SDSC Storage New Developments

David Minor

San Diego Supercomputer Center

UC San Diego

Next generation storage

Based on feedback from users

Reflects changing needs

Opportunity to "start from scratch"

 Continues move from pure computation to data-driven science and research

Phase I Configuration

(Storage numbers subject to change)

PDAF Large Memory

- 256/512 GB/Node
- 9TB Total
- -112 GB/sec

-9 TF

Data Oasis Large Scale Storage

- 2-4 PB
- 60-120 GB/sec
- 3000-6000 disks

Triton Compute Cluster

- 24 GB/Node
- 6TB Total
- 256 GB/sec
- 20TF

<u>Myricom</u>

Campus Research Network

UCSD Research Labs

Data Oasis services overview

High Performance Computing Storage

- Purpose: Transient Storage to Support HPC
- Access Mechanisms: Lustre on HPC Systems, NFS/CIFS for data migrations

Traditional File Server Storage

- Purpose: Typical Project / User Storage Needs
- Access Mechanisms: NFS/CIFS

Archive

- Purpose: Long-Term Storage of Data that will be Infrequently Accessed
- Access Mechanisms: Lustre on HPC Systems, NFS/CIFS for data migrations, iRODS

Service layering

Provided Natively

- Large, scalable file system (HPC, Archive)
- High speed data movement in and out of the system (HPC)
- High speed data movement within the system (HPC)
- Data reliability via replication (Archive, FS)
- Implemented within one organizational entity/group. With single point of contact for users.
 (HPC, FS, Archive)

Could Layer Well with Software and Funding

- Key-value store and triple stores, e.g. for metadata, ontology, etc. management
- Collection-based (ie user metadata-driven) file management, with hooks to incorporate Data Object Identifiers (DOIs) or other persistent IDs as a stepping stone towards long-term preservation of digital data

Shared with Different Architectures

- Shared-nothing Distributed File System (HDFS)
- Database Management Systems (DBMS)

Data Oasis services SLAs

Storage

AvailabilityBest Efforts

- •95% Uptime
- Reliability
- Single-Copy
- No Backups
- NO GUARANTEES
- •Performance (Today)
- •Single Node: 500MB/s
- Aggregate: 2.5GB/s
- Access Mechanisms
- Lustre (HPC Systems)
- NFS/CIFS
- Future Options
- Multiple Sites
- Clustering

ge

Server

Availability

- •24x7 On-Call Support
- •99% Uptime
- Reliability
- Replica Server
- Snapshots
- Historical Backups Optional
- Performance
- •Single Server: 300-500MB/s
- Access Mechanisms
- NFS/CIFS
- Webfarm
- Future Options
- Multiple Sites
- Clustering

Availability

- 24x7 On-Call Support
- Maximum Uptime
- Reliability
- Dual-Copy
- No Historical Backups

Performance

- •Cache: ~1 GB/s
- •Disk: 300-500 MB/s
- •Tape: 20-100 MB/s

Access Mechanisms

- NFS/CIFS
- •iRODS
- ComVault
- Web Client?

Future Options

 Multiple Site Replication via Chronopolis

Storage Summary:

315TB usable disk cache Archive copies

1PB stored no compression 2 copies 1.2PB stored 20% compression 2 copies

Also in the pipeline...

Simplifying SLAs and access mechanisms

 Monitoring national trends (e.g. NSF data requirements, LC initiatives)

Working with UCSD cyberinfrastructure team

Working with CDL/UC3 on Merritt

Thank you

David Minor

minor@sdsc.edu