Archive for the ‘Earth’ Category

Science Fact, Not Fiction: Isaac Asimov on the Greenhouse Effect

Monday, January 10th, 2011

By Amber Jenkins

I stumbled upon this video earlier today. It’s Isaac Asimov, famous science fiction writer and biochemist, talking about global warming — back in January 1989. If you change the coloring of the video, the facial hair style, and switch out Asimov for someone else, the video could pretty much have been made today.

Asimov was giving the keynote address at the first annual meeting of The Humanist Institute. “They wanted me to pick out the most important scientific event of 1988. And I really thought that the most important scientific event of 1988 will only be recognized sometime in the future when you get a little perspective.”

What he was talking about was the greenhouse effect, which, he goes on to explain, is “the story everyone started talking about [in 1988], just because there was a hot summer and a drought.” (Sound familiar, letting individual weather events drive talk of whether the Earth’s long-term climate is heating up or cooling down??)

The greenhouse effect explains how certain heat-trapping (a.k.a. “greenhouse”) gases in our atmosphere keep our planet warm, by trapping infrared rays that Earth would otherwise reflect back out into space. The natural greenhouse effect makes Earth habitable — without our atmosphere acting like an electric blanket, the surface of the earth would be about 30 degrees Celsius cooler than it is now.

The problem comes in when humans tinker with this natural state of affairs. Our burning of fossil fuels (coal, oil and gas) constantly pumps out carbon dioxide — a heat-trapping gas — into the atmosphere. Our cutting down of forests reduces the number of trees there are to soak up some of this extra carbon dioxide. All in all, our atmosphere and planet heats up, (by about 0.6 degrees Celsius since the Industrial Revolution) with the electric blanket getting gradually thicker around us.

“I have been talking about the greenhouse effect for 20 years at least,” says Asimov in the video. “And there are other people who have talked about it before I did. I didn’t invent it.” As we’ve stressed here recently, global warming, and the idea that humans can change the climate, is not new.

As one blogger notes, Asimov’s words are as relevant today as they were in 1989. “It’s almost like nothing has happened in all this time.” Except that Isaac Asimov has come and gone, and the climate change he spoke of is continuing.

Asimov’s full speech can be seen here.

This post was written for “My Big Fat Planet,” a blog hosted by Amber Jenkins on NASA’s Global Climate Change site.


Unchained Goddess: Frank Capra Knew

Monday, December 6th, 2010

By Amber Jenkins

a screen grab from The Unchained Goddess

You might think from the amount of “climate science debate” that is given airtime in the U.S. media that it’s undiscovered territory. But it’s not. The science is very well established and goes back a long way. Global warming is not a new concept.

The Victorians knew about it. John Tyndall (born 1820) knew about it. So did Svante August Arrhenius. In April 1896, Arrhenius published a paper in the London, Edinburgh and Dublin Philosophical Magazine and Journal of Science entitled “On the influence of carbonic acid in the air upon the temperature of the ground.” (Arrhenius referred to carbon dioxide as “carbonic acid” in accordance with the convention of the time.)

Arrhenius’ paper was the first to quantify how carbon dioxide contributed to the greenhouse effect — carbon dioxide warms up the Earth by trapping heat near the surface, a bit like swaddling the planet in an extra blanket. Arrhenius was also the first to speculate about whether changes in the amount of carbon dioxide in the atmosphere have contributed to long-term variations in Earth’s climate. He later made the link between burning fossil fuels and global warming.

Another person who “knew” some time ago was Frank Capra. Graduating from Caltech in 1918, he went on to become a famous filmmaker responsible for “It’s a Wonderful Life” and other movies. But one that stands out, at least for nerds like me or people with an interest in climate change is “Meteora: The Unchained Goddess”, released in 1958:

Made for Bell Labs, this most awesome educational film speaks of “extremely dangerous questions”:

Dr. Frank C. Baxter: “Because with our present knowledge we have no idea what would happen. Even now, man may be unwittingly changing the world’s climate through the waste products of his civilization. Due to our release through factories and automobiles every year of more than six billion tons of carbon dioxide, which helps air absorb heat from the sun, our atmosphere seems to be getting warmer.”

Richard Carlson: “This is bad?”

Dr. Frank C. Baxter: “Well, it’s been calculated a few degrees rise in the Earth’s temperature would melt the polar ice caps. And if this happens, an inland sea would fill a good portion of the Mississippi valley. Tourists in glass bottom boats would be viewing the drowned towers of Miami through 150 feet of tropical water. For in weather, we’re not only dealing with forces of a far greater variety than even the atomic physicist encounters, but with life itself.”

In 1958, they knew about the effects of heating up the planet. In the 1800s they knew about it. Today, the biggest challenge facing climate scientists lies in predicting how much our climate will change in the future. It’s not a trivial task, given how complicated the climate system is — we can barely predict in detail more than a week’s worth of weather. We’re not viewing Miami through bottomed-glass boats yet, but we’re already beginning to see some of the predictions of global warming — melting sea and land ice, sea level rise, more extreme weather events, changes in rainfall and effects on plants and animals — be borne out.

Thanks to OSS and Discovery News for the tip.

This post was written for “My Big Fat Planet,” a blog hosted by Amber Jenkins on NASA’s Global Climate Change site.


Pulling for the Deniers — Place Your Bets

Friday, November 12th, 2010

By Ed Begley Jr.

Ed Begley Jr.
A guest blog written for My Big Fat Planet by Ed Begley Jr.

 

I visit the NASA website and review the data. CO2: Up. Ocean and land temperature: Up. Sea level: Up. Polar ice: Down.

Oops.

But, as bizarre as this sounds … I find myself pulling for the climate change deniers. Wouldn’t it be swell if they were right? We could all just relax and ride around in huge cars, and life would be good again.

Like it was in 1970 when I showed up at the first Earth Day. Oh, wait. The smog kind of sucked back then. That might not be the best example.

But, what about the main reason the deniers give not to address climate change?: The cost.

As it turns out, a great example can be found back in smoggy Los Angeles in 1970. Many of us wanted to do something about the horrible choking smog of that era. But, we were told we couldn’t afford it.

“We’d love to do something too, Ed, but … the cost!” Fortunately, we didn’t listen to them. Fortunately we also weighed healthcare costs and lost productivity into the equation, and realized the cost of doing nothing was much greater.

And, now, even though we have millions more people in L.A., and four times the cars … we have far less smog. And, there were many jobs and tremendous wealth created by doing the things that addressed the problem.

Making catalytic converters, combined cycle gas turbines, spray paint booths, and a myriad of other clean technologies of that day - they all created new industries, and brought growth with them.

We have that same choice today. Do we want to accept the costs of doing nothing, and hope that the problem goes away?

So, please, do as I do, and direct everyone you know to reputable sources of climate data, such as NASA’s Global Climate Change website. At every talk I give, I make sure that everyone is aware that this information if available. The clock is ticking, and to ignore the science on this one is the worst bet we have ever placed.

Ed Begley Jr. is an Emmy-nominated actor who is active in the environmental community and turns up to Hollywood events on his bicycle. He currently lives near Los Angeles in a self-sufficient home powered by solar energy.


Taking On Water Resource Issues

Friday, October 15th, 2010

By Stephanie Granger

water resources

Worldwide today, it is estimated that nearly 1.1 billion people live without access to adequate water supplies and about 2.6 billion people lack adequate water sanitation. Improved understanding of water processes at global and regional scales is essential for sustainability.

Researchers at JPL recently launched the Western Water Resource Solutions website to highlight activities that apply NASA expertise and data to water resource issues in the western United States.

One focus area for this new site is the hydrologic cycle and using global satellite observations of the Earth to improve our understanding of water processes on a regional and local level. The western United States is expected to bear the brunt of impacts to water resource availability because of changing precipitation patterns, increasing temperatures, and a growing population. California is already starting to feel the impacts and is taking action to develop new adaptive management practices to ensure a safe and reliable water supply, while maintaining healthy ecosystems throughout the state.

NASA researchers at Ames Research Center, the Jet Propulsion Laboratory, and Marshall Space Flight Center are currently working with water managers to apply NASA expertise and data to water resource issues in California. The project partners with universities, agencies and other stakeholders, to utilize information from a number of sources, including existing ground observations and models.

This project is only one of several NASA initiatives aimed at providing actionable scientific information on water quality and the water balance worldwide. These other projects include development of better estimates of snow pack, groundwater monitoring, soil moisture and evapotranspiration, water quality, and monitoring fragile levee systems.

In addition to raising awareness about current water resource challenges, the new website highlights NASA’s capability to use satellite and airborne data to help solve some of these challenges.

Learn more about the Western Water Resource Solution Group at: http://water.jpl.nasa.gov/


Written as part of Blog Action Day 2010


2012 - A Scientific Reality Check

Tuesday, November 10th, 2009
Donald Yeomans
Donald Yeomans

There apparently is a great deal of interest in celestial bodies, and their locations and trajectories at the end of the calendar year 2012. Now, I for one love a good book or movie as much as the next guy. But the stuff flying around through cyberspace, TV and the movies is not based on science. There is even a fake NASA news release out there… So here is the scientific reality on the celestial happenings in the year 2012.

Nibiru, a purported large object headed toward Earth, simply put - does not exist. There is no credible evidence - telescopic or otherwise - for this object’s existence. There is also no evidence of any kind for its gravitational effects upon bodies in our solar system.

I do however like the name Nibiru. If I ever get a pet goldflish (and I just may do that sometime in early 2013), Nibiru will be at the top of my list.

The Mayan calendar does not end in December 2012. Just as the calendar you have on your kitchen wall does not cease to exist after December 31, the Mayan calendar does not cease to exist on December 21, 2012. This date is the end of the Mayan long-count period, but then – just as your calendar begins again on January 1 - another long-count period begins for the Mayan calendar.

The Galileo spacecraft's view of the Moon and Earth
On December 16, 1992, 8 days after its encounter with Earth, the Galileo spacecraft looked back from a distance of about 6.2 million kilometers (3.9 million miles) to capture this remarkable view of the Moon in orbit about Earth. Image credit: NASA/JPL
› Full image and caption

There are no credible predictions for worrisome astronomical events in 2012. The activity of the sun is cyclical with a period of roughly 11 years and the time of the next solar maximum is predicted to occur about May 2013. However, the Earth routinely experiences these periods of increased solar activity – for eons - without worrisome effects. The Earth’s magnetic field, which deflects charged particles from the sun, does reverse polarity on time scales of about 400,000 years but there is no evidence that a reversal, which takes thousands of years to occur, will begin in 2012. Even if this several thousand year-long magnetic field reversal were to begin, that would not affect the Earth’s rotation nor would it affect the direction of the Earth’s rotation axis… only Superman can do that.

The only important gravitational tugs experienced by the Earth are due to the moon and sun. There are no planetary alignments in the next few decades, Earth will not cross the galactic plane in 2012, and even if these alignments were to occur, their effects on the Earth would be negligible. Each December the Earth and Sun align with the approximate center of the Milky Way Galaxy but that is an annual event of no consequence.

The predictions of doomsday or dramatic changes on December 21, 2012 are all false. Incorrect doomsday predictions have taken place several times in each of the past several centuries. Readers should bear in mind what Carl Sagan noted several years ago; “extraordinary claims require extraordinary evidence.”

For any claims of disaster or dramatic changes in 2012, the burden of proof is on the people making these claims. Where is the science? Where is the evidence? There is none, and all the passionate, persistent and profitable assertions, whether they are made in books, movies, documentaries or over the Internet, cannot change that simple fact. There is no credible evidence for any of the assertions made in support of unusual events taking place in December 2012.

For more information on the silliness surrounding December 2012, see:


Tackling Clouds for Improved Predictions of Future Climate

Thursday, October 15th, 2009

Blog Action Day

Today, JPL Earth scientist Hui Su joins thousands of other bloggers in more than 130 countries around the world for the Blog Action Day ‘09 Climate Change.

Blog Action Day is an annual event that unites the world’s bloggers in posting about the same issue on the same day, with the aim of sparking discussion around an issue of global importance. The theme of this year’s event, climate change, affects us all and will be the topic of international climate negotiations taking place in Copenhagen, Denmark, this December.

As a world leader in studying Earth’s climate, NASA researchers play a vital role in shaping our understanding of global change. In today’s post, Su discusses the critical role clouds play in climate, and why learning more about them is a key to predicting how our climate will change in the future.

For more information on Blog Action Day, visit: http://www.blogactionday.org .


Hui Su
Hui Su

Clouds are among the most fascinating natural phenomena and have inspired countless works of literature and art. Their ever-changing forms make them a great challenge to atmospheric scientists working to predict how our climate will change in the future in response to increasing greenhouse gases such as carbon dioxide.

Clouds occur at many different heights in our atmosphere and take many different forms. There are three main types of clouds: stratus, cumulus and cirrus. Stratus clouds are low clouds, usually within 2 kilometers (7,000 feet) above the surface. They look like a gray blanket, extending thousands of kilometers across the sky. Cumulus clouds look like puffy cotton balls and extend vertically for large distances. The third type is wispy and feathery-looking cirrus. Cirrus clouds are usually high in the sky, about 7 kilometers (23,000 feet) above the surface. These three types of clouds have different impacts on Earth’s climate due to their unique abilities to reflect sunlight and trap heat radiated from Earth’s surface.

Artist's concept of NASA's CloudSat spacecraft
Artist’s concept of NASA’s CloudSat spacecraft, which is providing the first global survey of cloud properties to better understand their effects on both weather and climate. Image credit: NASA/JPL

cirrus cloud diagram
Su et al. (2008, Journal of Geophysical Research) suggested that cirrus clouds increase as sea surface temperature becomes warmer, further enhancing surface warming. Image credit: NASA/JPL/Caltech
› Full image

Stratus clouds can effectively block sunlight from reaching the surface; therefore, they act as an umbrella that cools Earth. Cirrus clouds are relatively transparent to sunlight but can trap terrestrial radiation, JUST AS carbon dioxide does, so they have a net warming effect on Earth. Cumulus clouds can block sunlight and also trap terrestrial radiation. Their net effect varies greatly depending on their actual heights and thicknesses.

Climate scientists have long struggled to quantify how different types of clouds change when global warming occurs. For example, an increase in stratus clouds may cool Earth’s surface, compensating for global warming; while an increase in cirrus clouds may further warm Earth’s surface, exacerbating global warming. Up to now, scientists have not been able to come to a consensus as to whether stratus, cumulus or cirrus clouds will increase or decrease as global temperatures increase.

A key advancement in cloud studies in recent years has been the availability of global satellite observations of clouds, especially the measurements of clouds at different heights provided by NASA satellites like CloudSat, managed by NASA’s Jet Propulsion Laboratory (JPL). These observations are allowing scientists to better simulate clouds in climate models, which are the primary tools climate scientists use to predict future climate change. Up till now, the dynamic nature of clouds has made them very difficult to simulate in current climate models. But by applying space data, we at JPL are working closely with modelers to improve cloud simulations and thereby improve predictions of future climate change.

To learn more about JPL’s research in this field and the CloudSat mission, visit:
http://cloudsat.atmos.colostate.edu/home .


Five Things About Hurricanes

Wednesday, July 1st, 2009
Bjorn Lambrigtsen
Bjorn Lambrigtsen

JPL scientist Bjorn Lambrigtsen goes on hurricane watch every June. He is part of a large effort to track hurricanes and understand what powers them. Lambrigtsen specializes in the field of microwave instruments, which fly aboard research planes and spacecraft, penetrating through thick clouds to see the heart of a hurricane.

While scientists are adept at predicting where these powerful storms will hit land, there are crucial aspects they still need to wrench from these potentially killer storms.

Here are thoughts and factoids from Lambrigtsen in the field of hurricane research.

1. Pinpointing the moment of birth

Hurricane Gustav
Hurricane Gustav moved along the southern side of Jamaica on Aug. 29, 2008. Image credit: NASA MODIS Rapid Response

Most Atlantic hurricanes start as a collection of thunderstorms off the coast of Africa. These storm clusters move across the Atlantic, ending up in the Caribbean, Gulf of Mexico or Central America. While only one in 10 of these clusters evolve into hurricanes, scientists do not yet know what triggers this powerful transformation.

Pinpointing a hurricane’s origin will be a major goal of a joint field campaign in 2010 between NASA and the National Oceanic and Atmospheric Administration (NOAA).

2. Predicting intensity

Another focus of next year’s research campaign will be learning how to better predict a storm’s intensity. It is difficult for emergency personnel and the public to gauge storm preparations when they don’t know if the storm will be mild or one with tremendous force. NASA’s uncrewed Global Hawk will be added to the 2010 research armada. This drone airplane, which can fly for 30 straight hours, will provide an unprecedented long-duration view of hurricanes in action, giving a window into what fuels storm intensity.

3. Deadly force raining down

Think about a hurricane. You imagine high, gusting winds and pounding waves. However, one of the deadliest hurricanes in recent history was one that parked itself over Central America in October 1998 and dumped torrential rain. Even with diminished winds, rain from Hurricane Mitch reached a rate of more than 4 inches per hour. This caused catastrophic floods and landslides throughout the region.

4. Replenishing “spring”

Even though hurricanes can wreak havoc, they also carry out the important task of replenishing the freshwater supply along the Florida and southeastern U.S. coast and Gulf of Mexico. The freshwater deposited is good for the fish and the ecological environment.

5. One size doesn’t fit all

Hurricanes come in a huge a variety of sizes. Massive ones can cover the entire Gulf of Mexico (about 1,000 miles across), while others are just as deadly at only 100 miles across. This is a mystery scientists are still trying to unravel.

NASA and NOAA conduct joint field campaigns to study hurricanes. The agencies use research planes to fly through and above hurricanes, and scientists collect data from NASA spacecraft that fly overhead. NOAA, along with its National Hurricane Center, is the U.S. government agency tasked with hurricane forecasting.

For more information on how NASA and JPL study hurricanes, go to www.nasa.gov/hurricane and http://tropicalcyclone.jpl.nasa.gov


Good and Bad Ozone

Thursday, April 23rd, 2009
Chris Boxe
by Chris Boxe
Scientist and Engineer

Oxygen, or O2 on the table of chemical elements, is a vital component for life on Earth. It is the second most abundant gas in Earth’s atmosphere, making up about 21 percent of its volume. On the other hand, its cousin ozone (O3) makes up less than 0.00001 percent. In fact, if all the ozone in Earth’s atmosphere were brought down to the surface, air pressure and temperature conditions would compress ozone into a layer just three millimeters thick, equivalent to two pennies stacked one on top of the other. ! Despite its tiny amount, ozone is also a vital ingredient for life on Earth.

Ozone in fact is vital for life on Earth, but it also has a “bad” side as well - that is, there is both good and bad ozone out there. Good ozone, which accounts for about 91 percent of the ozone in Earth’s atmosphere, is present in the stratosphere, the middle layer in Earth’s atmosphere. This portion of ozone is commonly referred to as the “ozone layer.” The ozone layer absorbs more than 90 percent of the sun’s high-frequency ultraviolet light, which is potentially damaging to life on Earth. Without the ozone layer, this radiation would not be filtered as it reaches the surface of Earth, resulting in detrimental health effects for life on Earth. Among the health effects humans could experience as a result of overexposure to ultraviolet radiation are skin cancers, premature aging of the skin and other skin problems, cataracts and other forms of eye damage, and suppression of our bodies’ immune systems and our skin’s natural defenses.

The troposphere, the part of the atmosphere closest to Earth, contains both good and bad ozone. In the lower troposphere, ozone may serve as an air pollutant since it is a major component of photochemical smog. In the middle troposphere, ozone acts as an atmospheric cleanser, and in the upper troposphere, ozone is a greenhouse gas, which could be bad if concentrations get too high.

artist concept of NASA's Aura spacecraft
The Tropospheric Emission Spectrometer flies aboard NASA’s Aura spacecraft. Image credit: NASA JPL

The Tropospheric Emission Spectrometer, a science instrument onboard NASA’s Aura satellite, is improving our understanding of the good and bad ozone in the troposphere. The spectrometer, which was launched in 2004, provides the first global view of tropospheric ozone and vertical concentrations of ozone, as well as temperature and other important tropospheric features, including carbon monoxide (CO), methane (CH4), water vapor and ammonia (NH3). The instrument has studied the origin and distribution of tropospheric ozone. It has also shed light on how the increasing ozone abundance in the troposphere is affecting air quality on a global scale, as well as ozone’s role in chemical reactions that “clean” the atmosphere, and climate change.

These data are used by scientists to determine the degree to which natural sources, like lightning and plant growth, and human-produced sources, like automobiles, industrial pollution, and biomass burning, contribute to ozone production and chemistry. For example, during summertime in the upper troposphere, where ozone acts as a greenhouse gas, lightning generates much greater amounts of ozone than do human activities, thereby having a big impact on regional pollution. Over the last few years, the spectrometer has obtained global data on ozone and chemicals that participate in ozone formation. The fact that the instrument is able to quantify vertical profiles of ozone improves our understanding of how various reactions taking place at specified heights contribute to ozone chemistry. Similar to ozone, chemicals that participate in its production also exist in tiny amounts. Still, this enables scientists to better understand long-term variations in the quantity, distribution and mixing of many tropospheric gases that have a large impact on climate and air quality.

My role with the instrument is to validate the quality of the most recent ozone measurements, which are taken in a special observation mode, called “stare.” This mode is used to monitor biomass burning events and volcanic activity. I compare measurements taken by an ozonesdone (a lightweight, balloon-borne instrument that measures ozone, air pressure, temperature and humidity as it ascends through the atmosphere) with measurements from the tropospheric spectrometer. We do this so we can demonstrate the accuracy and precision of the instrument’s readings. I am also participating in projects that use the instrument data to better understand the chemistry and transport of pollutants coming from wildfires, such as those that occurred in Australia in December 2006. For the future, I am interested in using the tropospheric spectrometer satellite data for ozone and methane to better quantify the degree to which they contribute to global warming and climate change.