the portfolio-composition effects that we have identified.
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costs, α(υ)υ φ̄− γ, as a function of the measure of dealers. As υ approaches 0, the contact rate of

dealers goes to infinity while φ̄ stays bounded away from 0. Therefore, dealers’ expected profits

are strictly positive for small υ. As υ goes to infinity, the dealers’ expected profits approach

−γ. Thus, there are generically an odd number of steady-state equilibria. We typically find
either one or three equilibria in our numerical work.33 In case of multiple equilibria, the market

can be stuck in a low-liquidity equilibrium where few dealers enter and investors engage in

relatively small transactions. The low-liquidity equilibrium exhibits large spreads, small trade

volume and long trade-execution delays.

The high and low equilibria share the following comparative statics: a decrease in the

participation cost of dealers raises the measure of dealers in the market. If the decrease in the

participation cost is large enough, the multiplicity of equilibria can be removed. (The expected

profits curve in Figure 9 shifts upward.) Similarly, an increase in β can eliminate the multiplicity

of equilibria. Thus, it is possible that if the economy was initially in the low equilibrium, an

increase in β generates a large upward jump in the measure of dealers. So allowing investors to

access the market directly need not crowd dealers out; in fact, it may even make intermediation

more profitable.

To conclude the section, we want to argue that the multiplicity of steady-state equilibria

is a robust feature of our model provided that the elasticity of the matching function α(υ) is

sufficiently close to one. This condition means that the marginal contribution of dealers to the

matching process is large, and congestion effects on the dealer side are small. To see this clearly,

consider a linear matching function, α(υ) = α0υ, with α0 > 0. (This matching technology does

not satisfy the assumption of strict concavity imposed earlier.) The rate at which dealers find

orders to execute, α(υ)/υ, is independent of the measure of dealers in the market (there are no

congestion effects). From the free-entry condition, υ = 0 if α0φ̄ < γ, υ = ∞ if α0φ̄ > γ and

υ ∈ [0,∞] if α0φ̄ = γ. If the average fee φ̄(υ) is hump-shaped, as it was in the top-right panel

of Figure 6, for instance, the number of equilibria is either one or three. If there are multiple

equilibria, then one of those equilibria is υ = 0, as illustrated in Figure 10. Furthermore, for the

economy to reach the equilibrium with the highest number of dealers, there must be a critical

mass of dealers: dealers enter only if the measure of dealers is above a threshold. By reducing

the cost of dealership γ, or by improving the efficiency of the matching technology α0, one

33Note that the low and high steady states in Figure 9 are “stable” in the following heuristic sense: if one
perturbates slightly the measure of dealers from its steady-state value, free entry tends to bring the measure of
dealers toward its steady-state value.
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can eliminate the multiplicity and reach a situation in which the equilibrium with the highest

measure of dealers is the unique equilibrium.

0α
γ

)(αφ

Figure 10: Free entry with linear matching technology

8 Efficiency

In this section we study the problem of a social planner who maximizes the expected discounted

sum of all agents’ utilities. When choosing allocations, the planner is subject to the same

frictions that investors and dealers face in the decentralized formulation studied in the previous

sections. Specifically, these frictions imply that over a small interval of time of length dt, the

planner can only reallocate assets among a measure (α+ β) dt of investors chosen at random

from the population. We will study efficiency in both the model with a fixed number of dealers

and the model with free entry of dealers.

8.1 Investors’ portfolios

Let Ht(a, i) denote the distribution of investors across portfolios and preference types at time t.

Since at any point in time all investors access the market according to independent stochastic

processes with identical distributions, the measure of assets that can be reallocated among the

α+β randomly drawn investors is (α+ β)
R
adHt(a, i) = (α+ β)A. Thus, the quantity of assets
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that can be reallocated among investors depends only on the mean of Ht(a, i). Consequently,

the planner’s decision of how to allocate assets at time t affects neither the measure of investors

he will draw in the future nor the total measure of assets that these investors hold. In other

words, Ht(a, i) is not a state variable for the planner’s problem.

The planner chooses among allocations {ai(t)}Ii=1 that specify how to distribute the measure
(α+ β)A of assets among the measure α+ β of investors whose portfolios he can reallocate at

date t. Let Ṽi(a) denote the expected discounted utility of an investor of type i who holds stock

of assets a from the present until the next time he gains access to the asset market, i.e.,

Ṽi(a) = Et
∙Z t+T

t
e−r(τ−t)uk(τ)(a)dτ

¸
. (37)

The expectation is over the random variables T and k, where T is the time until the investor

regains access to the asset market and k(τ) is the preference type at time τ , which evolves

according to the stochastic process for idiosyncratic preference shocks. Note that–since the

stochastic processes for both random variables are stationary–the right-hand side of (37) is

independent of calendar time, t. The value function Ṽi(a) satisfies the following flow Bellman

equation:

rṼi(a) = ui(a) + δ
X
j

πj

h
Ṽj(a)− Ṽi(a)

i
− (α+ β)Ṽi(a), (38)

and in turn, (38) implies

Ṽi(a) =
(r + α+ β)ui(a) + δ

P
j πjuj(a)

(r + α+ β + δ) (r + α+ β)
. (39)

Since general goods enter linearly in the utility function of all agents, the consumption and

production of those goods net out to 0 and can be ignored by the planner. Therefore, the

planner only maximizes the investors’ direct utilities from holding the asset. Given an initial

distribution H0 (a, i) of investors over asset holdings and preference types, the planner solves

max
{ai(t)}

(
Ψ0 +

Z ∞

0

X
i

e−rt (α+ β)ni(t)Ṽi [ai(t)] dt

)
s.t. ṅi(t) = δ [πi − ni(t)] , for i = 1, ..., I (40)X

i

(α+ β)ni(t)ai(t) ≤ (α+ β)A, (41)

where Ψ0 ≡
R
i Ṽi(a)dH0(a, i). The term Ψ0 captures the utility of all investors before they

access the marketplace for the first time. This term is a constant because the planner can only
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reallocate assets among the α+β randomly drawn investors who contact the marketplace. The

second term in the objective function states that over an interval of time of length dt, there is

a measure (α+ β)ni(t)dt of investors of type i who can have their portfolios rebalanced. An

investor of type i is assigned a portfolio ai(t). The planner’s choices are constrained by the

law of motion of the measure of investors of each preference type, (40), and must satisfy the

resource constraint (41). The following proposition characterizes the optimal allocation and

summarizes the efficiency properties of the equilibrium of the model with a fixed measure of

dealers.

Proposition 6 Consider the economy with an exogenous measure of dealers. Then:

(a) The efficient allocation {ai(t)}Ii=1 satisfies

(r + α+ β)u0i [ai(t)] + δ
P

k πku
0
k [ai(t)]

r + α+ β + δ
≤ λ(t), “ = ” if ai(t) > 0, (42)

where λ(t) is the Lagrange multiplier on the resource constraint (41) scaled up by (r + α+ β).

Let a∗i [λ(t)] denote the solution to (42), then the shadow price of an asset, λ(t), satisfiesX
i

h
(1− e−δt)πi + e−δtni(0)

i
a∗i [λ(t)] = A (43)

at each date t.

(b) The equilibrium is efficient if and only if η = 0.

The equilibrium with bargaining is efficient if and only if dealers have no bargaining power.

This result may seem surprising given that the Nash solution implies efficient trade for each

investor-dealer match. Specifically, recall that in the equilibrium, the portfolio implied by

the bargaining outcome maximizes the joint surplus of an investor and a dealer, and it is in

fact the same portfolio that an investor would choose if he had direct access to the market.

The inefficiency arises from a standard holdup problem due to ex-post bargaining. When

conducting a trade, investors anticipate the fact that they will have to pay fees for rebalancing

their portfolios in the future and that these intermediation fees increase with the surplus that

those future trades generate. As a result, at the margin, investors are discouraged from taking

positions that tend to lead to large portfolio reallocations in the future. This inefficiency of

the equilibrium with bargaining gets mitigated as α or β increases, since subjecting dealers to

increased competition reduces transaction fees.
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8.2 Entry of dealers

Finally, we investigate the efficiency properties of equilibrium with free entry of dealers. The

dynamic planner’s problem is now much more complex since the measure of dealers at any point

in time will typically depend on the whole distribution Ht(a, i), not just its mean. To keep the

analysis manageable, here we consider the case where the discount rate is close to 0, i.e., we

characterize the allocation chosen by a social planner who maximizes steady-state welfare. In

this case, the planner solves

max
{ai},υ

X
i,j

nijuj(ai)− υγ

s.t.
X
i,j

nijai = A, (44)

where the steady-state distribution {nij} satisfies (13) and (14). The planner maximizes the
population-weighted sum of investors’ utilities from holding the asset, net of the participation

costs of the dealers and taking into account that the stationary distribution {nij} depends on
the measure of dealers, υ.

Proposition 7 Consider the economy with free entry of dealers and let r ≈ 0. Then:
(a) The efficient allocation {(ai)Ii=1 , υ} satisfies

(α+ β)u0i(ai) + δ
P

k πku
0
k(ai)

α+ β + δ
≤ λ, “ = ” if ai > 0, (45)

α0 (υ)

α (υ) + β + δ

X
i,j

δπiπj [ui(ai)− uj(ai)]

α (υ) + β + δ
= γ, (46)

and (44), where λ is the Lagrange multiplier on the resource constraint (44) scaled up by (α+β).

(b) An equilibrium with free entry is efficient if and only if η = 0 and α0(υ)υ/α(υ) = η.

As before, investors’ portfolios are efficient if and only if dealers have no bargaining power.

Entry introduces an additional inefficiency: when a dealer enters the market, he imposes a

negative externality on other dealers’ order flow. As it is well-known since Hosios (1990),

these search externalities are internalized if and only if the elasticity of the matching function

coincides with dealers’ bargaining power. If the Hosios condition α0(υ)υ/α(υ) = η holds, then

the equilibrium allocations can be made arbitrarily close to the efficient allocations by making

η arbitrarily close to 0. But there is no free-entry equilibrium with η = 0, so an equilibrium

with entry is always inefficient.
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9 Conclusion

We have developed a simple search-theoretic model of the exchange process in an asset market.

The asset market we modeled captures the salient features of many financial trades in various

contexts–and in particular of those carried out in over-the-counter markets. A fraction of

trades is intermediated by dealers who have access to an interdealer market, while the rest of

the trades are conducted directly between investors. In both cases finding a counterpart to

execute the trade entails delays. We have examined how these trading delays affect the level

and volatility of asset prices, the size of bid-ask spreads, the volume of trade, the allocation of

assets across investors and the profitability and participation decisions of dealers. As far as we

know, our analysis is one of the first theoretical attempts to study the positive and normative

implications of the introduction of technological innovations in trading–such as electronic and

automated trading–that have increased the speed at which financial transactions are matched

and executed.

From a methodological point of view, we have generalized the model of Duffie, Gârleanu

and Pedersen (2005) along several dimensions. We have relaxed the portfolio restrictions so

that investors can hold any nonnegative quantity of asset, extended the model to consider more

general preferences and more general forms of investor heterogeneity, allowed for idiosyncratic

as well as aggregate uncertainty, and granted investors direct, as well as indirect (i.e., dealer-

intermediated), access to a competitive market. We have also endogenized the provision of

liquidity by endogenizing the measure of dealers.

In terms of findings, we have shown that the level and volatility of the asset price need

not be affected by the degree of the trading frictions; and that if they are, the sign of the

effect depends on the curvature of the utility function. We have found that a reduction in

trading delays can increase the dealers’ average profit despite the fact that, for a given trade

size, intermediation fees decrease with a reduction in trading delays. We have also shown

that there can be multiple equilibria in a version of the model where the measure of dealers

is endogenous. Equilibria with high asset turnover, narrow bid-ask spreads and high level of

participation of dealers can coexist with equilibria with low turnover, narrow spreads and longer

trading delays. We have also studied the model from a normative standpoint and found that

generically, equilibria are inefficient. Investors’ portfolio choices are inefficient because of a

holdup problem in their relationships with dealers. Entry of dealers is inefficient because of a
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standard search externality.

By way of numerical simulations, we have shown that while the model is stylized, it allows

for fairly general forms of investor heterogeneity and it has relatively few parameters that map

naturally into observables. One could imagine calibrating or estimating the model using data

on trade execution in over-the-counter markets. We think that much could be learned from such

exercises. For example, one could quantify the welfare gains associated with a given reduction in

trading frictions, or predict the impact that the introduction of electronic trading networks will

have on bid-ask spreads, average execution times, trade volume and other standard measures

of market liquidity. Various extensions are worth considering. First, there are many issues,

such as the dynamic provision of liquidity by dealers who can hold asset positions, that would

require a more detailed study of the model dynamics. Second, as an alternative to bilateral

bargaining, one could explore alternative trading mechanisms that combine price-posting and

directed search. Finally, a model with multiple assets could be used to study how the various

assets’ liquidity properties are jointly determined.
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A Appendix

Proof of Lemma 1. The Nash solution requires the outcome to be Pareto efficient. Since

agents’ payoffs are linear in φ, ab must maximize the surplus from the match, namely Vi
¡
ab
¢
−

Vi(a) − p
¡
ab − a

¢
. Differentiating the Nash product in (3) with respect to φ and equating to

zero gives (5).

Proof of Lemma 2. Let S = R+×{1, ..., I}, C = {g : S → R | g (a, i) is continuous in a

and bounded above} and C0= {f : S → R | f (a, i) = g (a, i) + pa, for some g ∈ C}. Define
v (a, i) ≡ Ui(a)−rpa

r+β+α(1−η) + pa. Note that our assumptions on ui imply that v (a, i) ∈ C0. Next,
rewrite (6) as

Vi(a) =
Ui (a) + [β + α (1− η)] (pa+ V̄i)

r + β + α (1− η)
, (47)

where

V̄i =
r + β + α (1− η)

r + β + δ + α (1− η)
max
x
[Vi (x)− px] +

δ

r + β + δ + α (1− η)

P
kπkmaxx

[Vk (x)− px]

for i = 1, ..., I. The right-hand side of (47) defines an operator T :

T (V )(a, i) = max
(xk)

I
k=1

{v (a, i) + β̂[(1− δ̂)[V (xi, i)− pxi] + δ̂
P

kπk [V (xk, k)− pxk]]}, (48)

with β̂ = β+α(1−η)
r+β+α(1−η) , and δ̂ = δ

r+β+δ+α(1−η) . We wish to show there exists a unique solution

V (a, i) to (TV ) (a, i) = V (a, i), and that V (a, i) = Vi (a), with Vi (a) as in (8). Suppose

V ∈ C0, then the maximization on the right-hand side of (48) has a solution, (aj)Ij=1, and this
solution is independent of a. Thus, T (V )(a, i) = v (a, i) + β̂ci, where ci = (1 − δ̂)[V (ai, i) −
pai] + δ̂

P
kπk [V (ak, k)− pak] is a constant. Therefore T : C0 → C0. Consider the metric space

(C0, k·k), where k·k denotes the sup norm. We next show that T is a contraction on (C0, k·k).
Consider an arbitrary pair V 1, V 2 ∈ C0 and let (ajk)Ik=1 ∈ argmax(xk)Ik=1{(1 − δ̂)[V j (xi, i) −
pxi] + δ̂

P
kπk

£
V j (xk, k)− pxk

¤
} for j = 1, 2. Fix (a, i) ∈ S, then

TV 1 (a, i)− TV 2 (a, i) = β̂(1− δ̂)
£
V 1
¡
a1i , i

¢
− V 2

¡
a2i , i

¢
−
¡
pa1i − pa2i

¢¤
+ β̂δ̂

X
k

πk
£
V 1
¡
a1k, k

¢
− V 2

¡
a2k, k

¢
−
¡
pa1k − pa2k

¢¤
≤ β̂(1− δ̂)

£
V 1
¡
a1i , i

¢
− V 2

¡
a1i , i

¢¤
+ β̂δ̂

P
kπk

£
V 1
¡
a1k, k

¢
− V 2

¡
a1k, k

¢¤
≤ β̂ sup

i∈{1,...,I}

£
V 1
¡
a1i , i

¢
− V 2

¡
a1i , i

¢¤
≤ β̂ sup

(a,i)∈S

£
V 1 (a, i)− V 2 (a, i)

¤
≤ β̂ sup

(a,i)∈S

¯̄
V 1 (a, i)− V 2 (a, i)

¯̄
= β̂

°°V 1 − V 2
°° .
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Similarly, we can obtain TV 2 (a, i)− TV 1 (a, i) ≤ β̂
°°V 1 − V 2

°°. Hence,¯̄
TV 1 (a, i)− TV 2 (a, i)

¯̄
≤ β̂

°°V 1 − V 2
°° , ∀(a, i) ∈ S.

Taking the sup over (a, i) on the left-hand side of this inequality, we get
°°TV 1 − TV 2

°° ≤
β̂
°°V 1 − V 2

°°. Since β̂ ∈ [0, 1), T is a contraction with modulus β̂ on C0. Since (C0, k·k) is
complete (because (C, k·k) is complete), it follows from the Contraction Mapping Theorem

(e.g., Stokey and Lucas (1989), Theorem 3.2) that T has a unique fixed point V ∈ C0. It is a
matter of algebra to use (48) to verify that indeed (TV ) (a, i) = V (a, i) for V (a, i) = Vi (a)

given by (8).

Proof of Lemma 3. From (11) and (12),

δπjni· − (α+ β + δ)nij = 0, for j 6= i (49)

δπini· + (α+ β)n·i − (α+ β + δ)nii = 0, (50)

where ni· =
P

k nik and n·i =
P

k nki are the marginal distributions. Sum (49) over j, and add

(50) to the resulting expression to get ni· = n·i. Then sum (49) over i, and add the resulting

expression to δπjnj·+(α+β)n·j = (α+ β + δ)njj (this is (50), but with i = j) to get n·j = πj .

Thus, n·j = nj· = πj . Substituting these marginals into (49) and (50) yields (13) and (14).

Proof of Proposition 1. The steady-state distribution (nij)
I
i,j=1 is unique and given by (13)

and (14). From (9), any interior portfolio choice ai is a strictly decreasing function of p for

every i. Therefore, the market-clearing condition (15) determines a unique p. Given p, there is

a unique ai that solves (9). Finally, given p and ai, (10) gives the fee φi (·) for each i.

Proof of Lemma 4. From (17), we see that the model is formally equivalent to one where

investors have effective direct access to the asset market with Poisson rate κ. Using this

observation, the V s
i (a) from (17) also satisfies

V s
i (a) = E

½Z T

0
e−rtuw(t)k(t) (a)dt+ e−rT max

a0
[V

w(T )
k(T ) (a

0)− pw(T )(a0 − a)]

¾
, (51)

where w (t) ∈ {H,L} denotes the aggregate state, and k (t) ∈ {1, 2, ..., I} the investor’s prefer-
ence type at time t. In (51), T is an exponentially distributed random variable with mean 1/κ,

that denotes the period of time that elapses until the investor gains direct effective access to

the market. The expectations operator, E, is with respect to the random variable T and the
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two independent Poisson processes {w(x), k(x)}, and is conditional on (w(0), k(0)) = (s, i). We
now proceed to simplify (51). First, notice that (51) can be rewritten as

V s
i (a) = Ṽ s

i (a) + E[e−rTpw(T )]a+∆s
i , (52)

where Ṽ s
i (a) = E

R T
0 e−rxuw(x)k(x) (a)dx, and ∆

s
i = Ee−rT maxa0 [V

w(T )
k(T ) (a

0)− pw(T )a0]. Using (52),

the optimization problem of an investor, maxasi [V
s
i (a

s
i )− psasi ], can be written as

max
a0
{Ṽ s

i

¡
a0
¢
− [ps − E(e−rTpw(T ))]a0}. (53)

The expectation in (53) is over the random variables T and w (T ), conditional on the current

aggregate state, s. Next, we proceed in two steps: (i) derive a simpler expression for Ṽ s
i (a),

and (ii) show how to simplify Es
£
e−rTpw(T )

¤
.

(i). The value Ṽ s
i (a) satisfies the following Bellman equation

rṼ s
i (a) = usi (a) + δ

X
k

πk[Ṽ
s
k (a)− Ṽ s

i (a)] + λs[Ṽ s0
i (a)− Ṽ s

i (a)]− κṼ s
i (a) .

After some manipulations, we find

Ṽ s
i (a) =

Us
i (a)

r + κ
. (54)

(ii). The expected discounted resale price of the asset satisfies

Es[e−rTpw(T )] =
κ

r + κ

"
(r + κ+ λs

0
)ps + λsps

0

r + κ+ λ

#
, (55)

for s ∈ {H,L}, and s0 ∈ {H,L} \ {s}. Substituting (54) and (55), (53) is equivalent to

max
asi
{Us

i (a
s
i )− [rps −

κλs

r + κ+ λ
(ps

0 − ps)]asi},

which is identical to (18) once we let rps − κλs

r+κ+λ(p
s0 − ps) = ξs.

Proof of Proposition 2. Differentiating (15) we obtain

dp

dα
=

P
i πi∂ai/∂α

−
P

i πi∂ai/∂p
.

From (25), we know that the denominator of this expression is strictly positive, so we focus on

the sign of the numerator. Differentiating (25) to obtain ∂ai/∂α, multiplying by πi, and adding

over all i, we arrive atX
i

∂ai
∂α

πi =
(1− η)δ

(r + δ + κ)2 rp

X
i

[u0(ai)]
2

−u00(ai)
(εi − ε̄)πi.

48



Suppose − [u0(a)]2 /u00(a) is strictly increasing in a. Let ā denote the a that solves (25) for

ε̄i = ε̄. Then, note that − [u0(ai)]2 (εi − ε̄) /u00(ai) ≥ − [u0(ā)]2 (εi − ε̄) /u00(ā) for each i, with

strict inequality for all i such that εi 6= ε̄. Thus,
P

i
∂ai
∂α πi > 0 and consequently,

dp
dα > 0. Similar

reasoning implies dp
dα < 0 if − [u0(a)]2 /u00(a) is strictly decreasing and dp

dα = 0 if − [u0(a)]
2 /u00(a)

is constant in a.

iπ
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Figure 11: Distribution of asset holdings

Proof of Proposition 3. Let ai (κ) denote the individual demand for the asset by an agent

whose current preference shock is εi in an economy where the direct effective access rate to the

asset market is κ < κ0. From (26), for each i,

ai (κ) =
AP

j πj

h
(r+κ)εj+δε̄
(r+κ)εi+δε̄

i1/σ .
Then, one can verify that there exists a unique ε̃ ∈ (ε1, εI) such that ai (κ0) > ai (κ) for all εi > ε̃,

ai (κ
0) < ai (κ) for all εi < ε̃ and ai (κ

0) = ai (κ) ≡ ã if εi = ε̃. With Lemma 3, the cumulative

distribution of assets across investors for the economy indexed by κ, is Gκ(a) =
P

j 1{aj(κ)≤a}πj .

This, and the fact that (κ0 − κ) [ai (κ
0)− ai (κ)] > 0 iff εi > ε̃ implies that Gκ0(a) ≥ Gκ(a) for

all a < ã and Gκ0(a) ≤ Gκ(a) for all a > ã. Thus, given that both densities have the same mean
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and aI (κ0) > aI (κ), the fact that the cumulative density functions cross only once implies that

Gκ dominates Gκ0 in the second-order stochastic sense. (Propostion 3 is illustrated in Figure 11,

where we represent the distribution associated with κ in black and the distribution associated

with κ0 in grey.)

Proof of Proposition 4. Differentiating, we find

∂

∂a

∙
φi (a)

ai − a

¸
=

η

r + β + α (1− η)

∙
Ui (ai)− Ui (a)− U 0i (a) (ai − a)

(ai − a)2

¸
≤ 0.

Thus, the intermediation fee per unit of asset traded is increasing in the size of the trade if and

only if Ui is concave.

Proof of Proposition 5. Using (7), we can write (34) as

φ̄ =
ηδ

(β + δ + α) [r + β + δ + α (1− η)]

X
i,j

πiπj [ui (ai)− ui (aj)] .

From (9) we know that ai is a continuous function of υ and p, i.e., ai = ai (υ, p). From (15), there

is a unique p that clears the asset market and it is a continuous function of υ, i.e., p = p (υ).

Thus, ai = ai [υ, p (υ)] is a continuous function of υ. Define the map Γ(υ) as

Γ(υ) ≡
[α(υ)/υ] δη

P
i,j πiπj {ui[ai(υ)]− ui[aj(υ)]}

[β + δ + α(υ)] [r + β + δ + (1− η)α(υ)]
. (56)

This is the left-hand side of the free-entry condition (35). First, we establish that limυ→0 Γ(υ) =

∞. Recall that
ai = argmax

a

h
(r+κ)ui(a)+δ

P
k πkuk(a)

r+δ+κ − rpa
i
,

therefore,

(r + κ)ui(ai) + δ
P

k πkuk(ai)

r + δ + κ
− rpai ≥

(r + κ)ui(aj) + δ
P

k πkuk(aj)

r + δ + κ
− rpaj (57)

holds for every i and j. Since (9) implies ai = aj if and only if ai = aj = 0, (57) holds with

strict inequality for any i such that ai > 0. Multiplying this inequality through by πiπj and

summing over all i and j implies
P

i,j πiπj {ui[ai(υ)]− ui[aj(υ)]} > 0. The inequality is strict

since for every υ we have ai > 0 at least for i = I. Then, limυ→0 Γ(υ) =∞ follows from η > 0

and the fact that

lim
υ→0

α(υ)/υ

[β + δ + α(υ)] [r + β + δ + (1− η)α(υ)]
=∞.
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Next, note that the fact that
P

i,j πiπj {ui[ai(υ)]− ui[aj(υ)]} is bounded (because ai(υ) must
be bounded for (15) to hold), together with

lim
υ→∞

α(υ)/υ

[β + δ + α(υ)] [r + β + δ + (1− η)α(υ)]
= 0

implies that limυ→∞ Γ(υ) = 0. Finally, since Γ is continuous, there exists some υ ∈ R+ such
that Γ(υ) = γ.

Proof of Proposition 6. Substituting (39) into the planner’s objective function, the

problem becomesZ ∞

0

α+ β

r + α+ β
max
{ai(t)}

(X
i

"
r + α+ β

r + α+ β + δ
ui[ai(t)] +

δ

r + α+ β + δ

X
k

πkuk [ai(t)]

#
ni(t)

)
e−rtdt

subject to
P

i ni(t)ai(t) ≤ A. Let

L(t) =
X
i

"
r + α+ β

r + α+ β + δ
ui[ai(t)] +

δ

r + α+ β + δ

X
k

πkuk[ai(t)]

#
ni(t)+λ(t)(A−

X
i

ni(t)ai(t)),

where λ(t) is the Lagrange multiplier associated with the feasibility constraint. The planner’s

problem then reduces to finding, for each t, the sequence {ai(t)}Ii=1 that solves max{ai(t)}L(t).
The first-order necessary and sufficient condition for this problem is (42). Condition (43) is ob-

tained by substituting the solution to the differential equation (40) into the resource constraint

(41) at equality. This concludes the proof of part (a). For part (b), note that from (43), as

t→∞, the shadow price of assets, λ(t), converges to the λ that solvesX
i

πia
∗
i (λ) = A, (58)

where a∗i (λ) is the ai that satisfies (42). Comparing (58) with (15), (42) with (9), and setting

rp = λ, it becomes clear that (9) coincides with (42) if and only if η = 0.

Proof of Proposition 7. The Lagrangian associated with this problem is

L = α+ β

α+ β + δ

X
i

πiui(ai) +
δ

α+ β + δ

X
i,j

πiπjuj(ai)− υγ + λ

Ã
A−

X
i

πiai

!
,

where λ ∈ R+ is the Lagrange multiplier associated with the resource constraint
P

i,j nijai = A.

The first-order condition with respect to ai is

α+ β

α+ β + δ
u0i(ai) +

δ

α+ β + δ

X
k

πku
0
k(ai) ≤ λ, “ = ” if ai > 0. (59)
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As r→ 0, the left-hand side of (9) approaches

β + α (1− η)

β + δ + α (1− η)
u0i(ai)+

δ

β + δ + α (1− η)

X
k

πku
0
k(ai),

which coincides with the left-hand side of (59) if and only if η = 0. The first-order condition

for the measure of dealers is

α0 (υ)

β + δ + α (υ)

X
i,j

δπiπj [ui(ai)− uj(ai)]

β + δ + α (υ)
= γ. (60)

From (56) we know that, as r → 0, the equilibrium condition for entry of dealers approaches

[α(υ)/υ] η

β + δ + (1− η)α(υ)

X
i,j

δπiπj [ui (ai)− ui (aj)]

β + δ + α(υ)
= γ,

which converges to (60) as η → 0 if and only if α0(υ)υ/α(υ) = η.
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