Archive for July, 2009

The Lowdown on Jupiter’s Black Eye

Wednesday, July 29th, 2009
Glenn Orton
Glenn Orton

We’ve had such great feedback and comments to our earlier post about the recent impact at Jupiter that we wanted to give you more details, plus answer some questions. My name is Glenn Orton, a senior research scientist at JPL. My colleague and fellow JPL blogger Leigh Fletcher is on a well-deserved vacation for a bit, and he filled in for me while I was at a conference talking about another aspect of our research and the Jupiter impact last week.

I’ve been on Anthony Wesley’s email list (as I am for many in the amateur astronomy community) for some time, so it wasn’t happenstance that I was aware of his Jupiter observation. Anthony is the Australian-based amateur astronomer who alerted the world to this big impact. When we received news of his discovery, we immediately wanted to verify it with some of the sophisticated telescopes NASA uses. Having actively observed in both the visible and infrared during the Shoemaker-Levy-9 impacts in 1994, I was aware that a quick verification was possible by looking at a wavelength with lots of gaseous absorption, which suppresses light reflected from Jupiter’s deep clouds.

Jupiter
This image shows a large impact shown on the bottom left on Jupiter’s south polar region captured on July 20, 2009, by NASA’s Infrared Telescope Facility in Mauna Kea, Hawaii. Image credit: NASA/JPL/Infrared Telescope Facility

Luck was on our side. Several months before the impact, our JPL team had been awarded observing time on NASA’s Infrared Telescope Facility (IRTF) atop Mauna Kea in Hawaii. We had the midnight to 6 a.m. shift (from our Pasadena office, which meant we started work at 3 a.m.) so much of our observing time would take place before Jupiter rose over Australian skies. Another piece of luck is that Anthony’s “day job” involves software engineering so he was able to watch the same telescope instrument status and data screens as we were, while we did remote-style observing from the IRTF over the Internet. He would also be doing his own (now *very important*) post-impact observing. Weather was just as “iffy” over Mauna Kea as in Australia, so it was lucky for all of us that we could catch this event.

With Leigh, several JPL summer interns and me huddled at our side-by-side computers at JPL (one with instrument controls and one showing the data), and Anthony online from Australia, we got started. We knew the location of Anthony’s dark spot would be coming over Jupiter’s rising limb (edge) just as our allotted time was beginning. A near-infrared spectrometer was in the center of the telescope from the previous observer. Although it wasn’t our instrument of choice (we wanted images!), it has a very nice guide camera sensitive to the near infrared, so we used it rather than waiting for the 20-40 minute hiatus needed by the telescope operator to move it out of the way and put our preferred instrument in its place. This turned out to be a good decision because the very first image showed us something brighter than anyplace else on the planet — exactly where Anthony’s dark feature was located. For me, this totally clinched the case that this was an impact. Even better was the fact that Anthony was looking on in real time. We e-mailed him what was obvious - he was *definitely* the father of a new impact!

Right after this we collected data that may help us sort out any exotic components of the impactor or of Jupiter’s atmosphere and just how high the particulates have spread. Then we switched instruments to something at much longer wavelengths that told us the temperatures were higher, and that ammonia gas had probably been pushed up from Jupiter’s troposphere (the lower part of the atmosphere) and ejected into its stratosphere (higher up in the atmosphere). We finished up with our preferred (more versatile) near-infrared camera and ended up, pretty tired, at 9 a.m. (this was a midnight to 6 a.m. run in Hawaii, and in California we were three hours ahead). Then we took some of the screen shots we’d been making and used them to submit a press release. Another person had already alerted a clearinghouse for important astronomical bulletins, so that was another thing that was important but that we didn’t need to do.

Now some responses to posts:

Good post from Mike Salway who is another one of the cadre of the world’s talented Jupiter observers. I should note that, in fact, there aren’t all that many of us who track the time evolution of phenomena in the planets in the professional community, either (see the web pages for the International Outer Planet Watch: http://dawn.ucla.edu/IJW/).

Asim. Neither NASA nor JPL is capable of observing everything in the sky. There is a program to search for asteroids whose orbits will intersect the Earth’s, but not at Jupiter. In fact, it’s unlikely this object could have been seen, given that it may have been at most a half kilometer in size. For Shoemaker-Levy 9, we were both lucky and the disruption of the comets left a lot of very shiny material around it which made it easier to see.

Denise. It hit quite a bit further south than the Shoemaker-Levy 9 fragments, almost at 60 deg S latitude.

Patrick, Jim, BobK. I suspect that the only link between this and the SL9 fragments is the voracious appetite of Jupiter, the great gravitational vacuum cleaner in that part of the solar system! SL9 fragments impacted from the south; this was from the east.


All Eyes on Jupiter

Wednesday, July 22nd, 2009
Leigh Fletcher
Leigh Fletcher

What an incredible few hours it’s been for astronomers everywhere, as we witness a chance of a lifetime event: evidence of a space rock of some sort slamming into Jupiter. Images taken after the impact show the debris field and aftermath of a gigantic collision that occurred in the southern polar region of the enormous planet.

An extremely dedicated and meticulous team of amateur astronomers observe Jupiter’s changing cloud patterns on a regular basis, and it came as an amazing surprise when Anthony Wesley, near Canberra, Australia, reported his Sunday-morning (July 19, 2009) observations (http://jupiter.samba.org/jupiter-impact.html) of a dark scar that bore all the hallmarks of the Shoemaker Levy 9 impacts at Jupiter in 1994. By an amazing coincidence, I was part of a team that had already been allocated time to observe Jupiter from the NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii. Based on Anthony’s discovery, we were crowded around our computers at 3 a.m. PDT (with Anthony observing with us remotely from Australia) as the first near- and mid-infrared images started to come in… it was such an exciting moment, seeing the high altitude particles that had been lofted by the impact (they appear bright in the infrared). Anthony celebrated with us, but then the real work began. We celebrated and then rolled up our sleeves and began an exciting night of observations.

Jupiter
This image shows a large impact shown on the bottom left on Jupiter’s south polar region captured on July 20, 2009, by NASA’s Infrared Telescope Facility in Mauna Kea, Hawaii. Image credit: NASA/JPL/Infrared Telescope Facility

With the assistance of William Golisch at the IRTF, Glenn Orton and I viewed the impacts in as many wavelengths and spectra as we possibly could, as Jupiter rotated and carried the impact scar out of Earth’s view. We used these many views to show evidence for high temperatures at the impact location, and suggestions of ammonia and aerosols that had been carried high into the atmosphere. The observations were repeated again today, Tuesday morning, to track the shape and properties of the site. The scar is extremely large, almost as big as Earth and will continue to grow as Jupiter’s atmospheric winds and jet streams redistribute the material, and then, like Shoemaker-Levy 9, it will begin to fade in the coming weeks and months. Based on comparisons to SL-9, the impactor was likely to be small despite the large aftermath, maybe a few hundreds of metres across. Not only will this tell us a lot about impacts in the outer solar system, and how they contribute to the nature of the planets and icy moons, but they’ll also serve as a probe for the fundamental weather patterns in Jupiter’s high atmosphere.

Amateur observers continue to flood the Internet with new images of the dark spot at approximately 60 degrees south on Jupiter, and so far it looks as though the impact took place sometime in the 24 hours preceding Anthony’s discovery. The debris field now extends out to the west and northwest, with additional high-resolution images from the Keck telescope (Marchis, Wong, Kalas, Fitzgerald and Graham http://keckobservatory.org/index.php/news/jupiters_adds_a_feature/) showing the detailed morphology of the impact region. The hard work continues today, as an international team of planetary astronomers scrambles for time on some of the world’s largest astronomical facilities.

Finally, it’s a shame but perhaps not surprising that we didn’t see the collision, or the impactor itself, given the great distance to Jupiter. Like throwing a rock in a pond, we’re seeing and analyzing the splash that it’s made, and we can’t yet infer many details about the rock itself - the detailed shape of the impact site could help determine the trajectory and energy of the collision. But it certainly made quite a splash, and we hope to learn a lot about Jupiter from this event!

Anthony’s discovery is truly astounding, as it united astronomers in looking again at the gas giant Jupiter. It’s overwhelming and spectacularly exciting to watch this event unfolding before our eyes!

You can follow Leigh on Twitter at http://twitter.com/LeighFletcher


Five Things About Hurricanes

Wednesday, July 1st, 2009
Bjorn Lambrigtsen
Bjorn Lambrigtsen

JPL scientist Bjorn Lambrigtsen goes on hurricane watch every June. He is part of a large effort to track hurricanes and understand what powers them. Lambrigtsen specializes in the field of microwave instruments, which fly aboard research planes and spacecraft, penetrating through thick clouds to see the heart of a hurricane.

While scientists are adept at predicting where these powerful storms will hit land, there are crucial aspects they still need to wrench from these potentially killer storms.

Here are thoughts and factoids from Lambrigtsen in the field of hurricane research.

1. Pinpointing the moment of birth

Hurricane Gustav
Hurricane Gustav moved along the southern side of Jamaica on Aug. 29, 2008. Image credit: NASA MODIS Rapid Response

Most Atlantic hurricanes start as a collection of thunderstorms off the coast of Africa. These storm clusters move across the Atlantic, ending up in the Caribbean, Gulf of Mexico or Central America. While only one in 10 of these clusters evolve into hurricanes, scientists do not yet know what triggers this powerful transformation.

Pinpointing a hurricane’s origin will be a major goal of a joint field campaign in 2010 between NASA and the National Oceanic and Atmospheric Administration (NOAA).

2. Predicting intensity

Another focus of next year’s research campaign will be learning how to better predict a storm’s intensity. It is difficult for emergency personnel and the public to gauge storm preparations when they don’t know if the storm will be mild or one with tremendous force. NASA’s uncrewed Global Hawk will be added to the 2010 research armada. This drone airplane, which can fly for 30 straight hours, will provide an unprecedented long-duration view of hurricanes in action, giving a window into what fuels storm intensity.

3. Deadly force raining down

Think about a hurricane. You imagine high, gusting winds and pounding waves. However, one of the deadliest hurricanes in recent history was one that parked itself over Central America in October 1998 and dumped torrential rain. Even with diminished winds, rain from Hurricane Mitch reached a rate of more than 4 inches per hour. This caused catastrophic floods and landslides throughout the region.

4. Replenishing “spring”

Even though hurricanes can wreak havoc, they also carry out the important task of replenishing the freshwater supply along the Florida and southeastern U.S. coast and Gulf of Mexico. The freshwater deposited is good for the fish and the ecological environment.

5. One size doesn’t fit all

Hurricanes come in a huge a variety of sizes. Massive ones can cover the entire Gulf of Mexico (about 1,000 miles across), while others are just as deadly at only 100 miles across. This is a mystery scientists are still trying to unravel.

NASA and NOAA conduct joint field campaigns to study hurricanes. The agencies use research planes to fly through and above hurricanes, and scientists collect data from NASA spacecraft that fly overhead. NOAA, along with its National Hurricane Center, is the U.S. government agency tasked with hurricane forecasting.

For more information on how NASA and JPL study hurricanes, go to www.nasa.gov/hurricane and http://tropicalcyclone.jpl.nasa.gov