DATE ENTERED
SOLD
TO

REQUESTED MARK

CUSTOMER ORDER NO

SUBMITTAL

JACKSONVIKLE

Page 1

COLLECT
FOB ST. PAUL DEST.

TERMS NET 30 DAYS 1 OWed

DATE ENTERED T-7-29-75 Page 2

RIVERVIEW INDUSTRIAL PARK

141 SOUTH LAFAYETTE FREEWAY (HWY. 56) ST. PAUL, MINNESOTA 55107
Automation and supervisory control systems for municipal and industrial water supply, waste treatment and process applications

5-6-75
15726-CS/EM-1.

The Mciahaz Co., Inc. P.0. BO\& 88382

Dhawoody, CA. 30338

Peabody Southeast Co. c/o Marine str Stacion
(Melicopter) New River
Jacksonville, M.C. 28540

CECO 15726
CO $4078-3 / 12 / 76$

REQUESTED MARK

JOB
Page
COLLECT
X
FOB ST. PAUL DEST
K
Freight Allowed
TERMS NET 30 DAYS
QFC:e1.

SUBMITTAL

SHIP TO

Consolidated Electric Co.

RIVERVIEW INDUSTRIAL PARK
Automation and supervisory control systems for municipal and
industrial water supply, waste treatment and process applications

CUSTOMER ORDER NO. $75-\sqrt{M C}-9$
CO 4078 - $3 / 12 / 76$
The MeMohen Co., Tac. P.O. Bow 88382 Duawoody, GÁ. 30338

IACKSONVIETKI 感:C.

JOB
 15726

Page 3

PPD
COLLECT
REQUESTED MARK
$12 / 224-9474$

CECO 157.26

FOB ST. PAUL DEST.
X. Fretght allowed

TERMS NET 30 DAYS

SETS DATA SENT
See page ?

HELD FROM PRODUCTION

YES NO

INFORMATION FOR APPROVAL

APPROVAL

RECEIVED

DATE

Consolidated Electric Co.

Automation and supervisory control systems for municipal and
industrial water supply, waste treatment and process application

15726-CS/EM-1
C0 4078-3/12/76

Page

SOLD
TO
15726-CS/EM-1
The McMahan Co. Inc.
P.O.Bos 88382
Dwowoody, GA. 30338
$5-6-75$
CUSTOMER ORDER NO. 75-JMC-9

The McMahon Co., Inc.
P.O. Box 88382
Duowoody, GA. 30338

REQUESTED MARK
Peabody Southeast Co. coo Marine fix Station (Helicopter) New River Jacksonville, N.C. 28540

SUBMITTAL

JACKSONVILLE, N.O.
JOB 25726
Page 4

COLLECT

FOB ST. PAUL DEST.
Freight Allowed TERMS NET 30 DAYS

SETS DATA SENT

[^0]HELD FROM PRODUCTION YES NO

FOR
INFORMATION

FOR
APPROVAL

APPROVAL
RECEIVED

DATE

SUBMITTAL

141 SOUTH LAFAYETTE FREEWAY (HWY. 56) ST. PAUL, MINNESOTA 55107

consolidation elfathie
RIVERVIEW INDUSTRIAL PARK $<$ 141 S

DATE ENTERED ${ }^{-6-75}$
CUSTOMER ORDER NO. 75- JMC-9
T-7-29-75
15726-CS/EM-1

Page 7	
sold	
TO The McMahan Co. . Inc.	
	P.O. Box 88382
	Dumwoody, GA. 30338

CO 4078-3/32/76
P.O. Boo 88382

Dumwoody, GA. 30338

OFC:el

Consolidated Electric Co.

SOLD TO

RIVERVIEW INDUSTRIAL PARK
Automation and supervisory control systems for municipal and industrial water supply, waste treatment and process applications

CUSTOMER ORDER NO. $75-\sqrt{M} \mathrm{C}-9$
CECO 15726
DATE ENTERED
2-7-29-75
141 SOUTH LAFAYETTE FREEWAY (HWY. 56) ST. PAUL, MINNESOTA 55107

5-6-75
15726-CS/EM-1.

The McMahan Co., Inc. Y.0. Boz 88382 Dunwoody, GA. 30338

$$
\text { Dunwoody, GA. } 30338
$$

co $4078-3 / 12 / 76$
REQUESTED MARK
Peabody Southeas: Co.
c/o Maxime Atr Scatlon
(Helicopter) New RIver
JacksonvI11e, N.C. 28540

JACKSONVILLE, N:C.

```
```

JOB

```
```

JOB
15726
15726
page 9
page 9
MPD COLLECT

```
MPD COLLECT
```

```
K Exetghtr allowed
```

K Exetghtr allowed
TERMS NET 30DAYS

```
TERMS NET 30DAYS
```

REO	UESTED	AFcem apuroval VIA Mclean
ITEM	QUANTITY	BULLETIN MODEL VOLTS PHASE NEMA TYPE
Co	pelnued	d) LTLTO and auco. reatore of effluent pumps from A1000 system e) Control for electric mocor walve operators ((urnished by others) B) Filcer effluemt and BiW. Influent valves will be modulated type with posithon meters g) Ax-01 Controller Gor each filter, to operate Erom Al000 transducer b) 2-Betpoint concroliexe, furatshed by ceco witho is Servo output, to control filter efflueat valves Hom filter level 1) $2-96$ 2tir Timers Eor Sludge Vatve control Serlal 315726(13-15726-L2 - 15726- Pez Page 38 of Plans New Rlver Water Txeatment Plant tilcer Consoles, Nema 1, sexvice requited is 120 volt single phase, 2 vize. a) Manuel control system b) Moun and wixe Elow listruments as required. Instruments furnished to Ceco c) Scop/Start sushbuttons for cwo (2) surface wash puaps

See Rage 1

SETS DATA SENT
DATE
TO

See Pege 1

SUBMITTAL

JACKSONVILLE, N.O.

```
JOB
15726
Page 11
```

$\begin{array}{ll}\text { PPD } & \text { COLLECT } \\ \text { X } & \\ \text { FOB } & \text { ST. PAUL }\end{array}$
a Freight aliowec
TERMS NET 30 DAYS

See Page 1

> HELD FROM
> PRODUCTION
> YES NO

Automation and supervisory control systems for municipal and
industrial water supply, waste treatment and process application

DATE ENTERED
Page 13
T-3/1.7776 ADD to 15726
SOLD
TO The McMaham Co. Inc. 5.0. Hoz 88382

Drmmoody, Gai 30338
SHIP
TO Peabody Southeast Co. c/o Marsue Atr Scation (HeMicopter) Naw River

CUSTOMER ORDER NO.

75-J14C-9/ CECO 15726 CO $4078-3 / 12 / 76$

-

				DL 01382	
ITEM "F"-WATER PLT. CLEARWELL PROBE PANEL					
Dimensions and Arrangement	$1 \mathrm{M01114}$	1	1	1	
Wiring Diagram	902064-01	1	1	1	
Parts List	201894-01	1	1	1	
Description of Operation	$1 \mathrm{MO1} 078$	1	1	1	
ITEM "G"-N.W. CORNER WELL PANEL					
Dimensions and Arrangement	1 M 01115	1	1	1	
Wiring Diagram	902065-01	1	1	1	
Parts List	201895-01	1	1	1	
Description of Operation	IM01079	1	1	1	
ITEM "H"-GEIGER WATER DIST'BN. PUMPS M.C.C.					
Dimensions and Arrangement	IM01116	1	1	1	
Wiring Diagram	902066-01	1	1	1	
Parts List	201896-01	1	1	1	
ITEM "I"-GEIGER S.T.P. PWR \& CONTROL CTR.					
Dimensions and Arrangement	1 M 01117	1	1	1	
Wiring Diagram	902067-01	1	1	1	
DRAWING DESCRIPTION	DRAWING NO.	APPR.	SHOP	SHIP	
THLE: NEW RIVER MARINE CORPS AIR STATION UTILITIES EXPANSION, WATER \& SEWAGE	DRAWNHJG DESIGNED $6 / 27 / 75$ TWM	$\text { S. } 0.1572$	ILLE, N.		
CONSOLIDATED ELECTRIC COMPANY 141 SOUTH LAFAYETTE ROAD - ST. PAUL, MINN. 55107	CHEGED SEW $7-29-75$ 3 PGEE	Drawing no DLOI			REV

				DLO1382		
COMPONENT INFORMATION (CONTINUED)						
Push Button Switch, Salinger	CC063		1			
Jack \& Plug, Switchcraft 111 \& 250	pp. 1	\& 5	1			
Sound Powered Telephone, 702019-675 S-C	D464/1	1266	1			
Retractable Cord, Alpha	690/4		1			
Valve Position Indicator, G.E. Cat. 30M	Pg .18		1			
Water Tank Level Indicator, G.E. Cat. 20 M	Pp. 24	4,25	1			
Pressure Switch, Low Differential	ES5009	95	1			
Low Suction Cutout Switch, A.B. Cat 102	Pg. 18		1			
D.C. Relay, P \& B KHP Type	Pg. 10		1			
Relay, 10 Amp., PEB KUP Type	ES5007		1			
ITE Fusible Disconnect Switch	Bull.	6.8-1B	1			
Proportional Controller Action Pak	UIS2100	00-02	1		1	
Position Controller Action Pak	U1S3200	00-00	1		1	
Indicating Recorder Bristol	B220-1	13d, -20d	1		1	
Power Supply Bristol	B220-1	16-1a	1		1	
Power Supply Bristol	B220-1	16-2a	1		1	
Indicator Bristol	B220-1	15e-1	1		1	
Differential Pressure Xmitter Bristol	B220-2	23b	1		1	
CEM Card Case Bristol	M1776-21	-21	1		1	
Sq. Root Extractor Card Bristol	M1776-1	-17	1		1	
Subtractor Card Bristol	M1776-	-4a	1		1	
Flow Tube Penn	Bull.	405	1		1	
DRAWING DESCRIPTION	DRAWING	G No.	APPR.	SHOP	SHIP	
TITE: NEW RIVER MARINE CORPS AIR STATION UTILITIES EXPANSION, WATER \& SEWAGE	$\begin{array}{\|l\|} \hline \text { DRAWN HJG } \\ 6 / 27 / 75 \\ \hline \end{array}$	$\begin{array}{r} \text { DESIGNED } \\ \text { TWM } \\ \hline \end{array}$	$\begin{aligned} & \text { S.0. } 15 \\ & \text { JACKSON } \end{aligned}$	$\begin{aligned} & 26 \\ & \text { ILLE, } \end{aligned}$		
CONSOLIDATED ELECTRIC COMPANY 141 SOUTH LAFAYETTE ROAD - ST. PAUL, MINN. 55107	$\begin{aligned} & \text { CHECKED } \\ & \begin{array}{l} \text { CfE } \\ 7.29 .75 \end{array} \end{aligned}$	$2^{\text {Page }} 0$				ReV C

6

DESCRIPTION OF OPERATION

MABS 26 SEWAGE LIFT STATION PANEL

 JACKSONVILLE, NORTH CAROLINAS.0. 15726, ITEM A

Reference Wiring Diagram 902059-01.
This control system uses a Reed type air compressor to force air down a bubbler tube immersed in the sewage wet well, and senses the liquid level in the wet well by measuring the back pressure on the column of air in the bubbler tube. This backpressure is applied to pressure switches which control the ON/ OFF operation of two pumps operating in a pump-down mode. The bubber system air is furnished by one of two Reed air combubbler system air is furnished by one oriod of three hours, after which the opposite compressor takes over on the command of a cycle timer pol level sensors are provided for of a cycle timer. Additional level sensors are provided owmps, and for high level and low level alarms. Pump Propumps, and for high level and low level alarms. Pump protectors are provided for each pump, which are operated from imbedded in the motor windings. These protector circuits automatically shut down the pump when an over-temperature opens the thermal switch. The pump will remain shut down and an over-temperature. light turned on, until the operator presses a reset switch.

SEQUENCE OF OPERATION

Referring to Page 2 of the Wiring Diagram, the pumps are con trolled by pressure sensors PS3, PS4 and PS5, operating the Model CMC09 Two Circuit Controller/Alternator. A sequence switch is provided to permit the operator to lock the system into a 1-2 or a 2-1 operating sequence. This switch is normally left in the AUTO mode. Assume that control power is available, that the pump HAND-OFF-AUTO selector is in the AUTO mode, and that the wet well level is initially below the stop sensor PS3. As the wet well level rises, PS 3 closes first, then PS 4 closes calling for the lead pump to start. With the alternator in the position shown, relay CRI within the alternator is energized, a normally open contact of CRI seals that relay in thru the stop sensor PS3. The normally open CRI
contact between terminals 11 and 12 of the CMC09 Module now completes a circuit through a normally open CRI contact of the low level cutoff relay, and the normally open contact of the low evel cutof relay, and the inals 4 and 5, thereby completing the motor starter pilot circuit for Pump No. 1 starting it as the lead pump.
If the influent is such that the lead pump can not handle the flow, the level will continue to rise in the wet well closing oressure sensor PS5 calling for the lag pump to start. This will energize relay CR3 in the controller which will seal itself in through the stop sensor PS3. Normally open contacts of CR3 complete both output circuits, between terminals 9 and 10 , and 11 and 12 of the Controller. The CR 3 contacts between terminals 9 and 10 , combined with another normally open contact of cutout relay CRI, and the contact between terminals 4 and 5 of Pump Protector PP2, all combine to complete the start circuit for Pump No. 2, causing that pump to start as the lag pump.

As the pumps run, lowering the level in the wet well, PS5 will open first, then PS4, then the stop sensor PS 3 will open. When PS 3 opens, it de-energizes relays CR3 and CRI in the controller, breaking the pilot circuits and causing both motor starter circuits to de-energize, stopping both pumps. At this point in time, the alternator relay changes state, reversing the pumping sequence for the next cycle. The CMCO9 Controller/Alternator is further described in IMOI 052.

If the level in the wet well should continue to rise, pressure sensor PS6 will close lighting the high level alarm light. The indicator lights normally glow at a dim ievel, to indicate that the bulb fildments are in good condition and also to prolong the bulb life. When an alarm condition exists, the bulb goes from a dim glow to a high intensity. When the level recedes and PS 6 opens, the high level alarm light reverts back to the dim glow state.

If the level in the wet well recedes below that at which the pumps would have adequate suction, sensor PSI will open, dropping out low level cutoff relay CRI, which opens both motor starter pilot circuits, preventing the pumps from running. The pumpstop level setting of PS 3 should normally be set at a higher pressure than the settings of either PS or
in the wet well begins to rise again, and PS1 closes, relay

TILE	DESCRIPTION OF OPERATION JACKSOHVILLE, N.C. S.O. 15726 ITEM A	$\begin{gathered} \text { DESIGNED } \\ \text { TWM } \end{gathered}$	DRAWN	CHECKED	$\begin{gathered} \text { REVISION } \\ \text { A } \\ \hline \end{gathered}$
	Consolidated Electric Company 141 SOUTH LAFAYETTE FREEWAY SAINT PAUL MINNESOTA 55107	$\begin{aligned} & \text { PAGE } \\ & 1^{\text {OF }} 3 \end{aligned}$	$\text { IMOI } 073$		

1

$\begin{gathered} \text { DESIGNED } \\ \text { TWM } \end{gathered}$	DRAWN	CHECXED	REvi
Page	DRAWING NO		
2 OF 3	$1 \mathrm{MO1073}$		

\bullet

CRI will stay de-energized until the level rises further, closing PS2. At this automatic restoration level, relay CRI will be energized, sealing itself in thru its normally open contact and sensor PSI. This will reclose the contacts of CRI permitting the pumps to start when required. Note that when the low suction cutoff sensor PSI is, opened, and that when the low suction cutoff sensor CSI is opened, and the low level alarm, ight to full brilliance. This ligh stays on until sensor PS2 closes on rising level, reenergizing relay CRI.

The Pump Protectors, Model CMP02, operate to disable a pump when its motor temperature rises too high, opening the sensor switch in the pump winding. An over-temperature indicator ight is brought to full brilliance when the thermal pro= tection circuit is triggered by the opening of the therma switch. The CMPO2 Protector resets automatically after power failure. Upon occurence of an over-temperature condition, the pump will stay locked out, and the over-temperature light on, until the operator presses the reset button. The CMP02 Pump Protector is further described in IM00793.

The two air compressore are self contained and operate from a duplex outlet inside the enclosure. Cycle Timer CTI alternates its switch position every three hours, thereby alternating from one compressor to the other. Therefore, the continuous duty rated compressors are only required to operate on a 50% duty cycle.

TITL	DESCRIPTION OF OPERATION JACKSONVILLE, N.C. S.O. 15726 ITEM A	$\begin{gathered} \text { DESIGNED } \\ \text { TWM } \end{gathered}$	DRAWN	$\begin{aligned} & \text { CHEGKED } \\ & \text { CA } 2.2 \\ & 7-29-75 \end{aligned}$	$\begin{gathered} \text { REVISION } \\ \text { A } \end{gathered}$
	Consolidated Electric Company 141 SOUTH LAFAYETTE FREEWAY	$\begin{aligned} & \text { PAGE } \\ & 3^{\text {OF }} 3 \\ & \hline \end{aligned}$	DRAWING NOIMO1073		

dESCRIPTION OF OPERATION

CHCOS/CMC1O
DUPLEX PUMP CONTROLLER/ALTERNATOR
FEATURES:

* Independent on, common off is standard. Independent on,
* All relay construction. The Alternator is a permanent magnetic latching type relay - not a cam or ratchet which are subject to wear.
* Redundant "On" switching: When the "Lag Pump On" sensor separat, ead and lag pilot circuits will be completed b control for the lead pump. thus provid
* Sequence Selector: An optional sequence selector may be connected to "lock" the controller into a desired
* The CMCIO is the same as the CMCO9 with the addition of aiternator contacts wired to terminals for connection
* Snap-Track mounting. Board is $3^{\prime \prime}$ wide by $8 \frac{1}{2}$ " long (CMCO9)

GENERAL

This module is designed to control the ON-OFF operation of two pumps with respect to the liquid level such as in a wet well or similar application.
The ON-OFF levels are typically sensed by mercury switch type ilquid level sensors.

HIOEPENDENT ON, COMMON OFF
The following is an example of "Pump Down" independent ON - common OFF operation. Assume that the liquid level is below the bottom sensor, the level is rising and

NOTE: it is recommended that the snap-track be mounted with plastic fasteners. If metallic
fasteners are used they must be fasteners are used they must be of the "CM" Module printed circuit board.

INDEPENDENT ON, INDEPENDENT OFF

The following is an example of "Pump Down", independent $O N$, independent off is rising. Assume that the liquid level is below the bottom sensor, the level

The "Lead Pump off" sensor will close first, completing the sealing circuit for the lead pump relay (CR1). As the level continues to rise, the "Lead Pump On" sensor, wired between terminals $4 * *$ and 7 , will close and energize relay CRI. The N.O. contact of CRI, wired between terminals 11 and 12 , will close, whin
the relay is energized, thus completing the pilot circuit for pump No.

If the liquid level should continue to rise, the "Las Pump off" sensor will close and complete the sealing circuit for the redundant lag pump relay (CR3). The contacts, wired between terminals 9 and 10 nergize CR3. The redundant N.O. CR energizes. These redundant contacts give a positive assurance that both pump pilot circuits are closed when the "Lag Pump On" sensor closes.
As the liquid leve! falls, the "Lag Pump on" sensor wlll open, then the "Lag Pump off" sensor will open, breaking the lag punp sealing circuit, stopaing
the lag pump. The lead pump must pump the liquid level down past the lead on the lag pump. The ead pump must pump the wiquid evel down past the ead on At this point, the Alternator will change state, reversing the starting sequenc of the pumps for the next cycle
SEQUENCE SELECTION
An optional sequence selector may be wired to terminals $3 * *, 14$ and 15 (as shown) and used to lock" the controller into a desired sequence. When the sequence selector is installed the connection marked X, within the CMC09, will be renoved switch.
** Teminals 1,3 and 4 are common, thus 1,3 or 4 may be used for float connection.
Do not connect more than two wires to one terminal.

TITE DES CRIPTION OF OPERATION CMCO9610	DESIGNEO	$\begin{aligned} & \text { DRAWM } \\ & \text { S. } \end{aligned}$	CHECKED	REvision
Consolidated Electric Company 141 SOUTH LAFAYETTE FREEWAY SAINT PAUL, MINNESOTA 55107	$2^{\text {PAGE }} 2$	$\begin{array}{r} \text { BRAWING NO } \\ \text { IMOIO52 } \end{array}$		

δ

DESCRIPTION OF OPERATION

CMP 02

PUMP OVER-TEMPERATURE PROTECTOR

GENERAL

This Module provides over-temperature lockout of a pump in response to the opening of a thermal switch within the motor housing. Manual reset is required after lock-out, however, automatic setting will occur on application of power. Thus operator attention is only required on actual thermal lockout.

FEATURES

- Self resetting on power application. .
- Manual reset required on thermal trip.
- Pilot circuit switching - 250 VAC, 10A., . 8 P.F.
- Dim glow or non-dim glow alarm light circuit.
- Operates from normally closed thermal switch (by others).
- Adaptable to other limit applications where manual reset is desired.
- Snap-Track mounting. Module is $3^{\prime \prime}$ wide by $3.4^{\prime \prime}$ long.

TYPICAL OPERATION - NORMALLY CLOSED THERMAL SWITCH

With connection of thermal switch and reset button as shown, the following is a description of operation. On application of power, the thermal switch within the motor would be below its operating temperature, thus would be closed. CR2 coil would be energized through the CRI-N.C. contact, and would latch in through the N.O. CR2 contact closing in parallel with the CRI contact.

CRI is energized by the closure of the CR2-N.O. contact in series with the CRI coil. CRI latches in by the closure of the CRI-N. O. contact in parallel with the CR2 contact. Thus both relays are pulled in and latched in for normal operation. The CR2 contact between teminals 4 and 5 will close to complete that part of the pump pilot circuit. The "Overtemp" light will be out, or will be at low brilliance for the dim-glow option.

On opening of the thermal switch due to motor over-temperature, CR2 will drop out. This opens the motor pilot circuit, and also brings the "Overtemp" light to full brilliance. After the motor has been de-energized for a period of time, the thermal switch may close again. However CR2 will be prevented from re-energizing because CRI is still latched in, holding open the CR1 contact in series with the CR2 coil. The CMPO2 circuit can be reset by operating the reset button which applies power to terminal 6 if the thermal switch has remclosed. This remenergizes CR2, resuming normal operation.

NOTE: It is recommended that the snap-track be mounted with plastic fasteners. If metallic fasteners are used, they must be insulated from the copper side of the "CM" Module printed circuit board.

DESCRIPTION OF OPERATION
shown, relay CRI within the alternator is energized, a normally open contacts of CRI seals that relay in thru the stop sensor PS 3. The normally open CR1 contact be tween terminals 11 and 12 of the CMC09 Module now completes a circuit through a normally open CRI contact of the low Pump Protector PP2, completing the motor starter pilot circuit for Pupy completing the motor starter pilot circuit for Pump No. 1 starting it as the lead pump.

If the influent is such that the lead pump can not handle the flow, the level will continue to rise in the wet well closing pressure sensor PS5 calling for the lag pump to start. This will energize relay CR3 in the Controller, which will seal itself in thru the stop sensor PS3. Normally open contacts of CR3 complete both output circuits, between terminals 9 and 10 , and 11 and 12 of the Controller The CR3 contacts between terminals 9 and 10 , combined with contact normally open contact of cutout relay cri, and all combine to complete the starter circuit for Pump No. 2, causing that pump to start as the lag pump.

As the pumps run, lowering the level in the wet well, PS5 will open first, then PS 4 , then the stop sensor PS 3 will open. When PS3 opens, it de-energizes relays CR3 and CRI in the controller, breaking the pilot circuits and causing pumps. At this point in time, the alternator relay changes state, reversing the pumping sequence for the next cycle. The CMC09 Controller/Alternator is further described in IM01052.

If the level in the wet well should continue to rise, pressure sensor PS6 will close lighting the high level alarm light The indicator lights normally glow at a dim level, to indicate that the bulb filiments are in good condition and also to prolong the bulb life. When an alarm condition exists, the bulb goes from a dim glow to a high intensity. When the level receeds and PS6 opens, the high level alarm light reverts back to the dim glow state.

TITLE	DESCRIPTION OF OPERATION JACKSONVILLE, N.C. S.0. 15726, ITEM B	$\begin{gathered} \text { DESIGNED } \\ \text { TVM } \end{gathered}$	DRAWN	$\begin{aligned} & \text { CHECKED } \\ & \text { CSVC. } \\ & 7-27-75 \\ & \hline \end{aligned}$	$\begin{gathered} \text { REVISION } \\ \text { A } \end{gathered}$
	Consolidated Electric Company 141 SOUTH LAFAYETTE FREEWAY SAINT PAUL, MINNESOTA 55107	$\begin{aligned} & \text { PAGE } \\ & 1^{\circ} \mathrm{FF} 3 \end{aligned}$	DRAWING NOIM01074		

TTTLE	DESCRTPITUN OF OPERATION JACKSONV ILLE, N.C. S.O. 15726, ITEM B	$\begin{gathered} \text { DESIGNED } \\ \text { TWM } \end{gathered}$	DRAWM	CHECKED E-2, $7-2.95$	$\begin{gathered} \text { REVISION } \\ \text { A } \end{gathered}$
	Consolidated Electric Company 141 SOUTH LAFAYETTE FREEWAY SAINT PAII, MINNFSOTA 55107	$\begin{aligned} & \text { PAGE } \\ & 20 F 3 \\ & \hline \end{aligned}$	DRAWING NOIMO1074		

If the level in the wet well recedes below that at which the pumps would have adequate suction, sensor PS1 will open, dropping out low level cutoff relay CRI, which opens both motor starter pilot circuits, preventing the pumps from running. The pump-stop level setting of PS 3 should normally be set at a higher pressure than the settings o either PSI or PS2. As the level in the wet well begins to rise again, and At this automatic restoration level, relay CRI will be and and sensor PSI. This will reclose the contacts of CRI armiting the pumps to start when required. Note that when the low CRI is de-energized, a normally closed CRI contact brings the low level the lil energizing relay CRI.

The Pump Protectors, Model CMP02, operate to disable a pump when its motor temperature rises too high, opening the sensor switch in the pump winding. An over-temperature indicator light is brought to full brilliance when the thermal prom tection circuit is triggered by the opening of the thermal switch. The CMPO2 Protector resets automatically after power failure. Upon occurence of an over-temperature condition, the pump will stay locked out, and the over-temperature light on, until the operator presses the reset button. The CMP02 Pump Protector is further described in IM00793.

The two air compressore are self contained and operate from a duplex outlet inside the enclosure. Cycle Timer CTI alternates its switch position every three hours, thereby alternating from one compressor to the other. Therefore, the continuous duty rated compressore are only required to operate on a 50% duty cycle.

TIILE	DESCRTPTION OF OPERATION JACKSONVILLE, N.C. S.0. 15726, ITEM B	$\begin{aligned} & \text { DESIGNED } \\ & \text { TWM } \end{aligned}$	DRAWN	$\begin{aligned} & \text { CMECKED } \\ & \text { CNETM, } \\ & \hline \end{aligned}$	REVISION A
	Consolidated Electric Company 141 SOUTH LAFAYETTE FREEWAY SAINT PAUL, MINNESOTA 55107	$3^{\circ \circ} 3$	DRAWING NO 1 OO1074IMO		

0

DESCRIPTION OF OPERATION

CURTIS ROAD RAW WATER BOOSTER STATION MOTOR CONTROL CENTER
JACKSONVILLE, NORTH CAROLINA

> S.0. 15726, ITEM C

Reference Wiring Diagram 902061-01.
Note that the two booster pumps can be operated either from the main panel at the water plant or locally from pushbuttons in the motor control center units. Note also that low suction pressure cutout circuits are provided, such that if the suction pressure to the boosters is too low, a pressure sensor will open, disabling the pump motor starter and energizing a booster low suction light.
The $D C$ control circuitry from the main water plant will normally be used to operate the two booster pumps. When the operator at the main plant control panel presses the start button for Booster No. 1, it energizes DC relay CRI, which closes a normally open contact across the start button in the motor starter pilot circuit, pulling in the motor starter, which seals itself in thru a normally open auxiliary contact. When the operator at the main panel presses the Booster No. I stop button, it will momentarily energize DC relay CR2, which will open its normally closed contact in series with the stop push button of the starter circuit, dropping out the motor starter. With normal suction pressure, the low suction pressure switch will be closed or in the upward position. Operation of the second booster pump is performed in the same manner as the first utilizing DC relays CR3 and CR4.

A phone jack is provided, for use of the sound powered telephone, to communicate to the main panel at the water plant. The operator merely plugs the phoneinto the phone jack, and presses the call button, signalling the operator at the main p.lant.

Condensation protection heaters are provided in this unit, operated from a thermoswitch. When the temperature in the enclosure falls below a preset limit, the thermoswitch closes energizing the electric heaters. These heaters will stay energized, heating the panel, until the thermoswitch opens.

When the level rises above setpoint 2 and reaches setpoint 1 , relay CR3 is energized, starting Pump No. 1. When the level' falls below setpoint 2, CR3 drops out, stopping Pump No. I. The other pumps operate in the same way, using CR4 and CRS.
When the high level alarm float switch closes, it energizes relay CRI and the high level alarm light. A normally open contact of CRI completes the circuit between terminals 5 and 7 , telemetering the high level condition to Shop order Item J, the annuneiator panel at the Geiger Sewage Treatment Plant. In a like manner, if the level in the wet well falls to an abnormally low level, the low level float switch closes, energizing relay CR2 and the low level alarm light. A normally open contact of CR2 completes a circuit from terminals
5 to 8 telemetering the low level condition to the annunciator 5 to 8 telemetering the low
panel at the Geiger Plant.

Auxiliary contacts of each starter furnish a pump running signal to the Geiger Plant Panel. For instance when Pump is running, a circuit is completed from terminals 5 to 9 telling the annunciator panel that Pump 1 is running.

TITLE	DESCRIPT $1 O N$ OF OPERATIONJACKSONVILLE, N.C. S.O. 15726 , ITEM D		$\begin{gathered} \text { DESIGNED } \\ \text { TWM } \\ \hline \end{gathered}$	DRAWN	$\begin{aligned} & \text { CHECKED } \\ & 7-3,0.75 \end{aligned}$	$\begin{gathered} \text { REVISION } \\ \text { B } \\ \hline \end{gathered}$
	B2.	Consolidated Electric Company 141 SOUTH LAFAYETTE FREEWAY SAINT PAUL, MINNESOTA 55107	$\begin{aligned} & \text { PAGE } \\ & 1^{\mathrm{OF}} 2 \\ & \hline \end{aligned}$	DRAWING NO 1M01076		

TITLE DESCRIPTION OF OPERATION JACKS ONV ILLE, N.C. S. 0,15726 , ITEM D	$\begin{array}{r\|} \hline \text { DESIGNED } \\ \text { TWM } \end{array}$	DRAWM	CHECKED	$\begin{gathered} \text { REvision } \\ \text { B } \end{gathered}$
(《) Consolidateci Eleciric Company	$\begin{aligned} & \text { PAGE } \\ & 2^{\text {OF }} 2 \end{aligned}$	$\begin{array}{r} \text { DRAWING NO } \\ 1 \mathrm{MO} 01076 \end{array}$		

\bullet

\bullet
\bullet
\bullet

SERIAL NUMBER

0

DESCRIPTION OF OPERATION

WELL PANELS FOR WELLS $N, 0, P, Q, R$
JACKSONVILLE, NORTH CAROLINA
S.O. 15726, ITEM E

Reference Wiring Diagram 902063-01.
The operation of the well pump is controlled either from start and stop buttons at the well panel, or from remote start and stop buttons at the main control panel in the water plant. The motor starter circuit is interlocked with an engine drive, by selector switch SSI. Only when the selector is in the MOTOR position, will the motor starter be capable of energizing from either local or remote control. When the switch is in the ENGINE position, the engine start circuit will be permitted to operate, but the motor starter circuit will be locked out.

For local control, the operator starts the pump by pressing the start button, which energizes starter MSI, which seals itself in through the normally closed stop button and normally closed relay contact CR2. The operator stops the pump by pressing the stop button which de-energizes the starter.

For remote control from the main panel at the water plant, the operator presses the start button at the water plant, momentarily energizing dc relay CRI, which completes a circuit around the start button, energizing the starter which seals itself in with the MSI auxiliary contact. When the operator at the main plant presses the stop button for this well, relay CR2 is momentarily energized, which opens the normally closed CR2 contact in series with the stop button, de-energizing the starter and stopping the pump.

A normally open motor starter auxiliary contact will complete a circuit between terminal 7 and terminal 5, lighting a run light at the main plant panel. When the operator wishes to talk to the operator at the main plant panel, he plugs the sound powered telephone into the phone jack, and presses the call button completing a circuit between terminals 6 and 7 and lighting a light at the main panel.

\bullet
-

-

metatranic* 2000
 INDICATORS
 MODELS 2751-10B
 AND 2751-20B

FEATURES

- State of the Art Electronics.
- Compact Size.
- 1 or 2 Variables.
- Voltage or Current Input.
- Optional Alarms and Alarm Lights.

DESCRIPTION:

The Metatronic 2000 indicator is designed to accurately display one or two process variables in a single compact package. Each variable hos an independent meter with its own scale. The indicator has a $27 / a^{\prime \prime}$ full view scale and two optional indicator lights on the front panel.

The buffered amplifier unit has an accuracy $\pm 1.35 \%$ with an impedance of greater than one megohm and is designed to be used in parallel with the other Metatronic controllers, recorders, and stations. The unit can accept 4. 20 MA or 10.50 MA , as well as 1 . 5 volts as inputs. A buffered amplifier between the input and meter sliows for the greater accuracy, high input impedance, and optional electranic solid state alarms. One or two alarms are available per pointer. The contacts are rated $30 \mathrm{~V} . A C$ or $D C$ at 1 ampere. This indicator requires a 24 volt $D C$ power supply for operation.

All indicutors feature state of the art electronics, which allow com. pact size and weight. They are designed to be mounted in any standard Metatronic 2000 housing and use the standard umbilicals.

OVERALL DIMENSIONS

TERMINAL CONNECTIONS
(BUFFERED AMPLIFIER TYPE)

\bullet
-

\downarrow

DESCRIPTION OF OPERATION

WELL CONTROL PANEL AT THE NORTHWEST CORNER OF THE WATER PLANT JACKSONVILLE, NORTH CAROLINA

$$
\text { S.0. } 15726, \text { ITEM G }
$$

Reference Wiring Diagram 902065-01.
This control panel receives start and stop signals from the main panel via 48 volt DC control relays, and energizes load relays calling for the well to run. A contact of each load relay is used to transmit a well required signal back to the main panel. A phone jack and call button are provided for communication to the main panel.

When Well \#2 is called for at the main panel, the operator presses a button which supplies -48 volts DC to terminal 4 , momentarily energizing relay CRI. A normally open CRI contact energizes relay LRI which seals itself in through the normally closed CR2 contact. Whenever LR1 is energized, the Well \#2 required light is also turned on. A normally open load contact of load relay LRI completes a circuit between terminals 26 and 27 , which is carried via \#l0 wires to the remote well causing that well pump to start. A lightning arrestor is included that is wired across each of these load relay output contacts, to protect the control circuit for each remote well.

When the operator at the main panel wants to stop Well 2 he presses the stop button supplying -48 volts $D C$ to terminal 5, momentarily energizing relay CR2, which breaks the circuit of LRI, de-energizing that relay and stopping the pump. The remaining six well control circuits operate in the identical manner of that for Well No. 2.

$\begin{gathered} \text { DESIGNED } \\ \text { TWM } \end{gathered}$	DRAWN		${\underset{A}{\text { REVISION }}}_{\mathrm{A}}^{\text {Ren }}$
Page	DRAWING NO		
$1^{\circ} \mathrm{F} 1$	IM01079		

L		M	$\mathrm{N} \quad \mathrm{O}$	P	
REV.	CO. nO	DATE	DESCRIPIION	Chk	Appo
A	3723	8/7/75	RELEASED		Sm
3	HJG	3-4.76	CUST'S. CHANGES		6

VERTICAL

THERMOSWITCH
cO:IENATION STARTER
Full volitage
NOIV-REVERSING

WESTINGHOUSE ELECTRIC CORPORATION
MOTOR CONTROL CENTER - TYPE W -
STANDARD UNIT WIRING DIAGRAM

$$
\begin{aligned}
& \text { ING DIAGRAM } \\
& \text { CHICAGO,ILL. } 2289 A O 3 \cdots
\end{aligned}
$$

		SUB-VARIATION					P退\| ${ }^{\text {PAGE }} 10$		DRAWING MU.201896-01							
$\begin{aligned} & \text { ITEM } \\ & \text { HO. } \end{aligned}$	CECO PART NUMBER	01			K	DESCRIPTION	SPECS OR MFG'S P/N		COMPONENT							
		QUANTITY REQUIRED														
1	DLO1 382	REF				Document List										
2	902066-01	REF				Wiring Diagram			See P.O.							
3		1				Encl., ${ }^{\text {NEMA }}$ N 19×15 West.										
4		1				Thermoswitch CECo	2G-91		TH							
5		1				Heater, ${ }^{150}$ Watts ${ }^{\text {chemal ox }}$	SCB-150		HTR							
6		1				Screw Base Leviton	9063		HTR							
7		6				Fuse Buss	FRN-125									
	FAGE OF	$\begin{gathered} \mathrm{REV} . \\ \mathrm{B} \end{gathered}$	TITLE M.C.C. - GEIGER WATER DIST. PUMPS S.0. 15726, ITEM יH'					DRFT	7/30/75	HJG						
W	11							CHKD	- $8-1-75$	cran						
DRAWING NUMBER					CONSOLIDATED ELECTRIC CO.			ENG		TWM						
			141 SO. LAFAYETTE FREEWAY • ST. PAUL, MINN. 55107	APP	$8 / 7 / 75$	Ku.n										

-

1

\bigcirc

GEIGER SEWAGE TREATMENT PLANT ANNUNCIATOR PANEL
JACKSONV ILLE, NORTH CAROLINA

> S.0. 15726, ITEM J

Reference Wiring Diagram 902068-01.
The Model CMXOl Remote Control Transmitter is used here to furnish 50 volt DC power, used to control the 48 volt DC relays, for telemetering between this panel and Item "D" at the New River Sewage Pumping Station. Further information on the CMXOl Transmitter is supplied in the description IM00778.

Communication between the two panels is provided by the sound powered phone which plugs into the phone jack, and a call button which can be pressed, sounding the sonalert at the other end. Relays CRI thru CR5 perform the alarm functions and the pump running status functions as shown on the drawing.

When a high alarm occurs, a contact at the remote panel at the New River Sewage Pumping Station completes a circuit between terminal 5 and terminal 7 energizing relay CRI. A normally open CRI contact sounds the alarm bell through a normally closed CR6 contact while a second CRI contact brings the high level alarm light to full brilliance. Pressing the silence button for the high level alarm energizes relay CR6 which de-activates the alarm bell and seals the relay CR6 in through the normally open CRI contact. When the high alarm condition is removed, CRI is de-energized, and relay CR6 is reset.

A low level alarm will activate relay CR2 and bring the low level alarm light to full brilliance while activating the alarm bell. A low level alarm can be silenced in the same manner as the high level alarm. Lights are provided for pump running status which are also of the dimalow type.

fitie	DESCRIPTION OF OPERATION JACKSONVILLE, N.C. S.0. 15726, ITEM J	$\begin{aligned} & \text { DESIGNED } \\ & \text { TWM } \\ & \hline \end{aligned}$	DRAWN	$\begin{aligned} & \text { CHECKED } \\ & \text { OES } \\ & 7-30-75 \end{aligned}$	$\begin{gathered} \text { REVISION } \\ \text { A } \\ \hline \end{gathered}$
	Consolidated Electric Company 141 SOUTH LAFAYETTE FREEWAY SAINT PAUL, MINNESOTA 55107	$\begin{aligned} & \text { PAGE } \\ & 1^{\circ \mathrm{OF}} 1 \end{aligned}$	DEAWIN	$\text { IM01 } 082$	

\bullet
0

DESCRIPTION OF OPERATION

filter console at the camp geiger sewage treatment plant JACKSONVILLE, NORTH CAROLINA
S.0. 15726, ITEM K

Reference Wiring Diagram 902069-01.
Reference Flow Diagram on Page 2 of this Description.
As shown on Page 1 of the Wiring Diagram, the flow through Filter \#1 is controlled by monitoring the level in the filter using a Bulletin Al000 Submersible Level Transducer. This level signal is then compared to the pre-adjusted setpoint of a setpoint controller, and the deviationsignal is used to modulate the filter effluent valve.

The level signal from the Bullet in Al000 Submersible Transducer is first fed to the Bullet in G500, Model AN-11 Controller. This Controller furnishes a meter output to indicate the water level in the filter, and conditioned analog output to the 'levell input of the proportional controller. This Controller tries to maintain the water level at the adjusted setpoint by varying the opening of the effluent valve. The setpoint for Filter No. 1 can be re-adjusted with a pot on top of SPCl inside the console. A $4-20 \mathrm{ma}$. signal from pins 7 and 8 of SPCl directs the opening of Filter 1 Effluent Valve, via position controller VPCl on Page 3 of the Wiring Diagram.

The control autput on the AN-11 Controller is used to energize relay CR1, to enable the two filter effluent pumps to run. When the water in the filter gets below a pre-adjusted setpoint, the control output contact opens, de-energizing relay CRI, which disables both filter effluent pumps. If the level in the filter gets too high, the high alarm contact in the AN-11 Controller will close, energizing relay CR2 in the Model CMAO9 Alarm, Module. This turns on the High Water in Filter \#l alarm light and energizes the audible annunciator. When the operator presses the silence button, it energizes relay CRI in the alarm module, disabling the audible annunciator and sealing itself in. When the alarm condition goes away, and the high alarm output contact opens, relays CR2 and CR1 in the Alarm Module de-energize, turning off the light.

CAMP GEIGER
TERTIARY SEWAGE
FILTER
FLOW DIAGRAM

\bullet
\bullet

The level control circuit for Filter \#2 is identical to that for Filter \#l. Each filter has an indicating recorder which records the fiow through the filter from an electronic transmitter signal.
The head-loss across each filter is displayed on a dual indicator. Each channel of this indicator includes an alarm contact, which closes when head-loss exceeds a preset value For Filter \#1, a high head-loss will energize 24 volt relay CR5, which will initiate a backwash sequence.

A backwash control switch is provided, to permit the operator to manually initiate a backwash sequence or to manually stop the backwash sequence. Note that the two filters are interlocked with contacts of their latch relays CLI and CL2, such that if Filter \#2 is backwashing, Filter \#l may not be initiated into a backwash sequence. This assures that one of the two filters is always on line.

BACKWASH SEQUENCE

The backwash sequence for each of the two filters is identical, therefore only Filter \#l will be described here. Referring to Page backwash control switch is left in the center or off position, service, the normally closed contact of latch relay CL2 is closed, permitting the N.O. CR5 contact to complete the circuit to the latch input of relay CLl, when it closes due to high to the latch input of relay CLI, when it closes due to high lead loss in. Filter \#l. When CRs then causes CLl to lat a normally closed CLl contact turns off the Filter \#l. in Filer \#l Filter \#l energizes relays CR4A, CR4B and CR4C. The sequence for operating the valves in the automatic backwash sequence is to is opened and finally the surface wash valvekls opened. SEE NotES Note that the manual control selector switches for each valve are disabled by N.C. contacts of rel ays CR4A thru CR4C when the filer enters the sele switches stay disabled until the backwash cycle has been completed.

Upon initiation of backwash in Filter \#1, a circuit is completed through contacts 9 and 6 of CR4C, normally closed contacts 7 and 1 of CR3 (the backwash stop relay for Filter \#1), and the normally open contacts 7 and 4 of relay CR4A to the coll of relay CRIO. This will drive the Filter Effluent gize relay CR8 Note that then enerterminal 9 of valve posit the filter goes into backwash, so that there will not be tha opposing close and open output signals to the valve This control power to the valve positioner is removed byioner. normally closed

As soon as Filter Effluent Valve \#l is fully closed, a normally open CR8 contact in series with a normally open CR4A contact will apply power to the open input of the Backwash Valve \#l positioner. When this valve has reached the fully opened position, relay CRll is energized.

Referring to Page 6 of the Wiring Diagram, a normally open CRIl contact in series with a CR4C normally open contact will apply power to one of the backwash pump control relays depending upon which position the Backwash Pump selector is in. Assuming the Backwash Pumps H-O-A selector is in the AUTO position, the appropriate relay will furnish a contact closure to start one of the Backwash Pumps. Another nor"backwash pump required" light.

Another normally opened CRIl contact in series with a normally open CR4B contact completes a circuit to the open input of the Surface Wash Valve \#l operator. When this valve has reached the fully opened position, a limit switch transfers energizing relay CR13.

Referring to Page 6 of the Wiring Diagram, a normally open CRI3 contact in series with a normally open CR4C contact will energize either of the surface wash pump control relays depending upon which position the selectors are in. For instance, if the Surface Wash Pump selector is in the \#l position and the Surface Wash Pumps H-O-A selector is in the AUTO position, relay CR29 will be energized, lighting the Surface Wash Pump \#l Required light and starting Surface Wash Pump \#1. Referring to Page 3 of the Wiring Diagram,

TITE	DESCRIPTION OF OPERATION JACKS ONV ILLE, N.C. S.O. 15726, ITEM K	$\begin{aligned} & \text { DESIGNED } \\ & \text { TWMA } \end{aligned}$	QrAWM	$\begin{aligned} & \text { CHECKI } \\ & 3-5=-76 \end{aligned}$	
	$\left(\begin{array}{l}(0) \\ -7) \\ \text { Consolidated Eloclric Company } \\ \text { 141 SOUTH LAFAYETTE FREEWAY }\end{array}\right.$	$4^{\text {OFG }} 6$	BLAWING HOIMO1083		

another normally open CR 13 contact energizes timer TMI, which will establish the duration time of the backwash operation. This timer can be set for up to 30 minutes of backwashing time.

Note that relay CR3 is the relay that causes the filter to stop backwashing and sequence its valves to the in-service position. This "backwash stop" relay can be activated by timer TM when it times out at the end of the automatic backwash. Or, CR3 can be energized manually by the operator turning the Backwash Control switch momentarily to STOP. This "backwash stop" relay can also be activated by a momentary closing of the contacts connected between terminals 21 and 22 , so that if there is inadequate suction for the backwash pumps or inadequate volume available for their discharge, the filter will be sequenced out of backwash.

When Timer TMI times out, its contacts 6 and 5 close, entergizing relay CR3 and applying power through the CR 4B normally open contact to the close input to the Surface Wash Valve \#l operator. As soon as the valve begins to close, relay CR13 is de-energized, stopping the surface wash pump. Relay CR 3 on Page 3 of the Wiring Diagram seals itself in through its normally open contact and a normally open CR 4C contact.

Referring back to Page 4 of the Wiring Diagram, when the Surface Wash Valve \#l reaches the fully closed position relay CR14 is energized, and the Surface Wash Valve \#1 Closed light comes on. A normally open CRI 4 contact applies an input to the close terminal of the Backwash Valve \#1 positioner. As soon as this valve begins to close, relay CRII is de-energized, and the backwash pump is stopped. When the Backwash Valve \#l reaches the fully closed poslion, relay CRI2 is energized. The valve position meter should then read approximately 0% opened.

A normally open CR12 contact applies power thru a N.O. CR4A contact, to the open input of the Filter Effluent Valve \#l positioner. When this valve begins to open, relay CR8 will be de-eneraized.

In the upper left hand corner of Page 3, a normally ope CR 3 contact in series with a normally closed CR8 contact now applies power to the reset input of latch relay CLl, resetting it and placing Filter \#l back in service. The in-service The effluent valve will be re-positwash light is turned off. position controller VOCI be repositioned, under command from setpoint is reached in Filter \#l.

The $96-\mathrm{pin}$ timers TC1 and TC2 on Page 6 of the Wiring Diagram control the operation of the remote solenoid valves controlling the two sludge draw-off valves. The dial on each timer revolves

- -1 is easily programmed in 15 minute increments

1. Hinter bff. Pump nowat tue wT. off
Pos hachwach sequence and wetcenneol
Lo aeswice at end of bacheunch seqeren
2. - Surface wash Valves (and Pumps) are to
3.- Surface wash. Valses (and Pumps) goren
before hacbimash Valves and Pumps.

DESCRIPTION OF OPERATION
WATER TREATMENT PLANT FILTER CONSOLES
JACKSONVILLE, NORTH CAROLINA
S.0. 15726, ITEM

Reference Wiring Diagram 902070-01.
Each of the three filters has its individual filter control console containing a filter flow indicator with associated circuit cards and power supplies as well as manual control switches and indication for the five valves. Start and top push buttons are provided for manual control of the two backwash pumps and the two surface wash pumps.

Each of the first three pages of the wiring diagram is devoted to the flow indicator circuitry for an individual filter. This is necessary because the filter flow circuitry is somewhat different for each filter. In the case of Filter No. 1, shown on Page 1 of the diagram, the flow indicator circuitry is quite simple, in that only a square root extractor card is needed to condition the signal from the flow transmitter to the Bristol Indicator.

On Page 2 of the Wiring Diagram, a subtractor card is employed in the flow indication circuitry for Filter No. 2, since the transmitter sends a signal proportional to total flow for both Filters 1 and 2. The output from the square root extractor card is applied to the subtractor card and then the signal representing Filter No. I flow is subtracted from the tota signal output from the square root extractor. The resultant analog signal represents the flow for just Filter No. 2, and this is applied to the flow indicator.

Referring to Page 3 of the Wiring Diagram,for the flow circuitry for Filter No. 3, the transmitter input signal, representing total flow for all three filters, is applied to the square root extractor card. The output from the square root extractor, proportional to flow, is applied to the subtractor card as is the signal from the filter No. 2 control console, which represents the total flow of Filters and 2. The subtractor output then represents the difference between the Filter No. 3 transmitter signal and the flow for Filters 1 and 2 which results in a signal proportional to the flow from just filter No. 3. This output is then applied to the Filter No. 3 flow indicator.

MANUAL BACKWASHING

The valve positioner for the filter influent, filter effluent and the backwash influent valves are to be furnished with 1000 ohm potentiometer outputs, which will control a valve position meter for each of these valves on the control console. These valves will be manually modulated to adjust flow rates, The backwash effluent valve and the surface wash valve merely operate in the fully opened or fully closed positions, and rghts are are simply ala modulated valves are 3-position center-off switches with momentary open and close positions.

To place the filter in backwash, the operator must first turn SSI to close until the Filter Influent Valve meter indicates that the valve is 0% opened. The operator should hen move the selector switch for the Filter Effluent Valve o close and hold it until the position meter indicates 0% pened. The operator should next press the open side of selector switch SS5, and when the opened light comes on for the Surface Wash Valve he should press the start button for the desired Surface Wash Pump.

The operator then turns selector switch SS3 to the open position opening the Backwash Effluent Valve. When the opened light comes on, the operator then turns selector switch SS 4 to open until the Backwash Influent Valve incates 100% opened, or the desired opening. The operator Backwash Pump \#2 or both depending on how much backwash flow is desired. The backwash flow rate will be indicated on the arge backwash flow indicator separately mounted Note that large backwash flow indicator separately mounted. Note that by use of the open-off-close Backwash inf uent valve flow,

When the filter has been backwashed for a sufficient period of time the operator reverses the backwash procedure and returns the filter to the in service mode.

1176	DESCRTPTTO OF OPERATTON JACKSONVILLE, N.C. S.O. 15726, ITEM L	$\begin{aligned} & \text { DESIGNED } \\ & \text { TWM } \end{aligned}$	DRAWN	$\begin{aligned} & \text { CHECKED } \\ & 1 \% 4275 \end{aligned}$	$\frac{\text { REVISION }}{B}$
	Consolidated Electric Company 141 SOUTH LAFAYETTE FREEWAY SAINT PAUL. MINNESOTA 55107	$\begin{aligned} & \text { PAGE } \\ & 1^{\mathrm{OF}} 2 \\ & \hline \end{aligned}$	$\begin{array}{r} \text { BRAWING NO } \\ \text { IM01084 } \end{array}$		

DESCRIPTION OF OPERATION

NEW RIVER WATER TREATMENT PLANT MA IN CONTROL PANEL JACKSONVILLE, NORTH CAROLINA
S.O. 15726, ITEM M

Reference Wiring Diagrams 902071-01 and 902104-01. \qquad Sell
 This Main Control Panel includes programming lights for all the raw water pumps, which are operated by augite switches. The operator can position these ON/OFF goggle switches to indicate which pumps are to be run. The Pump Required lights that are thus turned on, maintain a record of which pumps are wells and boosters, is achieved by the use of push buttons, momentarily operating 48 volt DC relays at the receiving locations. Indicator 1 lights are furnished for each of these Jie remote pumps, operated by contacts from the remote location permit communication with the main panel. Individual fuses are furnished for each of the remote pumps, to provide maximum integrity of the system.

Manual control of the finished water pumps and the distributon pumps is also furnished in the same manner along with running indication lights. A call light and phone jack is provided for communication from these pump locations also.

Five Cecotronic Receiver frames are provided, one for each of the water storage tanks, along with vertical-scale tank level meters. The pulse width modulated signal received from each of the water tanks is converted to an analog signal that drives the level indicator. Setpoints are furnished in the receiver frame which operate output relays to operate an alarm when there is an abnormal level in the tank and also to indicate an alarm when there is a signal failure. Another output contact from the control frame operates an alarm bell when either of these alarm conditions occurs at any of the five tank locations. Pressing the silence button for the appropriate water tank will silence the alarm bell when an alarm condition occurs. The alarm light will stay on until the alarm condition has been eliminated.

Flow recorders are mounted in this panel, to indicate and record the raw water flow rate and the finished water flow rate. The circuitry for these recorders and associated circuit cards and power supplies are shown on the right hand side of Page 2 of the Wiring Diagram.

Referring to Page 3 of the Wiring Diagram, the remote control circuitry for each of the remote pumps is essentially identical therefore it is only necessary to describe one of them. If the operator presses the start button for Well B, a signal is transmitted to Item "Nl" panel at well B which momentarily energizes a 48 volt DC relay, closing a contact around the start push button at the motor starter, energizing that starter which seals itself in. When the operator wishes to stop the pump at Well B, he presses the stop push button, again momentarily energizing a 48 volt DC relay, which breaks the circuit in series with the stop button at the motor starter, dropping out the starter and stopping the pump. While the pump is running at Well B, an auxiliary contact of the starter completes the circuit to the Well B running light, turning that light on.

Referring to Page 6 of the Wiring Diagram, contact closures in the panel at the clearwell, Shop Order Item " F ", will operate alarm modules for high level and low level in the clearwell. For irs stance if a high level condition occurs at the clearwell, a contact closure will energize relay CR2 in Alarm Module AMI. This lights the High Level in Clearwell light, and energizes the alarm bell shown on Page 1 of the Wiring Diagram. Pressing the silence button for the high level alarm, will energize relay CRI in Alarm Module AMI, deactivating the alarm bell. The high level light stays on until the level subsides in the clearwell. Similar alarm modules are furnished for Clearwell Low Level and for a Slaker Alarm. A contact is furnished by others to activate the slaker alarm.

CECOTRONIC EL EVATED TANK RECEIVER

Referring to Wiring Diagram $902104-01$ and Assembly Drawing $201999-01$, the pulse width modulated DC signal on the signal pair from the transmitter is applied to terminals T1 and T2 of the DC Receiver in slot A-25. This pulse width modulated signal is converted to a logic level pulse width modulated Signal and applied to the in

The XPW-18 card detects when a monitor signal from the water tank transmitter has been lost, indicating a fallure at the transmitter or a failure of the signal lines. This condition will apply a zero input to Pin 17 of the alarm silence gate in slot A-15. The output at terminal 16 of the DSG-03 card energizes relay $K 2$ in the QRM-01 Module in slot A-44. This operates relay K 2 which activates the Signal Failure light. The output at terminal 12 of the DSG-03 card energizes relay K3 which operates the alarm bell. When the operator presses the silence button for this water tank, the 12 volt input applied to the Pin 18 of the QFG-02 Buffer in card slot A-17 pulls down the silence input Pin 11 of the DSG-03. This deenergizes relay K 3 and de-activates the alarm bell.

The signal output from the $\mathrm{XPW}-18$ card is applied to the input terminals of the XPW-15 Pulse. Width Demodulator card in slot A-05. This card converts the pulse width signals, which are logic level signals varying between 100 milliseconds and 900 milliseconds in duration, proportional to the level of water in the tank, to an analog signal varying between -5 and +5 volts DC. This signal is then applied to the input of the Simulator/Queller card in slot A-07. The pulse width modulation system is further described in IMOO290.
The SES-06 Simulator/Queller card in slot A-07 performs two functions. The quelling function is one of delaying the system response to variations in the level signal received from the transmitter. The input signal is integrated such that the changes in level are caused to occur slower in the output than they are at the input. This rate of quelling is adjustable by a trimpot on the upper front face of the card. The simulator function is one of permitting the operator to move a switch on the front face of the card to the manual position and adjust a trimpot at the lower front face of the card to simulate variations in the level signal. The operator must always remember after using the manual mode, to move the switch back to the AUTO position so that the system will responction is very the actual level signal. The simulation and to helpful in facilitating trouble shooting, and to help the operator in making adjustments to the system. A buffered level signal is provided at terminal 17 and this is used to drive a vertical scale meter on the is is pot on the ZOM-02 Connector Board in slot A-50 is used to adjust the meter output for proper deflection. The normal analog output signal from terminal 11 of the SES-06 card is applied to the input terminal 18 of the QEc-ol Vollage comparat is or Setpoint Card in slot A-13
further described in ES 50070 .

TITLE	UESCRTPTTUN OF OPERAT TON JACKSONVILLE, N.C. S.O. 15726, ITEM M	$\begin{aligned} & \text { DESIGNED } \\ & \text { TWM } \end{aligned}$	dRawn	$\begin{aligned} & \text { CHECKED } \\ & \text { fer } \\ & 8 / 1,2 / 75 \end{aligned}$	$\begin{gathered} \text { REVISION } \\ A \end{gathered}$
	Consolidated Electric Company 141 SOUTH LAFAYETTE FREEWAY SAINTPAUL MINNESOTA 55107	$\begin{aligned} & \text { PAGE } \\ & 3^{\text {OF }} 4 \end{aligned}$	DRAWING NOIM01085		

The QEC-O1 Voltage Comparator card is used to compare the varying analog level signal to pre-adjusted voltage setpoi-nts and provide logic level outputs which change abruptly betwee logic 1 and logic 0 (plus 5 volts and 0 volts approximately) In this system, the high alarm setpoint and the low alarm setpoint are wired together and connected to the input Pin 6 of the DSG-03 alarm silencing gate. This means that whenever there is either a high level condition or a low level condition in the tank, this alarm input will be pulled down which will cause the alarm gate to energize relay $K 1$ in the QRM-01 Module in slot $\mathrm{A}-44$. The output contact of relay Kl lights the abnormal level alarm light. As in the case of the signal failure alarm, the output from terminal 12 of the DSG-03 card will energize relay K3 activating the alarm bell. In the same manner, if the operator presses the silence button for this water tank, it will silence the alarm bell by de-energizing relay K3. The operation of the voltage comparator card is further described in ES50065. The operation of the QRM-01 Relay Module is further described in ES50067. The DTC-02 DC Receiver module includes lightning protection for the input signal, which is further described in ES50061.

TITLE	DESCRIPTION OF OPERATION JACKS ONVILLE, N, C. S.0. 15726, ITEM M	$\begin{gathered} \text { DESIGNED } \\ \text { TWM } \end{gathered}$	DRAWN	CHECXEO	Revision A
	(11) Consolidated Electric Company 141 SOUTH LAFAYETTE FREEWAY	$\begin{aligned} & \text { PAGE } \\ & 4^{\text {OF } \quad 4} \\ & \hline \end{aligned}$	DKAWING NOIMO1085		

FIG.I TYPICAL LEASED CIRCUIT

Tracing the circuit from one end to another, we start with the DROP-the single pair which runs from the end of the circuit to the nearest POLE BOX-where access to a cable is avallable. The pole box may or may not be mounted on a pole. It is a terminal box where a large cable is opened. This large cable follows a rather direct route to the serving Central office. In the central office, this cable is fanned onto Carbon Blocks and mounted on the central office Distribution Frame. These carbon blocks provide over-current protection and lightning protection for the central office. A Cross Connect extends the circuit to another serving cable. It also is equipped with carbon blocks. This cable brings the circuit to a pole box near the far end of the circuit where another Drop extends it to the end.

Common trouble spots in a circult of this type are between the end of the circuit to the Pole Box - the Drop, and the Carbon Blocks. In the drop, one or both of the wires of the circule bot can become grounded.
o check a palr of IInes, disconnect from equipment at both ends, and make sure that wires cannot touch any metal object tape ends, etc.). Flrst, using a voltmeter, check to be sure if round. Ne to round. Now, check the resistances shown in Figure 2 at one end of the line

FIG. 2 Checking for Shorts and Grounds
For the ground checks, use any good water plpe ground or the ground in the control panel. If any of the readings between lines or to ground measure less than 100,000 ohms, notify the telephone company and have them repalir the line.

FIG. 3 Checking Line Resistance
Referring to figure 3, connect the two lines together, but do not Referring to figure 3, connect the two to the other end of the line and measure the resistance between the two lines.

Check this reading against the maximum permissible line resis tance listed in the Trouble Sbooting Guide for the transmitter used.

IA7108426
\bullet
-
\bullet

\bullet-

 OUTL INE AHD MOUNTING DIMENS IONS ONLY.
COMPONENT LAYOUTS WILL VARY, OEENOENT UPOY SPECIFIC IOB PEDVIREMERITS
DIMENSIONS (INCHES)
\qquad

DESCRIPTION: NEMA TYPE 4 ENCLOSURE.
FOR USE IN AREAS WHICH MAY BE REGULARLY HOS $\subseteq 0$ OOWN OR OTHEFWISE VERY DAMP. IT IS SUITABLE FOR OUTOORS
OR IN DAIRIES. EREWERIES, AND SIMILAR INSTALLATIONS.

TTTLE ENCLOSURE DIMENSIONS NEMA 4				$\left[\begin{array}{l} S . O .1 T E M S \\ O, F, G, B \end{array}\right.$
CONSOLIDATED ELECTRIC COMPANY				Tinisu harmertone
		$\begin{aligned} & \text { CO NOT } \\ & \text { SCALE } \end{aligned}$		1900432

\bullet
©

QRM-01, QUAD RELAY MODULE

Schematic Assembly
QRM-01 900440-01 600186-01

The QRM-01 is a quad Relay Assembly for interfacing between Electronic on-off signals and $A C$ control circuits, suchias industrial control relay circuits. The output is a form C mechanical relay. It, therefore, will operate properly in most low power circuits.
When the input is held at a logic 0 , the relay will energize. When the input is at a logic 1 , the relay will release.

Contact Ratings: 2 Amp. continuous
For non-inductive loads only, $A C$ or $D C$ 150 Volts maximum.

Load contacts are completely isolated from Ground and each other.
Contacts are not suitable for dry circuit loads.

1. INTRODUCTION

CECOTRONIC BASIC ANALOG TRANSMITTER

The Basic Analog Transmitter is a versatile, solid-state system, designed for municipal applicatiuns requiring continuous, autanatic transmission of a measured variable over a DC circuit.

The system is designed to provide flexibility of configuration to meet application needs and provide convenient future on-line modification.

This Manual is not intended to cover all details or variations in equipment nor to provide for every poss ible contingency to be met in connection with installation, operation or maintenance. Should further information be desired or should particular problems arise which are not covered sufficiently for the purchaser's purposes, the matter should be refcried to Consolidated Electric Company, Saint Paul, Minnesota, 55107.

MA INTENANCE FEATURES

All printed circuit cards and modules plug in to convenient receptacles within the card frames. The receptacles are individually keyed for specific card types, to minimize operator error in changing cards.

Card adjustments, switches, and test points are located at the front edge of the cards where they can be easily reached.
Trouble-shooting the system is simplified by the use of test points, placed strategically throughout the circuitry. The compact logic probe, which plugs into a regulator card for power, indicates ON or OFF status of logic signals present at any test point.

Card-edge connectors within the card frame assemblies are back-wired and normally do not require attention. However, should it become necessary for field service personnel to repair or modify this wiring, the entire electronics frame is removable for easy access to the connectors.

A well-designed solid-state system is extremely reliable. Component failures can occur however, and for this reason, the System has been made for easy servicing.

DESCRIPTION OF OPERATION

The Cecotronic Pulse Width Mudulation, P.W.M. System is designed for applications where an analog signal must be sent from a remote location to a central location. The distance involved which constitutes the use of a P.W.M. System is normally a couple hundred feet up to approximately five miles. In order to accurately transfer analog information, the data must be transformed into data which is not adversely affected by phone line resistance. The analog data is in the form of a small D.C. voltage which is continuously variable from minus, 5 volts D.C. to plus 5 volts. D.C. The Pulse Width Modulation System transforms this small D.C. voltage into a continuously variable pulse duration signal which makes it possible to transmit the information accurately. When the data is received the pulse duration signal is then transformed back into a O.C. analog signal. An accuracy loss of less than. I percent of span is easily obtained with this system.

The Basic Analog Transmitter is designed for use with differential voltage inputs or 4 to 20 mA process current loop inputs. An appropriately calibrated Input amplifier is supplied.
An SEA-04 amplifier is used for differential voltage inputs. It's maximum differential input voltage is 8 volts, and its maximum common mode input voltage is 8 volts.
An SIR-01 amplifier is used for 4 to 20 mA current loop inputs. It requires no calibration (factory calibrated) and has a maximum common mode input voltage of 50 volts. Accidental, short duration, comection to voltages up.to 250 VAC will not danage the SIR-01 amplifier.

LEVEL S IfULATION

The output signal from the input amplificr is a $D C$ voltage which varies between -5 and +5 volts DC. This signal is applied to the $\mathrm{Simulator} / \mathrm{Queller}$. A switch in the Simulator/Queller circuit permits the operator to switch from AUTO mode to MANUAL mode. To make adjustments on the system, the operator need only position the level simulation pot on the SES-06 to simulate the desired level signal. Once the adjustments are made, the operator switches back to the AuTO mode.
The Simulator/Queller circuit also provides an integration or quelling function. In the AUTO mode the system responds slowly to the instantaneous level input signal, due to the integrating function. This controlled response eliminates sporadic operation of the level set-points due to sudden changes in the level, or due to noise induced in the line carrying the level signal. The rate of integration of "Quelling" is adjustable on the SES-06. The quelling rate potentiometer is a 20 turn potentiometer, in as much as it will take 20 turns to go from one limit of travel to the other. A very small clicking sound will be heard when the linit is reached. By turning

this potentiometer clockwise, system response to instantaneous level changes is decreased. Inversely, by turning it counter-clockwise, system response to instantancous level changes is increased. Best adjustment is obtained by observing system operation and adjusting accordingly.
Refer to Figure 1. The anatog signal is sent to the XPW-14 card titled Modulator. This card transforms the variable analog signal into a pulse train whose duration is continuously variable from.l second to .9 seconds. (These durations refer to the positive pulse). The output of the XPW-14 card is a pulse train whose repetition rate is approximately one cycle per second and whose positive duration is dependent on the analog signal applied to the input. The XPW-14 card also contains provisions for placing it in a calibration mode. The small button switch located on the bottom of the XPW-14 card enables the operator to place the system in the calibrate mode. The calibration switch directly above the calibration mode switch allows the operator to send any of three accurate calibration signais.
The logic level PWM signal is then applied to the DC Transmitter module. The D.C. Transmitter conditions the PWM signal for transmission onto the phone line. The conditioning in the D.C. Transmitter includes increasing of the amplitude, isolation, and allowing its excursion to be both a negative and a positive voltage. The duration of the pulse is unchanged. Also applied to the D.C. Transmitter module is the equipment failure input. When an equipment failure has occurred, the D.C. Transmitter inhibits the negative portion of the pulse. With, this situation, the analog signal is still received as the analog information is contained in the positive portion of the pulse. Also contained in the D.C. Transmitter module is the phone line protection circuitry.

PHONE LINE FROTECTOR CIRCUIT

The D.C. Transmitter module contains a transient voltage protection circuit. These circuits protect the electronic components from high voltage trans ients induced onto the phone lines. These protectors contain a surge voltage

protector (SVP) and a fuse. If a transient of approximatcly 90 volts or more is induced onto either phone line, the SVP will become a very low impedance to ground. If the transient' is of ample duration and power, the phone line fuse will open.

The most common source of transients is lightning. If lightning occurs close enough to the phone line system it will induce a voltage transient of ample amplitude and duration to open the phone line fuses. Therefore, it is common for the phone line fuses both on the D.C. Transmitter and D.C. Receiver to open during an electrical storm. The four major factors that determine the likelyhood of opening a phone line fuse during an electrical storm are as follows:

1. Proximity of lightning occurrence to the phone line.
2. Type of phone line (overhead, sheilded, buried, etc.)
3. Length of phone line.
4. Geographical location of phone line.

Hainvg only partial control over one of these factors, (type of line) makes it difficult to accurately predict the occurrence rate of opening the phone line fuses.

PWM SYSTEM FUNCTIOHAL AND CALIBRATION CHECK

At the Remote Transmitter, locate the XPW-14 under blue R.F. cover. On the bottom edge of the XPW card locate the small. button switch. By pushing and turning 1/8 turn clockwise, the system is placed in the calibrate mode. Directly above the button switch bocate a small toggle switch. With the toggle switch in the UP position the Transmitter will transmit a signal equal to 100% scale or full scale. Observe and record the rading on the indicator at the Receiver. With

the toggle switch in the C[NTER position the Transmitter will transmit a signal equal 2050% scale or half scale on the indicator at the Receiver. observe and record this reading. With the toggle switch in the DOWN position the Transmitter will transmit a signal equal to 0% scale or zero scalc on the indicator at the Receiver. Observe and record this reading.

If the readings obtained fall outside the required system accuracy, the system will require re-calibration by a factory serviceman or a CECO representative.

Find the D.C. Receiver Module at the Receiver. Find two lights on the front of the module labeled MARK and SPACE. The following relationships apply to the three calibrate positions:

CALIERATE	INDICATOR	(SEC)	(SEC)
SW. POSITION	SCALE	MARK	SPACE
UP	100%	$9 / 10$	$1 / 10$
CENTER	50%	$1 / 2$	$1 / 2$
DOWN	0%	$1 / 10$	$9 / 10$

Turn small button switch counter clockwise $1 / 8$ turn and release. This places the system back in the normal operation mode. Note: With the calibration mode switch in the "Normal Operating Mode", the calibration switch has no effect on the system operation.

POWER SERVICE REQUIREMENTS AND CHARACTERISTICS

Power Service Requirements.

- The SCC, RST, and PCS are designed for direct wire connection to a 115 volt, $15 / 20$ A., 2 wire service.

1116	DESCRIPTION OF OPERATION CECOTRONIC BASIC ALIALOG TRANSMITTER	drawn	$\begin{aligned} & \text { DESIGNED } \\ & \text { DGL } \end{aligned}$	ASSEMBLY NO. 600453-XX	
	CONSOLIDATED ELECTRIC COLAPANY 141 SOUTH LAFAYETTE ROAD - ST. PAUL, MINN 55107	Checkid	$7_{\text {PAGE }}^{\text {Of }} 9$	dorating no imootio2	kev

Power Service Characteristics

- The normal incoming power service voltage shall be maintained at $115 \mathrm{~V} ., \pm 10 \%$, (RMS) for normal system operation.
- The system shall not malfunction when subjected to non-repetitive, transient line voltage conditions between $95-132 \mathrm{~V}$. (R1MS) for transient line durations not exceeding 20 milliseconds . The transient duration shall be that time in which the incoming service voltage is outside the normal operating range of $115 \mathrm{~V} ., \pm 10 \%$ (RMS).
- System nalfunction can be anticipated for incoming service transient voltages lower than 95V. (RMS) or for transient durations longer than 20 milliseconds , when the incoming service voltage is below the normal operating range.
- System malfunction and possible component damage can be anticipated when the system is operated on incoming service voltages in excess of 132 V . (RMS).
- The incoming power service frequency shall be maintained between 5862 hertz for normal system operation. Frequency durations outs ide this range shall be limited to a durationcof 20 milliseconds or less.
. All supplied power services shall be single phase, two-wire with ground. The ground wire shall be connected to earth ground bar per NEC requirements to insure proper operation of lightning protective devices in the system. The resistance of the supplied ground line shall not exceed 3 ohms to earth ground.

OPERATING ENVIRONMENT

Environmental Limitations.

- Amblentooperating temperatures must not exceed the range of $+40^{\circ} F^{\circ}$ to +120 F . In the case of a heated enclosure, this temperature range refers to the temperature within. the enclosure.
- The equipment must not be subjected to any humidity condition causing condensation to form.
- The equipment must not be subjected to any corrosive atmosphere that will cause physical damage to circuit cards, connectors, switch contacts, etc. Such atmospheres are often found near chlorinator and flouridator systems.
- The equipment must not be subjected to any abnormal vibration levels.

$-$

3
-

©

\bullet
-

> RECORDER (OR METER) WILL IND ICATE HE IGHT OF WATER ABOVE "BOTTOM OF TANK". FULL SCALE INDICATION WILL BE NEAREST STANDARD SCALE WHHCH IS LARGER THAN "HE IGHT OF TANK".
\bullet

\bullet

\bullet
-

Bulletin A1000-B

The Bulletin A1000 Submersible Level Transducer

A stationary submerged transmitter.... producing a continuous, analog, electrical signal which is directly proportional to the head-pressure imposed on its bottom diaphragm by the height of the liquid above it.

Used to sense....
water, sewage, sewage sludge, fuel, process and other liquid levels where the specific density of the liquid is relatively constant.

Consolidated Electric Co.

. . . rugged,"stand alone" level sensing transducer does the job you might have thought of a bubbler system for, but does it simply and reliably without the complexity and clogging that are often encountered with bubblers.

The Bulletin A1000 Submersible is used in

~Raw Sewage Wet Wells
~Treatment Plant Sludge Sumps
~ Water Reservoirs
~Rivers,Lakes and Streams

- Parshall Flume Stilling Wells
~ Process Sumps
or where surface freezing, inaccessibility or remoteness of sensor from controlled equipment dictates a submerged installation.

A CECOTRONIC Solid-State Sewage Pump Station Control providing adjustable-frequency variablespeed operation of two-pumps in response to wet well level variations. The pumps are operated in a full-duplex mode with separate lead-lag speed control ramp operation for single and parallel duplex operation. Full-speed contactors allow one inverter to be used for two pumps and also provide redundant ON/OFF operation from Bulletin B100, Model 9G Direct Acting Float Switches in the event of inverter or transducer outage. Manual mode option allows simulation of an input signal variation for test and adjustment purposes. Abnormal conditions are alarmed. Wet well level is displayed over a calibrated range. Solid-State adjustable-frequency inverter operates most standard motors and is often the only practical way to obtain adjustable speed operation of submersible sewage pumps. It has good efficiency over a broad speed range and is enjoying a rapidly growing popularity in municipal and industrial sewage and water pumping service.

The Bulletin A1000 Transducer signal is used to
~ Indicate, Telemeter or Record Liquid Level

- Control Pumps, Valves and Alarms
~ Regulate Adjustable Speed Drives
~ Sense Flow in Flumes, Rivers and Channels

The Bulletin A1000 Level Transducer operates on a hydrostatic head-pressure-sensing principle.

It senses the pressure brought about by its depth of submergence and converts this pressure into an electrical signal. The operation of each of the several types of internal transducing mechanisms is described later. The transducer is typically mounted with its bottom diaphragm face at a fixed known reference elevation and its electrical output is directly proportional to level excursions above that reference elevation over a factory calibrated range.

The electrical output signals are potentiometric, D.C.voltage or D.C.current depending on the selected transducer mechanism type.

One pound of head-pressure (PSIG) is brought about by a submergence of 2.311 feet or 27.73 inches. Conversely, a submergence of 1.00 feet produces a pressure of. 4327 pounds (PSIG). This pressure/depth relationship assumes a specific gravity of the liquid being measured of 1.0 (clear water at $68^{\circ} \mathrm{F}$.). Variations in water temperature have almost no effect on these values. Most common water-based mixtures that are encountered in sewage plant operation, for example, are suprisingly close to the 1.0 value in their specific gravity. A very heavy sewage treatment plant sludge does not generally exceed a 1.02 specific gravity and thus a calibration based on clear water may even be valid for that type of level sensing. The Bulletin A1000 Transducer can be calibrated for liquids of any specific gravity as long as they remain reasonably constant in this value.

The pressure spoken of here is gauge pressure (relative to atmospheric pressure). The Submersible Transducer is supplied with a sealed breathing system (described under "General Construction") that relieves the internal pressure of the transducer housing to atmospheric pressure and thus makes the system insensitive to variations in temperature and barometric pressure.

FEATURES

STAND-ALONE SYSTEM SIMPLICITY - PRECISION ELECTRONICS PERFORM IN A COMPLETELY-PROTECTED ENVIRONMENT
ACCURATE • RELIABLE • FOUL-FREE • ECONOMICAL - WIDE RANGE SELECTION • FACTORY CALIBRATION
SEALED BREATHING SYSTEM COMPENSATES FOR TEMPERATURE AND BAROMETRIC PRESSURE VARIATIONS
RUGGED CONSTRUCTION OF EITHER 3IGSS OR PVC PROVIDES RELIABLE PERFORMANCE IN UNBELIEVABLE SURROUNDINGS

Cross-Section of Model 157 GTMA Submersible Level Transducer and Connection Box Assembly

- An Be
Breather

Conduit sealed fitting to render connection box water tight. Connection Box. Cast iron with corrosion-resistant plating. $\frac{1}{2}$ " NPT tapped holes on sides and top. Gasketted cover renders box water tight when connections are properly made.
Screw terminals for two-wire current loop connections.
Pressure-tight potted sea on electrical circuitry coming into connection box.
Housing interior is relieved to atmospheric pressure through the hose-cable assembly and a slack multiple convolution PVC bellows. Sealed "breathing system" compensates for variations in barometric pressure and expansion and contraction of air due to temperature changes yet prevents fouling from moisture and other corrosive elements.
The cable connection from transducer to junction box is electrically shielded and housed in a heavy-duty, doublebraid Buna N jacketed hose. Cable is standard in 10, 20 or 30 foot lenghts. Special lengths to order.
Pipe mounting shown is typical. Other mounting arrangements include chain or cable suspension or with a set of legs affixed to the transducer so that it can be dropped into a stilling well and will reference itself above the floor by sitting on its own feet. Such an arrangement allows convenient removal and accurate mounting elevation.
Transducer housing is of type 316 stainless steel. Seals and bottom sensing diaphragm are molded of Buna N.
Solid-state, operational amplifier type encapsulated transmitter. 4-20 MADC, two-wire, current-controlling type. Derives LVDT exitation power from the two-wire circuit below the 4 MA level. Regulates the current in the loop in direct proportion to the factory-calibrated level range over a 4-20 MADC excursion regardless of loop resistance variations of from $0-1600 \mathrm{ohms}$. Provides LVDT primary coil exitation, voltage and frequency regulation, LVDT secondary de-modulation, electrical span and offset adjustments (factory sealed) and output current regulation as described.
LVDT core. Positioned by the precision pressure capsule. Provides a variable magnetic link between the primary and secondaries of the LVDT transformer proportional to its position within a range of travel. Its position is determined by the expansion of the pressure capsule which has been acted upon by the hydrostatic head pressure at the diaphragm face.
Transclucer
LVDT (Linear Voltage Differential Transformer) coil consisting of a primary and two secondary windings. Provides electrical output proportional to core position within a linear range.
Precision pressure capsule made of Ni -Span C material. Expands linearly in direct proportion to the depth of submergence of the transducer and positions the LVDT core over a linear range and in direct porportion to that submergence.
Hydraulic oil fill. Transmits the sensed hydrostatic head pressure imposed by the depth of transducer submergence to the interior of the precision pressure capsule.

General Construction

The Bulletin A1000 Submersible Level Transducer contains a pressure-sensing mechanism within a submersible housing and has it connected to sense the external pressure imposed on the bottom diaphragm of the housing. That pressure is brought about by the height of liquid above the diaphragm mounting elevation. The diaphragm and housing seals are molded of Buna N material to be resistant to the wide range of liquids in which the Transducer is used. The diaphragm is tough and flexible (with an effective diameter of $2^{\frac{1}{2}} \mathbf{1 月}^{\prime \prime}$ and a thickness of $1 / 16^{\prime \prime}$) and merely serves as an interface between the external liquid being sensed and an internal oil fill which transmits the diaphragm face pressure to the transducing mechanism.

Three types of transducer mechanisms are offered. The housings are provided in Type 316 stainless steel or in PVC construction. The Transducer is factory-calibrated to operate over a specific level excursion range and does not require nor allow field adjustment.

The cable from the Transducer to the Connection Box/ Breather Assembly is a double-braid Buna N jacketed hose which provides for air transfer from the Transducer to the breathing assembly and houses the electrical signal conductors.

Three types of transducer mechanisms are offered;

Type R-Pressure Capsule/Potentiometric Element (either wire-wound or conductive plastic)

Type S - Pressure Diaphragm/Strain Bridge Amplifier (solid-state, integrated circuit hybrid)

Type T - Pressure Capsule/L.V.D.T. (Linear Voltage Differential Transformer), Amplifier

TYPE R (316 ss housing only)

TYPE S (316 SS OR PVC HOUSING)

NOTE: TYPE S UNITS ARE AVAILABLE AS 2-WIRE, LOOP POWERED IN CERTAIN PRESSURE RANGES. (SEE SELECTION TABLE).

TYPE T (316 SS HOUSING ONLY)
PRECISION PRESSURE CAPSULE /
LINEAR VOLTAGE DIFFERENTIAL TRANS-

NOTE: THE MODEL 157G-TMA 4-20 MADC 2-WIRE TRANSDUCER IS LOOP POWERED AND HAS ONLY TWO WIRESRUNNING TO IT. SEE CROSSSECTION FOR DETAIL ION OTHER PAGE).

Type R and T mechanisms convert the sensed pressure to a mechanical positioning. Type R positions the wiper of the potentiometer (either wire-wound or conductive plastic). Type T positions the core of a linear voltage differential transformer. The pressure capsule in each case is a precision assembly fabricated of NiSpanC material (for uniform performance under varying temperature). The potentiometric element output is direct by means of leads. The LVDT is a "frictionless" sensing means. It operates with an electronics package that provides voltage regulation, primary LVDT coil exci-
tation secondary LVDT coils demodulation and output signal amplification.

The Type S Transducer is solid-state in nature and involves a minute flexing of a sensing diaphragm in response to pressure change. A strain bridge is deposited on the back of the diaphragm and is furnished together with a solid-state electronics package which provides excitation of the bridge and the amplification of its output. The samll size of the diaphragm/strain bridge transducer allows its installation in the basically - smaller PVC housing.

Type R Pressure Capsule/Potentiometric Mechanism

The Type R unit has a resistance element which is used as a voltage divider. The movable wiper of the potentiometric element is driven by the expansion of a precision pressure capsule.

A number of different potentiometric sensors can be incorporated in the Type R Transducer. They are available in different types of resistance element, head pressure ranges and accuracies as well as different current handling capabilities. They nominally have a 1000 ohm total resistance. One "family" has a full-excursion pressure range of $0-1.5,0-6,0-30,0-60$, etc. with a total error band (including hysteresis, linearity and resetability) of plus or minus 1% in the 15 lb . and higher range, 1.5% in the 6 lb . range and 2% in the 1.5 lb . range. Higher pressure ranges are also available. This group is of wirewound element type. With a 120 degree F . ambient temperature this transducer is capable of dissipating 1 watt in its resistance element. The total resistance is held to a plus or minus 2% tolerance while the zero pressure calibration is held to 5% of total resistance and the full scale resistance value with respective pressure is also held to a tolerance of 5%.

Another group of potentiometric assemblies is of conductive plastic element construction. It is
available in 0-5, 0-15, 0-25 and 0-50 psig range. It has typical accuracies of $+/-1 \%$ of range, power ratings of 0.1 watt, $+/-\frac{1}{4} \%$ of 1% repeatability, dither life of $5,000,000$ cycles and resistance value of 1000 ohms +/- 10%.

With potentiometric elements it is necessary to externally trim the signal from the transducer to obtain the desired rangability and "calibration" in a particular control system application. That is, they are offered in a 3 -wire configuration without spanning, offsetting or calibration other than as the ranges are indicated in the Table.

The Type R Transducers obviously involve a wear factor and are somewhat less accurate/sensitive than Types S or T . Their main advantage is lower initial cost and (in some instances) their simplicity of application to a particular control requirement.

Type R Submersible Level Transducers are furnished in the Type 316 Stainless Steel housing as standard. This assembly has a maximum O.D. of $4 \frac{4}{2}$ " and has the internal sizing required to accommodate a variety of potentiometric elements.

Type S Pressure Diaphragm/Strain Bridge Solid State Assembly_

The pressure transducing function of the Type S Submersible Level Transducer (the conversion of the sensed pressure to a corresponding electrical value) is accomplished by a highly-accurate, temperature-compensated solid-state, integrated circuit/hybrid piezo-resistive package. The "diaphragm" of the sensor is chemically-etched in a defined area of an integrated circuit silicon die and a piezo-resistive strain gauge bridge is diffused into the opposite side. Signal conditioning and temperature-compensating transistor circuits are built onto the
same IC chip and are computer-controlled-lasertrimmed for sustained accuracy under temperature variations. The combination of voltage-regulation, temperature-compensation, output signal amplification and buffering in the same integrated package together with judicious selection of matched resistive, comparative, voltageregulating, signal-conditioning and load-driving elements assures consistant performance under the field conditions encountered in a wide range of industrial and public works environments.

VDC signal is available for short-distance circuitry (within the same cabinet or room) but the 4-20 MADC is recommended for any distance and most application due to its resistance variation-compensation characteristic and ready interface with other instrumentation systems. Being solid-state the Type S mechanisms have no wear factor and if properly applied should have an essentially-unlimited life.

Type T Pressure Capsule / LVDT Assembly

The Type T Transducer uses a linear voltage differential transformer (LVDT) with an oscillator/demodulator to obtain a varying output signal which is directly proportional to the expansion of the signal precision pressure capsule and sensed pressure. The Type T Unit does not involve any sliding parts and is therefore inherantly more sensitive and accurate than the Type R assembly.

The Type T Transducer precision pressure capsule mechanism is available in four standard pressure ranges as well as special ranges to order. Each capsule can be combined with a number of different LVDT units and span and offset capability to provide most any desired factory-calibrated operating range.

The precision pressure capsule is fabricated as a multiple convolution diaphragm assembly made of NiSpanC material which affords a high-repeatable, accurately-linear movement in response to sensed pressure variations. The LVDT is a combination of a 3 -winding stationary transformer and a movable core which is positioned by the precision pressure capsule. The primary of the transformer is continuously excited by an AC voltage which is accurately regulated as to frequency and amplitude. The output of the two secondary windings of the LVDT is demodulated and cross-referenced so that an output signal is derived which is accurately related to LVDT core position and sensed pressure.

A Bulletin A1000 Submersible Level Transducer provides a wet well level-responsive input signal to this custom CECOTRONIC control system/motor control center in an industrial waste pumping application. The system automatically operates four (4) pumps and two (2) multi-position sludge valves. It indicates wet well level, valve positions, pump operation and alarms upon the occurrence of abnormal operating conditions.

The Type T Submersible Level Transducer is made in two general forms; the form TVD which produces an output voltage signal and the TMA which regulates a 4-20 MADC instrumentation signal in response to a sensed pressure variation.

The Form TVD Transducer typically has a +/- DC voltage output and is used in custom CECOTRONIC control systems.

The form TMA Submersible Level Transducers incorporate an electronic package which produces a 4-20 MADC instrumentation signal output. The form TMA Transducer is a 2 -wire unit which derives its excitation from the 2 -wire instrumentation signal loop below the 4 MADC level. With a 20-50 VDC unregulated input power supply somewhere in the loop the 4-20 MADC signal of the form TMA Transducer will operate into a $0-1600$ ohm load. See the Supply Voltage/Loop Resistance Table for correlation between the input voltage and the total loop resistance that is capable of being driven by the form TMA Submersible Level Transducer.

The Form TMA Transducer provides linearity of within. 4% of full scale and it can be used in a current loop of up to one mile length. Care should be taken that the circuit is not subjected to lightning transcients. In applications where there is any possibility of this, protection is recommended to avoid damage and downtime. The Form TMA 2-wire Transducer requires that loop power be supplied externally. It is offered factory-calibrated to the desired level excursion range for a particular application. It can be used directly as a current regulator for controlling; process controllers, recorders, indicators, etc. Regulated current flow is unaffected by change in circuit resistance over a range of from 0-1600 ohms.

Bulletin A1000 Type TMA Submersible Level Transducer System Schematic

TYPE TMA LOOP POWER/RESISTANCE TABLE

LOOP POWER	LOOP DRIVE CAPABILITY
20 VDC	0 Ohms
30 VDC	$0-530$ Ohms
40 VDC	$0-10600 \mathrm{hms}$
Voltage	Range is
$20-50$	
50 VDC	$0-16000 \mathrm{hms}$

Two types of transclucer housings are offered;

Type 316 Stainless Steel

They Type 316 SS housing accommodates any of the three types of transducer mechanism and is resistant to a wide range of corrosive media. The housing seals and bottom diaphragm are of Buna N synthetic rubber. The most common mounting arrangement uses a VERTICAL 1" pipe and the threaded fitting in the top of the Transducer. The pipe fitting is just a mounting means and does not enter the transducer housing. Cable or chain suspension is also used as suggested in the typical application sketches.

Special mountings can be fabricated such as a pipe socket to slip onto a pipe piling in a lake bottom, a three-legged "stool" fastened to the Transducer to rest on a reservoir floor when lowered down an existing guide pipe by means of its hose or a cable.

In deep tunnel applications a guide rail system and appropriate sliding truck have been designed. Review special mounting requirements with the Consolidated Agent or Factory for recommendation and quotation.

The standard PVC housing basically accommodates the Type S mechanism. Special configurations of the PVC housing can be made on special order to incorporate the other Transducer types if quantities justify the tooling expense.

The PVC housing is somewhat less expensive than the Type 316 assembly. It has superior corrosion resistance in salt water and some other process liquid applications. The same Buna N diaphragm and housing seals are used and the major diameter is thus the same as the Type 316 assembly.

The standard PVC mounting arrangement uses a vertical 1" pipe (by others) which is accommodated in a channel in the side of the top housing head. Two grooves are provided in the head to retain clamping bands which are furnished to hold the Transducer to the vertical 1" pipe. Stainless steel bands are supplied with the Transducer as standard. Bands of other material can be furnished on special order to meet specific corrosion conditions.

Breathing System Function

The sealed breathing system is an essential element of the Submersible Level Transducer assembly. Without its "breathing" capability the level sensing would be inaccurate. Without its sealed construction the Transducer would soon be disabled by moisture and corrosives.

The sealed breathing system continuously relieves the internal pressure of the Transducer housing to atmospheric pressure through a multiple-convolution slack bellows and thus allows the system to tolerate variations in temperature and baro-
metric pressure. Temperature variations cause expansion and contraction of the air in the transducer housing and would cause a significant sensing error if the breathing system were not provided. Variations in the barometric pressure imposed on the face of the liquid being sensed must also be exerted on the transducing mechanism so that such variations do not bring about an error in the sensed level. The breathing system is sealed so that the Transducer does not breathe "fresh" air from its environment and collect condensation and other contaminants and foul itself.

Provisions for Redundant / Back-up Control

The design of any automatic system should include a determination of the operation/non-operation that will be considered satisfactory in the event of the failure of any significant system element. It should also determine whether a "Back-up" system should come into operation automatically or if it will be satisfactory to assume that an alarm system will notify operating personnel of a component failure and that such personnel will transfer equipment operation to the redundant control.

In considering a possible failure of a Bulletin A1000 Submersible Level Transducer in a sewage pumping station system, for example, two basic approaches are commonly used;

- A second duplicate Transducer can be installed which will provide the same analog signal as the primary device. This second unit can be brought into control either manually or automatically as certain parameters are monitored to sense transducer failure.
- A redundant 0N/OFF control mode can be initiated either automatically or manually which mode may use Model 9G Direct Acting Float Switches or other discreet levelsensing means. This arrangement is sometimes used with back-up motor control contactors in the case of adjustable-speed pumping systems so as to accommodate a failure of either the level-sensing transducer and/or the adjustable-speed drive system.

It is important to maintain complete independence of the primary and secondary control systems for sake of greatest reliability of operation. This may involve powering the systems from different sources especially where the back-up system involves gasengine or other types of drive not requiring electric power. In these cases the back-up system is generally operated from the engine battery system or a control battery system that is parallelled with the cranking batteries but resistor-isolated to avoid voltage dips.

A thoughtfull discussion of various-possible system failure modes and a determination of an acceptable system performance under this condition, when doing initial system design, will be found to be time and effort well spent. Your Consolidated Agent or Factory Sales Personnel will be glad to help in such considerations.

A CECOTRONIC Solid-State Control System door-mounted METER MODULE providing:

- System Signal Display (height, pressure, flow) showing the conditioned (quelled, spanned, offset) system input.
- Alarm Annunciator, dual-function, dim-glow lights with audible alarm, silencing and optional flash feature.
- Manual Mode Module including switch, light and manual potentiometer for simulating a full-range input signal.
- Automatic Alternator Control Switch providing manual or automatic sequencing of pumps. A duplex control is shown.
Other meter types (digital, recording, larger or smaller) and control/alarm facilities can be in the

METER MODULE as desired. The METER MODULE is one of many functional/convenience features available in CECOTRONIC Solid-State Control Systems having Submersible Level Transducer or similar signal input.

Item	Type	Element Press.Range Lbs./Sq.Inch	Equivalent Feet of Water	Equivalent Inches of Water	Proof Pressure lbs. psi.	Notes
1	R 1.5	0-1.5	3.46	41.5	2.2	A
2	R 5	0-5	11.53	138.4	7.5	B
3	R 6	0-6	13.84	166.1	9	A
4	R 15A	0-15	34.50	415.2	22	A
5	R 15B	0-15	34.50	415.2	22	B
6	R25	0-25	57.67	692.0	37	B
7	R30	0-30	69.20	830.4	45	A
8	R 50	0-50	115.37	1384.0	75	B
9	R 60	0-60	138.40	1660.8	90	A
10	T 1.5	0-1.5	3.46	41.5	10	C
11	T 5	0-5	11.53	138.4	18	C
12	T 10	0-10	23.07	276.8	30	C
13	T 18	0-18	41.52	498.2	50	C
14	S 1.5	0-1.5	3.46	41.5	15	D
15	55	0-5	11.53	138.4	30	D
16	S 15	0-15	34.60	415.2	40	D
17	530	0-30	69.20	830.4	50	D
18	560	0-60	138.40	1660.8	100	D
19	S 100	0-100	230.67	2768.	150	D
20	S 300	0-300	692.0	8304.	500	D

NOTES:
A - NI-SPAN-C SINGLE PRESSURE CAPSULE/HIGH-RESOLUTION (0.25\%) WIREWOUND POTENTIOMETRIC ELEMENT. 1000 ohms $+/-1 \%$ Total Error Band (including hysteresis, linearity and resetability). R6 is $+/-1.5 \%$ and R1. 5 is $+/-2 \%$ T.E.B. Power rating is 1 watt at 120 F . ambient. 5% of the total resistance is at "zero" level/pressure. 95\% of the resistance is at the indicated full pressure.

NI-SPAN-C SINGLE PRESSURE CAPSULE/CONDUCTIVE PLASTIC POTENTIOMETRIC ELEMENT. Infinite resolution, $+/-2 \%$ Total Error Band (including hysteresis, linearity and resetability), $\frac{1}{2} \%$ repeatability, Resistance $-1,000$ ohms $+/-10 \%$, Power rating 0.1 watt at 120 F . ambient. Acts as voltage-divider (has 100 ohms of resistance in wiper circuit. Plastic element and direct-drive gives $5,000,000$ cycle dither life.
C. NI-SPAN-C MULTIPLE CONVOLUTION PRECISION PRESSURE CAPSULE/LVDT (LINEAR VOLTAGE DIFFERENTIAL TRANSFORMER). Four standard combined with special-order pressure elements and several LVDT sizes, give a broad selection of calibrated head pressure/level range. Infinite resolution. Total Error Band (including hysteresis and linearity) is $+/-1 \%$, Repeatability is better than $+/-\frac{1}{4}$ of 1%. The absence of sliding parts results in a relatively unlimited life. Input power-either low voltage DC or derived from the 2-Wire, 4-20 MADC loop. Output signal-either DC voltage or current.

D- PRESSURE DIAPHRAGM SOLID-STATE STRAIN BRIDGE INTEGRATED CIRCUIT TRANSDUCING ELEMENT. Seven pressure ranges Infinite resolution - Over-all accuracy $+/-3 \%$. Repeatability is better than $+/-\frac{1}{2}$ of 1% - Linearity and hysteresis $+/-.2 \%$ is typical. Unlimited life within normal physical and electrical range usage.

A CECOTRONIC single-frame chassis of plug-in function modules for use with the Submersible Level Transducer or similar input signal. Half-length "Mini-Frames" and multiples of the assembly shown together with a complete family of standard and custom modules perform most any control, indication, telemetry or alarm job.

Dimensions of the panel-mounting single-frame CECOTRONIC Control System function module assembly typically used with the Submersible Level Transducer or other CECOTRONIC sensor to perform ON/OFF control, automatic alternation, alarm silencing, analog output and other functions in response to level change.

Factory Calibrated Level-Sensing Ranges

Type R Transducers are only available as standard in the ranges listed in the Pressure Element Selection Table. Any exact ranging of the output signal must be done with external trimmers or signal converters. Refer such requirements to the Factory for recommendation.

Type S \& T Subersible Level Transducers are factory calibrated to give a full-range output signal on a particular head-pressure (level) variation. The desired pressure can be the maximum listed in the Pressure Element Selection Table for the particular mechanism or it can be less than that maximum.

The accuracy of a particular Transducer and its control system will be a \pm percentage of the maximum pressure value of the transducer even though
the calibrated range may be considerably less. Therefore, to obtain the best possible accuracy in a given application use the Transducer element with the lowest possible maximum pressure rating consistent with the proof-pressure requirements of the particular application. The determination of the proof pressure requirement is obtained by considering the maximum head pressure that the sensor might sometime be subjected to by an unusually high level in the wet well, reservoir, etc.

The complete catalog number denotes the type of product, the specific gravity of the liquid which it is to sense, the Pressure Element, the Calibrated Range and the Length of the Cable from Transducer to Connection Box.

Catalog Number System Identification

The complete Catalog Number denotes: $\begin{array}{ll}\text { - The Catalog Location (Bulletin reference) } & \text { - The Specific Gravity of Liquid Sensed } \\ \text { - The Type of Product } & \text { - The Pressure Element Range } \\ \text { - The Type of Transducer Mechanism } & \text {-The Factory Calibrated Range } \\ \text { - The Type of Output Signal } & \text {-The Length of Connecting Cable }\end{array}$

Example:

I- Bulletin A1000, Model 157G T MA-1.0-T5-10Ft.-20
$\xrightarrow{\longrightarrow}$ Quantity

- Type of Product (defining catalog location and basic design)
- Type of Transducer Mechanism (types R,S and T)
- Type of Output Signal RE - Potentiometric ($\mathbf{1}, 000$ ohms std.) VD ~DC Voltage (specify) MA~4-20mADC current (2-Wire) MB-4-20mADC current (4-Wire)
- Specific Gravity of Liquid Sensed
- Pressure Element Range (See table)
- Factory Calibrated Range (Specify Value and Units)
- Length of Cable (in feet) from Transcucer to Junction Box/Breather Assy.

The Transducer is usually mounted by means of a $1^{\prime \prime}$ pipe and pipe mounting clamps (the Model 9G CL1 pipe mounting clamp is offered as an optional accessory) but it can also be chain or cable suspended as suggested in the typical installation sketches.

Consolidated Electric offers a comprehensive line of Control Devices and complete systems for pump, valve and alarm/monitoring system automation in Municipal/ Industrial water supply and sewage works and similar process applications.

Call your Consolidated Agent for application assistance.

\bullet

\bullet

-
\bullet

Consolidated Electric Co.

APPLICATIONS:
- Sewage Lift Stations
- Storm Water Pumping Stations
- Water Reservoirs
- Process and Industries
- Waste Treatment Plants
- Alarms

The Consolidated Electric Company Bulletin B100, Model 9G Direct Acting Float Switch is a rugged, simple control device for the automatic operation of pumps, valves, or alarm systems in response to liquid level changes in sewage wet wells, sludge sumps, water reservoirs, process vats, etc. It is a single level sensing device that mounts at a fixed elevation and gives a closed or open contact in response to liquid level changes past the point of mounting. Inside the float housing is a mercury switch which is either normally-open or normally-closed when the float is in the normal or unoperated position.
Simplicity of mounting and lack of through-the-wall shafts with tape or rod linkages to the switching mechanism make it suitable for many difficult pump and valve control operations as well as alarm system uses. Even in liquids containing sanitary or process wastes, it will provide years of trouble-free operation responding to liquid level changes of less than one inch. The weight and buoyancy of the Model 9G Float are such that it will not ride up a large contaminant such as a cake of grease, but continues to
operate. Over fifteen years of successful field use in the tens-of-thousands, in applications ranging from clear water reservoirs to tanning and poultry waste, even sulfuric acid, have proven its reliability and ruggedness. Most frequently the Model 9G Float Switch is used in multiple for operation of pumps between selected liquid levels in both pump-up or pump-down applications.

FEATURES:

- Consistent Operation
- Simple and Reliable
- Easy Installation
- Long operating life
- High quality materials and components
- Diversity of uses

CONSTRUCTION

The 9G Float Switch consists of a 316 type stainless steel housing, mounting clamp, a flexible three-conductor cable with a synthetic rubber jacket and a mercury switch. The float housing is $51 / 2$ inches in diameter, with a stainless steel tube welded into its side and projecting into the float.

Inside the stainless steel tube is the mercury switch which is potted in epoxy. A dual circular crimp holds and permanently seals the switch assembly and cable securely to the stainless steel tube. The cable is 14 AWG with 105 strands per conductor made expecially for underwater use and heavy flexing service. The mercury switch connects the black and white conductors of the cable. On all floats, the green conductor is an internal ground connection and MUST BE RUN TO A SUITABLE EXTERNAL GROUND connection in accordance with the National Electrical Code.

An additional synthetic rubber jacket acts as a hinge between the float and where the cable is held by the stationary clamp tube. The stainless steel tube clamp has an adapting fitting and two yokes for mounting on a vertical 1 inch pipe. Flexing and life tests indicate a life expectancy under normal operating conditions in lift station applications of 35 years.

AUTOMATIC PUMP CONTROL

Automatic pump control of a single pump between two different operating levels requires three wire control, the use of a minimum of two floats, and a Consolidated Electric Bulletin B100, Model 29GR1 Single Pump Controller or equalivent control relay or magnetic motor starter.

A typical two pump sewage lift station control uses four floats and a Consolidated Electric B100, Model 29GR2 Pump Controller-Alternator as shown in Figure 1 for pump control and high level alarm.

Standard models of Consolidated Electric Company Bulletin B100, Model 29GR Pump Controllers that operate with the 9G Floats are available for the operation of one, two, or three pumps. Special pump controllers are available for the operation of any number of pumps. Controllers offer manual or automatic alternation, three-position "Hand-Off-Automatic" pump selector switches, and any type NEMA enclosure.

Standard Pump Controllers normally turn pumps on in order as 9G Float Switches successively operate by a rising or falling liquid level. All pumps turn off when the separate pump-off float operates. Normally-open float switches are used in pump-down applications and normally-closed are used in pump-up applications. Pump Controller options are available which will sequence the pumps in a selected program, provide well pump control into a reservoir and high service pump low level cut-out protection from the reservoir.

The mercury switch inside the Model 9G Float Switch will either open or close the switch contact when the liquid level rises as shown. Actual switching differential is less than one inch. The point of switch operation is when the liquid level passes the mounting elevation of the clamp.

LIFT STATION ALARM SYSTEP/

Model 9G Float Switches readily adapt to local and remote alarm use for water or sewage level applications. They combine with telephone transmitters and receivers to link together any number of locations in a comprehensive alarm system to continuously monitor operation conditions.

Installation of a float switch in the dry-pit side of the lift station will detect a rising level due to pump packing or sump pump failure.

LOCAL MONITOR ALARM SYSTEM

For local visual alarm, 115 volt power from the lighting panel of the lift station is run through a Model 9G-NCG Float Switch mounted at a high level in the wet pit to operate a 230 volt monitor light outside the station. A passing patrol car or maintenance crew can observe the station status.

When the light is ON, it indicates AC power in the station, and the wet well level is not excessively high. With the light ON under normal conditions, the alarm is fail-safe. Using a 230 volt bulb on 115 volt service assures a long life.

CENTRAL MONITOR ALARM SYSTEM

To monitor lift station operating conditions at a remote location, Consolidated Electric Bulletin G400 Central Monitor Alarm Systems using leased phone lines are available. There are different types of alarm and monitor systems to meet any requirement, each more comprehensive than the preceeding. A single operator can monitor any number of remote lift stations around-the-clock, knowing immediately the operating status and of any malfunctioning equipment.
It is possible to intermix features of each type of monitor alarm system to meet individual requirements. The types of monitor alarm conditions the G400 will monitor include:

- AC power failure
- Loss of telephone communications
- High level in wet well
- Sump pump failure
- High level in pump chamber
- Pump Operation
- Wet well level
- Sewage Flow

FLANGE MOUNTING OPTION

For use in pneumatic waste ejectors, hydro-pneumatic water tanks and similar applications needing a high pressure seal a flange mounting is available. The flange is one inch thick and the hole pattern for the eight bolts conforms to the American Standard for cast iron flanges, Class 125 (B16. 1-1948). Pressure rating is in the 125 pound class which rates the float for 175 pounds PSIG cold water, oil, or gas, non-shock. In an ejector, the Model 9G Float Switch would initiate a blow-down cycle of the chamber upon sensing a high level. Then the appropriate controls operate the air compressor or solenoid valve on a timed basis to effect the pneumatic removal of the chamber contents.

OPERATING DIMENSIONS

1 $1 / 4$ Inch Pipe

2 Inch Pipe

2 Inch Pipe

MODEL 9G FLOAT SWITCH CABLES IN STANDARD (SCHEDULE 40) PIPE

TYPICAL INSTALLATION FOR AUTOMATIC CONTROL OF SEWAGE LIFT STATION WET WELL

A typical application for the Model 9G Float Switch is for automatic control of pumps and high level alarm in sewage lift stations.

ACCESSORIES

Accessories available for the Model 9G Float Switch include:

Model 9G-CL1 Pipe Mounting Clamp. This clamp positions and secures the vertical one inch float mounting pipe.

Model 9G-JCT1 Junction Box. A cast aluminum, NEMA 4 junction box for termination of floats and submersible pump motor cables in a wet well or water reservoir. Allows conventional wiring and conduit to be run from the junction box to a control panel. Has barrier type terminal blocks for eight control circuits, six power circuits (up to 75 Amps), and a seven lug grounding bar. Terminal blocks hold up to 4 AWG size wire. Accepts sealing fittings furnished with each Model 9G Float Switch.

Model 29GR Pump Controllers. A family of standard pump controllers for automatic control of one, two, or three pumps. The two and three pump models offer automatic pump alternation. Available in open construction, in various NEMA enclosures, or as part of a Powerpack Panel. (Model 29GR2 shown).

Model G400 Central Monitor Alarm Systems. A modular family of central monitor alarm stations that monitor any number of remote locations for various operating and alarm conditions.

Powerpack Panels. A standard family of panels for the automatic control of one, or two or three pumps. Available in various NEMA enclosures. Provides a complete comprehensive electric package for automatic pump control including motor control and alarm components and accessories.

HOW TO ORDER

Model 9G Direct Acting Float Switch

Switch Contacts
Normally open - NOG
Normally closed - NCG
Cable Length
5 feet - 5
10 feet - 10
20 feet -20
30 feet -30
40 feet - 40
50 feet -50
Other
(specify) - X
Options
Flange Mounting - FM
Other
(specify) - X

SPECIFICATIONS

ELECTRICAL

Load Contacts

RESISTIVE LOAD	30 Volts	115 Volts	230 Volts
AC	30 Amp.	20 Amp.	10 Amp.
DC	30 Amp.	12 Amp.	6 Amp.
MOTOR LOAD	115 Volts	230 Volts	AC LAMP LOAD
AC	.5 HP	.5 HP	1000 Watts
DC	.25 HP	.25 HP	1000 Watts

MECHANICAL

Weight: $\quad 6.5 \mathrm{lbs}$. (with 20 foot cable)
Cable Diameter: $5 / 8$ inch Shipping Weight: 8.5 lbs .
ENVIRONMENTAL DATA
Operating Temperature: $\quad 0^{\circ}$ to $+180^{\circ} \mathrm{F}$.

TYPICAL SPECIFICATION

A Bulletin B100, Model 9G Direct Acting Float Switch shall be furnished to automatically detect liquid level change(s). A liquid rise of one inch from the rest position shall operate the float switch and reset will occur when the liquid level drops one inch. Mounting will be to a one inch vertical pipe.

This float switch shall be as manufactured by Consolidated Electric Company of Saint Paul, Minnesota. Installation shall be in accordance with project plans and manufacturer's instructions.

The float switch shall consist of a 316 type stainless steel housing $51 / 2$ inches in diameter, mounting clamp, a flexible three-conductor cable with a synthetic rubber jacket and a mercury switch. Inside the float housing will be a \qquad (normally open/closed) mercury switch potted in epoxy. The electrical load for the switch contacts will be (30/115/230 volts DC/AC) into a \qquad (inductive/ resistive) load.

The three-conductor cable shall be 14 AWG with 105 strands per conductor made for heavy flexing service and underwater use. Cable length shall be \qquad (5/10/20/30/40/50 feet or other length). A green grounding wire will connect internally to the float housing.
Weight and buoyancy shall be such that contaminants like a cake of grease will not result in the float switch changing operating level more than one inch. Life expectancy under normal operation conditions in lift station applications shall be 35 years.
Operating temperature range shall be 0° to $+180^{\circ} \mathrm{F}$.
A complete line of accessories shall be available which will include: cable clamps, junction boxes, pump controllers for 1, 2, and 3 pumps, central monitor alarm systems, and Powerpack panels.
(Optional-) It shall have a Flange Mounting with eight bolts conforming to the American Standard for cast iron flanges, Class 125 (B16. 1-1948) with a pressure rating in the 125 pound class.

Specifications subject to change without notice.

Consolidated Electric Co.
RIVERVIEW INDUSTRIAL PARK
141 SOUTH LAFAYETTE FREEWAY
ST. PAUL, MINN. 55107 612/224-9474

SCHEMATIC ASSEMBLY

QEC-01 900177-01 600063-01

Four Voltage Comparators with one input adjustable and the other connected to the card's Analog input. The comparators have complimentary logic outputs.
The Comparators are divided into two pairs and are connected to two flip-flop circuits. With the dircct logic outputs the card can produce Low and High alarm signals or similar non-differential outputs. And with the flip-flop outputs, it can produce pump control or similar outputs.
The Differential (flip-flop) output is set to one state by one comparator in the pair and reset by the other comparator in the pair. By proper adjustment of the two comparators one can start a pump at one level, i pressure and stop it at another.

The adjustable input to each comparator is adjustable through the entire dynamic range of cecotronic systems - -5 volts to +5 volts. Hysteres is of each comparator is less than $.5 \%$ of total dynamic range.

All outputs are Open Collector transistors (which switch to digital ground) with a maximum output voltage (logic 1) of +30 VDC and a maximum output current (log.ic 0) of 40 MA . Logic' 1 is defined as the state when the output transistor not saturated. Logic 0 is defined as the state. when the trans istor is saturated, and capable of drawing current from a positive'source.
The indicators on the front edge of the card indicate when the set point comparators have been exceeded by the input analog signal. The "III" indicator cones on when the signal is higher (more positive) than the "HI" adjustmenc. The "Lo" indicator comes on when the signal is lower (more negative) than the "LO" adjustment.

ANALOG INPUT (PIN 18)

OUTPUTS HI-PIN 6(12)

HT-PIN 7(13)
\triangle-PIN $4(10)$
$\bar{\Delta}$-pin 5(1i)

LO-PIN 8(14)

TO-PIN 9(15)

In the majority of cases the simplest way of performing this adjustment, with the situation previously explained, is to fill the tank and nionitor the analog signal present at the analog test point on the SEA-04 card. Refer to figure 1. With the tank full, the depth of submergence of the transducer can be varied until +5 volts D.C. is obtained at the analog test point found on the SEA-OL4 card. Then, with the transducer locked in place the fine adiustment potentiometer found on the SEA-04 card can be adjusted for exactly +5 volts D.C. at the analog test point. A digital voltmeter with an accuracy of at least three times that of the measuring system to be adjusted should be used for monitoring the analog signal voltage.

Offset Adjustment, 158 G Transducer

The offset adjustment on the 158G Transducer is normally made by filling the tank it is measuring. The coarse offset adjust is a mechanical adjustment found inside the 158G Transducer. By removing the blue R.F. shield from the transducer a knurled adjustment wheel will be found in the upper left hand corner of the transducer. By loosening the two locking screws on the linear variable displacement transformer coil mounting block, the coll can be shifted up or down by turning the knurled adjusting wheel. Refer to figure 2. With the elevated tank full and monitoring the analog signal at the analog test point found on the SEA-04 card, the knurled adjustment wheel is adjusted for +5 volt D.C. The locking screws on the LVDT coil mounting block should now be tightened. Then, with the fine offiset adjustment potentioneter found on the SEA-04 card adjust for exactly +5 volts D.C. A digital voltmeter with an accuracy of at least three times that of the measuring system to be adjusted, should be used for monitoring the analog signal voltage.

CECOTROHIC TRANSDUCERS		Drawn	designed ${ }_{\text {DGL }}$.		
	CONSOLIDATED EIECTRIC COIPAANY 141 SOUTH LAFAYETTE ROARS - ST. PAUL, M:INN. 55107		$5^{\text {Page }} 5$	orawing no IM00291	$1 \begin{gathered}117 \\ 4\end{gathered}$

SEA-04, SIIGLE VOLTAGE AMPLIFIER

	SCHELATIC	ASSEMBLY
SEA-01	$900186-01$	$600062-01$

A differential amplifier designed to provide a calibratable input to Cecotronic systems.

Its gain is selected and adjusted for each individual application. The offset is adjustable + or -50 mv , as measured at the offset voltage test point. It is amplified by the selected gain of the unit.

The two inputs are protected by Zener diodes, which wll absorb large amounts of current, to prevent damage to the input amplifier I.C.'s. - For proper operation of the protection circuit, pin 2 must be grounded.
'The amplifier requires + and - lovDC for operation. The amplifier's offset, and thus accuracy, is dependent upon the accuracy of the 10 volt pover supply. +10 input is on Pin 22, -10 input is on Pin 20. Pin 21 is common to the two supplies and also serves as common for the analog output.

INTRODUCTION

The transducer is the heart of any analag control or nonitoring system: The transducer transforms the quantity being measured into an electrical signal commonly referred to as the "analog signal". An analog signal is a parallel representation of a measurable quantity such as a tank level, pressure, flow, etc. The output signal of a transducer is normally a low level D.C. analog signal or a current signal depending on the type transducer used.

DESCRIPTION OF OPERATION

Submersible Type, Model 157 GT
The submersible transducer continually senses the head pressure at its depth or submergence and converts this variable pressure into an analoy signal. The components inside the transducer include a linear variable displacement transformer and core, a precision pressure sensing capsule, and associated electronics.

Refer to Fiqure L. Power is supplied to the transducer via the Transducer Interconnection Module. Contained on the front of the XLV-04 module are two clear lamps labeled "+16" and " -16 ". These lamps are in series with the supplied pover to the transducer. The normal-operating current of the transducer is approximately 40 milliamps on the +16 volt supply and 30 milliamps on the -16 volt supply.
The lamps are of a high current type so the nomal operating currents cause only partial illumination of the lamps. With normal operating currents flowing through the lamps the +16 lamp will have a din flow and the -16 volt lamp will have a very dim glow. If for any reason the transducer and its connecting cable would provide a low impedance path to ground for either of the supplies, as in the case of a short circuit, the corresponding lamp would come to full brilliance. Therefore, these lams serve as buth a monitor and a fault indicator, while providing short circuit protection to the connected power supplies. Also found on the front of

INTRODUCTION

The Cecotronic Pulse Width Modulation System, P.W.M. System is used whenever an analog signal must be sent from a remote location to a central location. The distance involved which constitutes the use of a P.W.M. System is nomally a couple hundred feet up to approximately five miles. In order to accurately transfer analog information, the data must be transformed into data which is not affected by phone line resistance. The analog data is in the form of a small D.C. voltage which is continuously variable fromminus 5 volts D.C. to plus 5 volts D.C. The Pulse Width Modulation System transforms this small D.C. voltage into a continuously variable pulse duration signal which makes it possible to transmit the information accurately. When the data is received the pulse duration signal is then transformed back into a D.C. analog signal. An accuracy loss of less than . 1 percent is easily obtained with this system.

DESCRIPTION OF OPERATION, TRANSMITTER

Refer to Figure 1. The analog signal is sent to the XPW-14 card titled Modulator. This card transforms the variable analog signal into a pulse train whose duration is continuously variable from. I second to .9 seconds. (These durations refer to the positive pulse). The output of the $X P W-14$ card is a pulse train whose repetition rate is approxiniately one cycle per second and whose positive duration is dependent on the analog signal applied to the input. The XPW-11 card also contains provisions for placing it in a calibration mode. The small button switch located on the bottom of the XPW-14 card enables the operator to place the system in the calibrate mode. The calibration switch directly above the calibration mode switch allows the operator to send any of three accurate calibration signals.

The logic level PWM signal is then applied to the D.C. Transmitter modulc. The D.C. Transmitter conditions the PWM signal for transmission onto the phone line. The conditioning in the D.C. Transmitter includes increasing of the amplitude, isolation, and allowing its excursion to be both a negative and a positive voltage. The duration of the pulse is unchanged. Also applied to the D.C. Transmitter module is the equipment failure input. When an equipment failure has occurred, the D.C. Transmitter inhibits the negative portion of the pulse. With this situation, the analog signal is still received as the analog information is contained in the positive portion of the pulse. Also contained in the D.C. Transmitter module is the phone line protection circuitry.

DESCRIPTION OF OPERATION, RECEIVER

Refer to Figure 2. The PWi signal is received by the D.C. Receiver module. The D.C. Receiver contains a Mark and Space indicator light. The Mark light corresponds to a positive pulse and the space light corresponds to a negative pulse. The D.C. Receiver transforms the received PWM signal into a logic level PWiy signal with no change in pulse duration. The D.C. Receiver also contains phone line protection circuitry and isolation circuitry. The logic level PuM signal is then sent to the XPW-18 card titled Failure Detector. If the PWM signal does not contain "Spacie" data, the Failure Detector will indicate an equipment failure. If the PWM signal contains pulse durations that are not within the normal range of the system, the Failure Detector will indicate an over-range condition. If the PWM signal is not present, the Failure Detector will indicate a signal failure and an equipment failure. From the Failure Detector card, the PVM signal is sent to the XPW-15 card titled Demodulator. Within the Demodulatur card the PWM signal is transformed back to a D.C. anolog signal. The output of the Demodulator card is then sent to the associated control or noritoring system.

PHONE LINE PROTECTOR CIRCUIT

The D.C. Transmitter and D.C. Receiver modules contain a translent voltage protection circuit. These circuits protect the electronic components from high voltage transierits induced onto the phone lines. These protectors contain a surge voltage protector (SVP) and a fuse. If a transient of approximately 90 volts or more is induced onto either phone line, the SVP will becone a very low impedance to ground. If the transient is of ample duration and power, the phone line fuse will open.

The most common source of transients is lightning. If lightning occurs close enough to the phone line system it will induce a voltage transient of ample amplitude and duration to open the phone line fuses. Therefore, it is common for the phone line fuses both on the D.C. Transmitter and D.C. Receiver to open during an electrical storn. The four major factors that determine the likelyhood of opening a phone line fuse during an electrical storm are as follows:

1. Proximity of lightning occurrence to the phone line.
2. Type of phone line (overhead, shiclded, buried, etc.)
3. Length of phone line.
4. Geographical location of phone line.

Having only partial control over one of these factors, (type of line) makes it difficult to accurately predict the occurrence rate of opening the phone line fuses.

PWM SYSTEM FUNCTIONAL AND CAL IBRATION CHECK

At the Remote Transmitter, find card XPN- 14 under blue R.F. cover. On the bottom edge of the XPV card find a small button switch. By pushing and turning $1 / 8$ turn clockwise the system is placed in the cal ibrate mode. Directly above the button switch find a small toggle switch. With the toggle switch in the up position the Transmitter will transmit a signal equal to 100% scale or full scale. Observe and record the reading on the indicator at the Receiver. With the toggle switch in the CENTER position the Transmitter will transmit a signal equal to 50% scale or half scale on the indicator at the Receiver. Observe and record this reading, With the toggle switch in the DOWN position the Transmitter will transmit a signal equal to 0% scale or zero scale on the indicator at the Receiver. Observe and record this reading.
If the readings obtained fall outside the required system accuracies, the system will require re-calibration by a factory serviceman or a CECO representative.
Find the D.C. Receiver Module at the Receiver. Find two lights on the front of the module labeled MARK and SPACE. The following relationships apply to the three.calibrate positions:

CAL IBRATE SW. POSITION	INDICATOR SCALE	$(S E C)$ MARK	$\begin{aligned} & \text { (SEC) } \\ & \text { SPACE } \end{aligned}$
UP	100\%	9/10	1/10
CENTER	50\%	1/2	1/2
DOWIN	0\%	1/10	9/10

Turn small button switch counter clockwise $1 / 8$ turn and release. This places the system back in the nornal operation mode. Note: With the calibration mode switch in the "Normal Operating Mode", the calibration switch has no effect on the system operation.

IE: CECOTRONIC PULSE WIDTH MODULATIGN SYSTEM		DRAWH	$\begin{gathered} \text { DESIGHEO } \\ \text { DGL. } \end{gathered}$		
	CONSOLIDATED ELECTIIC COWPANY 141 SOUTH LAFAYETTE ROAD - ST. PAUL, MIHN. 55107	chickeo	$6_{6}^{\text {Page }} 6$	draming no IM00290	A

-	SCHEMATIC	ASSEMBLY
SES-05	$900001-01$	$600001-01$
SES-06	$900001-02$	$600001-02$
SES-07	$900001-03$	$600001-03$
SESS-08	$900001-04$	$600001-04$
SES-09	$900001-05$	$600001-05$
SES-10	$900001-06$	$600001-06$

The purpose of the SES card is twofold. First, it is to provide a means manually simulating a variation in the analog input to a system, and second, to provide a controlled response time to an input change.

The basic style, SES-06 and SES-09 include several controls for the user:
A toggle switch selects manual or auto operation. In the manual position, the SES's output responds to a potentiometer on the botton front edge of the card. This allows the user to exercise the system through its entire dynamic range. With the switch in the auto position, the output precisely follows the input.

A potentiometer is located at the top front edge of the card. Its purpose is to adjust the rate at which the Queller responds to a sudden change in the input.

On the SES-05 and 08, the manual adjust potentioneter is omitted, and a pin conncetion made for remotely locating the manual control.
On the SES -07 and 10 , the monual potentioneter and the auto-manual selector switch are omitted, and pin connections are made for renotely locating these controls.

1LE:TECHNICAL DATA SIS $-x . x \quad 600001-x x$		$\left\|\begin{array}{l} \text { DRAWK } \\ 10-29-79 \end{array}\right\|$	$\begin{aligned} & \text { DESIGNEO } \\ & \text { DC-L } \end{aligned}$		
	CONSOLIDATED ELECTRIC CONBANY 141 SOUIH LAIAYEITE ROAD • ST. PAUL, MHN S'HU7	CHICKED DC.e.	PAGE ${ }^{\text {Pat }}$	drawing ho es 5,0070	niv

When using the SES - 05, 07, 08 and 10 , it is recommended that the SNM-01 Manual Mode buffer be used. It provides exciter voltage for the manual control, buffering for the selector switch, and an amplifier for use with a -100 io +100 microamp neter movement to indicate the output signal of the SES.

The SES-05, 06 and 07 have adjustable quelling rates which are extremely long. They may be adjusted to take up to 10 minutes to go fromminimum to naximum when the input changes suddenly.
The SES $-08,09$ and 10 operate similarly, except that the time is much shorter-maximum time is 1.5 minutes.

The output of these cards will ramp linearly to the value of the input at a rate which is described above.

When in the Manual Mode, the output will follow the manual input rapidly, though not instantaneously.

+10 V (ai) 15 ma

I	$\begin{aligned} & \text { TECHNICAL DATA } \\ & \text { SES }-X X \quad 600001-X X \end{aligned}$	dnawn	$\begin{gathered} \text { DGL } \\ 0 \mathrm{GL} \end{gathered}$		
	SOL.IDATEO ELECTR UTH LAFAYEIIF RONO	$\begin{gathered} \operatorname{Hackto} \\ D G-2 \end{gathered}$	$4{ }^{\text {Pag }}$	$\begin{aligned} & \text { Ning } \\ & \text { ES } 5,0070 \end{aligned}$	$\begin{aligned} & \mathrm{xiv} \\ & A \end{aligned}$

TYPICAL APPLICATION OF SIMULATOR/QUELLER WITH manual mode buffer for USE WITH EXTERHALLY MOUNTED CONTROLS.

CARO, WTC-G2
SCHEMATIC ASSEMBLY
DTC-02
900196-01
600087-01

DTC-02 DUAL TELEPHONE CIRCUIT RECEIVER

The DTC-02 is designed to receive polar $D C$ signals as received on a leased telephone circuit. It includes transient protection and common mode isolation. (Terminal GND must be properly grounded for proper operation of the transient protection circuit.)
MARK/SPACE. The Receiver separately detects mark and space signals, and produces complimentary outputs. Additionally, a differential output is produced, (Also with complimentary outputs) by a flip flop which is set by reception of a mark, and reset by reception of a space. A mark is defined as occuring when terminal $T 1$ is negative of Terminal $T 2$.

The outputs operate as follows:
When a mark is received, P in 17 is at a logical "l", and Pin 16
is at a logical "0". When a mark is not received, Pin 17 is at a logical "on and Pin 16 is at a logical "l".
When a space is received, Pin 12 is at a logical "1" and Pin 13 is at a logical "0". When a space is not received, pin 12 is at a logical " 0 " and $\operatorname{pin} 13$ is at a logical "l".

116	$\begin{aligned} & \text { TECHNJCAL DATA } \\ & \text { DTC-02 P/N 600087-01 } \end{aligned}$	brawh	$\begin{array}{\|c} \text { DESIGACD } \\ \text { UGL } \end{array}$		
16	CONSOLIDATED ELECTAIC COHPANY 141 SOUTH LAFAYEITE ROAD - ST. PAUL, RIHAN 55107	$\begin{aligned} & \text { CHECKID } \\ & : \approx L \end{aligned}$	$1 \mathrm{PAGE}_{\text {OF }}{ }^{\text {O }}$	$\begin{aligned} & \text { DRAWING KO } \\ & \text { ES } 50061 \end{aligned}$	rev

The flip-flop outputs appear on Pin 14 and 15 . When the flip-
flop is set, pin 14 is at a logical "l" and Pin 15 is at a logical
" 0 ". When the flip-flop is reset, Pin 14 is at a logical "0"
and Pin 15 is at a logical "l". Reception of a mark sets the
flip-flop and reception of a space resets it.
The outputs are all open collector transistors. Ratings: Maximum
output current (Logic "0") - 40 MA . Maximum output voltage
(Logic "1") - 30V.
Power Requirements: +12 VDC unreg. 75 MA.
+12 in on Pin 22
Circuit common on Pin 21
Input Sensitivity: 4 MA minimum for proper operation: 30 MA . maximum.

Fuse Required: 1 amp - Fast Acting
(Bussmann Manufacturing type AGC or equiv.)

$$
7
$$

Westinghouse

Type W Control Centers
600 Volts Maximum

Application

Westinghouse, Type W control centers are custom designed assemblies of conveniently grouped control equipment primarily used for power distribution and associated control of motors. They contain all necessary bus, incoming line facilities and safety features to provide convenience and space and labor saving. These control centers are adaptable to changing conditions with a minimum of effort and a maximum of safety.

Features-Benefits

- Incremented structure width permits unlimited versatility for adding accessories requiring more or less width than used by standard compartments for housing drawout units.
- Structures are 90 inches high, with vertical compartments having 72 inches of unit space unitized in 6-inch increments providing maximum space for 15 -inch deep front-mounted or 20-inch deep back-to-back mounted units. Full-depth vertical wireways provide optimum wiring space in reduced floor area and wiring convenience for economy of installation and maintenance.
- Modular design permits structure arrangement to be tailored to exactly meet any control requirements with a minimum of waste space. Vertical compartments are incremented for maximum space utilization and unit interchangeability.
- All parts and wiring including terminal blocks are front accessible. Vertical wireways are separate from control units providing safe and convenient access to wiring and conduits without deenergizing any equipment.
- Centralization of controls for an entire system in one compact group provides ease of maintenance and supervision by a minimum of authorized personnel.
- Design tested at the Westinghouse high power laboratory assures maximum protection for control equipment . . . engineered to minimize hazards to operating personnel.

Westinghouse

Design Features

An attractive two-tone effect is presented by the use of ASA-61 light gray enamel for structure parts and cover plates, and a harmonizing dark g ay enamel for unit and wireway doors. All steel parts are thoroughly cleaned after fabrication, and given
a rust-inhibiting phosphatized coating before baked enamel finish is applied.

Versatile Structure

Structures are built in $41 / 2$ inch wide modules including $131 / 2$-inch wide vertical compartments for housing starters and $41 / 2$-inch
wide vertical wireways. For special conditions requiring more or less horizontal space, these may be varied in $41 / 2$-inch increments. Removable end sheets allow interior accessibility at the ends of the control center structure (see Figure 1).
The structures can be assembled in configurations to fit individual space requirements.

Type W Control Centers
600 Volts Maximum

Figure 1. Side view with end covers removed, showing 15 -inch structure (left) which accommodates front-mounted units only, while 20 -inch unit provides back-toback mounting. Location of horizontal bus from front is identical for both structures.

They are normally erected "in-line," but by the use of corner sections, they can be arranged in " L " or " U "-shaped assemblies.

(3)

Two Standard Structure Depths
Westinghouse Type W control centers are provided in two standard depth structures. For front-mounted units only, a 15 -inch deep structure is available. For units mounted back-to-back (or for front-mount-
ing only if desired) a 20 -inch deep structure is used. Both are free-standing structures. Horizontal bus in 15 -inch and 20inch deep structures are mounted the same distance from the front, so that combinations of the two structures can be front-aligned without structure modifications or bus transition (see Figure 1).

Horizontal Bus

A 600 A. main horizontal three-phase bus extends the complete length of each structure assembly. It is located near the top of the structure. Higher capacity main bus, up to 2500 amperes, can be supplied without structure modification if required. Bus is supported by non-tracking, glass-reinforced polyester insulators which are impervious to moisture and other adverse atmospheric operating conditions.

The bus assembly is braced to withstand fault currents of 22.000 rms symmetrical amperes. Additional bracing to withstand $42,000 \mathrm{rms}$ amperes or higher can be added when the control center is connected to systems capable of producing faults of this magnitude. Where desired, vertical bus isolation barriers can be provided, which can be removed for bus inspection without disrupting service.

Incoming Cables
Incoming line cables entering from the top or bottom of the control center can be connected easily to solderless lugs at either a main breaker or the main bus. Typical arrangements are shown in Figure 4. Special incoming line arrangements including bus duct connections can be provided to suit specific requirements.

Figure 2: Standard structure arrangements of Type W control centers and their associated wireways provide greatest amount of control equipment in minimum floor space.

Figure 3. View of main horizontal bus showing connections to vertical bus. Photo also shows how bus is spliced between two standard control center shipping sections.

Figure 4. Standard incoming line arrangements: upper view shows cables entering a 600 -ampere main breaker; center view shows main lugs located on the bus for cables up to 350 MCM; bottom view shows typical incoming line compartment for cables larger than 350 MCM .

Westinghouse

Design Features, Continued

6 Horizontal Bus Barrier

Full height, front removable, metal barriers isolate the horizontal bus and prevent accidental contact. Additional barriers isolate each vertical compartment and wireway from the horizontal bus.

7 Vertical Bus

For distribution of power from the main horizontal bus to each vertical compartment. a three-phase bus rated at 300 amperes minimum is provided. In 20 -inch deep structures for back-to-back equipment this bus can be increased in capacity without structure modifications or additional bus supports. Vertical bus is braced by the same glass-reinforced polyester insulators used for the main bus. (see Figure 5).

8 Full-Depth Wireways

Full depth vertical wireways are available in two types:

- Individual wireway for each vertical compartment.
- Common wireway serving two vertical compartments.

The standard $4 \frac{1}{2}$-inch wireway provides six inches internal width between adjacent starters. It extends from front to rear of the control center. Wireways are covered by two hinged doors, each secured by quarter turn fasteners. For back-to-back design, doors are provided on both the front and rear.
Since wiring access to individual units may enter from either side, a common wireway serves two vertical compartments. This provides the most compact arrangement while providing optimum wiring space. (see Figure 5).

9 Unobstructed Conduit Space

The open framework design provides maximum space for conduit entry at both the top and bottom of the structure.
At the bottom of each structure assembly the front-to-rear frame members are removable to provide maximum unrestricted conduit space the complete length of the Control Center to a height of $71 / 2$ inches. (see Figure 5).

Figure 5: Vertical bus for control center, showing: at left, standard bracing for $22,000 \mathrm{rms}$ symmetrical amperes; at right, additional bracing for $42,000 \mathrm{rms}$ symmetrical amperes. View also shows full depth wireway with wiretie brackets and unobstructed bottom wiring space.

10 Horizontal Wiring Trough

A nine-inch space is provided at the top and bottom of the structure for cross-panel wiring. A wiring trough is located at the top completely isolated from the horizontal bus. In back-to-back design a wiring trough on both front and rear is provided. (see Figure 6.)

11 Removable Doors

All unit doors have formed edges that provide rigidity, present finished appearance, and eliminate sharp corners which might cause injury. Doors are secured by indi-cating-type quarter-turn fasteners for quick and easy access. Hinges are removable (by removing one screw) as shown in Figure 8, to allow easy door removal when maximum working access is desired. Any door may be removed without disturb ing adjacent doors. (see Figure 7.)
Cutouts are provided in the doors to allow projection of the operating handle and control devices when required. A bracket welded on the rear of the door mechanically interlocks it with the disconnecting device when it is in the "On" position. Since the doors are completely separated from all internal equipment, alignment is not critical.
A white core, black Micarta ${ }^{\circledR}$) nameplate is provided for circuit identification.
When required for dust-resistant applications, gasketing is provided around all openings.

Figure 6: Upper wiring trough is located directly in front of, and serves as a barrier for the main horizontal bus.

Figure 7: Quarter-turn fasteners (slot vertical-open, slot horizontal-closed) provide quick and easy access to starter units.

Figure 8: By removing the screw from the upper hinge, the door is easily removed without disturbing other units. Illustration shows guide rail, immediately above upper hinge.

Drawout Units

Drawout starter units with either circuit breaker or fusible disconnects are supplied for motor starting duty through NEMA size 5. Each is designed into basic modular heights of 6 -inches, with the smallest unit 12 -inches high. This allows each vertical compartment to house as many as six units. Feeder breaker or switch units of the same modular design can be intermixed with starters in any 72-inch high vertical compartment without any limitations.
Each drawout unit is completely isolated from adjacent units. The unit sides are closed except for necessary space near the bottom for wiring to enter either side from the vertical wireways. Free floating MagnaGrip ${ }^{t m}$ plug-in stabs assembled into molded glass polyester bases are welded to

Type W Control Centers
600 Volts Maximum

Figure 9: Typical drawout units for motor control, with type MCP Motor Circuit Protectors. View shows control and load wiring entering full-depth wireway.

Figure 10: Magna-Grip plug-in stabs of draw-out unit in full connected position with vertical bus. No stab wiring extends into bus compartment.
cable connections extending inside each unit. No stab wiring extends outside its enclosure.

13 Starter Components

Each starter is equipped with a primary disconnecting device - either a Westinghouse type MCP motor circuit protector or a quick-make, quick-break visible-blade type DS switch combined with fusing facilities for use with current-limiting, rejection-type, NEMA class " J " fuses. Facilities for NEMA class "H" fuses may be provided, but in most cases will require a larger drawout unit. The total available short-circuit capacity of the system to which the control center is connected must be considered in properly applying fuses and breakers.

Both types of disconnects are externally operated by a handle mechanism which is mounted directly on the disconnect.
Standard linestarters are equipped with three-pole ambient compensated thermal overload relay assemblies with adjustable

Figure 11: Typical starter unit (size 1) with type MCP Motor Circuit Protector. Unit shown is equipped with terminal blocks for NEMA type B or C construction, and with start-stop pushbuttons and indicating light.
hand or automatic resetting features. Hand resetting of all contacts is accomplished by a pushbutton through the door. Each linestarter is equipped with an internally wired interlock used for contactor seal-in. Extra interlocks can be supplied to meet any control requirement. When specified, control transformers with fused secondary can be supplied. All wiring is made with stranded thermoplastic-insulated wire rated $105^{\circ} \mathrm{C}$. Power wiring is black and of adequate size to carry the maximum full load current for which the contactor is rated. Ac control wiring is red, and Dc control wiring is blue.

14

Guide Rails
Guide rails are secured to the structure and located on each side of the vertical compartment near the top of each unit space. These guides are used to support the unit as well as to align it properly with the bus. Shoulder pins on each side of the unit fit the guides and produce a minimum of friction resistance when connecting or disconnecting the stabs with the bus. A typical guide rail is shown in Figure 8.

Unit Latching and Removal

Each drawout unit is provided with a shrouded latch (screwdriver-operated) which serves a dual purpose: first, to assure full connected position of the unit to the bus and to hold it securely in the connected position; second, to assure full-disconnected position of the unit from the bus and to hold it securely in that position with padlocking facilities to assure a permanent in-place safe position during maintenance.

Figure 12: The quarter-turn latch can be used to hold the starter in the full disconnected position.

Figure 13: The starter may be padlocked in the disconnected position for safety of pernel.

Figure 14: Starter unit is easily lifted out of its housing.

Figure 15: For safety of personnel, breaker handle may be locked in the "Off" position with one to three padlocks.

Westinghouse

Design Features, Continued

To open the unit door, the disconnect operating handle should be in the "Off" position. This releases the door interlock. At the top of each unit (beside the handle) a screwdriver operated quarter turn latch should be turned counter-clockwise to release it.

All wiring extending from the unit must be disconnected to allow it to be fully withdrawn. This can be accomplished with disconnect type terminal blocks if specified. A straight pull on the handle disengages the stabs and allows the unit to be pulled forward with its guides supporting it until it is ready for withdrawal. In this position the unit latch may be turned counterclockwise to secure it for in-place servicing. It may be padlocked in this safety position.

Operating Mechanism

A three-position vertical-motion operating handle indicates "On," and "Off," and "Tripped" positions of the breaker. With the breaker in the "On" or "Tripped" position, the door is mechanically interlocked to prevent opening. A locking mechanism is also provided which makes it possible to lock the breaker in the "On" or "Off" position with up to three padlocks. Moving the breaker handle to the "Off" position releases the door interlock, and permits opening the door. With the door opened, the operation handle is held in the "Off" position to provide maximum safety for personnel. "Defeaters" are provided which make it possible for authorized personnel to open the door with the breaker closed, or to operate the breaker when the door is open.

Figure 16: Hinged operating mechanism allows viewing of contacts of visible blade switches.

Operating mechanisms are built in three sizes with features that allow the largest breakers to be operated with the same ease as the smallest. Hinged mechanisms are provided over visible blade switches to allow viewing of the contacts.

Control Devices

Panels containing oil-tite pushbuttons, indicating lights or selector switches may be added to any drawout unit.

Devices can be factory wired or easily added to any unit in the field. For ease of installation, panels are hinged to provide simple access to rear connected terminals. Since the assemblies are mounted as a part of the unit, no hinged wiring is required and the entire starter assembly may be withdrawn with the control device assembly in tact.

Figure 17: Panels for pushbuttons and indicating lights are hinged for easy access to terminals.

18
 Terminal Blocks

Modular design terminal blocks are supplied in NEMA type B and C control center assemblies. High strength and insulating characteristics combined with solderless type terminals provide compactness with safety.

Figure 18: Optional plug-in type terminal blocks simplify connection and reconnection of control
terminals.

Blocks are molded in three-circuit assemblies. They are designed to snap in their mounting channel for easy installation or re-arrangement without tools. Stationary type terminal blocks are supplied as standard. Plug-in types are optional.
Three circuit plug-in assemblies are interlocked to prevent incorrect insertion; however they may be individually disconnected for trouble shooting. Heat-treated copper alloy with silver plated stabs on every connection assure a long lasting. low resistance coupling.
Marking strips on both the stationary and plug-in portions of the block provide clear identification of wires when disconnected. All control terminals have a wire range of *22- *8 AWG. Load terminals for wires to * 4 can be supplied in plug-in type and to * 2 in fixed assemblies.

Master Terminal Blocks

For NEMA type C wiring, master terminal blocks of either fixed or plug-in type can be supplied at either the top or bottom of any vertical compartment. Unobstructed space is provided and all terminals are accessibly arranged to allow ease of installation without penalty to the $72^{\prime \prime}$ of unit space. The large vertical wireways allow cables entering from both the top and bottom to run directly to master terminal blocks without unit or structure interference.

Figure 19: Master terminal blocks may be located either at the top or bottom of any vertical compartment.

Type W Control Centers

600 Volts Maximum

NEMA Classification

Class 1 Control Centers: These are essentially a mechanical grouping of combination motor control, feeder tap and/or other units arranged in a convenient assembly. They include connections from the common horizontal power bus to the units. They do not include interwiring or interlocking between units or to remotely mounted devices, nor do they include control system engineering. Diagrams of the individual units only and sketches showing the overall dimensions of the control center are supplied. When master terminal blocks are specified, a sketch showing general location of terminals is provided.
Class II Control Centers: These are basically the same as Class I, however, they are designed to form a complete control system. They include the necessary electrical interlocking and interwiring between units and interlocking provisions to remotely mounted devices. A connection diagram of the complete control assembly showing remote control devices illustrates the system operation, and sketches showing overall dimensions are provided. When master terminal blocks are specified the terminal arrangement and all wiring connections are shown on the diagram.
Type A includes no terminal blocks. Combination linestarters are factory wired and assembled in the structure in the most efficient arrangement. Auxiliary devices can be supplied, but no wiring external to the unit will be furnished. All feeder circuit breaker or fusible disconnect units are in this classification.
Type B essentially duplicates type A except that all control wires terminate at blocks near the bottom of each unit. Load terminals are all conveniently located adjacent to the control terminal blocks. Plug-in type terminal blocks for all control wiring and load wiring through size 2 can be supplied when specified.
Type C utilizes type B units. Factory assembly of control wiring and load wiring through size 3 is extended from the unit terminals to master terminal blocks located at the top or bottom of each vertical compartment.

Main or Feeder Protective Devices

A wide variety of protective devices are available to meet any system need. These include:

- Molded case circuit breakers, fixed or drawout, up to 3000 amperes - 200,000 AIC.
- Fusible switches up to 3000 amperes 200.000 AIC.
- Power circuit breakers, fixed or drawout, up to 3000 amperes.
- Current limiting reactors up to 1600 amperes $-100,000$ AIC.

Control Components

Components are all of Westinghouse manufacture, with reliability and superiority proved for control center application. Control units can be supplied for full voltage or reduced voltage starting of $A c$ and Dc motors.
Major components of starters consist of:

1. A primary disconnect device - either a type MCP motor circuit protector or a fusible DS switch. Refer to General Catalog Sections 29-300 and 29-400 for further information.
2. Type $A / 200$ magnetic linestarter is designed to provide new standards of engineering quality and appearance, long life and reliability. In addition, these starters give a new concept in space savings, and new ease of installation and maintenance.
The overload relay assembly is separated from the contactor and can be supplied either with or without ambient compensating features. They are adjustable for close tripping calibration.
The coils are encapsulated, and are of the plug-in type. Catalog Section 8220 provides complete information.
3. Type L-56 electrical interlocks are available in snap-in blocks. Each may have independent normally open and normally closed contacts. No special tools are required for installation.

Further Information
Price List 12-120

Special Applications

Type W Control Centers

600 Volts Maximum

Special Applications, Continued

Here is The Inside Story
 Easy to identify, easy to apply.
2. Molded case. Ruggedly constructed insulating material!.
3. Trip Indication is by handle position midway between ON and OFF. To reset the trip mechanism, move the handle to extreme CFF, then to ON position.
4. Quick-make, quick-break, trip-free mechanism minimizes arcing during breaker operation. Contacts cannot be "teased" into position. Trip-free mechanism is independent of manual handle control. The breaker trips under short-circuit or overload, even though the operating handle is held in ON position.
5. Front-adjustable magnetic trip. Magnetic trip cetomont provides instantareous trip in event ot shortcircuit. Any current surge above the trip setting produces a magnetic tied which instantly actuates the trip machanism and pens the circuit.
6. VERIFIER* "Twist-to-Trip" The Verifier "Twist-toTrip" mechanically simulates overcurrent tripping through actuation of linkages not operated by the ON-OFF handle. Experience has shown that circuit breakers in industrial applications better manta in their original protective champac-
teristics when regularly exercised. Sea Duration GED-4535.
7. Thermal trip provides protection against sustained overloads. A bimetallic element reacts time-wise in inverse proportion to the current. If a circuit is overloaded. heat resulting from excessive current flow causes the bi-metal to bend, actuating the trip mechanism to open the circuit.
8. Common-trip bar assures instant disconnect of alt conductors when an overload or short-eircuit occurs on any one conductor in the circuit.
9. Interchangeable trip units (for frames over 100 -amp rating) simplify stocking and reduce inventory requiremints. Field interchangeab!!ty assures maximum thexibility.
10. Silver alloy contacts combine the conductive properties of silver with other elements for clean, positive electrical contacting. Pitting and burning are minimized for longer contact life.
11. Are chute of heat-absorbing insulating material and metal grid plates quickly "snuffs" arcs.
12. U.L. listed lugs for copper or aluminum cable, at full frame rating. Easy access, and simple straight-in wiring.
-

(1)5-amp, 3000 amp IC, not U/L listed.
(1) 10 -amp not U/L listed.
(3) U / L listing pending.
(1)D-c interrupting ratings above 10,000 emperes not U / L listed.

- Trade-mork of General Electric Company.
(3) Not U/L. listed. Interrupting ratings based on NEMA test procedures.
(6)IC combination rating in GE " 7700 L:ne" motor control equipment per NEMA 1CS2-322. Not U/L listed.
(7) $10,000 \mathrm{kmp}$ IC, for breakers over 100 amperes.
* TFIHQL 100-125 ampere ía 22,000 AIC also available, seo page 4.
* 2 TXQL 3-Pole also availab!e, see page 4.
-

The Thyrie Secondory Arrester

 For safe and low-cost protection of a-c secondary distribution systems rated $175-650$ volts
ASSURES SERVICE CONTINUITY

The General Electric Thyrite secondary arrester is specifically designed to protect utility and industrial installations and equipment in the 175-650 volt range from overvoltages caused by lightning discharges. It is available for both singleand three-phase application.
Among utility applications which provide ideal installations for this protector are:

- Exposed secondary circuits
- Watthour meters
- Service entrances
- Station auxiliary equipment and circuits
Among industrial applications are:
- Exposed power circuits between buildings
- Service entrances
- Motors and control circuits
- Computing machines or other vulnerable clectronic equipment
A-c rotating machine protection yields proven bencfits to both utilities and industrial power users. The installation of a Thyrite arrester will provide dependable protcction against lightning

FIG. 8 Thyrite arrester $9115 \mathrm{BCCOO8}$ threepole, with bracket for separate mounting, and cross-section of arrester single-pole assembly
damage to the major insulation of A-C rotating cquipment. In addition to the arrester, a Pyranol* protcctive capacitor †, rated 650 -volts, should also be installed. The capacitor reduces the rate of rise of surge overvoltage and provides the necessary protection to the turn insulation of a-c rotating machines.

GIVES DEPENDABLE PROTECTION

The Thyrite secondary arrester utilizes newly improved construction features and moisture proofing to provide unexcelled performance and cfficiency. It is recommended for indoor or outdoor in-

* Reg. Trademark of General Electric Co.
tFor description refer to publication GEC- 1558.

1. Line Lead	5. Single Pole
2. Aluminum Can	Arrester Units
3. Brass Electrodes	6. Textolite* Case
upper \& lower	7. Thyrite Disk
4. Ground Lead	8. Ceramic Spacer

showing serrated gap electrodes and Thyrite valve disk.
stallation on single- or three-phase a-c secondary services and power circuits. The arrester is available as a single-, double-, or three-pole device. Each single-pole protective element, sec Figure 8 , consists of a series gap and a Thyrite valve disk. One, two, or three of these individually sealed assemblies are placed inside an aluminum housing. This provides self-contained units for single-, double-, or three-pole protection.
The gap in each single-pole element is formed by a ceramic spacer which separates the two brass electrodes. One electrode is serrated to prevent arcing from "bridging" the gap and grounding the line.

- Reg. Trodemark of Gencrol Electric Co. for molding compounds
\bullet

Profective Characerisifics

(a) Oscillograms showing repeated volt-time sparkovers of the Thyrite Arrester using impulse waves of both positive and negative polarities.

(b) The average impulse sparkaver voltage is about $2.8-\mathrm{kv}$ crest and the average discharge voltage is $2.6-\mathrm{kv}$ crest for 1500 -ampere impulse discharge current.

(c) Discharge voltage is 4.2 kv of 10,700 -amperes $8 \times 20 \mu_{s}$ impulse discharge current.

(d) Discharge is 5.2 kv at 20,000 -ampere $8 \times 20 \mu_{\mathrm{s}}$ impulse discharge current.

FIG. 9 Cathode-ray oscillograms showing complete impulse-protective characteristics of thyrite arresters, single-, double-, or three-pole units for 175-650-volt circuits.

The gap is in series with a Thyrite valve disk. The Thyrite valve disk is the most efficient valve element offered for withstanding multiple lightning strokes and long duration discharges.
These features are of primary importance for continuous safe operation.

PROVIDES ALL-WEATHER PROTECTION
The 650 -volt Thyrite arrester, Fig. 8, is housed in a watertight aluminum housing that will not rust or corrode. Line leads (black) and the ground lead (white) are brought out through the housing cover. All leads are weather and oil resistant insulated Flamenol* wire.

EASY TO INSTALL

Versatile mounting has been designed into G-E Thyrite arresters to permit installations which offer the highest degree of safe, efficient operation. The arrester should be installed as close as possible to the protected equipment, and the lowest ground resistance possible should be provided. A threaded conduit nipple or a galvanized steel bracket is provided for easy mounting.
Knockout-hole mounting provides a complete metal-clad tamper-proof installation. Both line and ground connections are made within the enclosure. The threaded conduit nipple is inserted through the knockout-hole on a meter case, connection, switch, or fuse box. The arrester is secured by tightening the lock nuts on the threaded conduit on either side of the knockout-hole. Circular washers permit installations through knock-out holes ranging in size from $3 / 4$ to $11 / 4$ I.P.S.
Figure 7 shows a threc-pole Thyrite arrester with a threaded conduit for knock-out-hole mounting. Dimensions are shown in Figure 10. For the protection of a-c rotating machincry, Pyranol capacitors for knockout-hole mounting are also available.
Bracket mounting provides for scparate installations at or near the equipment to be protected. See Figure 8. The Thyrite arrester is most cffective when installed close to the device or appliances to be protected from lightring damage. The arrester can be installed at the point where exposed secondary or service conductors enter the service conduit cap. Figure 11 gives dimensions for a bracket mounted arrester. For the protection of a-c rotating machinery, bracket mounted Pyranol capacitors are also available.

[^1]
DESCRIPTION

The Home Lightning Protector is designed to prevent lightning surges (entering through the wiring) from damaging electrical wiring and appliances. The Protector is a sturdy, weatherproof, service-proven device that immediately drains lightning surges harmlessly to ground. Instailed at cither the weatherhead or service-entrance box, the Protector discharges a surge in a fraction of a second. It will perform this protective function over and over again, without any maintenance required, possessing the same long-life valve-type characteristics obtainable in higher-voltage distribution arresters.
The Protector is a two-pole, three-wire device designed primarily for single-phase $120 / 240$-volt three-wire grounded neutral service. It can also be applied to protect three-phase circuits where the line-to-ground 60 Hertz voltage does not exceed 175 volts. Connection diagrams are included on the inside of each carton.

WHERE TO USE

Farmers-whose livelihood depends on milking machines, incubators, coolers, submersible pumps, and other clectrical equipment.
Suburbanites-with considerable dependency on (and investment ia) electrical appliances of all sorts.
Rural Hameowners-often far from fire-fighting equipment, and repair facilities.

Everyone-with dectrical cquipment exposed to the destructive lightnin? surges that can enter through directlyconnected overhead secondary power lines.

FEATURES

The General Electric Home Lightning
Protector
--can prevent costly appliance repair bills
-can help assure uninterrupted electrical service
-is the orly device of its kind with a 10 -year unit replacement guarantee

PRICES AND DATA
Protective Equipment Products.P(032)

Circult Rating Vols	Protector Max Permissiblo tire-1o-ground Veltage Rms	Protectge Modestio.	Net Wit Each in OL	Std Paskage
120/240 Ground Neutral	175	9L150CB002	6	$\begin{gathered} 24 \\ \text { Units } \end{gathered}$

PERFORMANCE CHARACTERISTICS*

Protector Roting (Volts Rms)	Impulse Sperhover Vchaze 10k//asec KV crest	IR Discharge Voltage KV Ciest (10×20 Aicrasecond Current Wave)		
		$\begin{aligned} & \mathrm{At} \\ & 1500 \\ & \text { Amp } \end{aligned}$	$\begin{aligned} & \text { At } \\ & 5000 \\ & \text { Ansp } \end{aligned}$	$\begin{gathered} \hat{A} \\ 10,000 \\ A \mathrm{mp} \end{gathered}$
0-175	2	1.0	1.2	1.4

* Average values.

Revised since Mor. 20, 1972 issue.

(Photo 1219173)
Fig. 1. Home Lightning Profector. Hardware (not shown) is includod in carton and defailod below.

Fig. 2. Model No. 9L15BCB002 Home Lightning Protector
NOTE: Minimum order quantity is one (1) standard package containing twenty-four (2.4) units. Orders will be accepted for shipment from factory stock in lots of one or more standard packages only. Orders for less than standard package quantities should be referred to local distributors.

$!$
PUBLICATIONS: (Use latest issue)
Descriptive Bulletin
\qquad GED-4835

Prices and data subiect to change without notice

AB De-ion ${ }^{5}$ Circmistreakers

Types, Dimensions, Ratings,
Accessories and modifications

Standard Breakers

Ditionsions, Inches, 3 Pole Preakers

.ratings I.C. Ratings Shown 5000 are Symmetricals; Ratings Shown 5 :00 cre Asymnetrical

120/240, 240 Volts tiax. Amps I. C. 120/240 Vols: 5000 and 10,000 120/240 Volts 5000 and 10.000 240 Volts: 10,000 and 10,000	$\begin{aligned} & 120 / 240,240 \text { Volts }: 1 / 3 \mathrm{si} . \\ & \text { Amps } 1 . \mathrm{C} \text {. } \\ & 120 / 240 \text { Volts: } \\ & 5000 \\ & 120 / 240 \text { Volts } \\ & 5000 \\ & 240 \text { Volts: } 10,000 \text { and } 10.000 \end{aligned}$	$\begin{aligned} & \text { 120/240, } 2: 0 \text { Vats may. } \\ & \text { Amps I. C. } \\ & 120 / 22,0 \text { vale } \\ & 5000 \text { and } 10,000 \\ & 120 / 240 \text { Vot. } \\ & 5000 \text { anc ac,60 } \\ & 240 \text { Vols: } 10,000 \text { and } 10,000 \end{aligned}$	2:0 Volis Max. fimps I. C. 10,000 and 10,000	240 Volts Max. Amps I. C. 25,000 and 22,000
Dc Ratings(3)				
...............	\ldots	\cdots		250 Volts 10,000 Amps I. C.

Accessories and Modificesions(7) See Pages 33.38 for Prices and Description

Moisture-Fungus Treatment Handile Lock Devices	Moisture-Fungus Treatment Handle Lock Devices	Moisturo-Fungus Treatment Handle Lock Devices	Moisture-Fungus Treatment Hendio lock Devices	Shunt Trip Undervoltage Trip Auxiliary Switch
Alarm Switch				

(D) Not Undenvriters" Laboratories, Inc. listed.
(6) Undenvriters' Labsratories, Inc, listed.
(6) - polo unit suppled in 3-pole frame

Westinghouse Electric Corporation
Low Voltage Breaker Division, Beaver, Pa. 15009
Printed in USA
\bullet

PRICING INFORMATION - List price includes holding interlock but does not include overload heaters. Heaters should be specified and ordered as a separate item at $\$ 3.00$ ea. G0-10G. Order one heater for 2 -pole starters, and two or three heaters for 3 -pole starters. Three pole, 200 Line starters, Sizes $00-4$ can provide 3 -leg overload protection by installing the selected three heaters. Three pole, 100) -Line starters, listed in table (Type 4 enclosed), are two overload forms; refer to page 66 for information on $3-\operatorname{leg}$ protection.
For factory installed modifications refer to page 63.

2-PHASE, \&-POLE forms are available. Contact your nearest GE Soles Office for mizing and ordering information, * Motor full-lood current should not exceed ampere rating of enclosed contactor listed by NitA size on page 25. ** See coil suffix table.
\ddagger Size 5 nomenclature shown opplies to 60 or 50 hertz forms only.
External! reset not included on sicndard listed forms.
NOTE: Plastic insect cords for use in identification panel of enclosure corer ore available. Package of 100 CR205 X147A-\$20.00/i\&g. G0.100
Refer to pose 70 for 380 vol 50 hertz ratings.

COIL SUFFIX

Indicates voltage and frequency of operating coils
Select catalog suffix number in accordance with line voltage using table below. (Do not apply to forms with a control transformer.)
${ }^{* *}$ Coil Suffix Table (use where double asterisk appears in nomenclature.)

Frequency (Hertz) 60	115 V	$200 / 208 \mathrm{~V}$	230 V	460 V	575 V	600 V
	02	23	03 V	04	05	06
Frequency (Keri) 50	110 V	220 V	380 V	440 V	550 V	800 V

[^2]I Units ore individually boxed and "Poly. Pocked" six per carton as standard.

APPLICATION

General Electric's 200 Line of magnetic motor starters may be used for starting full voltage, non-reversing, single speed $A C$ motors up to 200 horsepower, 600 volts maximum, providing protection to the motor againstrunning or stalled overloads.
Their compact size and ease of wiring make them especially suitable for motor control centers, custom-type control panels, and switchgear equipment.

FEATURES

- New block type overload relay gives greater application flexibility with either two-leg or three-leg protection.
- Contactor and block-type overload relay mount on integral baseplate.
- Improved auxiliary contacts carry heavy pilot-duty ratings.
- Manual contact operation check is build into overload relay.
- Attractive, new split-case type enclosure has electrocoated, iwo -tone finish.
- Shrouded reset in cover.

ORDERING DIRECTIONS 6....

1. Specify starter by complete CR number. Add coil suffix number in place of double asterisk as selected from coil suffix table un this page.

Example: Ch 20SC102 is a size 1 starter with 115 volt 60 Hz coil and in Type 1. General Purpose enclosure.
2. The final letter of the $C R$ number denotes extra auxiliary contacts (some. times referred to as auxiliary interlocks). Order the desired extra auxiliary contarts by replacing the final letter from first column of auxiliary interlock table (see page 67).
Example: CR200C102AAB is size 1 starter with one extra auxiliary contact, normally open.
3. For continuous rated motors with a service factor of 1.15 to 1.25 select the heater with maximum motor amps equal to or immediately greater than the actual full load current taken directly from the nameplate of motor. Order heater by complete $C R$ number from appropriate heater table on page 65 for 200-Line devices.
4. Order special features or forms not listed by complete description using a listed form as reference.

Example: Similar to CR206C1** except with 460,115 volt control power trans. former and red indicating light in rover

-

-

\bullet

PANEL MOUNTING-Front Flange Cåse-P824FF, P847FF, P845FF \& V845FF

Gase: Drawn Steel, Black
Ring: Drawn Brass, Chrome Plated, Press Fit
Tube: Phosphor Bronze
Socket: Brass

Movement: Brass, Bronze Bushed (824 Model)
Pointer: Aluminum
Accuracy: 3-2-3\%
Lens (Crystal): Heavy Bevel Edge Glass $2^{1 / 1 / 2}$ \& $31 / 2^{\prime \prime}$ Sizes, Heavy Flat Glass $2^{\prime \prime}$ Size

FIGURE NUMBER \& CONNECTION	SIZE and RANGES			illustration
	$2{ }^{\prime \prime}$	$21 / 2^{\prime \prime}$	$31 / 2^{\prime \prime}$	
*P824FF 1/4" LBM			$\begin{aligned} & 30 \text { thru } \\ & 1000 \mathrm{psi} \end{aligned}$	
P847FF 1/8" LBM	30 thru 600 psi			
P845FF $1 / 8^{\prime \prime}$ CBM	15 thru 600 psi	$\begin{aligned} & 15 \text { thru } \\ & 600 \text { psi } \end{aligned}$		
P845FF $1 / 4 "$ CBM			$\begin{aligned} & 30 \text { thru } \\ & 200 \text { psi } \end{aligned}$	
V845FF 1/8" CBM	$30^{\prime \prime}$	$30^{\prime \prime}$		
V845FF $1 / 4^{\prime \prime}$ CBM			$30^{\prime \prime}$	

*Case: Cast Brass, Chrome Maied
*Ring: Brass, Chrome Plated, Threaded
*Tube: Phosphor Bronze to and Incl. 600 psi Beryllium Copper-1000 psi

PANEL MOUNTING-U-Clanp Case-P844U \& Pea6U

Case: Drawn Steel, Black
Ring: Brass, Chrome Matod, Paess Fit
Tube: Phosphor Bronze
Socket: Brass

Movement: Brass
Panker: Ahaminam
Accuracy: $3-2-3 \%$
Lens (Crysíal): Meayy Bevel Edge Cars $2^{1 / z^{* \prime}}$ a. :31/2" Sizes, Heavy Flat Glass 2 " Size

FIGURE NUMAER and CONNECTION	SIZE and RANGES			illustration
	$2^{\prime \prime}$	$21 / 2^{\prime \prime}$	$31 / 2^{\prime \prime}$	
P844U 1/8" ${ }^{\prime \prime}$ CBM	$\begin{aligned} & 15 \text { thru } \\ & 600 \text { psi } \end{aligned}$	15 thru 600 psi		*
P844U 1/4" CBM			$\begin{aligned} & 15 \text { thru } \\ & 200 \text { psi } \end{aligned}$	pom
V844U 1/8" ${ }^{\prime \prime}$ CBM	$30^{\prime \prime}$	$30^{\prime \prime}$		$\left.0^{-20}\right)^{-20}$
V844U $1 / 4^{\prime \prime}$ CBM			$30^{\prime \prime}$	
P846U 1/8" L.BM	$\begin{aligned} & 15 \text { thru } \\ & 600 \text { psi } \end{aligned}$			

Drawn Steel Case

Fig. No. 83

Fig. No. 83 C

Fig. No. 838

Fig. No. 83D

$S I Z E$	J	K	L	M
$21 / 2$	$2^{19 / 32}$	$21 / 6$	$3^{15 / 32}$	$3^{\prime \prime}$ 8.C. $3-9 / 64$ Holes
$31 / 2$	$3^{2} / 33$	4	$41 / 3$	$41 / 6^{\prime \prime}$ B.C. $3-3 / 16$ Holes

USAG:-For the measurement of pressure or vacuen between 10 pounds per sq. in. and 10 inches of water...a range where a Bourdon tube gauge is not practical.
DIAL SIZES-21/2", $31 / 2^{\prime \prime}$ and $41 / 2^{\prime \prime}$.
CASE... Drawn steel - phosphatized for rust resistance and finished in oven baked black enamel.
RING....Same as above.
DIAMHRAGM-Phosphor bronze.
WOVERENT-Brass - Independent mounting.
ACCUKAC:Y-Except as noted, within 1% of total scale tange in middle half of scale - 2% elsewhere. Range: under 30 inches of water or equivalent - within 1% in nidadle half of scale - 3% elsewhere.

FIG. NO. 83
$1 / 4^{\prime}$ mate botion comection is standard. $1 / 8^{\prime \prime}$ male baifon conllaction can be furnished on the $21 / 2^{\prime \prime}$ size only when sprcified.

FIG. NO. 83 R
(Norlllustroted)
A rotard diaptragm gauge made in the $21 / 2^{\prime \prime}$ size enly and in the one siandard dial graduation - 0 to 15 ounces with $1 / 4$ ounce graduations and retarded to 5 pound's. $1 / 4$ " botiom connection is standard.

VARIATIONS

FIG. NO. 83C
$1 / 4^{\prime \prime}$ malo center back connection is standard on all sizes.

FlG. NO. 83 B

Flush mounted type with U-clamp and slud's for clamp. ing to panel. $1 / 4^{\prime \prime}$ male center back connection is stand... ard. Plastic crystal is standard. Fig. No. 83B not available in $41 / 2^{\prime \prime}$ size.

FIG. NO. 83D
Flush mounted type with front flange having three mounting holes for fastening to the panel. $1 / 4^{\prime \prime}$ male center back connection is standard. Plastic crystal is standard. Fig. No. 83D not available in $41 / 2^{\prime \prime}$ size.

STANDARD DIALS

Ounces Per 5q. In. or Inches of Water (Pressure or Vacuum)									Lbs. Per Sq. Inch			$\begin{array}{cc} & \text { Dual Seale } \\ O_{2} . & \text { In. } \\ \text { Or. } \end{array}$			
Total Ronge	10	15	30	60	100	160	200	300	3^{*}	5	10	20	35	32	55
igure Intervals	2	3	5	10	10	20	20	30	$1 / 2$	1	2	2	5	4	5
Smallest Sub-Division	$1 / 8$	$1 / 4$	1/2	1	2	2	2	5	1/18	1/18	$1 / 8$	$1 / 2$	1	$1 / 2$	1

These dials are also availatle within capacity limits of the gaugns for graduating in millimeters of mercury, centimeters of water and inches of mercury. Compound gauges mado to order in $21 / 2^{\prime \prime}$ and $31 / 2^{\prime \prime}$ sizes.
\bullet
-
 (lliustrations of pilot lights are approx. actuat aze)

OHLTHGMTIMDICATOR MHGMTS

oll-tight - water tight - dust tight

For HEAYY DUTY Industrial Applications

Exceptionally Rugged
 Designed for severe vibration conditions

For Mounting in $1^{\prime \prime}$ Clearance Hole

FEATURES: Unlike the usual bulky Oil-Tight units, Dialco's assemblies have compact, streamlined design. Important construction features include: One-piece solid brass mounting bushing . . . Fully gasketed with oil-proof gaskets . . . All gaskets retained - no loss of seal . . . Has solid brass knurled lens holder with gasketed lens ... High impact phenolic insulation .. . Have rugged terminals of the binding screw type ... An Oil-Tight Adaptor Set (Cat. No. 1316-L) is available for mounting any $1^{\prime \prime}$ assembly in $1-3 / 16^{\prime \prime}$ clearance hole.

Three Lens Types: The permanently
 oil-tight lens cap can be had with a choice of 3 permanent-color glass Lenses: Omnidirectional Torpedo Faceted, Dome, or Flat Lens. The flat lens can be used with discs inserted behind the lens to deliver specific messages. This is a significant safety feature in motor controlled equipment. Seven lens colors are available. For complete specifications, refer to Form L-200A.

3 types of Incandescent lamps may be used: Especially recominendod is the 10C7/1DC Iamp which is designed to W/ITHSTAND SEVERE VIERATION and SHOCK. (Lamps shown approx. $2 / 3$ actual size).

The complete Dialco line of Oil-Tight Indicator Lights includes units for mounting in $11 / 16^{\prime \prime}, 13 / 16^{\prime \prime}, 1^{\prime \prime}, 1-3 / 16^{\prime \prime}, 1-1 / 2^{\prime \prime}$, and $1-5 / 8^{\prime \prime}$ mounting
(Lamps shown approx. 55\% actial size)

These 3 types of Neon Lamps may be used. NE-45 has candelabra screw base; NE-48 and NE-79 have double contact bayonet bases.
clearance holes. Lamps accommodated include incandescent and neon lamps of the screw base and bayonet base types.

Whin Butbin Resistor for Meon Glow Lams

U.S. Patent No. 2,421,321

Mount in 1" Clearance Hole: Units for use with the NE-48 and NE-79 Ncon Lamp have the resistors "built-in" as an integral part of the unit for use on voltages up to 250 V . The resistance value is selected to obtain the desired performance on supply voltage with the proper balance between lamp life and brightness. The best choice will be recommended for any set of conditions . . . Assemblies using the NE-45 Candelabra Screw Base lamp have the required resistor built into the base of the lamp.

For Mounting in 11/16" Clearance Hole

Assemblies for use with the NE-51 Neon Glow Lamp have "built-in" resistors, an exclusive Dialco feature. Similar units are usable with low voltage incandescent lamps. Stovepipe lenses are recommented. They may be fluted, frosted back or anfrosted. White lenses are translucent and are always furnished unfrosted.
7 lens colors are available. Binding screw or soldering terminals may be specified. For complete details, refer to Form L-200A.

ORDER COMPLETE WITH LAMPS so that you will be assured of receiving the pilot lights and correct lamps at one time, ready for immediate use.
SAMPLES ON REQUEST AT ONCE - NO CHARGE

Designed to accommodate $\mathrm{F}-31 \mathrm{4}$ bulb with miniature bayonet base. Specify NE-51 for neon glow; or T-31/4 for incandescent. With incandescent specify voltage required up to 55 V .

ASSEMBLES for INCANDESCENT LAMPS

(with double confact bayonet or candelabra screw bases)

For Mounting in $1^{\prime \prime}$ Clearance Hole

FEATURES: DIALCO makes the most extensive line of $1^{\prime \prime}$ enclosed assemblies for large incandescent lamps. 3 such styles of lamps are shown here together with 4 typical units. These units are available with Screw Terminals, Soldering Terminals, or Quick Connect Terminals (will mate with standard solderless female connectors) ... There are 3 ways of attaching the lens caps: Screw-on Caps, Friction Caps, or Bayonet Caps. 8 glass lens types are available. Plastic lenses are not recommended because of the high degree of heat that incandescent lamps generate.
Optional features include: Split Lockwasher may be substituted for internal-tooth type ...Units with Serew-on Caps may be made watertight on face of panel...A dise is inserted in back of lens when it is desied to have a word, numeral, or symbol appear

G-6 D.C. Bay. (32V. max.):

S. 6
D.C. Bay.
 when lamp is on.

514001-111

Typical assemblies for use with candelabra screw base incandescent lamps

Assembly with Screw Cap, Torpedo Lens, and Screw Terminals in side position. Similar units avalable what screw terminals in protruding position.

Assembly with Friction Cap, Convex Lens, and Soldering Terminals. 2 other types of soldering terminals are fixed or morable.

LENS COLORS: Seven lens colors are available as described on opposite page.

Convex Lens Friction Fis

Large Torpedo Lens Screw-on Type

Large Convex Lens Screw-on Type
ORDER COMPLETE WITH LAMPS so that you will be assured of receiving the pilot lights and correct lamps at one time.

- LENS CAPS: These 3 lens capss arc also available for use with any of the assemblies shown on these 2 pages.
SAMPLES ON REQUEST
- AT ONCE-NO CHARGE

Using de-rated bulb for increased life:

```
V1 = Bulb Design Voltage
V = Applied Voltage
```

$$
\begin{aligned}
\text { Re-rated life } & =\left(\frac{\mathrm{V} 1}{\mathrm{~V}}\right)^{12} \times \text { Life @ Design Volts } \\
& =\left(\frac{155}{115}\right)^{12} \times 1500 \mathrm{Hrs} \\
& =53,913 \mathrm{Hrs}
\end{aligned}
$$

$$
\begin{aligned}
\text { Re-rated Candlepower } & =\left(\frac{V}{V I}\right)^{3.5} \times \text { M.S.C.P.@ Design Volts } \\
& =\left(\frac{115}{155}\right)^{3.5} \times \text { M.S.C.P. @ Design Volts } \\
& =.35 \times \mathrm{M} . \text { S.C.P. © Design Volts } \\
& =35 \% \text { of M.S.C.P. © Design Volts }
\end{aligned}
$$

BULLETIN 345
TIME/MODULE
TM SERIES

TM Series Modular Timer

DESCRIPTION

The TM repeat cycle timer is constructed of precision molded plastic parts, utilizing the latest injection molding techniques. The motor bracket and switch plates are injection molded phenolic plastic, cams and gears are acetal, and actuators and tabs are injection molded molybdenum disulfide filled nylon which provides lifetime lubrication. The modular design of this timer permits easy expansion of the number of circuits on the timer. Standard timer sizes are one through ten single pole, double throw switches. Each additional switch adds one-half inch to the length of the timer. A 10:1 gear reduction module and a dialknob module are available as optional features. (See page 2 for details.) The only "hardware" used in construction of the TM timer is the motor, switches and one screw with lock washer and hex nut.

OPERATION

The TM repeat cycle timer uses a unique switching mechanism rather than the conventional "hill and dale" type cam. This unique mechanism uses a "rise tab" and a "drop tab" mounted on a serrated wheel, an actuator, and a S.P.D.T. switch. The actuator maintains the position of the switch as it is depressed by the "drop tab" and remains down until picked up by the "rise tab." Switch closures are adjustable from 5% to 95% of the time cycle. Additional tabs may be purchased to "build" special cam configurations. Combination "rise/drop tabs" may be used for pulsed outputs.

180 degree cam segments are also available and will provide conventional 50/50 adjustable cam configuration. Switch closures are adjustable from 2% to 98% of the time cycle.

The clutch module (standard unless specified) enables the cams to be manually rotated forward through the time cycle. This is convenient when making initial cam settings.

The T/M is a highly flexible repeat cycle cam timer

This is the
 New Eagle TIME/MODULE

(without a camshaft). It is designed from 4 basic modules, precision molded to interlock easily with the other offering a selection of time ranges and operating characteristics offering versatility limited only by the imagination of the user.
The T / M is expansible to 10 control modules (2) or gear reduction modules (3).

Unidirectional and Reversing Synchronous Motors available in 26 standard time ranges each (from 6 sec . to 60 hours). Reversing motor requires no external relays for operation and offers virtually infinite operational selection.

A close look at the unique T / M clutch that simplifies cam setting. Used in conjunction with the optional percentage dial (Module No. 4) the timer may be set readily to any \% reference desired.

MODULE 3 - $10 / 1$ GEAR REDUCTION MODULE Replace any control module as required for your application. (Incorporated in Timer on front page.) Provides multiple cycle lengths from a common motor drive. As many as four reduction modules may be used in a given
arrangement. The last control module could be operating at a 10,000 to 1 ratio with the drive motor.

MODULE 4- PERCENTAGE
DIAL MODULE (OPTIONAL)
MODULE 2 - CONTROL MODULE WITH INDIVIDUAL RISE DROP TABS

CONTROL MODULE WITH
ADJUSTABLE 50/50 CAM.

Cam follower without latch (may also be used with series of rise cams above).

One switch closure per revolution. Min. closure 2%; Max. 48%.
\bullet
\bullet

It's flexible, It's versatile

The T/M Timer is fundamentally a repeat cycle timer. Its use, as such, is more than warranted by the low cost, long life construction and its easy-to-use flexribility.

But, there's more than meets the eye in its unique design. Inherent in the T/M's physical design are functional characteristics and control opportunities never before offered in a simple and inexpensive repeat cycle timer.

That's why we call it the TIME/MODULE!

There can be many occasions when a call to your Eagle Representative (or the factory) will help you confirm your use of this timer and save you hundreds of dollars in unnecessary circuit components and offer you a clean, dependable circuit design in a minimum of space.
The two most important modules that will offer you all this versatility are:
Module 1 The Drive Module, offering a choice of reversing motors in 26 standard time ranges.
v-ule 3 The Gear Reduction Module, offering mulspeed operation from a common drive motor. Reversing action and gear reduction, applied individually or in combination, offer many very useable variations. Since the gear reduction module is readily understandable, we will go into some detail regarding the use of the Reversing Motor Drive Module only.
Graphically, in Chart 1, the difference between unidirectional and reversing action is functionally defined. While the unidirectional motor simply rotates 360° in 60 seconds, you have 342 useable degrees with the reversing motor and since it returns each cycle to its origin you have 684°. Using the 60 second motor, this offers you 114 sec . or any portion thereof The three reversing diagrams on the right of Chart 1 illustrate this on a quadrant basis.
Applying this advantage to Chart 2 we begin to see the added versatility available. This diagram is divided into 3 sections: (1) the conventional bar timing chart on the left (2) a typical wiring diagram on the right and (3) the reversing timing chart in the center. Referring to the wiring diagram, control module 1 becomes the motor control eliminating the need for external relays. This is possible because of the positive "push-pull" switch action of the individual risedrop cam segments, leaving 9 maximum individual control modules for load circuits (5 only shown).
The motor control terminals now offer selection for g your control modules. By studying the center ng chart in relation to the gated loads, you'll iscover many advantageous combinations.
The new Time/Module is virtually limited only by your imagination. It is also a low cost and dependable repeat cycle timer.

CHART 1

60 second cycle used
to illustrate both
chart 1 and chart 2.

BULLETIN 345
TIME/MODULE
TM SERIES
"EASY ADD" CIRCUIT MODULES

RISE/DROP TYPE SWITCH MODULE Pt \#3077-0300

CONVENTIONAL CAM TYPE SWITCH MODULE Pt \#3077-0310
(Includes only 1 - Rise Tab and 1 -Drop Tab)
Additional Tabs available in quantities of 25 .
OPTIONAL FEATURES May be added on or changed at any time.

10:1 GEAR REDUCTION MODULE
... Fits in one normal switch position
. . . Provides multiple speed cam shaft operation (Pt \#3077-0280)

DIMENSIONS

NO. CKTS.	1	2	3	4	5	6	7	8	9	10
A	$13 / 8$	$17 / 8$	$2^{3 / 8}$	$27 / 8$	$33 / 8$	3%	$43 / 8$	$47 / 8$	$53 / 8$	$57 / 8$
B^{*}	$2^{25 / 32}$	$39 / 32$	$3^{25 / 32}$	$4 \% / 32$	$4^{25} / 32$	$59 / 32$	$52 / 32$	$6 \% / 32$	$6^{25 / 32}$	$7 \% / 32$

NOTE:
For Eagle Model 56 Motor add 5/6
For Hansen Rev. or Dual Motor add
For Hansen Style "K" motor 3 hr ., 6 hr . 30 hr ., or 60 hr . add 1/4 Dimensional - TM repeat cycle timers - 1 to 10 circuits.

Eagle Signal

a systems division of
GULF + WESTERN INDUSTRIES, INC. 736 Federal/Davenport, lowa 52803

DIAL AND KNOB MODULE
. . . Dial calibrated in percent of cycle.
... Knob provides adjustment to advance cycle.
(Pt \#3077-0321)

TM TIMER ORDER INFORMATION CHART

$\stackrel{\rightharpoonup}{y}$

TIME CYCLES							
Symbol	Time Cycle						
01	6 sec .	08	150 sec.	15	30 min .	22	6 hr .
02	10 sec .	09	3 min .	16	60 min .	23	10 hr .
03	15 sec .	10	5 min .	17	100 min .	24	20 hr .
04	30 sec .	11	6 min.	18	120 min .	25	30 hr .
05	60 sec .	12	10 min .	19	150 min .	26	60 hr .
06	90 sec .	13	15 min .	20	3 hr .		
07	120 sec .	14	20 min .	21	5 hr .		

(2 and 3 positions)

(A M	EI	,	1 NO 1NC	$2 \mathrm{NO} \quad 2 \mathrm{NC}$	3 NO 3NC	$4 \mathrm{NO} \quad 4 \mathrm{NC}$
SELECTOR SWTT (two positions)	left	π		$\begin{array}{lllll} 1 & 2 & 1 & \vdots \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 \\ 3 & 4 & 3 & 4 \\ \hline \end{array}$	$2 a$ 0^{2} $2 a$ 1 02 30 04 10 02 30 04 30 0_{4}	10 0210 0^{2} 30 0.430 06 10 0 10 02 30 0 30 0
	right				10 0^{2} 1 0 0^{2} 30 0 3 3_{0}^{3} 0^{4} $i 0$ 0 30 4	10 $0^{2} 10$ 0^{2} 30 0430 04 10 020 02 35 45 04

Number of Unit

The following combinations are possible:

1 and 1,1 and 2,1 and 3,1 and 4 ,
2 and 2,2 and 3,2 and 4,
3 and 3,3 and 4 ,
4 and 4.
Metallic part
Conductive part
Nonconductive part
Contact Point
Spring
Rubber
The other parts
Zinc die cast (Plated with copper first, platedwith nickel, finished with chrome.)
Brass (Plated with nickel)
Iron (Plated with copper first, thenplated with nickel.)
Pure Silver
Spring Steel
Oilproof Rubber (Acidproof, alkalinity proof)
Phenol resin, Acrylic acid resin
STARDARD OF SWITCH
600 volt, $2 \mathrm{amp}, \mathrm{AC} ; 250$ volt, $6 \mathrm{amp}, \mathrm{AC}$
1 -no or $1-\mathrm{nc}$ to 6 -no and 6 -nc
not beyond $50 \mathrm{M} \Omega$
1500 v AC/ 1 minute
$500 \vee 50 \mathrm{M} \Omega$ over
la-1b $1.1 \mathrm{Kg}(2.4 \mathrm{lbs})$ $2 a-2 b$
$1.7 \mathrm{Kg}(3.6 \mathrm{lbs})$
$4 \mathrm{a}-4 \mathrm{~b} \quad 2.1 \mathrm{Kg}(4.6 \mathrm{lbs}) \quad 6 \mathrm{a}-6 \mathrm{~b} \quad 3.4 \mathrm{Kg}$ (7.4 lbs)
130 g (4.5 ounces)
$31 \mathrm{~mm}\left(1-7 / 32^{\prime \prime}\right)$
under 6 mm

featunes of the manuyasu olltight line

1. Easy to install: Ring and Gasket connection to panel.

Easy to connect: Wire holders on terminals and visible contacts.
2. Entirely interchangeable: All measurements are equal.
3. Contact Block parts are all interchangeable.
4. Easy and Reliable operation.
5. Operator is separately airtight from the Contact Block, and is oilproof, waterproof and dust proof.
6. A large selection of Operators and Contact Block assemblies for all types of operations and applications.
7. Beautiful style and construction.
8. By engraving letters or marks on the surface of the button or lens, a name plate becomes unnecessary.
9. Easy lamp replacement on all pilot lights.
10. By the use of waterproof rubber, the Push to Test (Illuminated Push Switch) and Indicating Pilot work as oilpraof and dustproof.
\bullet

A-c Rared - Slow-Make, Slow-Break

WHEN ORDERING SPECIFY

- Catalog Number

DESCRIPYION

These slow-make, slow-break, A-c rated switches feature a rocker type contact mechanism similar to that employed in the widely used CutlerHammer aircraft type switches. The movable contact is actuated by a compression spring which provides positive contact pressure in the closed position and firmly positions the contactor in the open position.
Solder lug, screw and spade terminals are large and firmly riveted to the rear of the base with adequate spacing provided to facilitate wiring and to redure possibility of electrical creepage. Spade terminals are $1 / 4$ inch. On plug-in type switches, connection is made by plugging wires into $5 / 64$ inch square holes provided in base. Exposed metal parts are bright nickel plated (except 8320 which is zinc with aluminum ball). Terninal screws (where applicable) and mounting hardware are furnished unassembled. All switches with the exception of the 7610 through 7619 series and the 8320 are furnished with a hexagon locknut and knurled facenut. The 7610-7619 series are supplied with a hexagon locknut and a hexagon facenut, and the 8320 is supplied with two hexagon facenuts.

Cat Nos. 7500, 7506-07, 7580, 7583 \& $7584 \mathrm{w} /$ screw terninals (base dim. same for 7501 and for solder lug terminal versions of above switches.

Cat. Nos. 7503 and 7505 (7502 and 7504 saine except w/screw terminals)

SELECTION TABLE (Items shown in Bold Face Type are normally stocked)

Nominal Ratings			Operation		$\begin{gathered} \text { Bushing } \\ \text { Leagith } \\ \text { Dign. } \\ \text { "A" }{ }^{\prime \prime} \\ \text { (Inches) } \end{gathered}$	$\begin{gathered} \text { Lever } \\ \text { Length } \\ \text { (Inches) } \end{gathered}$	Type of Terminals							
Amperes		$\begin{gathered} \mathrm{Hp} \\ 250 \mathrm{~V} . \\ \mathrm{A}-\mathrm{c} \end{gathered}$					Scre:/		Solder Lug		Spade (.250)		Pug- In	
$\begin{aligned} & 125 \mathrm{~V} . \\ & \mathrm{A} . \mathrm{O} \end{aligned}$	$\begin{array}{r} 250 \mathrm{~V} . \\ \mathrm{A}-\mathrm{c} \end{array}$						Crame	$\begin{gathered} \text { List } \\ \text { Priceo } \end{gathered}$	Cataloz	$\begin{gathered} \text { List } \\ \text { Price } 0 \end{gathered}$	$\begin{aligned} & \text { Catalop } \\ & \text { Humber } \\ & \hline \end{aligned}$	List	Cataloz Number	List Price 0

\bullet

A-c and D-c - Toggle Operated
 Precision Snap Switch Assemblies

A-c and D-c Flush Mounied

WHEN ORDERING SPECIFY

```
- Catalog Number
```


DESCRIPTION

Flush mounted A-C \& D-C switches are provided with tapped holes for sub-panel mounting. In addition, the 8187 K 5 and KG , and the 8197 K 4 are provided with countersunk mounting holes spaced for O.B.M. (Outlet Box Mounting). Metal parts visible when switch is mounted are bright nickel plated on 7330, 7344 and 7410. Catalog numbers $8301,8302,8187$ and 8197 have a flat zinc lever with an aluminum ball.
On the plug-in switch, 7344 , connections are made by plugging the wire into the switch body. Plug-in holes will accept $: 16, \# 18$ or $: 20$ tin dipped stranded wire leads skinned $3 / 8$ inch. Release holes, which are provided for wire removal, are sized to accept an .052 inch maximum diameter tool.
Catalog number 8197 is of semi-dust fight construction.

optional featurese

- D.T., 3 way or 2 circuit without "Off" position - 7330, 7344, 7370
- 1 P.S.T. (parallel contacts). Terminals at diagonally opposite corners 7330, 7370, 7410, 8187, 8197
- Solid silver contacts - 7330, 7344, 7370, 7410, 8187, 8197
- Momentary contacts N.C. - 8301

Cat. No. 7330

Cat. No. 7344

Cat. No. 7370

Cat. No. 7410

- Wire leads in place of screw terminals - 8301, 8302
- Bussing terminals (rear terminal construction only) - 7370
- Enveloping insulator - 8301, 8302, 7330, 7370
- Semi-dust tight - 7370
- Special marking
- Terminal screws furnished assembled
- Wire clamps on terminal screws
- Screw terminals located at rear - 7370

SELECTION TABLE (Items shown in Eold Face Type are normally stocked)

Nominal Ratings A-C, D-C				Poles and Throw	Mounting	Contact Operation	Features	Type of Terminals							
Amperes		Horsepower						Cataloz Numbe	$\begin{gathered} \text { List } \\ \text { Price } \end{gathered}$	Calalog fiumber	$\begin{aligned} & \text { List } \\ & \text { Price } \end{aligned}$				
Cone POLE OR -															
6	3	\cdots	\cdots		IP.S.T.	Flush 2 S	Momentary Maintained	Flat lever w/ball Flat lever w/ball	8391 K 5 8302 K 5	$\begin{array}{r}\$ 2.02 \\ 1.69 \\ \hline\end{array}$	\ldots			
IWO POLE															
10 16 20	$\begin{array}{r}5 \\ 8 \\ \hline\end{array}$	$1 / 2$ 1 10	3/20	2 P.S.T.	Flush 2S	Maintained	On-Off Tool Switch	733052 7370 K 2	2.37 4.08	7344×2	$\$ 2.16$ \cdots				
\ldots	20	1-1/2	2	2 P.S.T.	Flush 2 S	Maintained	On-Off Tool Switch	7410×4	5.49	\cdots	\ldots				
					Husio	Maintained	On-Off Toul Switch - Semi D.T.	8197 Ks	6.82	\ldots				
					O.B.M.	Maintained	On-OHf Tool Switch On-0f! Tool Swatch --w/lock ears	8167 K 5 K 5	6.02 6.45	\ldots				
					O.B.h.	Maintained	On-0ft Tool Switch - semi D.T.	8197 K 4	6.82		\ldots				

[^3]G Also rated $1-1 / 2 \mathrm{Hp}$ at 250 V . D-c.
O Unmarked rating.

DISCOUNT SCHEDULE 25CD-1
Unless noted otherwise, all switches above are U.L. and C.S.A. listed.
\bullet

PUSH SWITCHES

FEATURES OF THE MARUYASU OILTIGHT LINE

1. Easy to install: Ring and Gasket connection to panel. Easy to connect: Wire holders on terminals and visible contacts.
2. Entirely interchangeable: All measurements are equal.
3. Contact Block parts are all interchangeable.
4. Easy and Reliable operation.
5. Operator is separately airtight from the Contact Block, and is oilproof, waterproof and dust proof.
6. A large selection of Operators and Contact Block assemblies for all types of operations and applications.

QUALITY OF MATERIAL.

Metallic part

Conductive part
Nonconductive part

Contact Point

Spring
Rubber
The other parts

Zinc die cast (Plated with copper first, plated with nickel, finished with chrome.)

Brass
Iron

Pure Silver
Spring Steel
Oilproof Rubber (Acidproof, alkalinity proof)
Phenol resin, Acrylic acid resin

STANDARD OF SWITCH

Contact Point

Contact Point Construction
Contact resistance
Isolation pressure
Isolation resistance
Power of actions of switch

Weight (approx.)
Diameter of hole for fixing
Thickness of using panel

600 volt, $2 \mathrm{amp}, A C ; 250$ volt, $6 \mathrm{amp}, \mathrm{AC}$
1-no or 1 -nc to 6 -no and 6 -nc
not beyond $50 \mathrm{M} \Omega$
$1500 \times \mathrm{AC} / 1$ minute
$500 \vee 50 \mathrm{M} \Omega$ over
$1 \mathrm{la}-1 \mathrm{~b} \quad 1.1 \mathrm{Kg}(2.4 \mathrm{lbs}) \quad 2 \mathrm{a}-2 \mathrm{~b} \quad 1.7 \mathrm{Kg}$ (3.6lbs)
$4 \mathrm{a}-4 \mathrm{~b} \quad 2.1 \mathrm{Kg}$ (4.6 lbs) $\quad 6 \mathrm{a}-6 \mathrm{~b} \quad 3.4 \mathrm{Kg}$ (7.4lbs)
130 g (4.5 ounces)
31 mm (1-7/32")
under 6 mm
-

Phone Jacks

(a)

"LITTEL-JAX" PHONE JACKS

[A] Quality phone jacks that mate with standard ${ }^{1}$ " phone plugs Notched insulating washers mechanically interlock springs and solder lugs. "V" bend in tip pring firmly "holds" mating plug. Minimum space requirements. Economical. Mounts in single ${ }^{3}{ }^{8}$ hole panels up to ${ }^{5} 32{ }^{\prime \prime}$ thick, except $\mathrm{L}-11$ and $\mathrm{L}-12 \mathrm{~A}$ in panels up to $1_{4}^{\prime \prime}$ thick.
Nos. C-11 and C-12A mate with No. 440 (PJ-055B) Plug. C-12B, $\mathrm{S}-12 \mathrm{~B}$ and S-13B mate with No. 480 (JAN-PJ-065) or No. 484 (W.E. No. 309) Plug. Nos. C-11 and C-12B have locating pins (non-turn devices). No. S-11 similar to No. 11 except 210 " $1 . \mathrm{D}$. sleeve. (-11 , C-12B and C-12A per JAN-J-641. All others mate with standard 4 dia. plugs.
(A) A New "Littel-Jax" PC-12A for printed circuit mounting. Std. ${ }^{1 / 4}$ dia. jack with all the construction features of standard "Littel-Jax" Same circuit as in No. 12A.
No. 14B Stereo "Littel-Jax", switchesout speakers when connecting stereo headphones. Dual. N() switch contacts open both stereo circuits independently when a 3 -condmetor plug is inserted

TWO CONDUCTOR TYPES

Part No.	Schematic No.	Typical Mating Plug	Mil-Type	U.S.A. List Price
11	1	250	-	\$0.60
C-11	1	440	JJ-034	. 90
L-11	I	250	-	. 70
S-11	1	S-250	-	.65
12A	111	250	-	65
C-12A	111	440	JJ-089	1.05
L-12A	111	250	-	75 75
S-12A	111	480	-	. 75
PC-12A	111	250	-	.75 .25
13	\checkmark	250	-	1.25
$13 A$ 13 E	V1	250	-	1.15 1.25
THREE CONDUCTOR TYPES				
12 B $\mathrm{C}-12 \mathrm{~B}$	IV	267 480	JJ-033	1.05
L-12B	IV	267	-	1.00
S-12B	IV	480	-	1.00
138	VIII	267	-	1.10
S-13B	VIHI	480	-	1.40
14B	XII	267	-	1.45

"TINI-JAX" MINIATURE PHONE JACKS
(B] Miniature 2 -conductor Phone lacks. approxmately 3 the size of the "Littel-Jax": otherwise similar in construction. Wount in ${ }^{4}$ dia hole panel up to 's" thick. No. 43A has a unique spring design that requires a pear shaped tip, such as Switcheralt "Tini-Plug No.

$\left.$| Part | Schematic | Typical
 No. | Mating Plug | Conductors |
| :--- | :---: | :---: | :---: | :---: | | U.S.A. |
| :---: |
| List Price | \right\rvert\,

"TINI-EXTENSION JAX".
[C] An extension or calerent Two-conductor Metal housing for ruggedness and electrical shelding. Solder lue terminals.

Switcheraft Part No. 125
U.S.A. List Price $\$ 1.80$

"MICRO-JAX" SUB MINIATURE PHONE JACK

D Precision maunactured jack for mimiaturized applications. Two conductor, single closed circuit. See Schematic Circuit fil. Siver plating on special tempered nickel silver springs. Internally keved nylon insulation interlocks springs and solder lugs to eliminate shorts. Fits $190^{\prime \prime}$ dia. hole in panels to $3^{3}{ }^{\prime \prime}$ thick. Only $1 / 25$ th the size of standard phone jacks. Mates with "Micro-Plug". Series $850,880$. Switchcraft Part No. TR-2A
U.S.A. List Price $\$ 0.70$

"SHIELDED JAX'

$J A X$ The shield is assembled into and made part of the jack. Ideal for high impedance circuits

Part No.	Schematic No.	Typical Mating Plug	Conductors	List Price
CN-11	1	250	2	$\$ 1.15$
CN-12A	111	250	2	1.20
CN-12B	IV	267	3	1.40

HI-D JAX PHONE JACKS

F New smatler more compact phone facks. mate with std. ${ }^{1}{ }^{\prime \prime}$ phone plugs. Molded box body protects integral silver-plated, nickel sive prings Low contact resistance and electrical leakage with little cat pacity between the springs. Mount on "x centers in single 's hole in panels up to " $2^{\prime \prime}$ thick, depth behind panel $1^{3} z^{\prime \prime}$ All part Nos. with L prefix mount in pancls up to ${ }^{1}$ " thick; part Nos with "N prent feature a threaded mylon bushing to provide complete insulation of jack sleeve from mtg, pancl. Part Nos. with "NL" prefix feature at sk long threaded nylon hushing (same as ". series) and mount in panels uptod 1," thick. All part Nos. with "M" pretix are designed and adjusted to mate with telephone and MILL-std plags. Tip and ring (3-cond.) springs are gold plated. and shunt and isolate switching circoits where used) have welded cross bar palladium contacts for stable low resistance interconnections in sensitive and critical circuits. Prefix ". H . is same as "M.: above, except bushing is molded nylon. Stereo "HI-D Jax." Nos. 114 B and $\mathrm{C}-114 \mathrm{~B}$ switches out speakers when connecting stereo headphones. Dual N. C. switeh contacts open both stereo circuits independently when a 3-cond, plug is inserted

Part No.	Schematic No.	Typical Mating Plug	U.S.A. List Price
111	1	250	$\$ 0.60$
L-111	1	250	.75
N-111	1	250	.75
NL-111	111	250	.80
$112 A$	111	250	.65
L-112A	1	250	.80
M-112A	111	420	1.10
N-112A	III	250	.80
NL-112A	V	250	85
113	VI	250	1.15
$113 D$	IX	250	1.15
$113 E$	250	1.15	
THREE CONDUCTOR TYPES			

112B	IV	267	70
L-112B	IV	267	. 85
M-112B	IV	482	1.00
MN-112B	IV	482	1.15
N-112B	IV	267	85 90
+113B	VIII	267	. 95
N-113B $\mathrm{N}-113 \mathrm{~B}$	VIII	267 267	1.00
NL-113B 113 F	VII	267	. 90
114 B	XII	267	1.00
L-114B	XII	267	1.10
M-114B	XII	482	1.30
MN-114B	$\times 11$	482	1.45
$\mathrm{N}-114 \mathrm{~B}$	XII	267	1.10 1.15
NL-114B	XII	267	1.15

"TINI-D JAX" MINIATURE PHONE JACK
G] New. small completely endosed. molded phone jack. Mate with Switcheraft "Tini-Plug." No. 750 etc. Phenolic housing protects the bifurcated beryllium copper springs from being bent during mounting No. 142 A has threaded bushing for conventional mtg. Tip spring terminals that "snap-in P.C. boards. Hepind panel" ${ }^{\frac{8}{4}}$ hole in panels up to 8 thick. Depth

Part No.	Schematic No.	Typical Mating Plug	Conductors	U.S.A. List Price
142 A	111	750	2	$\$ 0.70$

"R-JAX" ECONOMY PHONE JACKS
(H) Radically new jack design. Simple mounting needs only two (2) $3_{32}{ }^{\prime \prime}$ dia. rivets to fasten securely to mounting panel. Accept stand${ }^{3}{ }_{32}^{\prime \prime}$ dia. rivets to tasten
ard $1_{4}^{\prime \prime}$ dia. phone plugs.
4

Part No.	Schematic No.	Typical Mating Plug	Conductors	U.S.A. List Price
2A	II	250	2	$\$ 0.60$
2B	IV	267	3	65
4B	XII	267	3	.90

EJHCHESAD
Phone Plugs

"LITTEL-PLUG" PHONE PLUGS

Small size phone plugs fit standard "," phone jacks except *Nos. S-250 $\mathrm{S}-260$ and $\mathrm{S}-280$ which have a $206^{\prime \prime}$ dia. sleeve. *Nos. C-240, C-24.5 and C-270 feature an integral cable clamp with screw terminals. +No. R-280 has short sleeve or Revere Recorders. \ddagger No. 288 has a wide
insulator between tip and sleeve for use in a 3 -conductor iack to perform a 2 -conductor function without shorting. Plugs with solder terminals have built-in cable clamp. Shielded metal handles are nickel plated brass; others are molded of durable plastic: $5 / H^{\prime \prime}$ long x $1_{2}^{\prime \prime}$ dia

Part No.	Fig.	Typical Mating Littel-Jax	Handle	Terminals	U.S.A. List Price
240	A	11	Black	Screw	\$1.25
C-240**	A	11	Black	Screw	1.45
245***	A	11	Red	Screw	1.25
C-245**	A	11	Red	Screw	1.45
250	A	11	Black	Solder	1.20
255	A	11	Red	Solder	1.20
c 270 .	B	11	Shielded	Screw	1.70
C-270**	B	11	Shielded	Screw	2.00
280	B	11	Shielded	Solder	1.70
288\%	B	11	Shielded	Solder	1.75
S-250	${ }^{\text {A }}$	S-11	Black	Solder	1.25
S-280	B	S-11	Shielded	Solder	1.70
THREE-CONDUCTOR TYPE					
260	A	12B	Black	Screw	\$2.00
S-260*	A	S-128	Black	Screw	2.70
267	A	128	Black	Solder	1.75
269	A	12 B	Red	Solder	1.75
290	B	12B	Shielded	Screw	2.30
297	B	12 B	Shielded	Solder	2.20

STANDARD 1/4" PHONE PLUGS
Available with phenolic or shielded, nickel plated over brass handle.
TWO-CONDUCTOR TYPE-SCREW TERMINALS
Typical mating jack "littel-Jax No. 11 No. 169 features circuit closing device No. 170 has a two-piece handle with built-in clamp for $1 / 4^{\prime \prime}$ cable.

Part No.	Fig.	Handle	Length \& Dia.	U.S.A. List Price
40	A	Black	$21 / 1 \times 1 / 4$	$\$ 1.25$
45	A	Red	$21 / 10 \times 1 / 4$	1.25
70	B	Shielded	$21 / 10 \times 11 / 10$	2.05
160	C	Shielded	$1 \times 11 / 16$	1.65
169	C	Shielded	$1 \times 1 / 4$	3.35
170	D	Shielded	$21 / 10 \times 11 / 10$	2.60

THREE-CONDUCTOR TYPE-SOLDER TERMINALS
Typical mating jack "Littel-Jax" No. 12 B . No. 190A hats two-piece handle with built-in cable clamp for ${ }^{1}{ }^{\prime \prime}$ cable

60	A	Black	$21 / 16 \times 11 / 10$	$\$ 1.70$
90	C	Shielded	$1 \times 1 / 10$	2.15
190	8	Shielded	$21 / 10 \times 1 / 10$	2.50
190 A	D	Shielded	$2^{1 / 16} \times 1 / 10$	3.10

"LUG-PLUG" PHONE PLUGS
Low cost, two-conductor phone plugs. Fit all 1, phone jacks.
All have solder lug terminals. Hande: Shielded metal or phenolic

Part No.	Fig.	Typical Mating Littel-Jax"	Handle	Length \& Dia.	U.S.A. List Price
350	A	11	Black	$11 / 2 \times 1 / 2$	$\$ 1.00$
355	A	11	Red	$11 / 2 \times 1 / 2$	1.00
380	-	11	Shielded	$1 \times 1 / 2$	1.25

"TINI-PLUG" MINIATURE PHONE PLUGS

Miniature 2-conductor phone plugs for use with "TINI-JAX" only ${ }^{1 / 3}$ the size of standard phone plugs. Handles $1^{5} s^{\prime \prime}$ overall length, are
plastic or brass, nickel plated.

Part No.	Fig.	Terminal	Handle	U.S.A.
740	E	Screw	Black	$\$ 1.15$
745	E	Screw	Red	1.15
750	E	Solder	Black	1.10
755	E	Solder	Red	1.10
770	E	Screw	Shielded	1.60
780	E	Solder	Shielded	1.55

"MICRO-PLUG"® SUB-MINIATURE PHONE PLUGS Sub-miniature 2 -conductor phone plags, only 164 long; $1 / 4$ O.D.. $.097^{\prime \prime}$ dia. sleeve. Mate with No. TR-2A. Have screw on handles in $764^{\prime \prime}$ dia. All 109

Part No.	Fig.	Description	U.S.A.
850	F	Black Hrice	
855	F	Red Handle	$\$ 1.05$
880	F	Natural Handle	1.05

MILITARY TYPE

"LITTEL-PLUG" AND "EXTENSION JAX"

Designed to meet exact industrial and military requirements. Plugs are made in accordance with MIL-P-642(A) specifications. One-piece tip rod and one-piece sleeve and plug body provide internal interlock to prevent parts shifting in position. Type 820 Extension Jack meets 470 has 470 has shielded handle; all others plastic: \dagger Red; \ddagger Black. All plugs
have screw terminals.

Part No.	Fig.	Mil-Type No.	Typical Mating Jack	Cond.	U.S.A List Price
420 \ddagger	G	PJ-0478	MT-388	2	\$2.20
$425+$	G	PJJ047R	MT-388	2	2.20
430	H	PJ-054B	820	2	1.95
$435+$	H	PJ-054R	820	2	1.95
440	-	PJ-055B	MT-331	2	1.95
445+	-	PJ-055R	MT-331	2	1.95
$450 \pm$	H	PJ.540B	820	2	1.95
470	-	PJ-055M	MT-331	2	2.65
480\%	1	PJ-068	MT-342B	3	4.55
4827	J	PJ-051R	MT-332B	3	5.05
483	J	PJ-051B	MT-332B	3	5.05
$484+$	J	PJ-309	M-444	3	4.55
820才	-	JJ-026	430 Plug	2	2.75

Switchoraft Part No. P-1074-1-Strain Relief Clamp. Nickel Plate
Brass. Package of 25........... List Price $\$ 1.05$
"FLAT-PLUG" PHONE PLUGS

${ }^{\prime}, "$ phone plugs featuring flat. space-saving handles. Ideal for applications where conventional plugs would protrude too far. Nos. 220, 225 have adapter clips which make them convenient to clamp standard phone tips to terminals. Shielded flat plugs. Nos. 228 and 238 have nickel plated steel handles: all others have red or black plastic handles. No. S-230 has a .206 " dia. sleeve

Part		Typical No.	Fig.	Mating Jack	Handle
220	K	11	Terminals	List Price	
225	K	11	Rlack	Screw	$\$ 1.75$
227	K	11	Red	Screw	1.75
228	K	11	Shiek	Solder	1.40
229	K	11	Red	Solder	1.60

THREE-CONDUCTOR TYPE

230	K	$12 B$	Slack	Screw	$\$ 2.15$
$\mathrm{~S}-230$	K	$\mathrm{~S}-12 \mathrm{~B}$	Black	Screw	2.70
235	K	$12 B$	Red	Screw	2.15
237	K	$12 B$	Black	Solder	2.10
238	L	$12 B$	Shielded	Solder	2.25
239	K	$12 B$	Red	Solder	2.10

SOUND POWERED TELEPHONE HANDSETS

The Stromberg-Carlson (USI Type) Sound Powered handset is a precision instrument. Molded parts have maximum resistance to breakage. Metal parts are non-corrosive materials wherever possible or are protected by plating, painting or chemical treatment. Alnico magnets in the receiver and transmitter units remain virtually constant and therefore do not limit the useful life of these telephones. All cables have a rubber sheath; all handsets are weatherproof.
Special handsets can be furnished with three or four conductor cables (regular or retractable) and with a single pole double throw switch for special uses.

	702019.003	702019-001	702003-315	702019.075	702019-575	$702019-675$	702019.845
Bureau Ships Approved		x	x				
Underwriters Laboratory Approved Class 1 Group D	x						
U. S. Coast Guard Approved				x			
Press to Operate Switch	x	x	x	x		x	
Extra Rugged	x	x	x	\times			
Interchangeable Units			x	\times	x	\times	x
Cable Length (feet)	$41 / 2$	41/2	6	$4^{1 / 2}$	4	4	4
Weight - less cord (ounces)	22	22	22	22	20	22	20
Handset Impedance* (ohms)	810	810	780	780	780	780	780
Receiver Impedance* (ohms)	1150	1150	1140	1140	1140	1140	1140
Transmitter Impedance* (ohms)	1690	1690	1400	1400	1400	1400	1400
Receiver d.c. Resistance (ohms)	60	60	60	60	60	60	60
Transmitter d.c. Resistance (ohms)	90	90	60	60	60	60	60

*Warble frequency test 500 to 2500 cycles per second

INSTALLATION

The speaker's voice supplies all necessary power - never connect batteries or external power sources to the talking circuit. Handsets should be connected in parallel. Polarity does not affect performance. Standard telephone wiring with two insulated conductors twisted into a pair is recommended to prevent externally induced noises. When $\# 19$ AWG wire is used and conditions are normal, satisfactory transmission for 30 miles or more is assured. On shorter lines, up to 10 handsets may be used. Separate equipment and wiring is required for ringing.
Installation of handset 702019-003 in hazardous locations (Class 1 Group D) should be made with wiring (except handset cable) enclosed in a grounded rigid metal conduit as specified by Underwriters Laboratories, Inc.

MAINTENANCE

All handsets are carefully inspected to insure continued dependable performance. Unless physically damaged, no maintenance should be required.
Each handset has spring contacts to permit rapid installation of Sound Powered units. Since the units require precision assembly and testing, it is recommended that they be returned to the factory for adjustment. If parts are required, see Replacement Parts List on reverse side.
\bullet

Piece	Part No.	Part Name	702019.003	702019.001	702003.315	702019.075	702019.575	702019.675	702019.845
1	702000.761	Capacitor, 15 MFD	\times	\times	x	x	\times	x	x
2	702020.050	Telephone Receiver Unit			\times	\times			
2	702020.052	Telephone Receiver Unit	\times	\times					
2	702020.064	Telephone Receiver Unit					x	x	\times
3	701000-237	Receiver Ear Cap			\times	x	\times	\times	\times
3	701005-535	Receiver Ear Cap	x	\times					
4	702002.884	Handset Switch	\times	\times					
4	702002.885	Handset Switch				\times			
4	702002.881	Handset Switch						\times	
4	702002.877	Handset Switch			x				
5	701000.244	Retaining Ring	x	\times	\times	\times			
5	701000.245	Retaining Ring					x	x	x
6	701007.298	Handle Shell Ass'y (incl. 1411.1 capacitor)					x		\times
6	701007.299	Handle Shell Ass'y (incl. 1411-1 capacitor)	\times	x	x	\times		x	
7	701000.221	Mouthpiece	\times						
8	702020.050	Telephone Transmitter Unit			x	\times			
8	702020.053	Telephone Transmitter Unit	x	x					
8	702020.064	Telephone Transmitter Unit					\times	\times	x
9	702000.774	Handset Cable ($4^{1 / 2} 2^{\prime}$ rubber covered)	\times	\times		x			
9	702005.753	Handset Cable (4' rubber cover w alligator clips)							\times
9	702003.478	Handset Cable (4^{\prime} rubber covered)					\times	\underline{x}	
9	702003.512	Handset Cable (1' rubber covered retracted coil)			x				

nemenowembene Stromberg-Carlson

Redracerna

Wecmareme

RETRACTILE COMMUNISATION COL COPDS

Retracted Lengths 2 \& 4 Feet - Extended Lengths 12 \& 25 Feet
DESCRIPTION: Multi-conductor communication cord manufactured with extra flexible \#23 AWG-21/36 tinned soft cadmium copper for maximum flex life. Insulated with rubber for communication circuits of maximum 120 working volts. The overall jacket is a specially compounded cured neoprene jacket giving long life to the retractile cord.
APPLICATION: Used in communication equipment, such as telephone car carriers, mobile radio equipment, ham operations, head sets, citizen band units and radio transmitter to receiver head sets, communication cords eliminate hazards and inconveniences caused by tangled straight cords.

2 ¢								
$680 / 2$	$680 / 4$	2	23	$21 / 36$	1	120	3/4'	. $215^{\prime \prime}$
601/2	681/4	3	23	21/36	1	120	$13 / 16^{\prime \prime}$.220'
682/2	682/4	4	23	2136	1	120	$15 / 16^{\prime \prime}$.250'
68312	683.4	5	23	$21 / 36$	1	120	$1-116^{\prime \prime}$.285 ${ }^{\prime \prime}$
684/2	6844	6	23	21/36	1	120	$1-18^{\prime \prime}$. $305^{\prime \prime}$
685/2	6354	7	23	21.36	1	120	$1.14^{\prime \prime}$. $320^{\prime \prime}$

COLOR CODE OF CONDUCTORS

1-Black	5-Blue
2-White	6-Yellow
3-Red	7-Brown
4-Green	

RETRACTILE CORMVUNBATION GORDS (Shalded) Retracted Longths 2 \& (4) Feet - Extended Lengths 12 \& 25 Foot DESCRIPTION: Same as above, except that shielded conators are individualiy shielded with a cadmium copper shield to eliminate externat electricat interterence. Shield can be pigtailed for direct soldering connections.
APPLICATION: Same applications as above, but where a shielded conductor is needed.

MINIATURE RETRACTILE COMMUNICAYIOHS CORDS

Retracted Length 2 Feet - Extended Length 10 Feet

DESCRIPTION: A small diameter plastic cord with stranded tinned copper conductors for maximum flexibility, insulated and jacketed with polyvinylchloride. Each cord is available in a 2 ft . retracted length with a 6 " straight lead on each end and extends to approximately 10 feet.
APPLICATION: For low voltage power and communication equipment where miniaturization is required due to space and weight limitations.

APPIn				-angom	Ar	0.	0.
651	2	28	19.40	0.5	100	$1 / 2^{\prime \prime}$.135 ${ }^{\prime \prime}$
652	4	28	19.40	0.5	100	$1 / 2^{\prime \prime}$. $150^{\prime \prime}$

For 3 conductor, use 4 conducfor with one lead unused

COLOR CODE	1-Black	2-White
OF CONDUCTORS	3-Green	4-Red

Series 100

 TYPE 185 EDGEWISE
PANEL METERS

Features: Completely shielded case. No special calibration required for panel material - Dust-tight cases - Stack mounting of meters is possible with all sides of meter case flush - Optional bezel and mounting bracket for $1-$, 2 -, or 3 -unit stack - Zero regulator provided in rear of case.

SPECIFICATIONS

Accuracy: D-c meters $- \pm 2 \%$ of full scale. A-c rectifier type $- \pm 3 \%$ (60 cycle sine wave at $25^{\circ} \mathrm{C}$).
ANSI Specification: All meters meet ANSI Specification C-39.1.
Overload: Voltmeter-20\% momentary and sustained. Ammeter-1000\% momentary, 20\% sustained.
Scale Data: 53 degrees rotation. Length $-1.785^{\prime \prime}$.
Insulation Level: 1800 V Rms Hi-pot.
Response Time and Damping: Meets ANSI Specification C-39.1. Response time: three seconds (max.) for microammeters; two seconds (max.) for all other d-c ratings; and 2.5 seconds (max.) for a-c ratings.

Damping: Maximum of 40% overshoot, minimum damping factor of 2.5. Mounting Dimensions: See Page 32.

Vertical Type 185 meter with Bezel

Type 1853 stack mounted. Type 1852 stack mounted.
NOTE: Mounting hardware is not included. See bottom of this page to order.

INSULATION LEVEL
Operating-600 volts
for 1000 voits rms terminals to cas MOUNTING POSITION
0 degrees from horizontal or vertical is standard. If other mounting angle is necessary, then angle must be specified and angle.

OPERATING ENVIRONMENT
emperature (standard) -4 F to +150 F Pressure-Atmospheric
Shock- 50 G's
Corrosive fumes, salt-spray. Refer to Explosion-proof (Standard)-No Maximum magnetic field without exter (Standard)-

Optional)-Refer to Company for recommendations to minimize errors
PRICES

APMICATIOA - Bulletin 830 pressure con\lceil are compact, reliable, and inexpensive ces designed to start and stop motors driving water pumps or air compressors used in domestic, commercial, and industrial service. They can be used to opercite small pump motors direct, or as pilot devices to opercte motor starters which control larger motors. For low pressure service, two ratings are available as listed in the table below. For high pressure service, only one rating is available. CONSTRUCTIOA - The Bulletin 830 pressure controls are equipped with a handy slip-on cover simplifying installation. The contact blocks are double pole having silver contacts with the terminal screws easily accessible for wiring and can be removed or replaced without offecting the setting. These controls ore supplied as standard with two conduit holes. All interior metal parts are zinc plated and chromated for corrosion protection. The enclosure is also treated to resist corrosion and in addition, has a primer coat, plus a glossy gray baked enamel finish.
PULSATIOR PLUG - When Bulletin 830 pressure controls are used on reciprocating pumps where pronounced surges are enptered, Catalog Number $830-\mathrm{N} 3$ pulsaplug should be used. Pulsation plug also helps to displace sediment deposits that might ffect the action of the control. It can be easily enoved or installed in the field with a $1 / 4^{\prime \prime}$ spintite wrench. List price is $\$ 0.20$ each. Sold only in standard package of 25 .
RELEASE VAUE - The Cotalog Number 830-C5234, designed for air compressor service, is equipped with a 2 -way release valve to exhoust air in the line between the compressor and the tank when the contacts open. Compressor motor can then be started unloaded.
$1 / 4^{\prime \prime}$ NIPRLE - Catalog Number 830-N2 Nipple is used to change the standard $1 / 4^{\prime \prime}$ internal pipe thread connection to a $1 / 4^{\prime \prime}$ external pipe thread. List price is $\$ 1.40$ each. Sold only in standard package of 25 .
NOTE - $1 / 4{ }^{\prime \prime}$ internal pipe thread is standard for the pressure connection. Other types and sizes of connections are available on quantity orders.
ORDERIHG INFORMATIOA - Specify the catolog number selected from price table.

The differential is equal to the cut-out pressure minus the cut-in pressure. Example: An $830 . \mathrm{A} 2200$ with a cut-out setting of 40 PSI can be adjusted to a minimum cut-in pressure of 20 PSI up to a maximum cut-in pressure of 25 PSI . The $830-\mathrm{A} 2200$ is factory set to cut-in at 20 PSI and cut-out at 40 PSI .
E Catalog Number $830-\mathrm{Nl}$ rubber grommets are available for the 830 -A2210 or 830 -A2200. List price is $\$ 0.20$ each. Sold only in standard package of 25 .
aproximate dhinesions atd shipping weights

Catalog Number	Dimensions in Inches						Conduit Information	Ship. in Lhs
	A	B	C	D	E	F	G	
$\begin{array}{r} 830-A_{2} 2210 \\ \text { A2200 } \end{array}$	115/6	3	3/8	21/2	21/32	233/32	//8" Dia. Hole	1
$\begin{array}{rr}830-\mathrm{B} 5210 & 830-\mathrm{C} 204 \\ \text { B5200 } & \text { C5200 }\end{array}$	2:\%2	43/2	418132	$31 / 2$	13/16	$31 / 8$	//8" Dia. Hole \& $11 / 8^{\prime \prime}$ Knockouts	2

Enclosure detached

KHZ

ENGINEERING DATA

Only slightly larger than a cubic inch, the KHP and KHS Series $A C$ and DC relays add a new dimension in reliability to electromagnetic switching. These miniature relays are specifically designed to meet the exacting requirements of data processing, computer, process control and other applications.

The KHP Series is offered with nylon dust enclosures in either natural or in various colors. The KHS Series is furnished in hermetically sealed metal cases. KHS frame should not be grounded without consulting factory for load levels. KHC relays are identical with KHP relays except for having printed circuit terminals.
The KHU. one of the smallest 4 -pole relays recognized under the Component Program of Underwriters' Laboratories, Inc. and Canadian Standards Association, is a companion design to the KHP Series. The contacts are rated $1 / 10 \mathrm{HP}, 3 \mathrm{amps}$. $120 \mathrm{~V} \mathrm{AC} ; 3 \mathrm{amps}$. 28 V DC. resistive. Several design variations applied to the KHU result in relays having different designators. These are:

KHX UL recognized for opposite polarity ratings.
KHE Same UL recognition as the KHX Series but with printed circuit terminals.
KHF Same UL recognition as KHU Series but with printed circuit terminals.

For quick selection of features available for KH Series relays, please refer to the Ordering Guide.

Spacings provided for KHU Series relays are $1 / 16^{\prime \prime}$ through air and over the surface of insulating material and are maintained between an uninsulated live part and an uninsulated live part of opposite polarity and the grounded frame.

GENERAL:

Insulation: Molded high-dielectric material.
Initial Breakdown Voltage: 500 volts rms 60 Hz .
Temperature Range: $-45^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.
Time Values: Please see chart of Time Values for Standard Relays
Approximate Weight: 1.6 ozs.
Terminals: See Ordering Information.
Mountings: $=3-48$ stud, sockets with printed circuit or solder terminals, or bracket plate with \#6-32 threaded stud.
Enclosures: Please see Ordering Information. Cover colors are available in black, red, blue, yellow, and green by special order.

CONTACTS:

Arrangements: 2 Form C (DPDT), 4 Form C (4PDT) or 2 Form Z (DPDT-DB).
Material: Gold-flashed silver is standard. Silver cadmium-oxide. gold-alloy and palladium contact materials are available.

GENERAL PURPOSE 3 AMP MULTICONTACT AC or DC SMALL RELAY

U/L File E22575

CSA File LR 15734
Rating: Standard Contact Material: Gold-flashed silver. Rated 3 amps at 30 V DC or 120 V AC , resistive.
Also Available: Silver-cadmium oxide, rated 3 amps at 30 V DC or $120 \mathrm{~V} A C$ inductive. Used for weld resistant and nonsticking characteristics. Palladium, rated 3 amps at 30 V DC or 120 V AC. Gold Alloy, for low level applications up to 1.0 amps at 30 V DC or 120 V AC, resistive. Bifurcated contacts, rated 1 amp at 30 V DC or 120 V AC , resistive.
Expected Life: Electrical: 100,000 operations min. @ rated load. Ratings are based on tests of relays with ungrounded frames.

COILS: (See Coil Data Chart.)

Voltages: to 120 volts, $A C, 50,60 \mathrm{~Hz}$.
to 120 volts, DC.
Power@ $25^{\circ} \mathrm{C}$: $\mathrm{AC}: 1.20$ volt-amperes nominal; .550 voltamperes minimum.
$D C: 0.5$ watt minimum operate; 0.9 watt nominal; 2.0 watts maximum.
Pick-up@ $25^{\circ} \mathrm{C}$: AC: 85% of nominal voltage.
DC: 75% of nominal voltage.
Duty: Continuous.

COIL DATA FOR KM SERIES

DC COILS			AC COILS	
Nominal Voltage	Resistance in Ohms $25^{\circ}{ }^{\circ} \mathbf{C}$	Nominal Inductance in Henry	Resistance in Ohms 15%	Nominal AC Current in mA
6	40	.08	10.5	200
12	160	.28	43	100
24	650	1.0	160	52
48	2,600	4.5	668	25
90	9,000	13.5	-	-
110	11,000	17.0	-	-
120	11,000	-	3,900	11.0

NOTE: For 220 and 240 V AC or DC, use series dropping 5 W resistor.

TIME VALUES FOR STANDARD DC RELAYS*

*Does not include bounce times.

Nominal Voltage $@+25^{\circ} \mathrm{C}$	Time Values
Pick-up time	13 milliseconds
Drop-out time	6 milliseconds

OK if rating some as KUP series.

ENGINEERING DATA

KUP Series relays have been engineered for reliability, ease of installation and an excellent cost-to-quality relationship. KUP Series fit several types of custom nylon sockets, making the series convenient plug-in relays.

Standard relays are furnished with . 187" terminals.
Clear polycarbonate dust covers are used on the KUP Series relays. It is plain, for use when the relay is mounted in a socket. A hold-down spring can be furnished for socket-mounted KUP Series (not applicable to screw terminal sockets).

Reliability and long life of the KUP Series are enhanced by long contact arms and a unique method of staking the stationary contacts, as well as barriers molded into the front. All are rated 10 amperes.

KUP Series relays are recognized under the Component Program of Underwriters' Laboratories, Inc., File No. E22575 and Canadian Standards Association, File No. 15734. Only standard KUP relays are included. Any electrical or mechanical deviations from standard relays are subject to re-examination by U/L and CSA.

SPECIFICATIONS
CONTACTS:
Arrangements: Please see chart, Page 3.
Material: Silver-cadmium-oxide is standard.

COILS
Voltage: Please see chart, Page 3
Power: DC: 1.2 watts, $A C$: 3 poles 2.7 VA
Resistance: Please see chart, Page 3
Duty: Continuous
Treatment: Centrifugally impregnated with high quality electrical varnish.
TECHNICAL DATA
CONSOLIDATED ELECTRIC COMPANY

DRAWN	DESIGN
	DGL

1 PAGE PAGE OFE 3
D DRAWING NO

GENERAL:

Description: Versatile, low cost 10 amperes general purpose relays.
Insulating Materials: Molded phenolic.
Initial Insulation Resistance: 100 megohms minimum.
Expected Life: Mechanical: 10 million operations.
Electrical: 100,000 operations min. @ rated load.
Initial Breakdown Voltage: 1500 volts rms 60 Hz between all elements. 500 volts rms 60 Hz between open contacts.
Temperature Range: KUP enclosed: AC:

$$
3 \text { poles }-45^{\circ} \mathrm{C} \text { to } 45^{\circ} \mathrm{C}
$$

DC: $-45^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Time Values: (approx.): Operate: 15 milliseconds
Release: 10 milliseconds
Weight: KUP enclosed relay 3.0 ozs.
Operate: AC: 85% of nominal voltage @ $25^{\circ} \mathrm{C}$.
DC: 75% of nominal voltage @ $25^{\circ} \mathrm{C}$
Enclosure: Heat and shock resistant, clear plastic polycarbonate. Terminals: . 187" standard.

CLASS D10 DISCONNECT SWITCHES*
600V-Without Service Entrance Rating

Switch	Max. Horse Power Rating \dagger				Cat. No.	List Price
Rating	120 V	$\begin{aligned} & 200- \\ & 240 \mathrm{~V} \end{aligned}$	480 V	600 V		
30	5	10	20	25	D10S1	\$ 35.60
60	10	20	40	50	D10S2	38.60
100	15	30	60	75	D10S3	60.00
200	25	50	100	100	D10S4	114.00
600 V - With Service Entrance Rating						
Switch	Max. Horse Power Ratingt					$\begin{aligned} & \text { List } \\ & \text { Price } \end{aligned}$
Rating Amperes	120 V	$\begin{aligned} & 200- \\ & 240 \mathrm{~V} \end{aligned}$	480 V	600 V	Cat. No.	
$\begin{aligned} & 30 \\ & 60 \end{aligned}$	$\begin{array}{r} 5 \\ 10 \end{array}$	$\begin{aligned} & 10 \\ & 20 \end{aligned}$	$\begin{aligned} & 20 \\ & 40 \end{aligned}$	$\begin{aligned} & 25 \\ & 50 \end{aligned}$	$\begin{aligned} & \text { D10S1H } \\ & \text { D10S2H } \end{aligned}$	$\begin{array}{r} \$ 42.70 \\ 46.30 \end{array}$
$\begin{aligned} & 100 \\ & 200 \end{aligned}$	$\begin{aligned} & 15 \\ & 25 \end{aligned}$	$\begin{aligned} & 30 \\ & 60 \end{aligned}$	$\begin{array}{r} 60 \\ 100 \end{array}$	$\begin{array}{r} 75 \\ 100 \end{array}$	$\begin{aligned} & \text { D10S3H } \\ & \text { D10S4H } \end{aligned}$	$\begin{array}{r} 72.00 \\ 137.00 \end{array}$

*Fuse clips not included.
\dagger Non-fused rating. With fuses, rating depends on fuse size.

High $I^{2} \mathrm{~T}$ rating: The I-T-E switch meets automotive and heavy industry requirements. (See Interrupting and Withstandability Ratings on reverse side.)
Longer contact life: Quick-make, quick-break, cam-trip and spring-loaded action throws the switch into ON position under pressure-provides a quick-break when switching to OFF position. The double-break contact principle also assures longer contact life and exceptional interrupting capacity.
Visible contact indication: Clear ON or OFF markings plus actual contact positions are both visible through pole "windows."
Fuse-mounting flexibility: Fuse clips are mounted on top of the switch, providing a compact unit. Interchangeable fuse-clip kits are available for quick adaptation to other ratings.
Dead-front construction: When the switch is in the OFF position, all visible current-carrying parts are deenergized, thus providing additional safety for maintenance electricians.
Auxiliary interlocks: One-or-two-pole interlocks can be added to the disconnect when required.

CLASS D12 FUSE CLIP KITS

D10 Switch Size	Fuse-Clip Rating		Cat. No.	List Price
	Amperes	AC Volts		
	No Fuse		D12C01	\$ 1.00
	0-30	250	D12C21	2.00
	0-30	600	D12C62	3.00
	0-30	J Fuse	D12CJ1	6.00
30 A	31-60	250	D12C22	3.00
	31.60	600	D12C62	6.00
	$31-60$	J Fuse	D12CJ2	7.00
	61-100	250	D12C23	8.00
60 A	No Fuse		D12D02	3.00
	0.30	600	D12D61	3.00
	31-60	250	D12D22	3.00
	31-60	600	D12D62	5.00
	$31-60$	J Fuse	D12DJ2	7.00
	61.100		D12D23 ${ }^{\text {D12D63. }}$	8.00 14.00
	$\begin{aligned} & 61-100 \\ & 61-100 \end{aligned}$	600 J Fuse	$\begin{aligned} & \text { D12DG3 } \\ & \text { D12DJ3 } \end{aligned}$	13.00
100A	No Fuse		D12E03	5.00
	31-60	600	D12E62	6.00
	61-100	250	D12E23	10.00
	61-100	600	D12F63	11.00
	61-100	J Fuse	D12EJ3	14.00
	101-200	250	D12F24	13.00
	101-200	600	D12F64	15.00
	101-200	J Fuse	D12FJ4	17.00
	201-400	250	D12F25*	23.00
	201-400	J Fuse	D12FJ5*	28.00
200A	No Fuse		D12F04	10.00
	61-100	600	D12F63	11.00
	101-200	250	D12F24	13.00
	101-200	600	D12F64	15.00
	101-200	J Fuse	D12FJ4	17.00
	201-400	250	D12F25	23.00
	201-400	600	D12F65*	36.00
	201.400	J Fuse	D12FJ5*	28.00

- Cannot be used with service entrance rated switch.

DISCOUNT SCHEDULE T

MC SWITCH INTERRUPTING AND WITHSTANDABILITY RATINGS

Switch Rating Amperes	Interrupting Rating Amperes Symmetrical 600V AC, 3 Phase	Withstandability 12T (amperes2 seconds)
30	1,200	$.38 \times 10^{6}$
60	1,800	1.28×10^{6}
100	2,000	2.62×10^{6}
200	3,600	5.25×10^{6}

NOTE: These switches are for motor circuit applications.

VARIABLE DEPTH HANDLE KIT

LUG DATA

Switch Rating	Number Per Pole	Wire Range	Wire Type
30		$\# 14-\# 8$	Cu
60	1	$\# 14-\# 4$	Cu
100		$\# 14-\# 1 / 0$	$\mathrm{Al}-\mathrm{Cu}$
200		$\# 6-250 \mathrm{MCM}$	$\mathrm{Al}-\mathrm{Cu}$

DIMENSIONS

SWITCH DIMENSIONS IN INCHES

Switch Sizo	A	B	C	D	E	F	G	H	1	J	K*	L*
		$4.15 / 32$	$5.7 / 8$	3.15/32	6	3-15/32	1.718	13/32 ${ }^{\text {a }}$	5.7/16	3.1/4	4-3/32	4.11/32
	6	4.15/32	5.7/8	3.15/32.	6	3-15/32	$1.7 / 8$	$13 / 32$	7/16	3.1/4	11/32	4 11/32
100	$9.27 / 32$	5.11/32	8.3/16	4.5/8	5.13/16	3-13/16	2.11/16	51/64	7.5/16	4.3/16	5.1/64	4.27/32
200	12.3/16	7.7/32	8.3/16	$45 / 8$	5.13/16	3-13/16	2.11/16	51/64	75/16	4.3/16	$5 \cdot 23 / 32$	4.27/32

- Max. Depth with largest fuse.
-*Depth including insulating barrier on service entrance switches.
HANDLE INSTALLATION DATA

SWITCH DIMENSIONAL SKETCH

\bullet

ceion pak

ACIION PAK 2100 SEIRIES
DC-INPUT, DC-OUTPUT
SINGLE-MODE PROCESS CONIROL
MODULES

DESCRIPTION .

The ACIION PAK 2100 Series Process Control Modules accept a DC process-variable input, and provide a DC process-controll output with proportional action (single mode) as needed to maintain the process at setpoint. Proportional action provides output increases and decreases inversely proportional to: input errors.

ADJUSTMENT PROCEDURE

1. Initially set GAIN control fully counterclockwise, plug module into the system, and set the SETPOINT as desjred.
2. When the system comes up to setpoint, increase GAIN clockwise until system oscillations just begin, and then back off until the oscillations just stop.

PROGRAM INPUT (AP2103/8) \qquad -

SPECTFICATIONS

INPUT IIPPEDANCE
DC Voltage In: 10 k ohms per volt in.
DC Current In: $200-400 \mathrm{mV}$ shunt, typical. PROPORTIONAL BAND I-IO\% or span, adjustable. (Consult factory for other adjustment ranges.)
OUTPUT JSRIVE
DC Current out-drives up
to 5000 hm load. (250 ohm SETPOINT POTENTTONTTER 10-50mA output)DC Voltage VALUE (Kemote rotent.) out-max. current 10 mA . LK oñ. (LD100 Linear,

REGULATION

Recuiatea $10 r$ line variations of $\pm 10 \%$.

ZERO AND SPAIT ACCURACY
Witinin l\% of span (Iac.-tory-set). (Each adjustable over 15% of span, typical.)

SCAIF GRADUATTON

(Top-liounved and Remote line (240VAC available) Potentiometer) 0-100\%. (Consult factory for other scales.)

IK onn. (LD100 Linear,
Dial and DDl000 10-turn Digital Dial access. POWER DEMAND available.)

DC--PROGRAITI D SETPOIIT
o-lv or u-lov upon request (AP4800 Series compatible.)

AC IINE CONPATIBIIITTY Direct IROVAC,50-400iz

GROUND
. T-wire floating power, using ground for electrostatic shield be- tween primary and secondary. 51 maximuin.

ADJUSTMENT PROCEDURE
Initially set GAIN control fully counterclockwise, plug module into the system, and set the SETPOINT as desired.
2. When the system comes up to setpoint, increase GAIN clockwise until system. oscillation just begins, and then back off to just stop the oscillations.

BLOCK AND WIRING DIAGRAM
AP 2100 SERIES
DC-INPUT, DC-OUTPUT,

- SNELEE-MODE PROCESS COATTBOL MODULES

STINTED IN U.S.A.

DESCREPTIOA

The ACTION PAS 3200 Posfition-Preportioning, ValveControl hodule accepts a de volisege or current proportionel-conerol aignal (ainglemode, 2-wode. or 3-mode) for comiate poaitioa-proporeioning control of motorimed valves.

The AP3200 Moduls's output drivea the vaiva-positioning wotor until a posiclou-feedback slidewire on the velve retusas algasi that misches the control efgnal. The sodula usex ralay contacts for witching power to the valva motor's forsurd and reverse colla; power is awitched off completely when the position feedback matcies the control laput. The seduls supplies the excitation for tho feedbeck elicowlre.

Zero, apan, and deadband (differential) callbrations ere all scravdriver adjustable and eccess1ble through the top of the rodula. Ine power and ground are completaly isolated from tha Ap 3200 Module's other circuite; thie eliowe control of eny valvenotor supply lina tbst requires isoletion from lina power and ground.

ADJUSTMENT PROCEDURE

1. Apply a mid-range concroi laput, and allow vaiva position to meablilse; adjust DIPY clockulse to induce valve oscillation, them back off to fust atop oscill ation.
2. Apply a valve fully-cioned control laput, and allow valve posicion to gtebilize:

 adjust SPAN to etabilise vaive position at fuliyoopened.

SPRCEIICATTOAS

HTUT IRSDAMC

Voltege Inputs: 10sohas per volt
Curreat laputs: 500 mb drop.
OUTPU ACCURACS
Withia 1\% of span.
QUTPUT RELAX COMTACTS
Reted 5a at 120 V ac, 28 V dc.

AD HETMETLRAR EEMO: を15\% of epsn. §RAY: t $_{15 \%}$ of span. DEFE: 1-25 of span.

ACNMR MOGUATIOA

Ragulared for variations of up to 10%.
 59\% mosimsa.

ction palk

BLOCK ARD HLRING DTACRAM

MARRANTY

All Action Instruments products have 3 yeara unconditional warresty，except for gross physical damage oz zisuge．

PRUTEED IR USA．

INPUT
Voltage: $\quad 0.5$ Volts $D C$ into 700 K ohms 1.5 Volts DC into 1.33 megohms 0.10 Volts DC into 375 K ohms
-10 to 0 to +10 Volts DC into 300 K ohms
Current: 4-20MA DC into 250 ohms. 10-50 MA DC into 100 ohms.

NUMBER OF PENS
1, 2, or 3 pen (Red, blue, and green respectively).
TYPE OF OPERATION
Null balance Servo system.
ACCURACY
$\pm 0.5 \%$ of full scale or better.
DEADBAND
0.3 \% of full scale or better.

SENSITIVITY
0.15% of full scale or better.
ZERO ADJUSTMENT
Variable $\pm 10 \%$.
SPAN ADJUSTMENT
Variable $\pm 10 \%$.
RESPONSE TIME
Less than 3 second full scale-standard.
Less than 10 second full scale-optional.
LAIIVE HUMIDITY
10 to $90 \% \mathrm{RH}$; $\left(40-100^{\circ} \mathrm{F}\right)$ storage 5 to $95 \% \mathrm{RH}$.
10 to 50% RH. $\left(40-120^{\circ} \mathrm{F}\right)$
AMBIENT TEMPERATURE
40 to $120^{\circ} \mathrm{F}$.
Storage temperature
-40 to $+165^{\circ} \mathrm{F}$.
CHART DRIVE
Synchronous Motor 24 Volt AC $50 / 60 \mathrm{~Hz}$.
Standard: 1, 2, 4 inches $/$ hour and $1,2,4 \mathrm{in} . / \mathrm{min}$.
Optional: 2 speed chart drive (60 to 1 Ratio) on-off switch.
Chart Tear-off Standard.
Chart drive on-off switch-optional.
2 speed chart drive-60 to 1 ratio-optional.

CHARTS

$4^{\prime \prime}$ Strip chart (see Y1980).
SCALE
0-100 Standard
Optional (See Y1990).
PENS
Cartridge type with pen lifters.
POWER REQUIRED
24 Volt AC $50 / 60 \mathrm{~Hz}$. 3 watts (chart drive)
24.5 Volt DC; 120 ma or 3 watts per pen.

POWER VARIATION

24-28 Volt DC at rated specifications
22-28 Volt DC extreme.

POWER SUPPLY EFFECT

0.1% per volt variation.
WEIGHT
10 pounds.
SIZE
$4.4^{\prime \prime}$ wide $\times 8^{\prime \prime}$ high $\times 16^{\prime \prime}$ deep.
MOUNTING
0 to 30° from horizontal.

ALARMS

Optional: Single or dual for each pen, electronic type.
Repeatability: 1%.
Range Adjustability: $-.5 \%$ to $+100.5 \%$.
Contact Rating: 30 volts $A C$ or DC (a) 1 amp .
Input Impedance: $>500 \mathrm{~K}$ ohms.
Relay Action: Normally energized-fail safe standard.
Deadband: $\pm 1 \%$ of full scale.
Power Required: 24.5 Volts DC at 55MA DC for single alarm 96MA DC for dual alarm. Rated 24-28 Volts DC.

Ambient Temperature: $0-150^{\circ} \mathrm{F}$.
Temperature Effect: $\pm .02 \% /{ }^{\circ} \mathrm{F}$.
Response Time: 200 millisecond.
Power Supply Effect: 0.1% per volt of change.

MAKE-UP OF INSTRUMENT MODEL NUMBER

AEET

Bristol Division
BRISTOL ROAD, WATERBURY, CONNECTICUT 06720 • (203) 756-4451
AMERICAN CHAIN \& CABLE COMPANY, INC.

FEATURES

- Compact design.
- Design flexibility.
- Simple installation.
- Stackable mounting
- Space saving.

DESCRIPTION

The Metatronic 2000 Housings are designed to physically support and to furnish the customer terminal section of the system for either panel mounted or relay rack mounted units. All of the Metatronic 2000 controllers, stations, recorders, indication and function modules can be mounted in these housings. These housings are available in one, two, and eight bay versions for general purpose applications. The compact design allows up to eight instruments in one $19^{\prime \prime}$ relay rack with only 16 inches overall depth. This makes panel space saving standard and makes panel design completely flexible. The one and two bay units are also available in side by side stackable models for custom panel installation.

MODEL NUMBERS

2700-10A-11

Single unit housing is used for any Metatronic 2000 controller, station, indicator, and function modules and is complete with mounting hardware.

2700-10A-12

Dual unit housing is used for a recorder or two controllers, stations, indicators, or function modules. This is complete with mounting hardware.
2700-10A-18
Eight unit housing is used for up to eight controllers, stations, indicators, and function modules, or four recorders

2700-20A

This series of housings are one and two bay units which can be side by side stacked for custom panel configurations.

- Trademark of American Chain \& Cable Co., Inc.

OVERALL DIMENSIONS

SPECMFICATIONS

DEPTH

16 inches from front of panel.
height
Face 7" (including side trim).
WIDTH
Face (including side trim).

1. One bay case-3 $11 / 16^{\prime \prime}$
2. Two bay case-5 7/8"
3. Eight bay case-19"
4. Stackable housings $-11 / 2^{\prime \prime}+\left(23 / 16^{\prime \prime} \times \#\right.$ of bays $)$.

WEIGHT

One bay case-5 pounds.
Two bay case-6 pounds.
Eight bay case- 16 pounds.

PANEL CUTOUT DIMENSIONS

1. Height- $6^{\prime \prime}$, $+1 / 16^{\prime \prime}-0$
2. Width
A. One bay case-2 15/32" $\pm 1 / 32^{\prime \prime}$
B. Two bay case-4 21/32" $\pm 1 / 32^{\prime \prime}$
C. Eight bay case-17 25/32" $\pm 1 / 32^{\prime \prime}$
D. Stackable housings $-9 / 32^{\prime \prime}+\left(23 / 16^{\prime \prime} \mathrm{N}\right) \pm 1 / 32^{\prime \prime}$
($\mathrm{N}=$ = number of bays)

VERTICAL CENTER TO CENTER SPACING

1. Relay rack-standard 7" spacing.
2. Panel-minimum of $\mathbf{8}^{\prime \prime}$.

MOUNTING

1. Front of panel.
2. Rear of panel.

MAKE-UP OF INSTRUMENT MODEL NUMBER

CONSOLIDATED ELECTRIC CO.

RIVERVIEW INDUSTRIAL PARK
141 SOUTH LAFAYETTE FREEWAY (HWY. 56)
ST. PAUL, MINNESOTA 55107

March 16, 1976

Peabody Southeast
P.0. Box 7248

Jacksonville, N.C. 28540
ATTENTION: Mr. Frank Wright Project Engineer

SUBJECT: Jacksonville, N.C., Utilities Expansion, our S.0. 15726

Gentlemen:
Enclosed are nine (9) sets of revised submittal drawings in accordance with your Mr. R.D. Foster's letter of 11-25-75, my letter of 1-6-76, and three page notes of meeting at J.K. Timmons and Associates on 1-8-76.

You will note that we have added Item AA to our Shop Order 15726. This is a control panel for the two Decant Pumps and their associated threeway discharge valves. This item was apparently overlooked in the orgina submittal. Please note that this control system was grouped with two others in the specifications, paragraph 15J.5.9, as automatic bubbler systems. However, since a day or so is normally required to allow the particles to settle out in the decant basin, we feel it is best to use a manual control here, with a Model 9G Float Switch for low-level cutout. A manual override of the low level cutout is also provided for pumping out the sludge. A selector switch is furnished for each valve with "surge basin" and "sludge line" valve position lights. A high level alarm is also provided, as are high temperature lockouts for each pump.

We have added descriptive sheets on the various items of instrumentation used and referenced model numbers on the wiring diagrams and parts 1 is ts. On the sewage filter console, the pneumatic instrumentation is changed to electronic since the use of electric valve actuators eliminated the need for air compressors.

The remaining changes in this submittal are as outlined in my letter of 1-6-76. Please return an approved set of drawings as soon as possible, so that we can proceed with manufacture.

Very truly yours,
 more

Thomas W. Moore
TWM: bd
cc: McMahan Co. (1)
Enclosure

METATRMMI: 2000

 25 WATT POWER SUPPLY
FEATURES:

- State of the Art Electronics
- Compact Size
- Overvoltage Protection
- Short Circuit Protection
- 120 Volts A-C Operation

DESCRIPTION:

The 25 Watt Power Supply is compatible with all METATRONIC 2000 controllers, stations, recorders, indicators, and transmitters. This unit is designed to furnish power for individual control loops and small systems. It operates on A-C line voltage and has two output voltages. One voltage output is 24 V. A.C for recorder chart drives, and the second voltage is 24.5 V . D-C for the METATRONIC 2000 instruments.

This unit is protected by a resettable circuit breaker and output protection for both short circuit and overvoltage operation. The short circuit protection is a current foldback circuit, and the overvoltage protection is a diode type. The power supply uses the latest state of the art electronics and features compact size for small system operation. It is designed to be mounted on any of the standard METATRONIC housings, remote-mounted separately, or in the weatherproof housing.

OPERATION

As shown in the block diagram, the A-C line is fed into a stepdown transformer. The stepdown transformer has one secondary for 30 volts A-C and with a tap for 24 volt A-C also. The 24 volt A-C is used for the recorder chart drives. The 30 volt A-C has been rectified and filtered and is applied as pasitive D-C voltage to the control unit. The comparator samples the output voltage and compares it to the reference. The difference between these two voltages determines the degree of conduction from the control unit.

BLOCK DIAGRAM

A current foldback circuit is used to protect the D-C regulator from destruction by intermittent or continuous shorting of the output terminals. The regulator is also protected by diodes from destruction by voltage transients applied to the output terminals. The limit of this protection is +100 volts and -100 volts at 3 amps maximum current.

MODEL NUMBER-2007-40B

-
-

TABLE I-Available Power

24V. A-C Chart Drive	24.5 V. D-C Power (Watts)	24.5 V. D-C Current (MA)
0	19.6	800
1	17.2	700
2	15.9	650
3	13.5	550
4	12.3	500

Input Voltage:
Normal 107-127 V. A.C Single Phase
Extreme 102-132 V. A.C Single Phase
Input Frequency: $48-62 \mathrm{~Hz}$.

Power Requirement (Input) 41 Watts@ 120 V. A-C Full Load
Output Voltage:
D-C Voltage-Adjustable to 24.5 V. D-C ± 0.1 V. D.C.
A-C Voltage -24 V. RMS Nominal
Maximum Output Current:

(at 107V. A-C min.)		(at $102 \mathrm{~V} . \mathrm{A}-\mathrm{C}$ min.)
D-C ma.	$500-800$	$350-600$
A-C ma.	$600-0$	$600-0$

Output Load Capability (See Table I)
Output Ripple-(24.5 V. D-C) 25 millivolts P-P (Max.)
Regulation: (Including Temperature \& Humidity)
Normal Input Voltage (107-127 V. A-C)
+24.5 V . D-C $\pm 0.5 \mathrm{~V}$. D-C@ 0 to 800 MA
$24 \mathrm{~V} . \mathrm{A}-\mathrm{C}+4 \mathrm{~V} . \mathrm{A}-\mathrm{C}$ and -3.5 V . A-C @ 150 to 600 MA
Extreme Input Voltage (102-132 V. A-C)
+24.5 V . D-C $\pm 0.5 \mathrm{~V}$. D-C @ 0 to 600 MA 24 V.A-C+5V. and - 4 V . A-C@ 150 to 600 MA
Ambient Temperature:
Operating $-0^{\circ} \mathrm{F}$ to $150^{\circ} \mathrm{F}$.
Storage $-20^{\circ} \mathrm{F}$ to $+185^{\circ} \mathrm{F}$.

Humidity:

10% to 90% RH $\left(40\right.$ to $\left.100^{\circ} \mathrm{F}\right)$
10% to $50 \% \mathrm{RH}\left(0\right.$ to $150^{\circ} \mathrm{F}$)

Cooling:

Natural Convection

Isolation:

All output terminals are isolated from the grounded case.
Terminals: (Screw Type)
Input- $L_{1} \& L_{2}$ and Chassis Ground
Output -+24.5 V. D.C, Signal \& Power Return, 2 Terminals 24 V . A-C.

Line Protection:

Circuit Breaker-Resettable

Output Protection:

D-C Voltage-Short Circuit Protection (current foldback overload protection)
Applied external voltage transients protected to +100 V . (with blocking diodes). Negative voltages clamped to
-1V.@3 amps. (normally reverse biased diode).
A-C Voltage-Resettable Circuit Breaker

Dimensions:

$5^{15} / 16^{\prime \prime}$ High $\times 21 / 2^{\prime \prime}$ Wide $\times 5^{\prime \prime}$ Deep

Weight:

2.5 pounds

Mounting:

1. Wall mounted
2. Side mounted on rear of Metatronic Housing
3. Weatherproof Case

METATROMIE* 2000

50-WATT POWER SUPPLY

FEATURES

- State of the Art Electronics
 - Either 115 VAC or 230VAC operation.
 - Battery Back-up.
 - Overvoltage Protection-Optional.
 - 60 or 50 Hz Design
 - Input \& output fuse protected

DESCRIPTION

The METATRONIC 2000 Power Supply Pack is a small, 50 watt power supply for 8 instruments. The unit is designed to supply both DC and AC power to the METATRONIC 2000 controllers, stations, recorders, transmitters, and indicators. The two outputs and the input are in. dividually fused for line protection. The unit has battery backup circuits built in; terminals are furnished for battery connections. This power supply operates from line voltage.

The power supply is available in two models: The 2007-10B is standard designed for an electrical classification of General Purpose; the 2007. 20 B is the same as 2007-10B, except the 20 B has crowbar type overvoltage protection. Both units have a light to indicate DC power output.

OPERATION

As shown in the diagram below, the $A C$ line is fed into a stepdown transformer. The transformer has two secondaries, one 24 Volt $A C$ and the other af 30 Volt AC. The $24 \mathrm{Volt} A C$ is used for the recorder chart drives. The 30 Volt AC is rectified and filtered and is applied as a positive DC Voltage to the control unit. The comparator samples the output voltage and compares it to the reference. The difference between these two voltages determines the degree of conduction of the control unit.

If the power supply voltage drops below $24 \mathrm{Volt} D C$, the battery back-up circuit will allow current to flow to the load, if a battery is connected to the proper terminals. On the 2007-20B models, if the output voltage attempts to exceed 30 Volt DC, a Zener diode will break down and apply o voltage to the gate of the thyristor. The thyristor will fire and short the output of the power supply and blow the primary fuse. Thus the load will not be damaged.

TERMINAL CONNECTIONS

(c)
(A)
(B)
(C)
(C)
(L)

[^4]
50-WATT POWER SUPPLY

INPUT
Voltage: 120 volts AC or 240 volts AC.
Voltage Range: 107 to 127 volts, or 214 to 254 volts AC.
Frequency: 60 or 50 Hz .
Frequency Range: 48 to 62 Hz .
POWER REQUIREMENT
90 watts maximum at full load.
OUTPUT
DC Votage: 24.5 volt ± 0.1 volts at $1.0 \mathrm{amp} D C$.
AC Voltage: 24 volts ± 2 volts $A C, 60 \mathrm{~Hz}$.
Maximum Load Current: 2 amps DC.
.5 amps AC.
Total Power ($A C+D C$): 50 watts maximum.
Ripple Voltage: 60 mv PP maximum.
Regulation: 24.5 volts $D C \pm 0.5$ volts.
24 volts $A C \pm 1.5$ volts.

AMBIENT TEMPERATURE

Operating $+40^{\circ} \mathrm{F}$ to $120^{\circ} \mathrm{F}$.
Storage $-40^{\circ} \mathrm{F}$ to $+160^{\circ} \mathrm{F}$.
HUMIDITY
10 to 90% RH. $\left(40-100^{\circ} \mathrm{F}\right)$
10 to $50 \% \mathrm{RH}$. $\left(40-120^{\circ} \mathrm{F}\right)$
COOLING
Natural convection.

ISOLATION

The output terminals are isolated from the grounded case.

INDICATOR

24.5 volt DC output light.

FUSES
AC line- $1.5 \mathrm{cmp}, 3 \mathrm{AG}$
24 volts $A C-3 / 4$ AMP, 3AG
24.5 volts DC-2.0 AMP, 3AG

MOUNTING

Wall or panel.
WEIGHT
10 pounds.
DIMENSIONS
$6.5^{\prime \prime}$ high $\times 10^{\prime \prime}$ wide $\times 6^{\prime \prime}$ deep.
ELECTRICAL CLASSIFICATION
General purpose.

OVER-VOLTAGE PROTECTION

Optional.

MAKE-UP OF INSTRUMENT MODEL NUMBER

TYPE
General Purpose
50 watts + G.P.
w/overvoltage protection W/overvoltage P.
150 watts + G.P.
w/overvoltage protection

OVERALL DIMENSIONS

Bristol Division

Buffered Amplifier: 1.5 volts into 1 megohm. 4.20 ma into 250 ohms. 10.50 mo into 100 ohms.

SCALE LENGTH

2.875"

ACCURACY
Buffered Amplifier Input: less than $\pm 1.35 \%$.
REPEATABILITY
$\pm 1 \%$
AMBIENT TEMPERATURE
$40-120^{\circ} \mathrm{F}$.

STORAGE TEMPERATURE
40 to $-165^{\circ} \mathrm{F}$.
RESPONSE TIME
2 sec .
TEMPERATURE EFFECT
$03 \%^{\circ} \mathrm{F}$.
RELATIVE HUMIDITY
10 to 90° (RH. $\left(40 \cdot 100^{\circ} \mathrm{F}\right)$
10 to $50 \% \mathrm{RH} \cdot\left(40 \cdot 120^{\circ} \mathrm{F}\right)$

POWER REQUIREMENT

Buffered Amplifier Input: 24.5 volt DC at 20 ma DC.
Voltage Range: 24.28 volts DC normal limits. 22.28 volts $D C$ extreme limits.

AUXILIARY LIGHT

Optional one or two available 24 volts at 24 MA externally powered (not available with dual inputs and alarms).

ALARMS

Optional: Single or dual for each input, available only with Buffered Amplifier input, electronic type.
Repeatability: 0.1%.
Range Adjustability: $-.5 \%$ to $+100.5 \%$.
Contact Rating: 30 volts $A C$ or DC (n 1 amp.
Input Impedance: $>500 \mathrm{~K}$ ohms.
Relay Action: normally energized.
Deadband. 1° 。
Power Required: 24.5 volts DC 40 ma DC per alarm.
Power Supply Effect: 0.1% per volt change.
Ambient Temperature: $0.150^{\circ} \mathrm{F}$.
Temperature Effect: $.02 \%{ }^{\circ} \mathrm{F}$.
Response Time: 200 milliseconds.

MAKE-UP OF
INSTRUMENT MODEL NUMBER

NOTE 1: 10.50 ma DC Available on General Purpose unit only.

NOTE 2: Not Available with PV\#2 Alarms.

MITTATRDIIE* 2000 DIFFERENTIAL PRESSURE TRANSMITTER

FEATURES

- Diaphragm-Type.
- Choice of Diaphragm and Body Material.
- Continuously Adjustable Zero and Span.
- Two-Wire Electronics.

DESCRIPTION

The Mefotronic 2000 Differential Pressure Transmitter is a diaphragmtype transmitter designed to measure differential pressures of $5^{\prime \prime} \mathrm{H}_{2} \mathrm{O}$ to 200 psi. The transmitter has a zero adjustable up to 75% of maximum span and a span adjustment of 4 -to-1 on each range. The standard transmitter has a 316 SS diaphragm and carbon steel flanges; however, a wide choice of special diaphragm and body materials is optionally available. The standard static pressure rating for the transmitter is 3000 psi for all ranges except the two low range models, which have a 1500 psi static rating. Transmitter electronics feature state of the art design, allowing for two wire operation. They operate on either 24 volt or 50 volt DC power depending on the output load required. The electronics are enclosed in an explosion-proof housing.

OVER PRESSURE

Units will meet Underwriters Laboratories 913 "Strength of Part" section.
Standard operation with up to full static on either side.
Body tested to two times rated static without leakage.
Body tested to three times rated static with leakage.

MAKE-UP OF INSTRUMENT MODEL NUMBER
2008-30A -
A. INPUT RANGE $5^{\prime \prime}$ to $20^{\prime \prime} \mathrm{H}_{2} \mathrm{O}$ $\begin{array}{cc}5^{\prime \prime} \text { to } 20^{\prime \prime} & \mathrm{H}_{2} \mathrm{O} \\ 12^{\prime \prime} \text { to } 50^{\prime \prime} \mathrm{H} \mathrm{O}\end{array}$ $12^{\prime \prime}$ to $50^{\prime \prime} \mathrm{H} \mathrm{O}$ $50^{\prime \prime}$ to $200^{\prime \prime}$, HO $200^{\prime \prime}$ to $800^{\prime \prime} \mathrm{H}_{2} \mathrm{O}$ $400^{\prime \prime}$ to $1600^{\prime \prime} \mathrm{H}_{2} \mathrm{O}$
B. STATIC PRESSURE RATING
1500 psig (Note
3000 psig
6000 psig
C. DIAPHRAGM MATERIAL 316 Stainless Steel Nickel
Monel
Hastelloy " B "
Hastelloy " C "
D. BODY MATERIAL

Carbon Steel
316 Stainless Steel
Monel
Hastelloy "C" (Note 3)
Titanium (Note 3)
E. BODIY BOLT MATERIAL Steel
Stainless Steel (Note 2)

F. VOLTAGE SUPPLY 24 Volts DC
50 Volts DC
\qquad
G. CONNECTION BLOCK

Standard
 1
2

tes: 1 Range 1 \& 2 available with 1500
\square $T T^{-} T^{0}$

DIFFERENTIAL PRESSURE TRANSMITTER

SPECIFICATION SUMMARY SHEET B220-23b

INPUT RANGES
$0.5^{\prime \prime}$ to $0.20^{\prime \prime} \mathrm{H}_{2} \mathrm{O} ; 0.12^{\prime \prime}$ to $0.50^{\prime \prime} \mathrm{H}_{2} \mathrm{O} ; 0.50^{\prime \prime}$ to $0.200^{\prime \prime}$ $\mathrm{H}_{2} \mathrm{O} ; 0.200^{\prime \prime}$ to $0.800^{\prime \prime} \mathrm{H}_{2} \mathrm{O} ; 0.400^{\prime \prime}$ to $0.1600^{\prime \prime} \mathrm{H}_{2} \mathrm{O}$.

STATIC PRESSURE

1500 psig standard for $5^{\prime \prime}$ to $50^{\prime \prime} \mathrm{H}_{2} \mathrm{O}$ ranges
3000 psig standard for $50^{\prime \prime} \mathrm{H}_{2} \mathrm{O}$ to 200 psi ranges
6000 psig optional for $50^{\prime \prime} \mathrm{H}_{2} \mathrm{O}$ to 200 psi ranges

BODY MATERIALS

Cadmium plated Carbon Steel-standard; 316 SS, Monel, Hastelloy "C", Titanium-optional.

DIAPHRAGM MATERIALS
316 stainless steel-standard; Nickel, Monel, Hastelloy " B ", Hastelloy "C", Tantalum-optional.

OVERPRESSURE

To full static rated on either side.

SPAN ADJUSTMENT
4 to 1.

ZERO ADJUSTMENT

Up to 75% of maximum span.

AMBIENT TEMPERATURE

-40° to $+200^{\circ} \mathrm{F}$ Electronic; -40° to $+250^{\circ} \mathrm{F}$ Body.

TEMPERATURE EFFECT
Less than $.02 \% /{ }^{\circ} \mathrm{F}$.
ENCLOSURE
Explosion-Proof Design for Class 1 Groups B, C \& D Division 1 ,
Factory Mutual approved and Water tight NEMA 4 Classifica-
tions.

ACCURACY

0.25% of full scale output for all ranges from $0.12^{\prime \prime} \mathrm{H}_{2} \mathrm{O}$ to $0.1600^{\prime \prime} \mathrm{H}_{2} \mathrm{O}$
0.5% of full scale output for $0.5^{\prime \prime}$ to $0-20^{\prime \prime} \mathrm{H}_{2} \mathrm{O}$ Range.
This accuracy includes linearity, hysteresis, and repeatability. POWER SUPPIY
24.5 volts $D C$ or 50 volts DC.

OUTPUT
2 wire, 4-20 MA DC into 500 ohms max. at 24.5 Volts or 4-20 MA DC into 1000 ohms max. at 50 volts.

OUTPUT RIPPLE

0.1% RMS.
OUTPUT TEST POINTS
Standard 20-100 MV.
PROCESS CONNECTION
Standard $21 / 8$ inch center, $1 / 2^{\prime \prime}$ NPT.
CONDUIT CONNECTION
$1 / 2$ inch NPT.

ELECTRICAL CONNECTION

18 inches of 2 conductor cable-red positive, black negative.

MOUNTING

Wall or pipe, (2")
DAMPING
Standard externally adjustable.

WEIGHT

18 pounds.

OVERALL DIMENSIONS

cem* card cases

814 CASE (3-CARD)

This case has a capacity for 3 CEM cards. The power supply is self contained, and is removable by extracting three screws. The case is wall mounted and is of NEMA IV construction.

SPECIFICATIONS

MODEL:

MY 814MY-Specify 1, 2, or 3 connectors.
POWER SUPPLY OUTPUT:
± 15 V D.C. 200 ma std.

+ 5V D.C. 100 ma std.
AMBIENT OPERATING TEMPERATURE:
$-20^{\circ} \mathrm{F}$ to $150^{\circ} \mathrm{F}$.
INPUT:
115 V A.C. 50.60 Hz .

MOUNTING:

DIMENSIONS:

$$
8^{\prime \prime} \times 8^{\prime \prime} \times 8^{\prime \prime}
$$

CONSTRUCTION:

NEMA IV watertight piano hinged door, gasketed with 3 screw type door latches.

813 CASE (11-CARD)

This case has a capacity for 11 CEM cards providing the loop or transducer power supplies are not used. This case is deeper than the 811 (2 inches) to accommodate pots, counters or switches that might be required on the swinging door.

MOUNTING:

Relay rack or panel.

SPECIFICATIONS

MODELS (Typical):
ME 813 MY, MC 813 MY, MY 813 MY.
POWER SUPPLY OUTPUT:
Two power supply models available.-plug-in.

1. ± 15 V D.C. © 300 ma + 5V D.C. ${ }^{\text {a }} 150 \mathrm{ma}$
sid.
2. $\pm 15 \mathrm{~V}$ D.C. © 500 ma + 5V D.C. © 200 ma \} optional

CONSTRUCTION:

$19^{\prime \prime}$ relay rack. Input and output terminals on rearenclosed. 32 std. 64 optional. Terminal block housing has knockouts. Swinging door with bezel std.

DIMENSIONS:

$678^{\prime \prime} \mathrm{H} . \times 19^{\prime \prime} \mathrm{W} . \times 13^{11 / 32^{\prime \prime}}$ deep from panel.
Front projection $29 / 32^{\prime \prime}$.

FINISH:

Case-dark gray. Panel-beige.
Bezel-dark gray.

[^5]
cem* card cases

810/812 CASE (12-CARD)

This case has a capacity for 12 CEM cards when the auxiliary power supplies are not used. 12 additional cards may be added in the middle section behind the swinging panel, provided no meters, switches or pots are required. This is because the card case is 2 inches shallower than an 813 and the cards are almost flush with the front edge of the case.

SPECIFICATIONS

POWER SUPPLY OUTPUT:
Same as 813
MOUNTING:
Wa!!
DIMENSIONS:
$24^{\prime \prime} \mathrm{H} . \times 24^{\prime \prime}$ W. $\times 9^{9} 32^{\prime \prime}$ Deep.
WEIGHT:
80 tbs.

Model 810 Case
CONSTRUCTION:
NEMA IV gasketed door with 9 screw type door latches.

FINISH:
Case-dark gray, panel beige.
ATTACHMENT:
SC 25B-Hinged swinging panel-813 style.

811 CASE (12-CARD)

SPECIFICATIONS

This case has a capacity for 12 CEM cards when auxiliary power supplies are not used.
POWER SUPPLY OUTPUT:
Same as 813
MOUNTING:
Relay rack or panel
WEIGHT:
15 lbs.

811 Case

CONSTRUCTION:

Same as 813 except case is 2 inches shallower.
ATTACHMENT:
SC 25A-Hinged door-813 style.
-

Advantages

Comparative

Head Loss
Characteristics

1. WIDE RANGEABILITY-constant flow coefficients down to unusually low Reynolds number and velocities.
2. MAXIMUM EFFICIENCY-sustained metering accuracy-highest recovery.
3. PIPING ECONOMY-shorter upstream runs-minimum downstreams requirements.
4. SHORT LAYING LENGTH-compact-light weight-easier installa-tion-lower construction costs.
5. SUPERIOR THROAT - smooth radius, stable throat - no exposed sharp edges-no channel to clog-no erosion.
6. LOW COST-purchase-installation-maintenance.
7. CHOICE OF MATERIALS - Caşt Iron - stainless steel - bronze forged steel-MEEHANITE $\xlongequal{(2}$ plastics-other materials avdilable.
8. ACCURACY - to within plus or minus 1% of actual flow rate-within $1 / 2 \%$ when laboratory rated-sustained!
9. APPLICATIONS-water, sewage, sludges, slurries, chemicals, steam trade wastes, air and gases. MANUAL CLEANOUT DEVICES AVAILABLE.

FULL FLANGED CAST.

Heavy Construction conforming to ASTM, AWWA, ASA and Federal specifications. The Insert Throat, with internal averaging annulus, is accurately machined with the body. Flat flange construction minimizes installation and removal labor. Usage includes metering of sewage, sludge and slurries as well as clear liquids and gases.

FULL FLANGED-FABRICATED.

A wide selection of materials is offered to meet difficult operating conditions. Recommended for/larger diameter line sizes to minimize weight and cost. By eliminating flanges, this style is adapted to meld-in type to suit specific construction requirements. Equally efficient/with solids-bearing or clear flows.

INSERT—PLASTIC
Polyester reinforced with heavy fibre glass mat. The body, together with the tapped holding ring and internal-annulus throat are molded as an integral unit. Special materials available for holding ring and throat. The location shoulder assures the necessary concentric centering in the pipe. Applicable where light weight and cost are factors.

INSERT-CAST OR FORGED

Solid construction in a choice of metals, specially designed to meter under extraordinary temperature, pressure and material requirements. Readily adapted for weld-in applications by reducing the holding ring. Applicable for small as well as large line sizes, particularly when minimum weight and cost are a consideration.

＂LO－LOSS＂FLOW TUBE CAPACITIES

PipeSizeInches	Throat Diameter		Laying Length Inches		APPROXIMATE CAPACITIES IN MILLION GALLONS PER DAY Maximum Differential In Inches Of Warer							
			Length	Insert	18．84＂	42．39＊	$75.36{ }^{\prime \prime}$	$117.75^{\prime \prime}$	169．56＂	230．79＂	301．44＂	471．000＂
6	$\begin{aligned} & 2.85 \\ & 3.59 \\ & 4.29 \end{aligned}$	$\begin{aligned} & 4.8 \\ & 4.0 \\ & 3.2 \end{aligned}$	$\begin{aligned} & 13 \\ & 9 \\ & 85 / \% \end{aligned}$	$\begin{array}{r} 121 / 4 \\ 81 / 4 \\ 77 / 4 \end{array}$.250 .400 .625	$\begin{aligned} & .375 \\ & .600 \\ & .937 \end{aligned}$.500 .800 1.250	.625 1.000 1.562	.750 1.200 1.875	.875 1.400 2.187	$\begin{aligned} & 1.000 \\ & 1.600 \\ & 2.500 \end{aligned}$	$\begin{aligned} & 1.250 \\ & 2.000 \\ & 3.125 \end{aligned}$
8	$\begin{aligned} & 3.77 \\ & 4.92 \\ & 6.07 \end{aligned}$	$\begin{aligned} & 4.7 \\ & 3.9 \\ & 3.0 \end{aligned}$	$171 / 2$ $111 / 4$ $1151 / 8$	$\begin{aligned} & 16^{3 / 4} \\ & 10^{1 / 2} \\ & 10^{7 / 2} \end{aligned}$.437 .750 1.250	.656 1.125 1.875	1.875 1.500 2.500	1.093 1.875 3.125	1.312 2.250 3.780	$\begin{aligned} & 1.531 \\ & 2.625 \\ & 4.375 \end{aligned}$	$\begin{aligned} & 1.750 \\ & 3.000 \\ & 5.000 \end{aligned}$	$\begin{aligned} & 2.187 \\ & 3.750 \\ & 6.250 \end{aligned}$
10	$\begin{aligned} & 4.73 \\ & 6.02 \\ & 7.92 \end{aligned}$	$\begin{aligned} & 4.7 \\ & 3.9 \\ & 2.7 \end{aligned}$	$\begin{aligned} & 22 \\ & 14 \\ & 1415 / 16 \end{aligned}$	$\begin{aligned} & 21 \\ & 13 \\ & 1315 / 16 \end{aligned}$	$\begin{array}{r} .687 \\ 1.125 \\ 2.125 \end{array}$	$\begin{aligned} & 1.031 \\ & 1.687 \\ & 3.187 \end{aligned}$	1.375 2.250 4.250	$\begin{aligned} & 1.718 \\ & 2.812 \\ & 5.312 \end{aligned}$	2.062 3.375 6.375	$\begin{aligned} & 2.406 \\ & 3.937 \\ & 7.437 \end{aligned}$	$\begin{aligned} & 2.750 \\ & 4.500 \\ & 8.500 \\ & \hline \end{aligned}$	$\begin{array}{r} 3.437 \\ 5.625 \\ 10.625 \end{array}$
12	$\begin{aligned} & 5.71 \\ & 7.24 \\ & 9.21 \end{aligned}$	$\begin{aligned} & 4.7 \\ & 3.9 \\ & 2.9 \end{aligned}$	$\begin{aligned} & 251 / 2 \\ & 171 / 2 \\ & 17 \% / 14 ; \end{aligned}$	$\begin{aligned} & 241 / 2 \\ & 16^{1 / 2} \\ & 16^{1} 16 \mathrm{i} \end{aligned}$	$\begin{aligned} & 1.000 \\ & 1.625 \\ & 2.875 \end{aligned}$	$\begin{aligned} & 1.500 \\ & 2.437 \\ & 4.312 \end{aligned}$	2.000 3.250 5.750 2.750		$\begin{aligned} & 3.000 \\ & 4.875 \\ & 8.625 \end{aligned}$	$\begin{array}{r} 3.500 \\ 5.687 \\ 10.062 \end{array}$	$\begin{array}{r} 4.000 \\ 6.500 \\ 11.500 \end{array}$	$\begin{array}{r} 5.000 \\ 8.125 \\ 14.375 \end{array}$
14	6.69 8.28 10.09 11.04	4.7 4.0 3.2 2.7	$\begin{aligned} & 29 \\ & 23 \\ & 183 / 4 \\ & 203 / 4 \end{aligned}$	$\begin{aligned} & 28 \\ & 22 \\ & 173 / 4 \\ & 193 / \end{aligned}$	$\begin{aligned} & 1.375 \\ & 2.125 \\ & 3.250 \\ & 4.125 \end{aligned}$	$\begin{aligned} & 2.062 \\ & 3.187 \\ & 4.875 \\ & 6.187 \end{aligned}$	2.750 4.250 6.500 8.250	$\begin{array}{r} 3.437 \\ 5.312 \\ 8.125 \\ 10.312 \end{array}$	$\begin{array}{r} 4.125 \\ 6.375 \\ 9.750 \\ 12.375 \end{array}$	$\begin{array}{r} 4.812 \\ 7.437 \\ 11.375 \\ 14.437 \end{array}$	5.500 8.500 13.000 16.500	$\begin{array}{r} 6.875 \\ 10.625 \\ 16.250 \\ 20.625 \end{array}$
16	$\begin{array}{r} 7.55 \\ 9.42 \\ 11.54 \\ 12.74 \end{array}$	$\begin{aligned} & 4.7 \\ & 4.0 \\ & 3.2 \\ & 2.6 \end{aligned}$	$\begin{aligned} & 33 \\ & 2311 / 16 \\ & 217 / 4 \\ & 231 / 2 \end{aligned}$	$\begin{aligned} & 32 \\ & 2211 / 1 ; \\ & 20^{7} \% \\ & 221 / 2 \end{aligned}$	1.750 2.750 4.250 5.500	$\begin{aligned} & 2.625 \\ & 4.125 \\ & 6.375 \\ & 8.250 \end{aligned}$	3.500 5.500 8.500 11.000	4.375 6.875 10.625 13.750	5.250 8.250 12.750 16.500	$\begin{array}{r} 6.125 \\ 9.625 \\ 14.875 \\ 19.250 \end{array}$	7.000 11.000 17.000 22.000	8.750 13.750 21.250 27.500
18	$\begin{array}{r} 8.56 \\ 10.62 \\ 12.83 \\ 14.12 \end{array}$	$\begin{aligned} & 4.7 \\ & 4.0 \\ & 3.2 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 38 \\ & 26 \\ & 241 / 4 \\ & 25^{15 / 16 i} \end{aligned}$	37 25 $231 / 8$ $2415 / 16$	$\begin{aligned} & 2.250 \\ & 3.500 \\ & 5.250 \\ & 6.750 \\ & \hline \end{aligned}$	$\begin{array}{r} 3.375 \\ 5.250 \\ 7.875 \\ 10.125 \end{array}$	4.500 7.000 10.500 13.500	5.625 8.750 13.125 16.875	6.750 10.500 15.750 20.250	7.875 12.250 18.375 23.625	9.000 14.000 21.000 27.000	11.250 17.500 26.250 33.750
20	9.47 12.05 14.81 15.96	$\begin{aligned} & 4.7 \\ & 3.9 \\ & 3.0 \\ & 2.6 \end{aligned}$	$\begin{aligned} & \hline 42 \\ & 283 / 4 \\ & 2711 / 16 \\ & 291 / 4 \end{aligned}$	$\begin{array}{\|l\|} \hline 41 \\ 273 / 4 \\ 26^{11 / 16} \\ 281 / 4 \end{array}$	2.750 4.500 7.000 8.625	4.125 6.750 10.500 12.937	5.500 9.000 14.000 17.250	6.875 11.250 17.500 21.562	$\begin{array}{r} 8.250 \\ 13.500 \\ 21.000 \\ 25.875 \end{array}$	9.625 15.750 24.500 30.187	11.000 18.000 28.000 34.500	$\begin{aligned} & 13.750 \\ & 22.500 \\ & 35.000 \\ & 43.125 \end{aligned}$
24	11.77 14.20 16.80 19.02	$\begin{aligned} & 4.6 \\ & 4.0 \\ & 3.3 \\ & 2.7 \end{aligned}$	$\begin{aligned} & 44 \\ & 35 \\ & 311 / 2 \\ & 349 / 16 \end{aligned}$	$\begin{array}{\|l\|} \hline 43 \\ 34 \\ 301 / 2 \\ 339 / 1 ; \\ \hline \end{array}$	4.250 6.250 9.000 12.250	$\begin{array}{r} 6.375 \\ 9.875 \\ 13.500 \\ 18.375 \end{array}$	8.500 12.500 18.000 24.500	$\begin{aligned} & 10.625 \\ & 15.625 \\ & 22.500 \\ & 30.625 \end{aligned}$	12.750 18.750 27.000 36.750	14.875 21.875 31.500 42.875	$\begin{aligned} & 17.000 \\ & 25.000 \\ & 36.000 \\ & 49.000 \end{aligned}$	$\begin{aligned} & 21.250 \\ & 31.250 \\ & 45.000 \\ & 61.250 \end{aligned}$
30	14.27 17.04 19.40 24.00	$\begin{aligned} & 4.7 \\ & 4.2 \\ & 3.6 \\ & 2.6 \\ & \hline \end{aligned}$	$\begin{aligned} & 62 \\ & 47 \\ & 361 / 2 \\ & 42 \end{aligned}$	$\begin{array}{\|l} 61 \\ 46 \\ 351 / 2 \\ 41 \end{array}$	6.250 9.000 12.000 19.500	9.375 13.500 18.000 29.250	12.500 18.000 24.000 39.000	15.625 22.500 30.000 48.750	18.750 27.000 36.000 58.500	$\begin{aligned} & 21.875 \\ & 31.500 \\ & 42.000 \\ & 68.250 \\ & \hline \end{aligned}$	$\begin{aligned} & 25.000 \\ & 36.000 \\ & 48.000 \\ & 78.000 \\ & \hline \end{aligned}$	$\begin{aligned} & 31.250 \\ & 45.000 \\ & 60.000 \\ & 97.500 \\ & \hline \end{aligned}$
36	17.60 22.00 25.04 28.50	$\begin{aligned} & 4.6 \\ & 3.9 \\ & 3.3 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 711 / 2 \\ & 49 \\ & 463 / 8 \\ & 511 / 4 \end{aligned}$	$\begin{aligned} & 701 / 2 \\ & 48 \\ & 453 / 8 \\ & 501 / 4 \end{aligned}$	$\begin{array}{r} 9.500 \\ 15.000 \\ 20.000 \\ 27.500 \end{array}$	$\begin{aligned} & 14.250 \\ & 22.500 \\ & 30.000 \\ & 41.250 \end{aligned}$	$\begin{aligned} & 19.000 \\ & 30.000 \\ & 40.000 \\ & 55.000 \end{aligned}$	23.750 37.500 50.000 68.750	$\begin{aligned} & 28.500 \\ & 45.000 \\ & 60.000 \\ & 82.500 \end{aligned}$	$\begin{aligned} & 33.250 \\ & 52.500 \\ & 70.000 \\ & 96.250 \end{aligned}$	$\begin{array}{r} 38.000 \\ 60.000 \\ 80.000 \\ 110.000 \end{array}$	$\begin{array}{r} 47.500 \\ 75.000 \\ 100.000 \\ 137.500 \\ \hline \end{array}$
42	19.98 25.41 28.00 33.50	$\begin{aligned} & 4.7 \\ & 4.0 \\ & 3.5 \\ & 2.7 \end{aligned}$	$\begin{aligned} & 88 \\ & 60 \\ & 531 / 4 \\ & 61 \end{aligned}$	$\begin{aligned} & 86 \\ & 58 \\ & 511 / 4 \\ & 59 \end{aligned}$	$\begin{aligned} & 12.250 \\ & 20.000 \\ & 25.000 \\ & 38.000 \end{aligned}$	$\begin{aligned} & 18.375 \\ & 30.000 \\ & 37.500 \\ & 57.000 \end{aligned}$	$\begin{aligned} & 24.500 \\ & 40.000 \\ & 50.000 \\ & 76.000 \end{aligned}$	$\begin{aligned} & 30.625 \\ & 50.000 \\ & 62.500 \\ & 95.000 \end{aligned}$	36.750 60,000 75.000 114.000	42.875 70.000 87.500 133.000	49.000 80.000 100.000 152.000	61.250 100.000 125.000 190.000
48	$\begin{aligned} & 22.84 \\ & 28.97 \\ & 34.29 \\ & 38.43 \end{aligned}$	$\begin{aligned} & 4.7 \\ & 3.9 \\ & 3.2 \\ & 2.6 \end{aligned}$	100 70 63 67	$\begin{array}{\|l\|} \hline 98 \\ 68 \\ 61 \\ 65 \end{array}$	16.000 26.000 37.500 50.000	$\begin{aligned} & 24.000 \\ & 39.000 \\ & 56.250 \\ & 75.000 \end{aligned}$	32.000 52.000 75.000 100.000	40.000 65.000 93.750 125.000	48.000 78.000 112.500 150.000	56.000 91.000 131.250 175.000	64.000 104.000 150.000 200.000	80.000 130.000 187.500 250.000

Additional Sizes Available Upon Request

Indicating impulse-duration telemeter transmitters with impulse cycles of 15 or 5 seconds, suitable for d-c transmission or tone transmission.

GENERAL

The Series 534 standard Metameter Transmitter is widely used for such measurands as pressure, temperature, and flow. Housed in an aluminum case with a heavily gasketed aluminum door which provides ample protection against moisture, fumes, and dust, the transmitter can be panel or wall mounted.

In this simple, electro-mechanical device, the duration of each transmitted impulse, which is proportional to the measured quantity, is governed by the measuring-element-controlled position of a cam follower; the portion of the constant-speed cam cycle that the rider is off the cam represents the value of the measurand.

As part of a Metameter telemetering system, the transmitter may be placed in any location and connected to a receiver via any two-wire circuit, such as leased telephone lines, microwave line, transmission line carrier channel, or private lines.

OVERALL DIMENSIONS

Series 534 standard Metameter Transmitter.

Transmitter with door open showing placement of pressure element.

GENERAL SPECIFICATIONS

CASE

Rectangular, die-cast aluminum case with gasketed aluminum door. Designed for interchangeable flushpanel or surface mounting. Gray enamel finish standard. Pin-tumbler lock optional.

CASE DIMENSIONS

$103 / 4^{\prime \prime}$ wide $\times 14^{3 / 4^{\prime \prime}}$ high $\times 53 / 4^{\prime \prime}$ deep.

PANEL CUTOUT

$105 / 6^{\prime \prime}$ wide $\times 139 / 6^{\prime \prime}$ high.

WEIGHT

Approximately 12 pounds with pressure measuring element.

ELECTRICAL CONNECTIONS

$1 / 2$-inch conduit, at bottom or back of case.

SCALES

Segmental, 5 -inch calibrated width standard for all models listed below.

PRIMARY POWER

120 volts $a-c$ (60 or 50 Hz .) (* 12 or 24 volts $\mathrm{d}-\mathrm{c}$.) Stepdown transformers available for operation at 240 volts, 60 or 50 Hz .
*Use attachments R31 or R31A

OPERATING CHARACTERISTICS

CALIBRATED ACCURACY

Standard: $\pm 0.5 \%$ of full-scale value.
Optional: $\pm 0.3 \%$ of full-scale value.

REPRODUCIBILITY

$\pm 0.25 \%$ of span.

SENSITIVITY

$\pm 0.1 \%$ of span.

IMPULSE CYCLE

15 second cycle standard (pulse duration signal varies from 3 to 12 seconds for full-scale span); 5 second cycle optional.

AMBIENT TEMPERATURE LIMITS

40 to $140^{\circ} \mathrm{F}$ for rated accuracy. Internal resistancetype heaters (with or without thermostats) available for operation below $40^{\circ} \mathrm{F}$.

EFFECT OF SUPPL.Y VOLTAGE CHANGES

Transmitter accuracy is unaffected by changes of $\pm 10 \%$ in supply voltage.

POWER CONSUMPTION

6 watts at 120 volts, 60 or 50 Hz .

MODELS AND RANGES

Variable	Measuring Element	Ranges	Model Number
TEMPERATURE	Class 1, 2, 3 or 5 Filled Thermal system	-300 to $+1200^{\circ} \mathrm{F}$	OT534M
PRESSURE and VACUUM	Capsular Element	$0-3^{\prime \prime} \mathrm{H}_{2} \mathrm{O}$ to 0-200 psig	OG534M-14
	Helical element	0.31 to $0.15,000$ psig	
FLOW and DIFFERENTIAL PRESSU :	Mercury U-tube manometer	0.10 to $0.800^{\prime \prime} \mathrm{H}_{2} \mathrm{O}$	OF534M-45 or - 18*
	Dri-flo manometer	0.20 to $0.400^{\prime \prime} \mathrm{H}_{2} \mathrm{O}$	OER534M-45 or -18
	Barton Model 199 meter body	$0-20^{\prime \prime} \mathrm{H}_{2} \mathrm{O}$ to 0.50 psi	OEP534M-15 or -18
LIQUID LEVEL	Float and tape system	$0.2^{\prime \prime}$ to 0-100'	OKC534M-15
	Direct pressure system	$0-3^{\prime \prime}$ to $0-10,000^{\prime} \mathrm{H} O$	OG534M-14
	Diaphragm bulb system	$0.6^{\prime \prime}$ to $0.100^{\prime} \mathrm{H}_{2} \mathrm{O}$	OG534M-16
	Bubbler system	$0.3^{\prime \prime}$ to $0.300^{\prime} \mathrm{H}_{2} \mathrm{O}$	OG534M-15

Suffix (-45) for flow and (-18) for DP.

TKIS DRAWING IS SENT YOU SUBJECT TO RETURN UPON DEMAND, AND WITH THE UNBERSTANOING THAT IT IS NOY TO BE REPRO. DUCED. COPIED O USED, DIRECTLY OR INDIRECTIY, IN ANY WAY DETRIMENTAL TO OUR INTERESTS. ALL PATENT RIGHTS RESERVED.

	NEVISION
1	
2	
3	

- NIRING DIAGRAM FOTG GW" GAUGE WITM

ST. PAUL, MINNESOTA L5-1524

\square

D
$D \quad E$

G
H

```
M
```

Q		R		S	T
REV	C.O. NO.	DATE	DESCRIPTION	CHK	APR

/

Type W Control Center

Noces.

Sill

Trice:										
Stor		${ }^{\text {Jobeme }}$ JACKSONVILLE, N.C.								
CONSOLIDATED ELECTRIC COMPANY 141 SOUTH LAFAYETTL. ROAD - ST. PAUL, MINN. 55107	CONSOLIDATED ELECTRIC COMPANY 141 SOUTH LAFAYETTLE ROAD - ST. PAUL. MINN. 55107					© PAGE 1 OF 1				
		$\begin{aligned} & \text { OYHEAWISE SPEC } \\ & \text { EC } 010 \text { THREE } \\ & \text { AACTIONS } 1 \text { 1/G4. } \end{aligned}$	DO NOT SCALE		DAAWN anceken		IM011:6			B

UNIT
10 INCOMING LINE MAIN BREAKER
2B COMBINATION STARTER - PUMP NO.
2 D COMBINATION STARTER - PUMP NO.
2D: COMB INATION STARTER - PMMP NO. 2
COMB INATION STARTER PUMP NO. 3
2H: LIGHTING PANEL C CRCUIT BREAKE
$2 M$ LIGHTING PANEL -18 CIRCUIT.
3M CECO CONTROL

3- RED IBLE CALLE TONE ICATINGL
3 - CALL PUSHBUTTON. SWITCH
5- TELEPHONE JACK.
6- FLOW INDICATING RECORDER
7 - WET WELL LEVEL INDICATOR

	Nis	1	t				
	10	mañ	girci	it.	bire	pker	
		200	amp,	Fix	¢ m	caun	
	rm.	(b) A	Autome	$\xrightarrow{7 T 5}$	trin	$\frac{\text { nuser }}{\text { Tr }}$	$\xrightarrow{\text { e }}$
		mada		cur	77\%	NE	
						me	
	2 zB	Azoble	E 10	Z E	[, 5,1		
	ZF	SAmL	A As	23			
x	$\frac{\mathrm{zH}}{2 \mathrm{~m}}$	mann	dipeat	Heer,		LBOAR	P
	3 m	blan	Ank:		C_{c}		
		3.	\%	\times	\cdots		
\cdots				$\stackrel{3}{3}$			
				-			
		4					
		$1-$					

$\frac{1}{3} \frac{1}{2}|1|$

Type W Control Centers
Outtine and Eloor Plans

NOTE 1
\angle IGHTING PA ANL CIRCUIT BREAKERS
TO. BE BOLT-ON TYPE

Notes:

Type W Control Centers
Outline and Eloor Plans

Notes:

 Sin

STANDAD 1 VEATICAL
SETOMES
SENCHES DEEP.

5ix

Notes:

STANDAR 2 VERTI
SENTONS.
SENCHES DEEP.

DIMENS IONS AND ARRANGEMENT NEMA 12 ENCLOSURE MCC FOR SURGE BAS IN EFFLUENT STN.								SHop ORDER ITEM "B'	
		Jome JACKSONVILLE, N.C.							
CONSOLIDATED ELECTRIC COMPANY 41 SOUTH LAFAYETTE BOAD •ST. PAUL, MINN. 55107 41 SUUTH LAFAYETTE ROA						2. PAGE 2 OF 2			
			DO NOT SCAle			IMOH110			B

\mid

> Type W Control Centers Outline and Eloor Plans

Noos:

,
Notes:

1. Min
len

TO LTG. TRANS
IN UNit IK 14-CIRCUIT ${ }_{1}^{1}$ lighting

D.C. CONTROL DiN. CONTROL
LINES FROM
MAIN WATER MAIN WATER
PLANT PANEL PLANT PANEL
S.0. ITEM M
5. FOR PARTS LIST SEE 201891-01.
4. Grounding lug to be grounded by

BLACK-BK ABBREVIATION
WHiTE-w GRAY-GY
ORANGE-OR BLUE-BU
YELLOW-Y
RED-R
2. ALL WRING IS RED UNLESS NOTED.

ALL RED WIRING IS 16 GA . AND
ALL ELSEIS IS 14 GA .
all dashed wiring is done by.

Trices	WIRING DIAGRAM, M.C.C. FOR CURTIS RD. RAW WATER BOOSTER STN.					s.o. ITEM "C"	
		I Name Jacksonv lile, N.C.					
	CONSOLIDATED ELECTRIC COMPANY 141 SOUTH LAFAYETTE ROAD - ST. BAUL. MINN: 55107				(e)	PAGE 2 Of 2	
			DO NOT SCALE			$902061-01$	3

$$
\overbrace{1}
$$

[^0]: See Rage 1

[^1]: * Reg. Trademork of General Electric Co. for wire

[^2]: Use 22 for dual-tated $120 \mathrm{~V}, 60 \mathrm{~Hz} / 110 \mathrm{~V}, 50 \mathrm{~Hz}$ coil

[^3]: a For Quantity Discount, refer to your_authorized Distributor or 'local Culler-Hammer Sales
 Office. Also taled 1 Hp at 250 V . A-c.

[^4]: - Trademark of American Chain \& Cable Co., Inc.

[^5]: *A trademark of American Chain \& Cable Company, Inc.

