
 

 

Specification for the 

Extensible Configuration 

Checklist Description Format 

(XCCDF) Version 1.2 

David Waltermire 
Charles Schmidt 
Karen Scarfone 
Neal Ziring 
 

 

 

 

NIST Interagency Report 7275 

Revision 4 



 

 

 

 

NIST Interagency Report 7275 

Revision 4 

 

Specification for the Extensible 
Configuration Checklist Description 
Format (XCCDF) Version 1.2 
 
David Waltermire 
Charles Schmidt 
Karen Scarfone 
Neal Ziring 
 
 

 

 C  O  M  P  U  T  E  R      S  E  C  U  R  I  T  Y 

Computer Security Division 

Information Technology Laboratory 

National Institute of Standards and Technology 

Gaithersburg, MD 20899-8930 

 

March 2012 

 
 

 
 

U.S. Department of Commerce 

John E. Bryson, Secretary 

National Institute of Standards and Technology 

Patrick D. Gallagher, Under Secretary for 

Standards and Technology and Director 



SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.2 

 

 iii 

Reports on Computer Systems Technology 
 

The Information Technology Laboratory (ITL) at the National Institute of Standards and Technology 

(NIST) promotes the U.S. economy and public welfare by providing technical leadership for the nation’s 

measurement and standards infrastructure. ITL develops tests, test methods, reference data, proof of 

concept implementations, and technical analysis to advance the development and productive use of 

information technology. ITL’s responsibilities include the development of technical, physical, 

administrative, and management standards and guidelines for the cost-effective security and privacy of 

sensitive unclassified information in Federal computer systems. This Interagency Report discusses ITL’s 

research, guidance, and outreach efforts in computer security and its collaborative activities with industry, 

government, and academic organizations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Certain commercial entities, equipment, or materials may be identified in this 

document in order to describe an experimental procedure or concept adequately.  

Such identification is not intended to imply recommendation or endorsement by the 

National Institute of Standards and Technology, nor is it intended to imply that the 

entities, materials, or equipment are necessarily the best available for the purpose. 

National Institute of Standards and Technology Interagency Report 7275 Revision 4 

80 pages (Mar. 2012) 

 

 



SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.2 

 

 iv 

Acknowledgments 

The authors of this report, David Waltermire of the National Institute of Standards and Technology 

(NIST), Charles Schmidt of The MITRE Corporation, Karen Scarfone of Scarfone Cybersecurity, and 

Neal Ziring of the National Security Agency (NSA), wish to thank all contributors to this revision of the 

publication, particularly Adam Halbardier of Booz Allen Hamilton, Vladimir Giszpenc, Kent Landfield 

and Richard Whitehurst of McAfee, Lisa Nordman of The MITRE Corporation, Joe Wolfkiel of DISA, 

and Shane Shaffer and Matt Kerr of G2, Inc.  

The authors would also like to acknowledge the following individuals who contributed to the initial 

definition and development of the Extensible Configuration Checklist Description Format (XCCDF): 

David Proulx, Mike Michnikov, Andrew Buttner, Todd Wittbold, Adam Compton, George Jones, Chris 

Calabrese, John Banghart, Murugiah Souppaya, John Wack, Trent Pitsenbarger, and Robert Stafford. 

Stephen D. Quinn, Peter Mell, and Matthew Wojcik contributed to Revisions 1, 2, and 3 of this report. 

Ryan Wilson of Georgia Institute of Technology also made substantial contributions. Thanks also go to 

the Defense Information Systems Agency (DISA) Field Security Office (FSO) Vulnerability Management 

System (VMS)/Gold Disk team for extensive review and many suggestions. 

 

Abstract 

This report specifies the data model and Extensible Markup Language (XML) representation for the 

Extensible Configuration Checklist Description Format (XCCDF) Version 1.2. An XCCDF document is a 

structured collection of security configuration rules for some set of target systems. The XCCDF 

specification is designed to support information interchange, document generation, organizational and 

situational tailoring, automated compliance testing, and scoring. The specification also defines a data 

model and format for storing results of security guidance or checklist testing. The intent of XCCDF is to 

provide a uniform foundation for expression of security checklists and other configuration guidance, and 

thereby foster more widespread application of good security practices.  

 

 

Audience 

The primary audience of the XCCDF specification is government and industry security analysts, and 

security management product developers.  

 

 

Trademark Information 

All names are registered trademarks or trademarks of their respective companies. 



SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.2 

 

 v 

 

Contents 

1. INTRODUCTION ............................................................................................................................................. 1 

1.1 PURPOSE AND SCOPE ......................................................................................................................................... 1 
1.2 DOCUMENT STRUCTURE ..................................................................................................................................... 1 
1.3 DOCUMENT CONVENTIONS ................................................................................................................................. 1 

2. NORMATIVE REFERENCES .............................................................................................................................. 2 

3. TERMS, DEFINITIONS, AND ABBREVIATIONS ................................................................................................. 3 

3.1 XCCDF TERMINOLOGY ...................................................................................................................................... 3 
3.2 ACRONYMS AND ABBREVIATIONS ......................................................................................................................... 3 

4. CONFORMANCE ............................................................................................................................................ 4 

4.1 PRODUCT CONFORMANCE .................................................................................................................................. 4 
4.2 BENCHMARK DOCUMENT CONFORMANCE ............................................................................................................. 4 

5. XCCDF OVERVIEW.......................................................................................................................................... 5 

5.1 INTRODUCTION ................................................................................................................................................. 5 
5.2 CHECKLIST STRUCTURE AND TAILORING ................................................................................................................. 6 
5.3 TEST RESULTS ................................................................................................................................................... 7 

6. XCCDF DATA MODEL ..................................................................................................................................... 8 

6.1 INTRODUCTION ................................................................................................................................................. 8 
6.2 GENERAL XML INFORMATION ............................................................................................................................. 9 

6.2.1 XCCDF Namespace and XML Schema ...................................................................................................... 9 
6.2.2 Element and Attribute Formatting ........................................................................................................... 9 
6.2.3 Element Identifiers ................................................................................................................................. 10 
6.2.4 <xccdf:metadata> Element .................................................................................................................... 10 
6.2.5 Platform Names ..................................................................................................................................... 11 
6.2.6 <xccdf:reference> Element ..................................................................................................................... 12 
6.2.7 <xccdf:signature> Element ..................................................................................................................... 13 
6.2.8 Status Tracking ...................................................................................................................................... 13 
6.2.9 Text Substitution .................................................................................................................................... 13 
6.2.10 @xml:lang Attribute .......................................................................................................................... 14 

6.3 <XCCDF:BENCHMARK> ..................................................................................................................................... 15 
6.3.1 Basics ..................................................................................................................................................... 15 
6.3.2 Properties ............................................................................................................................................... 16 

6.4 ITEM ELEMENTS .............................................................................................................................................. 18 
6.4.1 Properties ............................................................................................................................................... 18 
6.4.2 <xccdf:warning> Element....................................................................................................................... 20 
6.4.3 <xccdf:Group> Element .......................................................................................................................... 21 
6.4.4 <xccdf:Rule> Element ............................................................................................................................. 21 
6.4.5 <xccdf:Value> Element ........................................................................................................................... 30 

6.5 <XCCDF:PROFILE> ELEMENT .............................................................................................................................. 34 
6.5.1 Basics ..................................................................................................................................................... 34 
6.5.2 Properties ............................................................................................................................................... 34 
6.5.3 Selectors ................................................................................................................................................. 35 

6.6 <XCCDF:TESTRESULT> ELEMENT ........................................................................................................................ 37 
6.6.1 Basics ..................................................................................................................................................... 37 
6.6.2 Properties ............................................................................................................................................... 38 



SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.2 

 

 vi 

6.6.3 <xccdf:fact> Element .............................................................................................................................. 41 
6.6.4 <xccdf:rule-result> Element ................................................................................................................... 41 
6.6.5 <xccdf:tailoring-file> Element ................................................................................................................ 44 

6.7 <XCCDF:TAILORING> ELEMENT .......................................................................................................................... 45 
6.7.1 Basics ..................................................................................................................................................... 45 
6.7.2 Properties ............................................................................................................................................... 45 
6.7.3 Profile Shadowing .................................................................................................................................. 46 
6.7.4 Tailoring Actions and Profile Selectors ................................................................................................... 47 

7. XCCDF PROCESSING ..................................................................................................................................... 48 

7.1 INTRODUCTION ............................................................................................................................................... 48 
7.2 LOADING AND TRAVERSAL ................................................................................................................................. 48 

7.2.1 Introduction ........................................................................................................................................... 48 
7.2.2 Loading .................................................................................................................................................. 48 
7.2.3 Traversal ................................................................................................................................................ 51 

7.3 ASSESSMENT OUTPUTS .................................................................................................................................... 63 
7.3.1 Overview ................................................................................................................................................ 63 
7.3.2 Scoring Models ....................................................................................................................................... 63 

APPENDIX A— CONVERTING XCCDF 1.1.4 CONTENT TO XCCDF 1.2 .................................................................. 66 

A.1 CHANGES TO THE XCCDF XML NAMESPACE ........................................................................................................ 66 
A.2 CONVERSION OF IDENTIFIERS ............................................................................................................................. 66 
A.3 CONVERSION OF <XCCDF:SUB> ELEMENTS ........................................................................................................... 66 
A.4 PROPERTIES REMOVED OR DEPRECATED SINCE XCCDF 1.1.4 ................................................................................. 67 

APPENDIX B— CHANGE LOG ............................................................................................................................ 68 

 
 
Tables 

TABLE 1: CONVENTIONAL XML MAPPINGS ............................................................................................................ 1 

TABLE 2: RECOMMENDED CLASS VALUES .............................................................................................................. 9 

TABLE 3: ELEMENT IDENTIFIER FORMAT CONVENTIONS ...................................................................................... 10 

TABLE 4: <XCCDF:BENCHMARK> ELEMENT PROPERTIES ...................................................................................... 16 

TABLE 5: ITEM ELEMENT PROPERTIES .................................................................................................................. 18 

TABLE 6: PROPERTIES SPECIFIC TO <XCCDF:GROUP> AND <XCCDF:RULE> ELEMENTS .......................................... 20 

TABLE 7: <XCCDF:WARNING> ELEMENT @CATEGORY ATTRIBUTE VALUES .......................................................... 21 

TABLE 8: <XCCDF:GROUP> ELEMENT PROPERTIES ............................................................................................... 21 

TABLE 9: <XCCDF:RULE> ELEMENT PROPERTIES ................................................................................................... 23 

TABLE 10: ASSIGNED VALUES FOR THE @SYSTEM ATTRIBUTE OF AN <XCCDF:IDENT> ELEMENT ......................... 24 

TABLE 11: <XCCDF:CHECK> ELEMENT PROPERTIES ............................................................................................... 25 

TABLE 12: TRUTH TABLE FOR AND ....................................................................................................................... 27 

TABLE 13: TRUTH TABLE FOR OR .......................................................................................................................... 27 

TABLE 14: TRUTH TABLE FOR NEGATION ............................................................................................................. 27 

TABLE 15: POSSIBLE PROPERTIES FOR <XCCDF:FIXTEXT> ELEMENT ...................................................................... 28 

TABLE 16: POSSIBLE PROPERTIES FOR <XCCDF:FIX> ELEMENT ............................................................................. 29 



SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.2 

 

 vii 

TABLE 17: PREDEFINED VALUES FOR @SYSTEM ATTRIBUTE OF <XCCDF:FIX> ELEMENT ....................................... 30 

TABLE 18: <XCCDF:VALUE> ELEMENT PROPERTIES ............................................................................................... 31 

TABLE 19: POSSIBLE PROPERTIES FOR <XCCDF:CHOICES> ELEMENT ..................................................................... 32 

TABLE 20: PERMITTED OPERATORS BY VALUE TYPE ............................................................................................. 33 

TABLE 21: <XCCDF:PROFILE> ELEMENT PROPERTIES ............................................................................................ 35 

TABLE 22: SELECTORS .......................................................................................................................................... 36 

TABLE 23: <XCCDF:TESTRESULT> ELEMENT PROPERTIES ...................................................................................... 39 

TABLE 24: PREDEFINED @NAME ATTRIBUTE VALUES FOR <XCCDF:FACT> ELEMENTS .......................................... 41 

TABLE 25: <XCCDF:RULE-RESULT> ELEMENT PROPERTIES .................................................................................... 42 

TABLE 26: POSSIBLE RESULTS FOR A SINGLE TEST ................................................................................................ 43 

TABLE 27: <XCCDF:OVERRIDE> ELEMENT PROPERTIES ......................................................................................... 44 

TABLE 28: <XCCDF:TAILORING-FILE> ELEMENT PROPERTIES ................................................................................ 45 

TABLE 29: <XCCDF:TAILORING> ELEMENT PROPERTIES ........................................................................................ 46 

TABLE 30: PROFILE SHADOWING BEHAVIOR ........................................................................................................ 47 

TABLE 31: TAILORING ACTIONS AND PROFILE SELECTORS ................................................................................... 47 

TABLE 32: LOADING PROCESSING SEQUENCE SUB-STEPS ..................................................................................... 48 

TABLE 33: INHERITANCE PROCESSING MODEL ..................................................................................................... 50 

TABLE 34: BENCHMARK PROCESSING ALGORITHM SUB-STEPS ............................................................................ 51 

TABLE 35: ITEM PROCESSING ALGORITHM SUB-STEPS ......................................................................................... 52 

TABLE 36: PROFILE SELECTOR EXAMPLE: INITIAL CONFIGURATION ..................................................................... 56 

TABLE 37: PROFILE SELECTOR EXAMPLE: INITIAL BENCHMARK STATE ................................................................. 56 

TABLE 38: PROFILE SELECTOR EXAMPLE: FINAL BENCHMARK STATE.................................................................... 58 

TABLE 39: CHECK PROCESSING ALGORITHM SUB-STEPS ...................................................................................... 59 

TABLE 40: DEFAULT MODEL ALGORITHM SUB-STEPS ........................................................................................... 64 

TABLE 41: FLAT MODEL ALGORITHM SUB-STEPS .................................................................................................. 65 

TABLE 42: ALTERNATIVE OPERATIONS FOR REMOVED AND DEPRECATED XCCDF 1.1.4 CONSTRUCTS ................. 67 

TABLE 43: MAPPING PREVIOUS RELEASE SECTIONS TO THIS RELEASE .................................................................. 69 

 
Figures 

FIGURE 1: TYPICAL STRUCTURE OF A BENCHMARK .............................................................................................. 15 

FIGURE 2: CHECK PROCESSING FLOWCHART (WHEN THE CHECK’S PARENT IS AN <XCCDF:RULE>) ....................... 60 

FIGURE 3: WORKFLOW FOR ASSESSING BENCHMARK COMPLIANCE.................................................................... 63 

 
 
 

file:///C:/Users/karen/Desktop/NIST%20Files/XCCDF/NISTIR-7275r4.doc%23_Toc305051272


SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.2 

 

 1  

1. Introduction 

1.1 Purpose and Scope 

This report defines the specification for the Extensible Configuration Checklist Description Format 

(XCCDF) version 1.2. The report also defines and explains the requirements that XCCDF 1.2 documents 

and products (i.e., software) must meet to claim conformance with the specification. This report only 

applies to XCCDF version 1.2. All other versions are outside the scope of this report. 

1.2 Document Structure 

The remainder of this report is composed of the following sections and appendices: 

 Section 2 provides a list of normative references for the report. 

 Section 3 defines selected terms and abbreviations used in the report. 

 Section 4 provides the high-level requirements for claiming conformance with the XCCDF 

version 1.2 specification. 

 Section 5 gives an overview of XCCDF and its capabilities. 

 Section 6 provides an introduction to the XCCDF data model and details additional requirements 

and recommendations for XCCDF’s use. 

 Section 7 discusses XCCDF processing requirements and recommendations. 

 Appendix A explains how to convert XCCDF 1.1.4-specific properties to their XCCDF 1.2 

counterparts. 

 Appendix B provides a change log that documents significant changes to released drafts of this 

specification. This includes a section-by-section mapping of how the document was reorganized 

from the previous drafts to this draft. Readers who are familiar with any previous XCCDF 

versions may find it helpful to review Appendix B first before the rest of the document.  

1.3 Document Conventions 

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, 

“SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be 

interpreted as described in Request for Comment (RFC) 2119 [RFC2119]. 

Namespace prefixes used in this specification are listed in Table 1. 

Table 1: Conventional XML Mappings 

Prefix Namespace Schema 

cpe2 http://cpe.mitre.org/language/2.0 Common Platform Enumeration (CPE) 2.3 
Applicability Language 

cpe2-dict http://cpe.mitre.org/dictionary/2.0  CPE 2.3 Dictionary 

dc http://purl.org/dc/elements/1.1/  Simple Dublin Core elements 

dsig  http://www.w3.org/2000/09/xmldsig#  Interoperable XML digital signatures  

xccdf http://checklists.nist.gov/xccdf/1.2 XCCDF policy documents 

xml http://www.w3.org/XML/1998/namespace  Common XML attributes 

xsd http://www.w3.org/2001/XMLSchema XML Schema 

xsi http://www.w3.org/2001/XMLSchema-Instance XML Schema Instance 



SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.2 

 

 2  

2. Normative References 

The following documents, in whole or in part, are normatively referenced in this document and are 

indispensable for its application. For dated references, only the edition cited applies. For undated 

references, the latest edition of the referenced document (including any amendments) applies. 

 

[DCES], DCMI (Dublin Core Metadata Initiative), Dublin Core Metadata Element Set, Version 1.1, 

October 2010, available at <http://dublincore.org/documents/dces/> 

[DCXML], DCMI, Guidelines for Implementing Dublin Core in XML, April 2003, available at 

<http://dublincore.org/documents/dc-xml-guidelines/> 

[ILSR], IANA, IANA Language Subtag Registry (ILSR), available at 

<http://www.iana.org/assignments/language-subtag-registry> 

[IR7693], NIST, NIST IR 7693, Specification for Asset Identification 1.1, June 2011, available at 

<http://csrc.nist.gov/publications/PubsNISTIRs.html>  

[IR7695], NIST, NIST IR 7695, Common Platform Enumeration: Naming Specification Version 2.3, 

August 2011, available at <http://csrc.nist.gov/publications/PubsNISTIRs.html>  

[IR7698], NIST, NIST IR 7698, Common Platform Enumeration: Applicability Language Specification 

Version 2.3, August 2011, available at <http://csrc.nist.gov/publications/PubsNISTIRs.html>  

[PCRE], Perl Compatible Regular Expressions (PCRE), available at <http://www.pcre.org>  

[RFC2119], IETF, RFC 2119, Key words for use in RFCs to Indicate Requirement Levels, March 1997, 

available at <http://www.ietf.org/rfc/rfc2119.txt>  

[RFC5646], IETF, RFC 5646, Tags for Identifying Languages, September 2009, available at 

<http://www.ietf.org/rfc/rfc5646.txt> 

[UNICODE], Unicode Technical Recommendation No. 18, Unicode Regular Expressions, version 9, 

January 2004, available at <http://unicode.org/reports/tr18/>  

[XHTML], W3C (World Wide Web Consortium), XHTML Basic, December 2000, available at 

<http://www.w3.org/TR/2000/REC-xhtml-basic-20001219/>  

[XINCLUDE], W3C, XML Inclusions (XInclude) Version 1.0 (Second Edition), November 2006, 

available at <http://www.w3.org/TR/xinclude/>  

[XMLDSIG], W3C, XML Signature Syntax and Processing (Second Edition), June 2008, available at 

<http://www.w3.org/TR/xmldsig-core/> 

[XMLNAME], W3C, Namespaces in XML 1.0 (Third Edition), December 2009, available at 

<http://www.w3.org/TR/REC-xml-names/> 

[XMLSCHEMA], W3C, XML Schema Part 2: Datatypes Second Edition, October 2004, available at 

<http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/> 

[XPATH], W3C, XML Path Language (XPath) Version 1.0, November 1999, available at 

<http://www.w3.org/TR/xpath/>  

 

http://dublincore.org/documents/dces/
http://dublincore.org/documents/dc-xml-guidelines/
http://www.iana.org/assignments/language-subtag-registry
http://csrc.nist.gov/publications/PubsNISTIRs.html
http://csrc.nist.gov/publications/PubsNISTIRs.html
http://csrc.nist.gov/publications/PubsNISTIRs.html
http://www.pcre.org/
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc5646.txt
http://unicode.org/reports/tr18/
http://www.w3.org/TR/2000/REC-xhtml-basic-20001219/
http://www.w3.org/TR/xinclude/
http://www.w3.org/TR/xmldsig-core/
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/
http://www.w3.org/TR/xpath/


SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.2 

 

 3  

3. Terms, Definitions, and Abbreviations 

For the purposes of this document, the following terms, definitions, and abbreviations apply. 

3.1 XCCDF Terminology 

Benchmark: The root node of an XCCDF benchmark document; may also be the root node of an 

XCCDF results document (the results of evaluating the XCCDF benchmark document). 

Benchmark Consumer: A product that accepts an existing XCCDF benchmark document, processes it, 

and produces an XCCDF results document. 

Benchmark Producer: A product that generates XCCDF benchmark documents. 

Checklist: An organized collection of rules about a particular kind of system or platform. 

Group: An item that can hold other items; allows an author to collect related items into a common 

structure and provide descriptive text and references about them. 

Item: A named constituent of a benchmark. The three types of items are groups, rules, and values. 

Profile: A named tailoring of a benchmark. 

Rule: An element that holds check references and may also hold remediation information. 

Tailoring: An element that specifies profiles to modify the behavior of a benchmark; the top-level 

element of a tailoring document. 

TestResult: The container for XCCDF results. May be the root node of an XCCDF results document. 

Value: A named data value that can be substituted into other items’ properties or into checks. 

3.2 Acronyms and Abbreviations 

CCE Common Configuration Enumeration 

CPE Common Platform Enumeration 

CVE Common Vulnerabilities and Exposures 

DCMI Dublin Core Metadata Initiative 

DNS Domain Name System 

IANA Internet Assigned Numbers Authority 

IR Interagency Report 

NIST  National Institute of Standards and Technology 

OCIL Open Checklist Interactive Language 

OVAL Open Vulnerability and Assessment Language 

PCRE Perl Compatible Regular Expression 

RFC Request for Comments 

SCAP Security Content Automation Protocol 

SP Special Publication 

W3C World Wide Web Consortium 

XCCDF Extensible Configuration Checklist Description Format 

XHTML Extensible Hypertext Markup Language 

XML Extensible Markup Language 

 



SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.2 

 

 4  

4. Conformance 

Products and organizations may want to claim conformance with this specification for a variety of 

reasons. For example, a software vendor may want to assert that its product generates and/or processes 

XCCDF benchmark documents properly. Another example is a policy mandating that an organization use 

XCCDF for documenting and executing its security configuration checklists. 

This section provides the high-level requirements that a product or benchmark document MUST meet for 

conformance with this specification. Most of the requirements listed in this section reference other 

sections in the report that fully define the requirements. 

Other specifications that use XCCDF MAY define additional requirements and recommendations for 

XCCDF’s use. Such requirements and recommendations are outside the scope of this publication. 

4.1 Product Conformance 

There are two types of XCCDF products: benchmark producers and benchmark consumers. Benchmark 

producers are products that generate XCCDF benchmark documents, while benchmark consumers are 

products that accept an existing XCCDF benchmark document, process it, and produce an XCCDF results 

document. Products claiming conformance with this specification SHALL adhere to the following 

requirements: 

1. For benchmark producers, generate well-formed XCCDF benchmark documents. This includes 

following the benchmark document requirements specified in Section 4.2 and all of the pertinent 

processes defined in Sections 6 and 7. 

 

2. For benchmark consumers, consume and process well-formed XCCDF benchmark documents, 

and generate well-formed XCCDF results documents. This includes following all of the pertinent 

processes defined in Sections 6 and 7. 

 

3. Make an explicit claim of conformance to this specification in any documentation provided to end 

users. 

4.2 Benchmark Document Conformance 

XCCDF benchmark documents claiming conformance with this specification SHALL follow these 

requirements: 

1. Adhere to the official XCCDF schema as explained in Section 6. 

 

2. Adhere to the syntax, structural, and other XCCDF benchmark document requirements defined in 

Sections 6 and 7. 

 



SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.2 

 

 5  

5. XCCDF Overview 

5.1 Introduction 

XCCDF was created to document technical and non-technical security checklists using a standardized 

format. The general objective is to allow security analysts and IT experts to create effective, interoperable 

automated checklists, and to support the use of these checklists with a wide variety of tools. A checklist is 

an organized collection of rules about a particular kind of system or platform. Automation is necessary for 

consistent and rapid verification of system security because of the sheer number of things to check and 

the number of hosts within an organization that need to be assessed (often many thousands).  

 

XCCDF enables easier, more uniform creation of security checklists, which in turn helps to improve 

system security by more consistent and accurate application of sound security practices. Adoption of 

XCCDF lets security professionals, security tool vendors, and system auditors exchange information 

more quickly and precisely, and also permits greater automation of security testing and configuration 

assessment. Additional capabilities provided by XCCDF include the following: 

 Ensure compliance to multiple policies (systems subject to the Federal Information Security 

Management Act [FISMA], Security Technical Implementation Guide [STIG], Health Insurance 

Portability and Accountability Act [HIPAA], etc.) 

 Permit faster, more cooperative, and more automated definition of security rules, procedures, 

guidance documents, alerts, advisories, and remediation measures 

 Permit fast, uniform, manageable administration of security checks and audits 

 Permit composition of security rules and tests from different community groups and vendors 

 Facilitate scoring, reporting, and tracking of security status and checklist conformance for 

systems 

The XCCDF specification, which is vendor-neutral, is suited for a wide variety of checklist applications. 

XCCDF has an open, standardized format, amenable to generation by and editing with a variety of tools. 

In addition, because it is expressed using XML, an XCCDF document is embeddable inside other 

documents. XCCDF also includes provisions for incorporating other data formats, and it is extensible to 

include new functionality, features, and data stores without hindering the functionality of existing 

XCCDF tools. 

Since XCCDF’s creation, various commercial, government, and community developers have created tools 

that support XCCDF, allowing a single XCCDF checklist to be used by many organizations and many 

tools. These tools read an XCCDF checklist and follow it to perform the necessary checks and ask the 

necessary questions to measure conformance with the checklist and generate corresponding reports. 

A common use case for an XCCDF checklist is normalizing security configuration content through 

automated tools. Such tools accept one or more XCCDF checklists along with supporting system test 

definitions, and determine whether the specified rules are satisfied by a target system. The XCCDF 

checklist supports generation of a report, including a weighted score. XCCDF checklists can also be used 

to test whether or not a system is vulnerable to a particular kind of attack. For this purpose, the XCCDF 

checklist plays the role of a vulnerability alert, but with the ability to describe the problem, drive 

automated verification of its presence, and convey recommendations for corrective actions. 



SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.2 

 

 6  

The scenarios below illustrate some uses of XCCDF security checklists and tools.  

 Scenario 1 – An industry consortium, in conjunction with a product vendor, wants to produce a 

security checklist for an application server. The core security settings are the same for all OS 

platforms on which the server runs, but a few settings are OS-specific. The consortium crafts one 

checklist for the core settings and writes several OS-specific ones that supplement the core 

settings. Users download the core checklist and the OS-specific checklists that apply to their 

installations, and then run an assessment tool to score their compliance with the checklists. 

 Scenario 2 – An academic group produces a checklist for secure configuration of a particular 

server operating system version. A government agency issues a set of rules extending the 

academic checklist to meet more stringent user authorization criteria imposed by statute. A 

medical enterprise downloads both the academic checklist and the government extension, tailors 

them to fit their internal security policy, and uses them for an enterprise-wide audit using a 

commercial security audit tool. Reports outputted by the tool include remediation measures which 

the IT staff can use to bring their systems into full internal policy compliance. (Note that 

remediation processes should be carefully planned and implemented.) 

These scenarios demonstrate some of XCCDF’s range of capabilities. XCCDF can represent complex 

conditions and relationships about the systems to be assessed, and it can incorporate descriptive material 

and remediative measures. It is also designed to be modular; for example, XCCDF benchmarks acquire 

programmatically ascertainable information through lower-level check system languages. 

5.2 Checklist Structure and Tailoring 

The basic unit of structure for a checklist is a rule. A rule simply describes a state or condition which the 

target of the document should exhibit. A simple checklist might consist of a list of rules, but richer ones 

require additional structure. XCCDF allows checklist authors to impose organization within the checklist, 

such as putting related rules into named groups and designating the order for processing rules and groups.  

Checklist users can employ tailoring tools to customize a checklist’s rules for their local environment or 

policies. For example, an auditor might need to set the password policy requirement to be more stringent 

than the default recommendation. Another example is that an organization may have trouble applying 

particular settings because of legacy systems or conflicts with other software. In cases such as these, the 

checklist users may need to tailor the checklist. The following customization options are available: 

 Selectability – A tailoring action selects or deselects a rule or group of rules. For example, an 

entire group of rules that relate to physical security might not apply to a network scan, so that 

group could be deselected. In the case of NIST Special Publication (SP) 800-53, certain rules 

apply according to the impact rating of the system. For example, systems that have an impact 

rating of low might not have all of the same access control requirements as a system with a high 

impact rating, so the rules that are not applicable for the low system can be deselected. 

 Value Modification – A tailoring action substitutes a locally-significant value for a general value 

in an XCCDF variable (<xccdf:Value>). This locally-significant value then gets used 

wherever the variable is referenced. For example, at a site where all logs are sent to a single host, 

the address of that log server could be substituted into an audit configuration variable. Using the 

NIST SP 800-53 example, a system with a moderate impact rating might require a 12-character 

password, whereas a system with a low impact rating might only require an 8-character password. 

 Property Modification – A tailoring action modifies a property for an element not addressed by 

selectability or value modification. For example, an author could alter the relative weight of 

particular rules or groups of rules. 



SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.2 

 

 7  

XCCDF 1.2 supports the creation and use of tailoring documents, which define tailoring profiles available 

for use with a particular benchmark document. Having a tailoring document allows sets of checklist 

customizations to be recorded in a consistent manner. 

XCCDF allows checklists to include descriptive and interrogative text to help checklist users make 

tailoring decisions, even directing users through the process. Some combinations of rules within the same 

checklist might conflict or be mutually exclusive. To avert problems, the checklist author can identify 

particular tailoring choices as incompatible. Checklist authors can also designate the modes (e.g., Gold, 

Platinum, High Impact Rating, Level 1) under which a rule should be processed. Checklist authors should 

include the appropriate text in their checklists to aid in tailoring. 

Another important facet of customization is extension. XCCDF supports mechanisms for authors to 

extend (inherit from) existing rules, values, and groups, in addition to expressing rules, values, and groups 

in their entirety. For example, in XCCDF checklists, it is desirable to share descriptive material among 

several rules, and to allow a specialized rule to be created by extending a base rule. (Note that group 

extension has been deprecated in XCCDF 1.2. Use of group extension is strongly discouraged because it 

has known problems, such as those described in Section 7.2.2, and content that uses it is unlikely to be 

interoperable between XCCDF products.)  

5.3 Test Results 

Many organizations use several security products to determine the security of IT systems and their 

compliance to various policies. Unfortunately, if the outputs from these products are not standardized, 

costly customization and integration can be required for trending, aggregation, and reporting. Addressing 

this, XCCDF provides a standardized reporting format for storing the results of the rule checking 

subsystem. Security tools sometimes include only the results of the test or tests in the form of a pass/fail 

status. Other tools provide additional information (e.g., instead of simply indicating that more than one 

privileged account exists on a system, certain tools also provide the list of privileged accounts). The 

following information is basic to all XCCDF results: 

 The security guidance document or checklist used, along with any adaptations via customization 

or tailoring applied 

 Information about the target system to which the test was applied, including arbitrary 

identification and configuration information about the target system 

 The time interval of the test, and the time instant at which each individual rule was evaluated 

 One or more scores 

 References to lower-level details possibly stored in other output files. 

 



SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.2 

 

 8  

6. XCCDF Data Model 

6.1 Introduction 

The XCCDF data model and its XML representation are intended to be platform-independent and 

portable to foster broad adoption and sharing of rules. The fundamental data model for XCCDF consists 

of the following main element data types: 

 Benchmark. An XCCDF benchmark document holds an <xccdf:Benchmark> element, which 

acts as a container for other elements, including <xccdf:Group>, <xccdf:Rule>, 

<xccdf:Value>, <xccdf:Profile>, and <xccdf:TestResult> elements. 

 Item. An item is a named constituent of an <xccdf:Benchmark>. There are three types of 

items: 

o Group. An <xccdf:Group> holds other items. An <xccdf:Group> collects related 

<xccdf:Rule> and <xccdf:Value> elements into a common structure and can provide 

descriptive text and references about them. An <xccdf:Group> allows benchmark users to 

select and deselect related <xccdf:Rule> elements together; since a deselected 

<xccdf:Group> is not processed, none of its contained items are processed either. 

Selection of an <xccdf:Group> allows its children to be processed normally based on their 

individual selection states. 

o Rule. An <xccdf:Rule> element holds check references and can also hold remediation 

information. 

o Value. An <xccdf:Value> element is a named data value that can be substituted into other 

items’ properties or into checks. It can have an associated data type and metadata that express 

how the value should be used and how it can be tailored. 

 Profile. An <xccdf:Profile> element is a named tailoring of a benchmark using a collection 

of attributed references to <xccdf:Rule>, <xccdf:Group>, and <xccdf:Value> elements. 

It allows definition of named levels or baselines in a benchmark (see Section 5.2).  

 TestResult. An <xccdf:TestResult> element holds the results of performing a test or check 

against a single target device or system. An <xccdf:TestResult> element references 

<xccdf:Rule> and <xccdf:Value> elements and may also reference an 

<xccdf:Profile> element.  

 Tailoring. A tailoring document holds exactly one <xccdf:Tailoring> element, which 

contains <xccdf:Profile> elements to modify the behavior of an <xccdf:Benchmark>. 

The rest of this section explains the relationships between these main element data types and examines 

each of the types in more detail. Section 6.2 discusses general information that applies to most or all of 

the main element data types. Sections 6.3 through 6.7 cover <xccdf:Benchmark>, item 

(<xccdf:Group>, <xccdf:Rule>, <xccdf:Value>), <xccdf:Profile>, 

<xccdf:TestResult>, and <xccdf:Tailoring> elements, respectively. 



SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.2 

 

 9  

6.2 General XML Information 

6.2.1 XCCDF Namespace and XML Schema 

The namespace URI for this specification SHALL be “http://checklists.nist.gov/xccdf/1.2”. Applications 

that process XCCDF SHOULD use the namespace URI to decide whether or not they can process a given 

document. The XML representation of XCCDF is expressed as an XML schema at 

http://scap.nist.gov/specifications/xccdf/#resource-1.2. The XML schema implementation of XCCDF 

SHALL be the authoritative XML binding definition for XCCDF. 

6.2.2 Element and Attribute Formatting 

The structure of an XCCDF document supports transformation into HTML and various XML formats to 

promote portability and interoperability. The XCCDF language also allows for the inclusion of content 

that does not contribute directly to the technical content, such as an introduction, a rationale, warnings, 

and external references. XCCDF also provides mechanisms to document authors for formatting text, 

including images, and referencing other information resources (e.g., prose publications), but these 

mechanisms are separable from the text itself so they can be filtered out by applications that do not 

support or require them.  

Throughout the rest of this section, there are tables that show the possible properties of each main element 

in the XCCDF data model. In the tables, properties of type “identifier” MUST be strings obeying the 

definition of “NCName” from [XMLSCHEMA]. Properties of type “string” and “text” MUST NOT 

include XHTML formatting. Properties of type “HTML-enabled text” are string data that MAY include 

embedded formatting, presentation, and hyperlink structure; if present, these MUST be expressed using 

Extensible Hypertext Markup Language (XHTML) Basic tags [XHTML]. The core modules noted in 

[XHTML] and the Presentation module MAY be used for this.  

XHTML markup allows authors to specify how the content of certain fields SHOULD be displayed to a 

user. However, while this allows authors to specify every detail of a field's display, authors MAY use 

classifiers in these fields, using class attributes in <div> or <span> elements. These tell products the type 

of content contained within a text block and allow the products to display this content according to their 

own conventions. Authors may wish to do this so their content fits better with other automated formatting 

choices made by a product or a stylesheet, and also because some products may not support the complete 

range of HTML tags in their displays, thus causing some explicit formatting to be ignored. A list of 

recommended class values appears in Table 2. Authors MAY use class values not included in this list, and 

it is OPTIONAL for products to have special formatting for any of the listed classifiers. However, both 

authors and products SHOULD use these class designators when appropriate to provide more effective 

display of content. Use of these class attribute values SHALL be applicable wherever HTML content can 

be included in XCCDF documents. 

Table 2: Recommended Class Values 

Class Value Meaning 

license  Licensing and use information  

copyright  Copyright and ownership information  

tangent  A block of text that contains tangentially related information (possibly appropriate for inclusion as a 
sidebar or a pop-up)  

warning  Pitfalls or cautions relative to the surrounding text. High-level and general warnings SHOULD 
appear in designated warning fields, if available.  

critical  Content of critical importance to the user  

http://scap.nist.gov/specifications/xccdf/#resource-1.2


SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.2 

 

 10  

Class Value Meaning 

example  An example of some kind  

instructions  Special instructions to the user  

default  General information. Empty or absent class attributes also imply "default" appearance. This tag 
allows authors to explicitly indicate that text should appear in the default format.  

6.2.3 Element Identifiers 

The elements listed in Table 3 have special conventions around the format of their identifiers (@id 

attribute). Authors MUST follow these conventions because they make it easier to preserve the global 

uniqueness of the resulting identifiers. 

Table 3: Element Identifier Format Conventions 

Element Format Convention 

Benchmark xccdf_namespace_benchmark_name 

Profile xccdf_namespace_profile_name 

Group xccdf_namespace_group_name 

Rule xccdf_namespace_rule_name 

Value xccdf_namespace_value_name 

TestResult xccdf_namespace_testresult_name 

Tailoring xccdf_namespace_tailoring_name 

 

In Table 3, namespace contains a valid reverse-DNS style string (limited to letters, numbers, periods, and 

the hyphen character) that is associated with the content author. Examples include "com.acme.finance" 

and "gov.tla". These namespace strings MAY have any number of parts, and benchmark consumers 

processing them SHALL treat them as case-insensitive. (That is, com.ABC is considered identical to 

com.abc.) This association with the content author is solely to ensure that different content authors will 

not use the same namespace value, as this could lead to identifier collisions. Readers should not 

automatically infer any special authority or trust of the content based on the namespace since reuse of the 

element or changes to referenced content may not align with the author's original intent. The name 

component in the format conventions MAY be any NCName-compliant string [XMLSCHEMA]. 

Identifier fields other than those noted in Table 3 have no additional formatting conventions beyond 

compliance with the NCName data type.  

See the example <xccdf:Profile> in Section 6.5.1 for several examples of the element identifier 

format conventions. 

6.2.4 <xccdf:metadata> Element 

XCCDF supports inclusion of metadata about a document, including title, name of author(s), organization 

providing the guidance, version number, release date, update URL, and a description. This is particularly 

useful for facilitating the discovery and retrieval of XCCDF checklists from public repositories.  

When used, the <xccdf:metadata> element SHALL contain document metadata expressed in XML. 

The metadata element can appear one or more times as a child of the <xccdf:Benchmark>, 

<xccdf:Rule>, <xccdf:Group>, <xccdf:Value>, <xccdf:Profile>, 

<xccdf:TestResult>, <xccdf:rule-result>, and <xccdf:Tailoring> elements. The 

<xccdf:Benchmark> element SHOULD contain metadata information formatted using the Dublin 



SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.2 

 

 11  

Core Metadata Initiative (DCMI) Simple DC Element specification, as described in [DCES] and 

[DCXML]. Benchmark consumers SHOULD be prepared to process Dublin Core metadata in the 

<xccdf:metadata> element. An example of the Dublin Core format is shown below.  

<xccdf:metadata xmlns:dc="http://purl.org/dc/elements/1.1/"> 

    <dc:title>Security Benchmark for Ethernet Hubs</dc:title> 

    <dc:creator>James Smith</dc:creator> 

    <dc:publisher>Center for Internet Security</dc:publisher> 

    <dc:subject>network security for layer 2 devices</dc:subject> 

</xccdf:metadata> 

Elements that support the <xccdf:metadata> element MAY use any desired metadata format; for 

<xccdf:Benchmark>, this is in addition to the Dublin Core recommendations already mentioned. 

Any XML metadata structures, including ad hoc structures, MAY be included in an 

<xccdf:metadata> element. Because any structures can appear in this field, authors SHOULD tag 

metadata with the xmlns prefix [XMLNAME] and, if available, the @xsi:schemaLocation attribute 

in order to identify the metadata structure utilized. Metadata SHOULD comply with existing commercial 

or government metadata specifications to allow benchmarks to be discovered and indexed. 

Metadata is a powerful feature for authors. However, XCCDF puts some limits on the use of metadata:  

 Metadata SHOULD NOT replace the functionality of existing fields within XCCDF. If the 

information matches the common use of some other XCCDF field, the information MUST appear 

in that XCCDF field. It MAY also appear in the <xccdf:metadata> element.  

 Metadata SHALL NOT change the processing model as outlined in Section 7. Benchmark 

consumer products SHALL perform XCCDF assessments in the same way regardless of the 

presence of metadata. Metadata MAY still be used to support assessment features that are outside 

the purview of XCCDF—for example, to hold post-processing instructions to be performed on 

the completed XCCDF results or to display additional information to the user before or during the 

assessment.  

 Metadata SHOULD NOT alter the character content of the XCCDF properties used to generate 

output during document generation. Contents of the <xccdf:metadata> element MAY be 

added to the output above and beyond the XCCDF properties. Metadata MAY contain 

instructions that cause different stylistic conventions to be adopted in the conversion of an 

XCCDF document to prose. 

6.2.5 Platform Names 

The Common Platform Enumeration (CPE) specification allows a specific hardware or software platform 

to be identified by a unique name. CPE names can express only single platforms (e.g., 

"cpe:2.3:o:microsoft:windows_xp:*:gold:professional:*:*:*:*:*" for Microsoft Windows XP Professional 

Edition). CPE applicability language statements can express complex logical constructions of CPE 

names. 

<xccdf:Benchmark>, <xccdf:Profile>, <xccdf:Rule>, and <xccdf:Group> elements 

may be qualified by applicable platform using the <xccdf:platform> element. 

<xccdf:TestResult> elements may also include <xccdf:platform> elements. The 

<xccdf:platform> element’s @idref attribute MAY hold a reference to either a CPE name or the 

@id attribute of a CPE applicability language expression that SHALL be defined as a child of the 



SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.2 

 

 12  

<xccdf:Benchmark> using a <cpe2:platform-specification> element (see Table 4). (The 

syntax for referring to a local CPE applicability language identifier SHOULD be a “#” character before 

the identifier, such as “#cpeid1”.)  

Within XCCDF documents, all CPE names SHALL comply with the CPE 2.3 Naming specification 

[IR7695], and all CPE applicability language expressions SHALL comply with the CPE 2.3 Applicability 

Language specification [IR7698]. CPE 2.0 names MAY be used for backwards compatibility, but their 

use has been deprecated for XCCDF 1.2. All CPE 2.3 names and applicability language expressions in 

XCCDF documents SHOULD use formatted string bindings but MAY use URI bindings instead, both as 

defined in [IR7695].  

Here is an example of a <cpe2:platform-specification> element: 

<cpe2:platform-specification> 

  <cpe2:platform id="xp_and_acrobat_9.0"> 

    <cpe2:logical-test operator="AND" negate="false"> 

      <cpe2:fact-ref  

        name="cpe:2.3:o:microsoft:windows_xp:*:*:*:*:*:*:*:*"/> 

      <cpe2:fact-ref  

        name="cpe:2.3:a:adobe:acrobat:9.0:*:*:*:*:*:*:*"/> 

    </cpe2:logical-test> 

  </cpe2:platform> 

</cpe2:platform-specification> 

<xccdf:platform idref="#xp_and_acrobat_9.0"/> 

If an <xccdf:Profile>, <xccdf:Rule>, or <xccdf:Group> does not possess any 

<xccdf:platform> elements, then it SHALL apply to the same set of platforms as its nearest 

enclosing ancestor <xccdf:Group> or <xccdf:Benchmark>. If the enclosing ancestor has no 

<xccdf:platform> element, then consult the next enclosing ancestor, repeating until either an 

ancestor has an <xccdf:platform> element or the <xccdf:Benchmark> element is reached. If no 

ancestor, including the <xccdf:Benchmark> element, possesses any <xccdf:platform> 

elements, then the <xccdf:Profile>, <xccdf:Rule>, or <xccdf:Group> SHALL nominally 

apply to all platforms.  

6.2.6 <xccdf:reference> Element 

The <xccdf:reference> element provides a reference to a document or resource where the user can 

learn more about the subject of the parent element. It may be included within <xccdf:Benchmark>, 

<xccdf:Rule>, <xccdf:Group>, <xccdf:Value>, and <xccdf:Profile> elements. When 

used, it SHALL have either a simple string value or a value consisting of simple Dublin Core elements as 

described in [DCXML]. It MAY also have an @href attribute that gives a URL for the referenced 

resource. References SHOULD be given as Dublin Core descriptions; a bare string MAY be used for 

simplicity. If a bare string appears, then it is taken to be the string content for a <dc:title> element. 

For more information, consult [DCES]. Multiple <xccdf:reference> elements MAY appear; a 

benchmark consumer product MAY concatenate them or put them into a reference list, and MAY choose 

to number them. 



SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.2 

 

 13  

6.2.7 <xccdf:signature> Element 

XCCDF supports a digital signature mechanism whereby XCCDF document users can validate the 

integrity, origin, and authenticity of documents. XCCDF provides a means to hold such signatures and a 

uniform method for applying and validating them [XMLDSIG]. 

The <xccdf:signature> element MAY hold an enveloped digital signature asserting authorship and 

allowing verification of the integrity of associated data (e.g., its parent element, other documents, portions 

of other documents). The signature SHALL apply only after inclusion (i.e., XInclude) processing. The 

<xccdf:signature> element is OPTIONAL, and it MAY appear as a child of the 

<xccdf:Benchmark>, <xccdf:Rule>, <xccdf:Group>, <xccdf:Value>, 

<xccdf:Profile>, <xccdf:TestResult>, or <xccdf:Tailoring> elements. 

Any digital signature format employed for XCCDF MUST be capable of identifying the signer, storing all 

information needed to verify the signature (usually a certificate or certificate chain), and detecting any 

change to the signed content. XCCDF products that support signatures MUST support the W3C XML-

Signature standard enveloped signatures, as defined in [XMLDSIG]. 

If multiple signatures are needed in an XCCDF document, at most one of them MAY be enveloped; all 

others MUST be detached [XMLDSIG Section 2].  

The single child element of the <xccdf:signature> element SHOULD be <dsig:Signature> 

and that <dsig:Signature> SHOULD contain one or more <dsig:Reference> elements 

indicating each XML element to be included in the signature. The <dsig:Reference> URI SHOULD 

be a relative URI to the @Id attribute value of the enclosing object (prefixed by “#”). For example, if the 

Id=“abc”, then the <Reference> URI would be “#abc”. 

6.2.8 Status Tracking 

XCCDF provides two elements for status tracking: <xccdf:status> and <xccdf:dc-status>. 

Both elements are available for <xccdf:Benchmark>, <xccdf:Rule>, <xccdf:Group>, 

<xccdf:Value>, <xccdf:Profile>, and <xccdf:Tailoring> elements. 

The intent of the <xccdf:status> element is to record the maturity or consensus level for its parent 

element. Permissible values are “incomplete” (under initial development), “draft” (released in draft state), 

“interim” (revised and in the process of being finalized), “accepted” (released as final), and “deprecated” 

(no longer needed). If there is more than one <xccdf:status> element for a single parent element, 

then every instance of the <xccdf:status> element MUST have a date attribute, and the 

<xccdf:status> element with the latest date SHALL be considered the latest status. 

The <xccdf:dc-status> element holds additional status information using the Dublin Core format, 

expressed as elements of the DCMI Simple DC Element specification, as described in [DCES] and 

[DCXML]. 

6.2.9 Text Substitution 

XCCDF provides capabilities to perform substitution within certain properties of an 

<xccdf:Benchmark>. 



SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.2 

 

 14  

An <xccdf:plain-text> element is a reusable text block for reference by the <xccdf:sub> 

element. This allows text to be defined once and then reused multiple times. Each <xccdf:plain-

text> element MUST have a unique NCName identifier. The identifiers for <xccdf:plain-text> 

MUST NOT collide with item identifiers within the <xccdf:Benchmark>. 

The <xccdf:sub> element represents a reference to a parameter value that may be set during tailoring. 

The <xccdf:sub> element is supported by several elements, which are noted as they are defined 

throughout the rest of this section. The <xccdf:sub> element SHALL NOT have any content. It 

MUST have a single @idref attribute, which MUST equal the @id attribute of an <xccdf:Value> 

element or an <xccdf:plain-text> element. During document generation, each instance of the 

<xccdf:sub> element will be replaced by the text value of the referenced element’s contents. If an 

<xccdf:Value> element is referenced, the <xccdf:sub> element MAY have a @use attribute that 

indicates whether the <xccdf:Value> element's title or value should replace the <xccdf:sub> 

element. If an <xccdf:plain-text> element is referenced, the @use attribute is ignored and the 

body of the <xccdf:plain-text> element is always used in the substitution. 

See Section 7.2.3.6.3 for additional requirements related to substitution processing. 

6.2.10 @xml:lang Attribute 

Some textual elements of XCCDF, such as titles and descriptions, support the @xml:lang attribute to 

denote the language they use.
1
 Elements that have an @xml:lang attribute may appear multiple times 

within a single parent element to support multiple languages. If there are multiple instances of such a 

textual element within a single parent element, each instance SHOULD have a value for its @xml:lang 

attribute. Each value SHOULD specify the natural language locale for which the instance is written (e.g., 

“en” for English, “fr” for French). Values SHOULD be valid language tags as defined by [RFC5646]. 

Although any valid language tag MAY be used, only tags containing language codes (with or without 

region codes) SHOULD be used. All language and region codes used SHOULD be in the Internet 

Assigned Numbers Authority (IANA) Language Subtag Registry [ILSR]. An example of using the 

@xml:lang attribute is shown below. 

<xccdf:Value id="xccdf_org.example_value_web-server-port" type="number"> 

   <xccdf:title xml:lang="en">Web Server Port</xccdf:title> 

   <xccdf:title xml:lang="fr">Le Port Du Web Serveur</xccdf:title> 

   <xccdf:question xml:lang="en"> 

      What is the web server’s TCP port?  

   </xccdf:question> 

   <xccdf:question xml:lang="fr"> 

      Quel est le port du TCP du web serveur?  

   </xccdf:question> 

   <xccdf:value>80</xccdf:value> 

</xccdf:Value> 

 

If an element other than <xccdf:Benchmark> that supports the @xml:lang attribute omits it, the 

@xml:lang attribute of the nearest ancestor element that has the @xml:lang attribute SHALL be 

consulted. 

 

                                                      
1  See http://www.w3.org/TR/xml/#sec-lang-tag for additional information on the @xml:lang attribute. 

http://www.w3.org/TR/xml/#sec-lang-tag


SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.2 

 

 15  

6.3 <xccdf:Benchmark> 

6.3.1 Basics 

Each XCCDF benchmark document SHALL consist of a single root <xccdf:Benchmark> element, 

which encloses the entire benchmark. The example below illustrates the outermost structure of an 

XCCDF XML document. 

<?xml version="1.0" ?> 

<xccdf:Benchmark id="xccdf_org.example_benchmark_example1" xml:lang="en"  

Id="toSign" 

      xmlns:htm="http://www.w3.org/1999/xhtml"  

      xmlns:xccdf="http://checklists.nist.gov/xccdf/1.2" 

      xmlns:cpe2-dict="http://cpe.mitre.org/dictionary/2.0"/> 

  <xccdf:status date="2010-06-01">draft</xccdf:status> 

  <xccdf:title>Example Benchmark File</xccdf:title> 

  <xccdf:description> 

     A <htm:b>Small</htm:b> Example 

  </xccdf:description> 

  <xccdf:platform idref="cpe:2.3:o:cisco:ios:12.0:*:*:*:*:*:*:*"/> 

  <xccdf:version>0.2</xccdf:version> 

  <xccdf:reference href="http://www.ietf.org/rfc/rfc822.txt"> 

      Standard for the Format of ARPA Internet Text Messages 

  </xccdf:reference> 

</xccdf:Benchmark> 

 

Figure 1 illustrates a typical internal structure for a Benchmark.  

Benchmark

Group (d)

Value (b)

Group (e) Rule (h)

Rule (i)
Rule (f) Rule (g)

Profile Profile

Value (a) Value (c)

Group (j)
Rule (l)Value (k) Rule (m)

 

Figure 1: Typical Structure of a Benchmark 

The possible inheritance relations between Rule and Value instances are constrained by the tree structure 

of the Benchmark. All extension relationships MUST be resolved before the Benchmark can be applied. 

An item MAY only extend another item of the same type that is visible from its scope. In other words, an 



SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.2 

 

 16  

item Y MAY extend a base item X, as long as they are the same type and one of the following visibility 

conditions holds: 

 X is a direct child of the Benchmark. 

 X is a direct child of a Group which is also an ancestor
2
 of Y. 

 X is a direct child of a Group which is extended by any ancestor of Y. 

For example, in the Benchmark structure shown in Figure 1, it would be legal for Rule (g) to extend Rule 

(f) or extend Rule (h). It would not be legal for Rule (i) to extend Rule (m), because (m) is not visible 

from the scope of (i). It would not be legal for Rule (l) to extend Value (k), because they are not of the 

same type. 

The ability for an item to be extended gives benchmark authors the ability to create variations or 

specialized versions of items without making copies. An extending item can inherit properties from the 

extended (base item) and sometimes can override properties with new values if needed; however, there 

are several restrictions on these inheritance capabilities. For example, some properties have different 

inheritance behaviors depending on how their @override attribute is set. Also, group extension has 

been deprecated as of XCCDF 1.2 (see Table 42) and authors are strongly discouraged from using it due 

to the risks it poses to interoperability. See Section 7.2.2 for more information on inheritance.  

Circular dependencies caused by extension MUST NOT be defined. 

6.3.2 Properties 

Table 4 describes the <xccdf:Benchmark> element’s properties.  

In this table and in similar tables throughout the rest of the section, the Count column indicates how many 

times each property SHALL be permitted within a single instance of the parent element. Each Count is 

expressed as either a single value or a range of values. If the Count entry for a property includes the value 

0, the property is OPTIONAL, otherwise the property is REQUIRED. If the Count entry for a property 

includes the value n, the property MAY be used more than one time, with no upper bound. Here are some 

examples: 

 1: the property shall be used once 

 1-n: the property shall be used at least once and may be used more than once 

 0-1: the property is optional and may be used at most once 

 0-n: the property is optional and may be used more than once 

Table 4: <xccdf:Benchmark> Element Properties 

Property Type Count Description 

status 
(element) 

special 1-n Status of the benchmark (REQUIRED) and date at which it attained that 
status (OPTIONAL). The status SHOULD indicate the level of maturity or 
consensus for the benchmark. See Section 6.2.8. 

dc-status 
(element) 

special 0-n Holds additional status information using the Dublin Core format. See Section 
6.2.8. 

                                                      
2  See http://www.w3.org/TR/xpath/#axes for the XPath definition of the term “ancestor”.  

http://www.w3.org/TR/xpath/#axes


SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.2 

 

 17  

Property Type Count Description 

title 
(element) 

string 0-n Title of the benchmark; a benchmark SHOULD have a title. It MAY have an 

@xml:lang attribute (see Section 6.2.10) and/or an @override attribute 

(see Section 6.3.1). 

description 
(element) 

HTML-
enabled 
text 

0-n Text that describes the benchmark; a benchmark SHOULD have a 

description. It MAY have one or more <xccdf:sub> elements (see Section 

6.2.9), an @override attribute (see Section 6.3.1), and/or an @xml:lang 

attribute (see Section 6.2.10). 

notice 
(element) 

HTML-
enabled 
text  

0-n Legal notices (licensing information, terms of use, etc.), copyright statements, 
warnings, and other advisory notices about this benchmark and its use. Each 

element SHALL have a unique NCName identifier as its @id attribute. Each 

element MAY have an @xml:lang attribute (see Section 6.2.10) and/or an 

@xml:base attribute (which defines the context for all relative URIs within the 

<xccdf:Benchmark> element). 

front-matter 
(element) 

HTML-
enabled 
text 

0-n Introductory matter for the beginning of the benchmark document; intended 
for use during Document Generation processing only (see Section 7.1). It 

MAY have one or more <xccdf:sub> elements (see Section 6.2.9), an 

@override attribute (see Section 6.3.1), and/or an @xml:lang attribute 

(see Section 6.2.10). 

rear-matter 
(element) 

HTML-
enabled 
text 

0-n Concluding material for the end of the benchmark document; intended for use 
during Document Generation processing only (see Section 7.1). It MAY have 

one or more <xccdf:sub> elements (see Section 6.2.9), an @override 

attribute (see Section 6.3.1), and/or an @xml:lang attribute (see Section 

6.2.10). 

reference 
(element) 

special 0-n Supporting references for the benchmark document. See Section 6.2.6. 

plain-text 
(element) 

string 0-n Definitions for reusable text blocks, each with a unique identifier. See Section 
6.2.9. 

cpe2: 
platform-
specification 
(element) 

special 0-1 A list of identifiers for complex platform definitions, written in CPE applicability 
language format. Authors MAY define complex platforms within this element, 
and then use their locally unique identifiers anywhere in the 

<xccdf:Benchmark> element in place of a CPE name. See Section 6.2.5. 

platform 
(element) 

string 0-n Applicable platforms for this benchmark. Authors SHOULD use the element 
to identify the systems or products to which the benchmark applies. See 
Section 6.2.5. 

version 
(element) 

string 1 Version number of the benchmark, with an OPTIONAL @time timestamp 

attribute (when the version was completed) and an OPTIONAL @update URI 

attribute (where updates may be obtained). 

metadata 
(element) 

special 0-n XML metadata for the benchmark. Benchmark metadata allows authorship, 
publisher, support, and other information to be embedded in a benchmark. 
See Section 6.2.4. 

model 
(element) 

URI 0-n URIs of suggested scoring models to be used when computing a score for 
this benchmark. See Section 7.3.2 for more information on models. 
Parameters MAY be provided as needed for particular models through the 

@param attribute. @param attributes with equal name values SHALL NOT 

appear as children of the same element. 

Profile 
(element) 

special 0-n Profiles that reference and customize sets of items in the benchmark; see 
Section 6.5. 

Value 
(element) 

special 0-n Parameter values that support Rules and descriptions in the benchmark; see 
Section 6.4.5. 

Group 
(element) 

special 

0-n 

Groups that comprise the benchmark; each MAY contain additional Values, 
Rules, and other Groups. See Section 6.4.3. 

Rule 
(element) 

special Rules that comprise the benchmark; see Section 6.4.4. 



SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.2 

 

 18  

Property Type Count Description 

TestResult 
(element) 

special 0-n Benchmark test result records (one per benchmark run); see Section 6.6. 

signature 
(element) 

special 0-1 A digital signature asserting authorship and allowing verification of the 
integrity of the benchmark. See Section 6.2.7. 

id (attribute) special 1 Unique benchmark identifier. See Section 6.2.3. 

Id (attribute) special 0-1 An identifier used for referencing elements included in an XML signature. See 
Section 6.2.7. 

resolved 
(attribute) 

boolean 0-1 True if benchmark has already undergone the resolution process (default: 
false). See Section 7.2.2. 

style 
(attribute) 

string 0-1 Name of a benchmark authoring style or set of conventions or constraints to 
which this benchmark conforms (e.g., “SCAP 1.2”). 

style-href 
(attribute) 

URI 0-1 URL of a supplementary stylesheet or schema extension that can be used to 
verify conformance to the named style. 

xml:lang 
(attribute) 

special 0-1 The language for the benchmark; see Section 6.2.10. 

 

The properties that comprise an <xccdf:Benchmark> or items are an ordered sequence of property 

values. The order of <xccdf:Group> and <xccdf:Rule> child elements matters for the appearance 

of a generated document, so <xccdf:Group> and <xccdf:Rule> child elements MAY be freely 

intermingled. All other child elements MUST appear in the order shown in Table 4, and multiple 

instances of a child element MUST be adjacent. 

6.4 Item Elements 

6.4.1 Properties 

Table 5 describes the properties common to all three classes of items: <xccdf:Group>, 

<xccdf:Rule>, and <xccdf:Value> elements. 

Table 5: Item Element Properties 

Property Type Count Description 

status (element) special 0-n Status of the item and date at which it attained that status. Benchmark 
authors MAY use this element to record the maturity or consensus level 
for item elements in the benchmark. If an item does not have an explicit 
status given, then its status SHALL be that of its parent. See Section 
6.2.8. 

dc-status 
(element) 

special 0-n Holds additional status information using the Dublin Core format. See 
Section 6.2.8. 

version (element) string 0-1 Version number of the item, with an OPTIONAL @time timestamp 

attribute (when the version was completed) and an OPTIONAL @update 

URI attribute (where updates may be obtained). 

title (element) string 0-n Title of the item. Every item SHOULD have a title, because this helps 
people understand the purpose of the item. It MAY have one or more 

<xccdf:sub> elements (see Section 6.2.9), an @xml:lang attribute 

(see Section 6.2.10), and/or an @override attribute (see Section 6.3.1). 

description 
(element) 

HTML-
enabled 
text 

0-n Text that describes the item. It MAY have one or more <xccdf:sub> 

elements (see Section 6.2.9), an @override attribute (see Section 

6.3.1), and/or an @xml:lang attribute (see Section 6.2.10). 



SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.2 

 

 19  

Property Type Count Description 

warning 
(element) 

HTML-
enabled 
text 

0-n A note or caveat about the item intended to convey important cautionary 
information for the benchmark user (e.g., “Complying with this rule will 
cause the system to reject all IP packets”). If multiple warning elements 
appear, benchmark consumers SHOULD concatenate them for 
generating reports or documents. Benchmark consumers MAY present 
this information in a special manner in generated documents. 

It MAY have one or more <xccdf:sub> elements (see Section 6.2.9), 

an @override attribute (see Section 6.3.1), and/or an @xml:lang 

attribute (see Section 6.2.10). Also, see Section 6.4.2 for the possible 

values of the warning element’s OPTIONAL @category attribute, which 

provides a hint as to the nature of the warning. 

question 
(element) 

string 0-n Interrogative text to present to the user during tailoring. It MAY also be 

included into a generated document. For <xccdf:Rule> and 

<xccdf:Group> elements, the question text SHOULD be a simple 

binary (yes/no) question because it is supporting the selection aspect of 

tailoring. For <xccdf:Value> elements, the question SHOULD solicit 

the user to provide a specific value. Tools MAY also display constraints 
on values and any defaults as specified by the other <xccdf:Value> 

properties (see Section 6.4.5). It MAY have an @override attribute (see 

Section 6.3.1) and/or an @xml:lang attribute (see Section 6.2.10). 

reference 
(element) 

special 0-n References where the user can learn more about the subject of this item. 
See Section 6.2.6. 

metadata 
(element) 

special 0-n XML metadata associated with this item, such as sources, special 
information, or other details. See Section 6.2.4. 

abstract 
(attribute) 

boolean 0-1 If true, then this item is abstract and exists only to be extended (default: 
false). The use of this attribute for <xccdf:Group> elements is 

deprecated and should be avoided (see Table 42). 

cluster-id 
(attribute) 

identifier 0-1 An identifier to be used as a means to identify (refer to) related 

<xccdf:Group>, <xccdf:Rule>, and <xccdf:Value> elements 

throughout the <xccdf:Benchmark>. It designates membership in a 

cluster of items, which are used for controlling items via profiles. All the 
items with the same cluster identifier belong to the same cluster. A 

selector in an <xccdf:Profile> MAY refer to a cluster, thus making it 

easier for authors to create and maintain profiles in a complex 
benchmark. 

extends 
(attribute) 

identifier 0-1 The identifier of an item on which to base this item. If present, it MUST 

have a value equal to the @id attribute of another item. See Section 

6.3.1 and Section 7.2.2. The use of this attribute for <xccdf:Group> 

elements is deprecated and should be avoided (see Table 42). 

hidden (attribute) boolean 0-1 If this item should be excluded from any generated documents (default: 

false). For example, an author might set the @hidden attribute on an 

incomplete item in a draft benchmark. The item may still be used during 
assessments, but it SHALL NOT appear in generated documents.  

prohibitChanges 
(attribute) 

boolean 0-1 If benchmark producers should prohibit changes to this item during 
tailoring (default: false). An author SHOULD use this when they do not 
want to allow end users to change the item. For example, benchmark 
users may use this to define items that are integral to compliance, or 
enterprise security officers may use it to constrain a benchmark so it 
reflects organizational policies. 

xml:lang 
(attribute) 

special 0-1 The language for the item; see Section 6.2.10. 

xml:base 
(attribute) 

special 0-1 The context for all relative URIs within the item. 



SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.2 

 

 20  

Property Type Count Description 

Id (attribute) special 0-1 An identifier used for referencing elements included in an XML signature. 
See Section 6.2.7. 

 

In addition to the properties listed in Table 5, <xccdf:Group> and <xccdf:Rule> elements also 

support the properties listed in Table 6. See Sections 6.4.3, 6.4.4, and 6.4.5 for information on additional 

properties specific to <xccdf:Group>, <xccdf:Rule>, and <xccdf:Value> elements, 

respectively. 

Table 6: Properties Specific to <xccdf:Group> and <xccdf:Rule> Elements 

Property Type Count Description 

rationale 
(element) 

HTML-
enabled 
text  

0-n Descriptive text giving rationale or motivations for abiding by this group/rule (i.e., 
why it is important to the security of the target platform). It MAY have one or 

more <xccdf:sub> elements (see Section 6.2.9), an @override attribute (see 

Section 6.3.1), and/or an @xml:lang attribute (see Section 6.2.10). 

platform 
(element) 

special 0-n Platforms to which this group/rule applies. See Section 6.2.5.  

requires 
(element) 

special 0-n The identifiers of other <xccdf:Group> or <xccdf:Rule> elements in the 

<xccdf:Benchmark> that MUST be selected for this group/rule to be evaluated 

and scored properly. Each <xccdf:requires> element specifies a list of one 

or more required items by their identifiers, using the @idref attribute. If at least 

one of the specified <xccdf:Group> or <xccdf:Rule> elements is selected, 

the requirement is met. An <xccdf:requires> element that looked like 

<xccdf:requires idref="A B C"> could be read as "requires that item A 

or item B or item C be selected". 

conflicts 
(element) 

identifier 0-n The identifier of another <xccdf:Group> or <xccdf:Rule> in the 

<xccdf:Benchmark> that MUST be unselected for this group/rule to be 

evaluated and scored properly. Each <xccdf:conflicts> element specifies a 

single conflicting item using its @idref attribute. If the specified 

<xccdf:Group> or <xccdf:Rule> element is not selected, the requirement is 

met. 

selected 
(attribute) 

boolean 0-1 If true, this group/rule SHALL be selected to be processed as part of the 

<xccdf:Benchmark> when it is applied to a target system (default: true). An 

unselected group SHALL NOT be processed, and its contents SHALL NOT be 
processed either (i.e., all descendants of an unselected group are implicitly 
unselected). An unselected rule SHALL NOT be checked and SHALL NOT 
contribute to scoring. MAY be overridden by a profile; see Section 6.5.3. 

weight 
(attribute) 

decimal 0-1 The relative scoring weight of this group/rule, for computing a score, expressed 
as a non-negative real number (0.0 or greater, maximum 3 digits, default 1.0). It 
denotes the importance of a group/rule. Under some scoring models, scoring is 
computed independently for each collection of sibling groups and rules, then 
normalized as part of the overall scoring process. See Section 7.3.2 for more 
information on scoring. MAY be overridden by a profile; see Section 6.5.3. 

6.4.2 <xccdf:warning> Element 

If the <xccdf:warning> element’s @category attribute is used, it MUST have one of the values 

specified in Table 7. 

 



SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.2 

 

 21  

Table 7: <xccdf:warning> Element @category Attribute Values 

Value Meaning 

general Broad or general-purpose warning (default) 

functionality Warning about possible impacts to functionality or operational features 

performance Warning about changes to target system performance or throughput 

hardware Warning about hardware restrictions or possible impacts to hardware 

legal Warning about legal implications 

regulatory Warning about regulatory obligations or compliance implications 

management Warning about impacts to the management or administration of the target system 

audit Warning about impacts to audit or logging 

dependency Warning about dependencies between this element and other parts of the target system, or 
version dependencies 

6.4.3 <xccdf:Group> Element 

An <xccdf:Group> element contains descriptive information about a portion of a benchmark, as well 

as <xccdf:Rule>, <xccdf:Value>, and/or other <xccdf:Group> elements. Table 8 describes the 

<xccdf:Group> element’s properties (in addition to the properties in Table 5 and Table 6). 

Table 8: <xccdf:Group> Element Properties 

Property Type Count Description 

Value (element) Value 0-n Values that belong to this group; see Section 6.4.5. 

Group (element) Group 
0-n 

Sub-groups under this group; see Section 6.4.3. 

Rule (element) Rule Rules that belong to this group; see Section 6.4.4. 

signature 
(element) 

special 0-1 A digital signature asserting authorship and allowing verification of the 
integrity of the group. See Section 6.2.7. 

id (attribute) special 1 Unique element identifier; SHALL be used by other elements to refer to 
this element. See Section 6.2.3. 

 

6.4.4 <xccdf:Rule> Element 

6.4.4.1 Basics 

An <xccdf:Rule> element defines a single item to be checked as part of a benchmark, or an extendable 

base definition for such items. The <xccdf:check> child element of an <xccdf:Rule> specifies how 

to verify compliance with a security practice or guideline. See Table 9 and Section 6.4.4.4 for more 

information on the <xccdf:check> element.  

The example below shows a very simple <xccdf:Rule> element. 

 <xccdf:Rule id="xccdf_org.example_rule_pwd-perm" selected="1" weight="6.5" 

severity="high"> 

   <xccdf:title>Password File Permission</xccdf:title> 

   <xccdf:description>Check the access control on the password file.   

     Normal users should not be able to write to it.  

   </xccdf:description> 

   <xccdf:requires idref="xccdf_org.example_rule_passwd-exists"/> 



SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.2 

 

 22  

   <xccdf:fixtext> 

     Set permissions on the passwd file to owner-write, world-read 

   </xccdf:fixtext> 

   <xccdf:fix strategy="restrict" reboot="0" disruption="low"> 

         chmod 644 /etc/passwd 

   </xccdf:fix> 

   <xccdf:check system="http://oval.mitre.org/XMLSchema/oval-definitions-5"> 

     <xccdf:check-content-ref href="ovaldefs.xml" name="oval:org.example:def:123"/> 

   </xccdf:check> 

 </xccdf:Rule> 

 

One of XCCDF’s main features is the organization and selection of target-applicable groups and rules for 

performing security and operational checks on systems. XCCDF can access granular and expressive 

mechanisms for assessing the state of a system according to the rule criteria. Examples of these 

mechanisms are definitions expressed in the Open Vulnerability and Assessment Language (OVAL) and 

questionnaires expressed in the Open Checklist Interactive Language (OCIL). These checking 

mechanisms follow the conceptual model of collecting or acquiring the state of a target system, and then 

assessing the state for conformance to conditions and criteria expressed as rules. 

XCCDF MAY use rule checking systems other than (or in addition to) OVAL and OCIL. To facilitate 

this, XCCDF supports referencing by including the appropriate check content location and check 

reference in the <xccdf:check> element. Rule checking systems are defined separately from XCCDF 

itself so that both XCCDF and the rule checking system can evolve and be used independently. It is 

helpful for rule checking mechanisms used by XCCDF to comply with the following: 

 The mechanism can express both positive and negative criteria. A positive criterion means 

that if certain conditions are met, then the system satisfies the check, while a negative criterion 

means that if the conditions are met, the system fails the check. Experience has shown that both 

kinds are necessary for checks. 

 The mechanism can express Boolean combinations of criteria. It is often impossible to 

express a high-level security property as a single quantitative or qualitative statement about a 

system’s state. Therefore, the ability to combine statements with ‘and’ and ‘or’ is critical. 

 The mechanism can incorporate tailoring values set by the user. Value modification is 

important for XCCDF document tailoring, including substitution of tailored values as well as 

tailoring of a selected set of rules. 

6.4.4.2 Properties 

Table 9 describes the <xccdf:Rule> element’s properties (in addition to the properties in Table 5 and 

Table 6). 



SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.2 

 

 23  

Table 9: <xccdf:Rule> Element Properties 

Property Type Count Description 

ident 
(element) 

string 0-n A globally meaningful identifier for this rule. MAY be the name or identifier of 
a security configuration issue or vulnerability that the rule remediates. Has an 
associated URI that SHALL denote the organization or naming scheme that 
assigned the name (see Table 10 for assigned URIs). By setting an 

<xccdf:ident> element on a rule, the benchmark author effectively 

declares that the rule instantiates, implements, or remediates the issue for 

which the name was assigned. For example, the <xccdf:ident> value 

might be a CVE identifier; the rule could be a check that the target platform 
was not subject to the vulnerability named by the CVE identifier, and the URI 

would be that of the CVE website. An <xccdf:ident> element MAY also 

have other attributes from other namespaces in order to provide additional 
metadata for the given identifier. 

impact-
metric 
(element) 

string 0-1 The potential impact of failure to conform to the rule, expressed as a CVSS 
2.0 base vector (defined by NIST IR 7435). The property is deprecated and 
its use should be avoided (see Table 42). A suggested alternate location 

for impact metric data is the <xccdf:metadata> element within the 

<xccdf:Rule>. 

profile-note 
(element) 

HTML-
enabled 
text 

0-n Text that describes special aspects of the rule related to one or more profiles. 
This allows an author to document things within rules that are specific to a 
given profile, and then select the appropriate text based on the selected 

profile and display it to the reader. The element MUST have a @tag attribute 

that holds an identifier; an <xccdf:Profile> MAY refer to this tag through 

the <xccdf:Profile> @note-tag attribute. The element also MAY have 

one or more <xccdf:sub> elements (see Section 6.2.9) and/or an 

@xml:lang attribute (see Section 6.2.10). 

fixtext 
(element) 

special 

 

0-n Data that describes how to bring a target system into compliance with this 

rule. Each <xccdf:fixtext> element MAY be associated with one or more 

<xccdf:fix> element values. See Section 6.4.4.5. 

fix 
(element) 

special 0-n A command string, script, or other system modification statement that, if 
executed on the target system, can bring it into full, or at least better, 
compliance with this rule. See Section 6.4.4.5. 

check 
(element) 

special (1-n 
instances 
of check) 

XOR  

(1 
instance 
of 
complex-
check) 

The definition of, or a reference to, the target system check needed to test 

compliance with this rule. Sibling <xccdf:check> elements MUST have 

different values for the combination of their @selector and @system 

attributes, and different values for their @id attribute (if any). See Section 

6.4.4.4. 

complex-
check 
(element) 

special A boolean expression composed of operators (and, or, not) and individual 
checks. See Section 6.4.4.4. 

signature 
(element) 

special 0-1 A digital signature asserting authorship and allowing verification of the 
integrity of the rule. See Section 6.2.7. 

role 
(attribute) 

string 0-1 The rule’s role in scoring and reporting. It MAY be one of the following:  

 “full” (if the rule is selected, then check it and let the result contribute to 
the score and appear in reports) (default) 

 “unscored” (if the rule is selected, then check it and include the results in 
any report, but do not include the result in score computations) 

 “unchecked” (if the rule is selected, then do not check it; just force the 
result status to “notchecked”) 

MAY be overridden by a profile. 

id 
(attribute) 

special 1 Unique element identifier; SHALL be used by other elements to refer to this 
element. See Section 6.2.3. 



SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.2 

 

 24  

Property Type Count Description 

severity 
(attribute) 

string 0-1 Severity level code to be used for metrics and tracking. When used, it SHALL 
have one of the following values:  

 “unknown” (severity not defined) (default) 

 “info” (rule is informational only; failing the rule does not imply failure to 
conform to the security guidance of the benchmark) 

 “low” (not a serious problem) 

 “medium” (fairly serious problem) 

 “high” (grave or critical problem) 

MAY be overridden by a profile; see Section 6.5.3. 

multiple 
(attribute) 

boolean 0-1 Applicable in cases where there are multiple instances of a target. For 
example, a rule may provide a recommendation about the configuration of 
application user accounts, but an application may have many user accounts. 
Each account would be considered an instance of the broader assessment 

target of user accounts. If the @multiple attribute is set to true, each 

instance of the target to which the rule can apply SHOULD be tested 

separately and the results SHOULD be recorded separately. If @multiple 

is set to false, the test results of such instances SHOULD be combined. If the 
checking system does not combine these results automatically, the results of 
each instance SHOULD be ANDed together to produce a single result using 
the AND truth table in Section 6.4.4.4. (default:false) 

If the benchmark consumer cannot perform multiple instantiation, or if 
multiple instantiation of the rule is not applicable for the target system, then 
the benchmark consumer MAY ignore this attribute. For example, OVAL 
checks cannot produce separate results for individual instances of a target.  

See Section 7.2.3.5.2. 

6.4.4.3 <xccdf:ident> Elements 

Table 10 lists assigned URIs that MAY appear as the value of the @system attribute of an 

<xccdf:ident> element. If an identification system included in Table 10 is being specified, the 

@system attribute’s value SHALL correspond to the appropriate URI in the table. An author MAY 

create a new URI for an identification system not listed in the table; this URI SHALL NOT duplicate any 

of the Table 10 URI values.  

Table 10: Assigned Values for the @system Attribute of an <xccdf:ident> Element 

URI Identifier Value Description 

http://cce.mitre.org Common Configuration Enumeration (CCE) – the identifier value MUST be 
a CCE version 5 number 

http://cpe.mitre.org CPE – the identifier value MUST be a CPE version 2.0 or 2.3 name 

http://cve.mitre.org CVE – the identifier value MUST be a CVE number 

http://www.cert.org CERT Coordination Center – the identifier value SHOULD be a CERT 
advisory identifier (e.g., “CA-2004-02”) 

http://www.kb.cert.org US-CERT vulnerability notes database – the identifier value SHOULD be a 
vulnerability note number (e.g., “709220”) 

http://www.us-cert.gov/cas/techalerts US-CERT technical cyber security alerts – the identifier value SHOULD be 
a technical cyber security alert ID (e.g., “TA05-189A”) 

 

An <xccdf:ident> element MAY also have additional attributes from schemas other than the 

XCCDF schema. Individual organizations and standards MAY associate specific interpretations of rules 

based on the value of an <xccdf:ident> element and these additional attributes are allowed in order 



SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.2 

 

 25  

to refine those interpretations. These additional attributes MUST NOT alter the processing of a 

benchmark document as described in Section 7, although they MAY be added to the output of Document 

Generation or displayed to users during processing. 

6.4.4.4 <xccdf:check> and <xccdf:complex-check> Elements 

Table 11 shows the possible properties of the <xccdf:check> element.  

Table 11: <xccdf:check> Element Properties 

Property Type Count Description 

check-import 
(element) 

special 0-n Identifies a value to be retrieved from the checking system during testing of a 
target system. This element MUST be empty. After the associated check 
results have been collected, the result structure returned by the checking 
engine is processed to collect the named information. This information is then 

recorded in the <xccdf:check-import> element in the corresponding 

<xccdf:rule-result>. This could be a single value or structured XML. In 

the latter case, the @import-xpath attribute can be used to traverse the 

structured XML and identify specific information of interest to record in the 
result. 

check-export 
(element) 

special 0-n A mapping from an <xccdf:Value> element to a checking system variable 

(i.e., external name or id for use by the checking system). This supports 
export of tailoring values from the XCCDF processing environment to the 

checking system. The @value-id attribute of the <xccdf:check-export> 

element MUST match the @id attribute of an <xccdf:Value> element in 

the benchmark. The interface between the XCCDF benchmark consumer and 
the checking system SHOULD support, at a minimum, passing the following 

properties of the <xccdf:Value> element: <xccdf:value>, @type, and 

@operator. 

check-
content-ref 
(element) 

special 0-n Points to code for a detached check in another location that uses the 

language or system specified by the <xccdf:check> element’s @system 

attribute. The @href attribute identifies the code location, and the 

OPTIONAL @name attribute MUST refer to a particular part, element, or 

component of the code. The default behavior of an <xccdf:check-

content-ref> element that does not have a @name attribute SHALL be to 

execute all checks in the referenced code and AND their results together into 

a single <xccdf:rule-result>. However, if the @multi-check attribute 

(below) is set to true and a nameless <xccdf:check-content-ref> is 

used, each check in the targeted code is reported as a separate 
<xccdf:rule-result>.  

If multiple <xccdf:check-content-ref> elements appear, they represent 

alternative locations from which a benchmark consumer may obtain the 
check content. Benchmark consumers SHOULD process the alternatives in 

the order in which they appear in the XML. The first <xccdf:check-

content-ref> from which content can be successfully retrieved SHOULD 

be used. (Note that ensuring the validity of this content is not the 
responsibility of a benchmark consumer.)  

If both <xccdf:check-content-ref> and <xccdf:check-content> 

elements appear in a single <xccdf:check> element, benchmark 

consumers SHOULD use the <xccdf:check-content> element only if 

none of the references can be resolved to provide content. 



SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.2 

 

 26  

Property Type Count Description 

check-
content 
(element) 

special 0-1 Holds the actual code of a check, in the language or system specified by the 

<xccdf:check> element’s @system attribute. The body of this element 

MAY be any XML, but SHALL NOT contain any XCCDF elements. It is 
OPTIONAL for benchmark consumers to process this element; typically it will 
be passed to a checking system or engine.  

If both <xccdf:check-content-ref> and <xccdf:check-content> 

elements appear in a single <xccdf:check> element, benchmark 

consumers SHOULD use the <xccdf:check-content> element only if 

none of the references can be resolved to provide content. 

system 
(attribute) 

URI 1 The URI for a checking system. The URI SHALL be compliant with the 
appropriate checking system specification (e.g., OVAL, OCIL). If the checking 

system uses XML namespaces, then the @system attribute for the system 

SHOULD be its namespace. 

negate 
(attribute) 

boolean 0-1 If set to true, the final result of the check is negated according to the truth 
table in Table 14. (default: false) 

id (attribute) identifier 0-1 Unique identifier for this element. 

selector 
(attribute) 

string 0-1 This MAY be referenced from a profile or used during manual tailoring to 
refine the application of the rule. If no selectors are specified for a given 

<xccdf:rule>, all <xccdf:check> elements with non-empty @selector 

attributes SHALL be ignored. If a rule has multiple <xccdf:check> 

elements with the same @selector attribute, each MUST employ a different 

checking system, as identified by the @system attribute of the 

<xccdf:check> element. 

multi-check 
(attribute) 

boolean 0-1 Applicable in cases where multiple checks are executed to determine 
compliance with a single rule. This situation can arise when a check includes 

an <xccdf:check-content-ref> element that does not include a @name 

attribute. The default behavior of a nameless <xccdf:check-content-

ref> SHALL be to execute all checks in the referenced check content 

location and AND their results together into a single <xccdf:rule-

result> using the AND truth table below (Table 12). This corresponds to a 

@multi-check attribute value of “false”. If, however, the @multi-check 

attribute is set to "true" and a nameless <xccdf:check-content-ref> is 

used, the rule produces a separate <xccdf:rule-result> for each check 

in the check content location. (default: false) See Section 7.2.3.5.2. 

xml:base 
(attribute) 

special 0-1 The context for all relative URIs within the check. 

 

In place of an <xccdf:check> element, XCCDF allows an <xccdf:complex-check> element. 

An <xccdf:complex-check> is a boolean logical expression whose individual terms are 

<xccdf:check> and/or <xccdf:complex-check> elements. This allows benchmark authors to 

create more sophisticated checks and to mix checks written with different checking systems. An 

<xccdf:Rule> MAY have at most one <xccdf:complex-check> element; on inheritance, the 

extending rule’s <xccdf:complex-check> SHALL replace the extended rule’s 

<xccdf:complex-check>. A benchmark consumer processing a benchmark picks at most one 

<xccdf:check> or <xccdf:complex-check> element to process for each rule. If both 

<xccdf:check> elements and an <xccdf:complex-check> element appear in a rule, then the 

<xccdf:check> elements will be ignored. See Section 7.2.3.5 for additional information on check 

processing. 

When an <xccdf:check> element is used with an <xccdf:complex-check> element, the 

<xccdf:check> element’s @multi-check attribute MUST be ignored. 



SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.2 

 

 27  

Operators that MAY be used to combine the constituents of an <xccdf:complex-check> are AND 

and OR. Truth tables that MUST be used when evaluating these operators appear in Table 12 (AND) and 

Table 13 (OR). Each <xccdf:complex-check> MAY also specify that the expression should be 

negated (NOT); see Table 14 for the corresponding truth table. All of the abbreviations in the truth tables 

come from the description of the <xccdf:rule-result> element (see Table 26 in Section 6.6.4.2 for 

definitions of each abbreviation). 

With an “AND” operator, the <xccdf:complex-check> evaluates to Pass only if all of its enclosed 

terms (<xccdf:check> and <xccdf:complex-check> elements) evaluate to Pass. Table 12 

shows the truth table for “AND”. 

Table 12: Truth Table for AND 

AND  P  F  U  E  N  K  S  I  

P  P  F  U  E  P  P  P  P  

F  F  F  F  F  F  F  F  F  

U  U  F  U  U  U  U  U  U  

E  E  F  U  E  E  E  E  E  

N  P  F  U  E  N  N  N  N  

K  P  F  U  E  N  K  K  K  

S  P  F  U  E  N  K  S  S  

I  P  F  U  E  N  K  S  I  

The “OR” operator evaluates to Pass if any of its enclosed terms evaluate to Pass. The truth table for 

“OR” is shown in Table 13. 

Table 13: Truth Table for OR 

OR  P  F  U  E  N  K  S  I  

P  P  P  P  P  P  P  P  P  

F  P  F  U  E  F  F  F  F  

U  P  U  U  U  U  U  U  U  

E  P  E  U  E  E  E  E  E  

N  P  F  U  E  N  N  N  N  

K  P  F  U  E  N  K  K  K  

S  P  F  U  E  N  K  S  S  

I  P  F  U  E  N  K  S  I  

If the @negate attribute is set to true, then the result of the <xccdf:complex-check> is 

complemented (inverted). The full truth table for negation is listed in Table 14. 

Table 14: Truth Table for Negation 

 P F U E N K  S  I  

not F P U E N K  S  I  

 

The example below shows an <xccdf:complex-check> with several components. 



SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.2 

 

 28  

<xccdf:complex-check operator="OR"> 

  <xccdf:check system="http://oval.mitre.org/XMLSchema/oval-definitions-5"> 

     <xccdf:check-content-ref href="xpDefs.xml"  

         name="oval:org.example:def:456"/> 

  </xccdf:check> 

  <xccdf:complex-check operator="AND" negate="1"> 

     <xccdf:check system="http://oval.mitre.org/XMLSchema/oval-definitions-5"> 

         <xccdf:check-content-ref href="xpDefs.xml"  

             name="oval:org.example:def:789"/> 

     </xccdf:check> 

     <xccdf:check system="http://scap.nist.gov/schema/ocil/2.0"> 

         <xccdf:check-content-ref href="xpInter.xml"  

             name="ocil:org.example:questionnaire:6"/> 

     </xccdf:check> 

   </xccdf:complex-check> 

</xccdf:complex-check> 

 

6.4.4.5 <xccdf:fixtext> and <xccdf:fix> Elements 

The <xccdf:fixtext> and <xccdf:fix> elements help tools support sophisticated facilities for 

automated and interactive remediation of benchmark findings. Table 15 lists the possible properties of an 

<xccdf:fixtext> element. 

Table 15: Possible Properties for <xccdf:fixtext> Element 

Property Type Count Description 

sub 
(element) 

identifier 
0-n 

Specifies an <xccdf:Value> or <xccdf:plain-text> substitution. See 

Section 6.2.9. 

xml:lang 
(attribute) 

special 0-1 The language for the element; see Section 6.2.10. 

override 
(attribute) 

boolean 0-1 Specifies inheritance behavior (see Section 6.3.1). (default: false) 

fixref 
(attribute) 

identifier 0-1 A reference to a specific <xccdf:fix> @id attribute. This allows pairing 

explanatory text with specific fix procedures. 

reboot 
(attribute) 

boolean 0-1 Whether or not remediation will require a reboot or hard reset of the target. When 
specified, it SHALL have one of two values: true (1) or false (0) (default: 0). 

strategy 
(attribute) 

string 0-1 The method or approach for fixing the problem. When specified, the attribute 
SHALL have one of the following values:  

 unknown (strategy not defined) (default ) 

 configure (adjust target configuration/settings) 

 combination (combination of two or more approaches) 

 disable (turn off or uninstall a target component) 

 enable (turn on or install a target component) 

 patch (apply a patch, hotfix, update, etc.) 

 policy (remediation requires out-of-band adjustments to policies or 
procedures) 

 restrict (adjust permissions, access rights, filters, or other access restrictions) 

 update (install upgrade or update the system) 



SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.2 

 

 29  

Property Type Count Description 

disruption 
(attribute) 

string 0-1 An estimate of the potential for disruption or operational degradation that the 
application of this fix will impose on the target. When specified, the attribute 
SHALL have one of the following values:  

 unknown (disruption not defined) (default) 

 low (little or no disruption expected) 

 medium (potential for minor or short-lived disruption) 

 high (potential for serious disruption) 

complexity 
(attribute) 

string 0-1 The estimated complexity or difficulty of applying the fix to the target. When 
specified, the attribute SHALL have one of the following values:  

 unknown (complexity not defined) (default) 

 low (fix is very simple to apply) 

 medium (fix is moderately difficult or complex) 

 high (fix is very complex to apply) 

 

Table 16 lists the possible properties of an <xccdf:fix> element. 

Table 16: Possible Properties for <xccdf:fix> Element 

Property Type Count Description 

sub 
(element) 

identifier 

0-n 

Specifies an <xccdf:Value> or <xccdf:plain-text> substitution. See 

Section 6.2.9. 

instance 
(element) 

string Designates a spot where the name of the instance SHOULD be substituted into 

the fix template to generate the final fix data. If the @context attribute is 

omitted, the value of the context SHALL default to “undefined”. 

id 
(attribute) 

identifier 0-1 A local identifier for the element. It is OPTIONAL for the id to be unique; 

multiple <xccdf:fix> elements MAY have the same id but different values for 

their other attributes. 

reboot 
(attribute) 

boolean 0-1 Whether or not remediation will require a reboot or hard reset of the target. 
Permitted values: true (1) and false (0) (default: 0). 

strategy 
(attribute) 

string 0-1 The method or approach for fixing the problem. See Table 15 for the list of 
possible values. 

disruption 
(attribute) 

string 0-1 An estimate of the potential for disruption or operational degradation that the 
application of this fix will impose on the target. See Table 15 for the list of 
possible values. 

complexity 
(attribute) 

string 0-1 The estimated complexity or difficulty of applying the fix to the target. See Table 
15 for the list of possible values. 

system 
(attribute) 

URI 0-1 A URI that identifies the scheme, language, engine, or process for which the fix 
contents are written. Table 17 defines several general-purpose URNs that MAY 
be used for this, and tool vendors and system providers MAY define and use 
target-specific URNs. 

platform 
(attribute) 

URI 0-1 In case different fix scripts or procedures are required for different target 
platform types (e.g., different patches for Windows Vista and Windows 7), this 
attribute allows a CPE name or CPE applicability language expression to be 

associated with an <xccdf:fix> element. This SHOULD appear on an 

<xccdf:fix> when the content applies to only one platform out of several to 

which the rule could apply.  

 

Table 17 lists predefined values for the @system attribute of an <xccdf:fix> element. 

 



SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.2 

 

 30  

Table 17: Predefined Values for @system Attribute of <xccdf:fix> Element 

URI Content of the <xccdf:fix> Element 

urn:xccdf:fix:commands A list of target system commands; executed in order, the commands should bring 
the target system into compliance with the rule. 

urn:xccdf:fix:urls A list of one or more URLs. The resources identified by the URLs should be applied 
to bring the system into compliance with the rule. 

urn:xccdf:fix:script:language A script written in the given language. Executing the script should bring the target 
system into compliance with the rule. The following languages are pre-defined:  

sh – Bourne shell 

csh – C Shell 

perl – Perl 

batch – Windows batch script 

python – Python and all Python-based scripting languages 

vbscript – Visual Basic Script (VBS) 

javascript – Javascript (ECMAScript, Jscript) 

tcl – Tcl and all Tcl-based scripting languages 

urn:xccdf:fix:patch:vendor A patch identifier, in proprietary format as defined by the vendor. The vendor string 
should be the DNS domain name of the vendor. For example, for Microsoft 
Corporation, the DNS domain is “Microsoft.com”. 

6.4.5 <xccdf:Value> Element 

6.4.5.1 Basics 

An <xccdf:Value> is a named parameter (with a unique @id attribute) that can be substituted into 

properties of other elements within the benchmark, including the interior of structured check 

specifications and fix scripts. An <xccdf:Value> can hold string, boolean, or numeric content, or lists 

thereof. <xccdf:Value> elements can include information about permissible values, display defaults, 

and restrictions on tailoring for the Value. For example, an <xccdf:Value> might be used to hold a 

benchmark’s lower limit for password length on some OS. In a profile for that OS to be used in a closed 

lab, the default value might be 8, but in a profile for that OS to be used on the Internet, the default value 

might be 12. 

The example below shows an <xccdf:Value> element. 

 <xccdf:Value id="xccdf_org.example_value_web-server-port" type="number"  

   operator="equals"> 

   <xccdf:title>Web Server Port</xccdf:title> 

   <xccdf:description>TCP port on which the server listens  

   </xccdf:description> 

   <xccdf:value>12080</xccdf:value> 

   <xccdf:default>80</xccdf:default> 

   <xccdf:lower-bound>0</xccdf:lower-bound> 

   <xccdf:upper-bound>65535</xccdf:upper-bound> 

 </xccdf:Value> 

 

<xccdf:Value> elements MAY encapsulate values that are lists (possibly zero-length) of simple 

types. These structures are supported by the <xccdf:complex-value> element, the 

<xccdf:complex-default> element, and within the <xccdf:choices> element, the 



SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.2 

 

 31  

<xccdf:complex-choice> element. If any of these elements has no child elements, it represents an 

empty list. 

A single <xccdf:Value> MAY use a mixture of both simple (i.e., a single number, string, or boolean 

value) and complex types. Apart from its ability to encapsulate different types of information, a complex 

field is used in the same way as its simple counterpart. 

6.4.5.2 Properties 

Table 18 describes the <xccdf:Value> element’s properties (in addition to the core item properties 

previously described in Table 5). 

Table 18: <xccdf:Value> Element Properties 

Property Type Count Description 

value (element) string 

1-n 

The current value of this <xccdf:Value>. This element MAY have a 

@selector attribute (see Section 6.4.5.5). 

complex-value 
(element) 

special Similar to <xccdf:value> except that this element supports values that 

are lists of simple types. This element MAY have a @selector attribute 

(see Section 6.4.5.5). 

default 
(element)  

string 

0-n 

The default value displayed to the user as a suggestion by benchmark 

producers during tailoring of this <xccdf:Value> element. (This is not 

the default value of an <xccdf:Value>.) This element MAY have a 

@selector attribute (see Section 6.4.5.5). 

complex-default 
(element) 

special Similar to <xccdf:default> except that this element supports default 

values that are lists of simple types. This element MAY have a 

@selector attribute (see Section 6.4.5.5). 

match 
(element) 

string 0-n A Perl Compatible Regular Expression (PCRE) (see [PCRE] and 
[UNICODE]) that a benchmark producer MAY apply during tailoring to 
validate a user’s input for the Value. It SHALL use implicit anchoring. It 

SHALL apply only when the @type is “string” or “number” or a list of 

strings and/or numbers. For example, if the @type was “string”, but the 

value was meant to be a Cisco IOS router interface name, then the 

<xccdf:match> element might be set to “[A-Za-z]+ *[0-9]+(/[0-9.]+)*”. 

This would allow a tailoring tool to reject an invalid user input like “f8xq+” 
but accept a legal one like “Ethernet1/3”. This element MAY have a 

@selector attribute (see Section 6.4.5.5). 

lower-bound 
(element) 

decimal 0-n Minimum legal value for this Value. It is used to constrain value input 

during tailoring, when the @type is “number”. Values supplied by the user 

for tailoring the benchmark MUST be equal to or greater than this number. 

This element MAY have a @selector attribute (see Section 6.4.5.5). 

upper-bound 
(element) 

decimal 0-n Maximum legal value for this Value. It is used to constrain value input 

during tailoring, when the @type is “number”. Values supplied by the user 

for tailoring the benchmark MUST be less than or equal to this number. 

This element MAY have a @selector attribute (see Section 6.4.5.5). 

choices 
(element) 

special 0-n A list of legal or suggested choices (values) for an <xccdf:Value> 

element, to be used during tailoring and document generation. See 
Section 6.4.5.3. 



SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.2 

 

 32  

Property Type Count Description 

source 
(element) 

URI 0-n URI indicating where the tool may acquire values, value bounds, or value 

choices for this <xccdf:Value> element. XCCDF does not attach any 

meaning to the URI; it may be an arbitrary community or tool-specific 
value, or a pointer directly to a resource. If several values for the 

<xccdf:source> element appear, then they SHALL represent 

alternative means or locations for obtaining the value in descending order 
of preference (i.e., most preferred first). 

signature 
(element) 

special 0-1 A digital signature asserting authorship and allowing verification of the 
integrity of the Value. See Section 6.2.7. 

id (attribute) special 1 Unique element identifier. See Section 6.2.3. 

type (attribute) string 0-1 The data type of the Value: “string”, “number”, or “boolean” (default: 
“string”). A tool may choose any convenient form to store a Value’s 

<xccdf:value> element, but the @type attribute conveys how the 

Value SHOULD be treated for user input validation purposes during 

tailoring processing. The @type attribute MAY also be used to give 

additional guidance to the user or to validate the user’s input. For 

example, if an <xccdf:value> element’s @type attribute is “number”, 

then a tool might choose to reject user tailoring input that is not composed 

of digits. In the case of a list of values, the @type attribute, if present, 

SHALL be applied to all elements of the list individually. 

operator 
(attribute) 

string 0-1 The operator to be used for comparing this Value to some part of the test 
system’s configuration during rule checking (default: “equals”). See 
Section 6.4.5.4. 

interactive 
(attribute) 

boolean 0-1 Whether tailoring for this Value should also be performed during 
benchmark application (default: false). The benchmark consumer MAY 
ignore the attribute if asking the user is not feasible or not supported.  

interfaceHint 
(attribute) 

string 0-1 A hint or recommendation to a benchmark consumer or producer about 
how the user might select or adjust the Value. If used, this element 
SHALL have one of the following interface pattern values:  

 “choice” (multiple choice) 

 “textline” (multiple lines of text) 

 “text” (single line of text) 

 “date” (date) 

 “datetime” (date and time) 

6.4.5.3 <xccdf:choices> Element 

The <xccdf:choices> element SHOULD be used when there are a moderate number of known 

values that are most appropriate. For example, if the Value were the authentication mode for a server, the 

choices might be “password” and “pki”. Table 19 lists the possible properties for an 

<xccdf:choices> element. If a product presents the choice values from an <xccdf:choices> 

element to a user, they SHOULD be presented in the order in which they appear. 

Table 19: Possible Properties for <xccdf:choices> Element 

Property Type Count Description 

choice (element) string 

1-n 

The text of a possible choice. 

complex-choice 
(element) 

special A possible choice consisting of a list of values. If this element has no 

<xccdf:item> children, it SHALL represent an empty list. 

mustMatch 
(attribute) 

boolean 0-1 If this is true, the list SHALL represent all the legal values. If this is false 
or absent, the list SHALL represent suggested values, and other values 

MAY also be legal (subject to the parent <xccdf:Value> element’s 

@upper-bound, @lower-bound, and @match attributes). 



SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.2 

 

 33  

Property Type Count Description 

selector (attribute) string 0-1 Used for tailoring via a profile. See Section 6.4.5.5. 

6.4.5.4 @operator Attribute 

When defining an <xccdf:Value> element, the benchmark author MAY specify the operator to be 

used for comparing the Value to a configuration during rule checking. For example, one part of an OS 

benchmark might be verifying that the configuration included a minimum password length; the 

<xccdf:Value> element that holds the tailorable minimum could have @type “number” and 

@operator “greater than”. Exactly how <xccdf:Value> elements are used in rules depends on the 

capabilities of the checking system. Benchmark consumers MAY ignore the @operator attribute; 

therefore, authors SHOULD include sufficient information in the <xccdf:description> and 

<xccdf:question> elements to make the role of the Value clear. Table 20 describes the 

@operator values permitted for each @type value. 

Table 20: Permitted Operators by Value Type 

Value Type Available Operators 

number equals, not equal, less than, greater than, less than or equal, greater than or equal (default: equals) 

boolean equals, not equal (default: equals) 

string equals, not equal, pattern match (pattern match means regular expression match; SHOULD comply 
with [UNICODE]) (default: equals) 

lists as component data type 

6.4.5.5 @selector Attribute 

As detailed in Table 18, an <xccdf:Value> MAY include various elements that constrain or limit the 

values that the Value may be given. Authors MAY use these elements to assist users in tailoring the 

benchmark. These elements all support the @selector attribute. If there are multiple instances of one 

of these elements within a single <xccdf:Value> element, no more than one of the instances MAY 

omit the @selector attribute, and every other instance MUST have a different value specified for its 

@selector attribute. For elements that may be substituted for each other—specifically, 

<xccdf:value> and <xccdf:complex-value> elements, and <xccdf:default> and 

<xccdf:complex-default> elements—no more than one instance of either element MAY omit the 

@selector attribute, and every other instance of both elements MUST have a different value specified 

for its @selector attribute. For more information about selector types, see Section 6.5.3. 

In the absence of any profile or tailoring actions, the default <xccdf:value> or <xccdf:complex-

value> element in an <xccdf:Value> SHALL be the one with an empty or absent @selector. If 

there is no <xccdf:value> or <xccdf:complex-value> element with an empty or absent 

@selector, the first <xccdf:value> or <xccdf:complex-value> element in top-down 

processing of the XML SHALL be the default element. For all other selectable <xccdf:Value> 

elements (i.e., <xccdf:default>, <xccdf:complex-default>, <xccdf:match>, 

<xccdf:upper-bound>, <xccdf:lower-bound>, and <xccdf:choices>), the default 

activity SHALL be to ignore all elements without an empty or absent @selector. 



SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.2 

 

 34  

6.5 <xccdf:Profile> Element 

6.5.1 Basics 

An <xccdf:Profile> element is a named tailoring for a benchmark. While a benchmark can be 

tailored in place by setting properties of various elements, <xccdf:Profile> elements allow one 

benchmark document to hold several independent tailorings. The <xccdf:select> element children 

of the <xccdf:Profile> affect which <xccdf:Group> and <xccdf:Rule> elements are 

selected for processing when the <xccdf:Profile> is in effect. The <xccdf:refine-rule> 

element allows modification of properties in <xccdf:Group> and <xccdf:Rule> elements, while 

the <xccdf:refine-value> element allows modification of <xccdf:Value> properties, 

including selection of the effective value. Finally, <xccdf:set-value> and <xccdf:set-

complex-value> allow an <xccdf:Value> element's value to be set directly to a simple or 

complex setting, respectively. The example below shows a simple <xccdf:Profile>. 

 <xccdf:Profile id="xccdf_org.example_profile_strict" prohibitChanges="1"  

          extends="xccdf_org.example_profile_lenient" note-tag="strict-tag"> 

   <xccdf:title>Strict Security Settings</xccdf:title> 

   <xccdf:description> 

     Strict lockdown rules and values, for hosts deployed to high-risk environments.  

   </xccdf:description> 

   <xccdf:set-value idref="xccdf_org.example_value_password-len">10</xccdf:set-value> 

   <xccdf:refine-value idref="xccdf_org.example_value_session-timeout"  

          selector="quick"/> 

   <xccdf:refine-rule idref="xccdf_org.example_value_session-auth-rule"  

          selector="harsh"/> 

   <xccdf:select idref="xccdf_org.example_value_password-len-rule" selected="1"/> 

   <xccdf:select idref="xccdf_org.example_value_audit-cluster" selected="1"/> 

   <xccdf:select idref="xccdf_org.example_value_telnet-disabled-rule" selected="1"/> 

   <xccdf:select idref="xccdf_org.example_value_telnet-settings-cluster"  

          selected="0"/> 

</xccdf:Profile> 

An <xccdf:Profile> MAY extend another <xccdf:Profile> in the same benchmark by using 

the @extends attribute. An <xccdf:Profile> in an <xccdf:Tailoring> element MAY extend 

any <xccdf:Profile> in a benchmark, but <xccdf:Profile> elements in an 

<xccdf:Tailoring> element SHALL NOT be extended. 

Certain properties of the extended <xccdf:Profile> appear before the corresponding properties in 

the extending <xccdf:Profile>. Since <xccdf:Profile> properties are processed in the order in 

which they appear in the XML, this means that properties of the extending <xccdf:Profile> can 

override corresponding properties inherited from the extended <xccdf:Profile>. See Sections 7.2.2 

and 7.2.3.4 for additional information on extension and inheritance. 

6.5.2 Properties 

Table 21 describes the <xccdf:Profile> element’s properties. 



SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.2 

 

 35  

Table 21: <xccdf:Profile> Element Properties 

Property Type Count Description 

status (element) special 0-n Status of this <xccdf:Profile>and date at which it attained that status. 

Authors MAY use this element to record the maturity or consensus level of 

a profile. If the status is not given explicitly, then the <xccdf:Profile> 

is taken to have the same status as its parent <xccdf:Benchmark>. See 

Section 6.2.8. 

dc-status 
(element) 

special 0-n Holds additional status information using the Dublin Core format. See 
Section 6.2.8. 

version 
(element) 

string 0-1 Version number of this <xccdf:Profile>, with an OPTIONAL @time 

timestamp attribute (when the version was completed) and an OPTIONAL 

@update URI attribute (where updates may be obtained). 

title (element) string 1-n Title of this <xccdf:Profile>. It MAY have one or more <xccdf:sub> 

elements (see Section 6.2.9), an @xml:lang attribute (see Section 

6.2.10), and/or an @override attribute (see Section 6.3.1). 

description 
(element) 

HTML-
enabled 
text 

0-n Text that describes this <xccdf:Profile>. It MAY have one or more 

<xccdf:sub> elements (see Section 6.2.9), an @override attribute 

(see Section 6.3.1), and/or an @xml:lang attribute (see Section 6.2.10). 

reference 
(element) 

special 0-n A reference where the user can learn more about the subject of this 
profile. See Section 6.2.6. 

platform 
(element) 

string 0-n A target platform for this profile. See Section 6.2.5. 

select, set-
complex-value, 
set-value, 
refine-value, 
refine-rule 
(element) 

special 0-n References to Groups, Rules, and Values for customization and tailoring. 
See Section 6.5.3. 

metadata 
(element) 

special 0-n Metadata associated with this <xccdf:Profile>. See Section 6.2.4. 

signature 
(element) 

special 0-1 A digital signature asserting authorship and allowing verification of the 

integrity of the <xccdf:Profile>. See Section 6.2.7. 

id (attribute) special 1 Unique identifier for this <xccdf:Profile>. See Section 6.2.3. 

prohibitChanges 
(attribute) 

boolean 0-1 Whether or not products should prohibit changes to this 

<xccdf:Profile> (default: false). 

abstract 
(attribute) 

boolean 0-1 If true, then this <xccdf:Profile> exists solely to be extended by other 

<xccdf:Profile> elements (default: false). See Sections 6.3.1 and 

7.2.2. 

note-tag 
(attribute) 

identifier 0-1 Tag identifier to specify which <xccdf:profile-note> element from 

an <xccdf:Rule> should be associated with this <xccdf:Profile>. 

extends 
(attribute) 

identifier 0-1 The id of an <xccdf:Profile> on which to base this 
<xccdf:Profile>. 

xml:base 
(attribute) 

special 0-1 The context for all relative URIs within the profile. 

Id (attribute) special 0-1 An identifier used for referencing elements included in an XML signature. 
See Section 6.2.7. 

6.5.3 Selectors 

Each <xccdf:Profile> can contain one or more selectors to express a particular customization or 

tailoring of the <xccdf:Benchmark>. Table 22 defines the five kinds of selectors. 



SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.2 

 

 36  

Table 22: Selectors 

Property Type Count Description 

select 
(element) 

special 0-n Designates a Rule, Group, or cluster of Rules and Groups. It overrides the 

@selected attribute on the designated items, providing a means for 

including or excluding rules from an assessment. 

The <xccdf:select> element MAY have one or more <xccdf:remark> 

elements (strings) containing explanatory material or other prose. Each 

instance of <xccdf:remark> MAY have an @xml:lang attribute (see 

Section 6.2.10).The <xccdf:select> element’s @idref attribute 

(identifier) SHALL specify the designated Group, Rule, or cluster of Rules and 

Groups; it MUST match the @id attribute of a Group or Rule in the 

Benchmark, or the cluster id assigned to one or more Rules or Groups. If the 

<xccdf:select> element’s REQUIRED @selected attribute (boolean) is 

set to true, the Rule, Group, or Rules and Groups in the cluster SHALL have 

their @selected attribute set to true, otherwise they SHALL have their 

@selected attribute set to false. Subsequent tailoring actions may further 

modify these properties.  

set-value 
(element) 

string 0-n Points to an <xccdf:Value> element and overrides its <xccdf:value> 

and <xccdf:complex-value> element(s) without changing any other 

properties. It provides a means for directly specifying the value of a variable 
to be used in benchmark processing. This selector MAY also be applied to 

the <xccdf:Value> elements in a cluster by specifying the cluster id in the 

@idref attribute, in which case it SHALL override the <xccdf:value> 

elements of all of them.  

set-complex-
value 
(element) 

special 0-n Supports the direct specification of complex value types such as lists. Zero or 
more item elements MAY appear as children of this element; if no child 
elements are present, this element SHALL represent an empty list. This 

overrides the <xccdf:value> and <xccdf:complex-value> element(s) 

of an <xccdf:Value> element. Like <xccdf:set-value>, <xccdf:set-

complex-value> MAY also be applied to <xccdf:Value> elements in a 

cluster.  

refine-value 
(element) 

special 0-n Designates the Value constraints to be applied during tailoring, for an 

<xccdf:Value> element or the <xccdf:Value> members of a cluster. 

The element MAY have one or more <xccdf:remark> elements containing 

explanatory material or other prose. Each instance of <xccdf:remark> 

MAY have an @xml:lang attribute (see Section 6.2.10). Possible attributes 

for the <xccdf:refine-value> element are the id (REQUIRED) of a 

Value or item cluster, the id of a Value selector, and a new setting for the 
Value operator. The element provides a means for authors to impose 
different constraints on tailoring for different profiles. (Constraints MUST be 
designated with a selector id. For example, a particular numeric Value might 

have several different sets of <xccdf:value>, <xccdf:upper-bound>, 

and <xccdf:lower-bound> elements, designated with different selector 

ids. The <xccdf:refine-value> selector tells benchmark consumers 

which value to employ and bounds to enforce when that particular profile is in 
effect. 



SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.2 

 

 37  

Property Type Count Description 

refine-rule 
(element) 

special 0-n Allows the author to select check statements and override the @weight, 

@severity, and @role of a Rule, Group, or cluster of Rules and Groups. 

The element MAY have one or more <xccdf:remark> elements containing 

explanatory material or other prose. Each instance of <xccdf:remark> 

MAY have an @xml:lang attribute (see Section 6.2.10). The 

<xccdf:refine-rule> element has an @idref attribute (NCName) that 

SHALL refer to a Rule, Group, or cluster. Despite the name, this selector 
does apply for Groups and for clusters that include Groups, but it SHALL only 

affect their @weight attribute. If the selector specified in an 

<xccdf:refine-rule> element does not match any of the selectors 

specified on any of the check children of a Rule, then the <xccdf:check> 

child element without a @selector attribute MUST be used. 

 

The example below illustrates how selectors work with the <xccdf:refine-value> element. See 

Section 6.4.5.5 for more information on the @selector attribute. In the example, before the 

<xccdf:refine-value> is applied, the effective value is 8 and the effective lower bound is 8. 

(These are the two properties that have no selectors and are therefore the default.) After the 

<xccdf:refine-value> is applied, the effective value is 14 and the effective lower bound is 12. 

 <xccdf:Value id="xccdf_org.example_value_pw-length" type="number"  

    operator="equals"> 

    <xccdf:title>Minimum password length policy</xccdf:title> 

    <xccdf:value>8</xccdf:value> 

    <xccdf:value selector="high">14</xccdf:value> 

    <xccdf:lower-bound>8</xccdf:lower-bound> 

    <xccdf:lower-bound selector="high">12</xccdf:lower-bound> 

 </xccdf:Value> 

 <xccdf:Profile id="xccdf_org.example_profile_enterprise-internet"> 

    <xccdf:title>Enterprise internet server profile</xccdf:title> 

    <xccdf:refine-value idref="xccdf_org.example_value_pw-length" selector="high"/> 

 </xccdf:Profile> 

6.6 <xccdf:TestResult> Element 

6.6.1 Basics 

An <xccdf:TestResult> element encapsulates the results of a single application of a benchmark to 

a single target platform. The <xccdf:TestResult> element normally appears as the child of the 

<xccdf:Benchmark> element, although it may also appear as the top-level element of an XCCDF 

results document. XCCDF is not intended to be a database format for detailed results; the 

<xccdf:TestResult> element offers a way to store the results of individual tests in modest detail, 

with the ability to reference lower-level testing data.  

Benchmark consumers SHOULD include mechanisms so that <xccdf:TestResult> elements can 

retain their context even if separated from their source benchmark since the <xccdf:TestResult> 

only has meaning relative to the Rules that produced it. There are several ways to preserve this context, 

including making sure that the <xccdf:benchmark> element in the <xccdf:TestResult> is a 

persistent link to the specific document and version of the benchmark that produced the result, filling in 

the relevant version, organization, and similar fields, and/or using descriptive metadata. This document 



SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.2 

 

 38  

does not mandate any specific approach, but benchmark consumers SHOULD ensure some mechanism is 

in place to avoid context loss. 

The example below shows an <xccdf:TestResult> element with a few <xccdf:rule-result> 

children. 

<xccdf:TestResult id="xccdf_org.example_testresult_ios-test5"  

        end-time="2007-09-25T7:45:02-04:00" 

        xmlns:xccdf="http://checklists.nist.gov/xccdf/1.2" version=”1.0”> 

   <xccdf:benchmark href="ios-sample-12.4.xccdf.xml" 

        id="xccdf_org.example_benchmark_ios-test-benchmark”/> 

   <xccdf:title>Sample Results Block</xccdf:title> 

   <xccdf:remark>Test run by Bob on Sept 25, 2007</xccdf:remark> 

   <xccdf:organization>Department of Commerce</xccdf:organization> 

   <xccdf:organization>National Institute of Standards and Technology 

   </xccdf:organization> 

   <xccdf:identity authenticated="1" privileged="1">admin_bob</xccdf:identity> 

   <xccdf:target>lower.test.net</xccdf:target> 

   <xccdf:target-address>192.168.248.1</xccdf:target-address> 

   <xccdf:target-address>2001:8::1</xccdf:target-address> 

   <xccdf:target-facts> 

        <xccdf:fact type="string" name="urn:xccdf:fact:ethernet:MAC"> 

            02:50:e6:c0:14:39 

        </xccdf:fact> 

        <xccdf:fact type="string" name="urn:xccdf:fact:ethernet:MAC"> 

            02:50:e6:1f:33:b0 

        </xccdf:fact> 

   </xccdf:target-facts> 

   <xccdf:set-value  

        idref="xccdf_org.example_value_exec-timeout-time">10 

   </xccdf:set-value> 

   <xccdf:rule-result idref="xccdf_org.example_rule_ios12-no-finger-service"  

        time="2007-09-25T13:45:00-04:00"> 

        <xccdf:result>pass</xccdf:result> 

   </xccdf:rule-result> 

   <xccdf:rule-result idref="xccdf_org.example_rule_req-exec-timeout"  

        time="2007-09-25T13:45:06-04:00"> 

        <xccdf:result>fail</xccdf:result> 

        <xccdf:instance>console</xccdf:instance> 

        <xccdf:fix system="urn:xccdf:fix:commands" reboot="0" disruption="low"> 

             line console 

             exec-timeout 10 0 

        </xccdf:fix> 

   </xccdf:rule-result> 

   <xccdf:score>67.5</xccdf:score> 

   <xccdf:score system="urn:xccdf:scoring:absolute">0</xccdf:score> 

</xccdf:TestResult> 

6.6.2 Properties 

Table 23 describes the <xccdf:TestResult> element’s properties. Although several of its child 

elements technically support the @override attribute (discussed in Section 6.3.1), the 

<xccdf:TestResult> element cannot be extended. Therefore, @override has no meaning within 

an <xccdf:TestResult> element and its children, and it SHOULD NOT be used for them. 



SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.2 

 

 39  

Table 23: <xccdf:TestResult> Element Properties 

Property Type Count Description 

benchmark 
(element) 

special 0-1 Reference to the <xccdf:Benchmark> for which the 

<xccdf:TestResult> records results. REQUIRED if this 

<xccdf:TestResult> element is the top-level element, OPTIONAL 

otherwise. The REQUIRED @href attribute gives the URI of the benchmark 

document, and the OPTIONAL @id attribute holds the value of that 

<xccdf:Benchmark> element's @id attribute. 

tailoring-file 
(element) 

special 0-1 Holds identifying information about an <xccdf:Tailoring> element. See 

Section 6.6.5. 

title 
(element) 

string 0-n Title of the test. It MAY have an @xml:lang attribute (see Section 6.2.10). 

remark 
(element) 

string 0-n A remark about the test, possibly supplied by the person administering the 

benchmark assessment. It MAY have an @xml:lang attribute (see Section 

6.2.10). 

organization 
(element) 

string 0-n The name of the organization or other entity responsible for applying this 
benchmark and generating this result. When multiple organization elements 
are used to indicate multiple organization names in a hierarchical 
organization, the highest-level organization SHOULD appear first (e.g., 
“U.S. Government”) followed by subordinate organizations (e.g., 
“Department of Defense”). 

identity 
(element) 

string 0-1 Information about the system identity or user employed during application of 
the benchmark. If used, SHALL specify the name of the authenticated 
identity. Has REQUIRED boolean attributes that specify whether the identity 
was authenticated with the target system during the application of the 

benchmark (@authenticated), and whether the identity was granted 

administrative or other special privileges beyond those of a normal user 

(@privileged). 

profile 
(element) 

identifier 0-1 The identifier of the <xccdf:Profile> used for the test. If the 

<xccdf:TestResult> element contains an <xccdf:tailoring-file> 

element, then this SHALL be the identifier of the associated tailoring profile. 

Otherwise, if there is no <xccdf:tailoring-file> element present, this 

SHALL be the identifier of the associated benchmark profile if a profile was 
applied, and it SHALL be absent if no profile was applied. See Section 
6.6.5. 

target 
(element) 

string 1-n Name or description of the target system whose test results are recorded in 

the <xccdf:TestResult> element (the system to which a benchmark test 

was applied). Each appearance of the element supplies a name by which 
the target host or device was identified at the time the test was run. The 
name MAY be any string, but applications SHOULD include the fully 
qualified DNS name whenever possible.  

target-
address 
(element) 

string 0-n Network address of the target system to which a benchmark test was 
applied. Typical forms for the address include IP version 4 (IPv4), IP version 
6 (IPv6), and Ethernet media access control (MAC). 

target-facts 
(element) 

string 0-1 A list of named facts about the target system or platform. Each 

<xccdf:fact> in the list SHALL specify the value of the fact itself. Each 

<xccdf:fact> SHALL have a @name attribute (URI) and MAY include a 

@type attribute (“string”, “number”, or “boolean”) (default: “boolean”). Pre-

defined @name attribute values are listed in Table 24; product developers 

MAY define additional platform-specific and product-specific facts. 



SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.2 

 

 40  

Property Type Count Description 

target-id-ref 
(element) 

special 

0-n 

Used to reference target identification information located in an external 
document. The assessment target MAY be identified using other 
identification schemas such as Asset Identification (see [IR7693] for 
additional information). Each instance of this element identifies the same 
target of this report (multiple identifiers for a single target). Inclusion of an 

<xccdf:target-id-ref> element does not remove the requirement to 

identify the target using the <xccdf:target> element. 

any  Arbitrary contents, namespace=”##other”. This is for other target 
identification structures, such as those defined in the Asset Identification 
schema (see [IR7693]). Inclusion of an identifying element does not remove 

the requirement to identify the target using the <xccdf:target> element. 

platform 
(element) 

string 0-n The platforms that the target system was found to meet. See Section 6.2.5. 

set-value 
(element) 

string 

0-n 

Specific setting for a single <xccdf:Value> element used during the test. 

set-complex-
value 
(element) 

special Specific setting for a single <xccdf:Value> element used during the test 

when the given value is set to a complex type, such as a list. 

rule-result 
(element) 

special 0-n The result of a single instance of a rule application against the target. The 

<xccdf:TestResult> MUST include one <xccdf:rule-result> 

record for each <xccdf:Rule> that was selected in the resolved 

benchmark; it MAY also include <xccdf:rule-result> records for 

<xccdf:Rule> elements that were unselected in the benchmark. See 

Section 6.6.4. 

score 
(element) 

decimal 1-n An overall score for this benchmark test. The OPTIONAL @system attribute 

identifies the URI for a scoring model (see Section 7.3.2 for more 

information on pre-defined models). The OPTIONAL @maximum attribute 

specifies the maximum possible value of the score.  

metadata 
(element) 

special 0-n XML metadata associated with this <xccdf:TestResult>. For example, 

this element can hold a copy of the <xccdf:metadata> element of the 

<xccdf:Benchmark> which served as the source for these results. This is 

especially useful if the <xccdf:TestResult> will be separated from its 

source benchmark because the publication and support information in the 

benchmark can travel with the <xccdf:TestResult>. Benchmark 

consumers MAY also add their own metadata to <xccdf:TestResult> 

elements they produce. See Section 6.2.3. 

signature 
(element) 

special 0-1 A digital signature asserting authorship and allowing verification of the 

integrity of the <xccdf:TestResult>. See Section 6.2.7. 

id (attribute) special 1 Unique identifier for this element; see Section 6.2.3. 

start-time 
(attribute) 

dateTime 0-1 Time when test began. 

end-time 
(attribute) 

dateTime 1 Time when test was completed and the results recorded. 

test-system 
(attribute) 

string 0-1 Name of the benchmark consumer program that generated this 

<xccdf:TestResult> element; SHOULD be either a CPE name or a 

CPE applicability language expression. 

version 
(attribute) 

string 0-1 The version number string copied from the <xccdf:Benchmark>. 

Id (attribute) special 0-1 An identifier used for referencing elements included in an XML signature. 
See Section 6.2.7. 



SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.2 

 

 41  

6.6.3 <xccdf:fact> Element 

The URIs listed in Table 24 SHOULD be used, when applicable to the target, to record facts about the IT 

asset to which an <xccdf:TestResult> applies. 

Table 24: Predefined @name Attribute Values for <xccdf:fact> Elements 

URI Description 

urn:xccdf:fact:asset:identifier:mac Ethernet media access control address (SHOULD be sent as a 
pair with the IPv4 or IPv6 address to ensure uniqueness) 

urn:xccdf:fact:asset:identifier:ipv4 IPv4 address 

urn:xccdf:fact:asset:identifier:ipv6 IPv6 address 

urn:xccdf:fact:asset:identifier:host_name Host name of the asset, if assigned 

urn:xccdf:fact:asset:identifier:fqdn Fully qualified domain name 

urn:xccdf:fact:asset:identifier:ein Equipment identification number or other inventory tag number 

urn:xccdf:fact:asset:identifier:pki: X.509 PKI certificate for the asset (encoded in Base-64) 

urn:xccdf:fact:asset:identifier:pki:thumbprint SHA-1 hash of the PKI certification for the asset (encoded in 
Base-64) 

urn:xccdf:fact:asset:identifier:guid Globally unique identifier for the asset 

urn:xccdf:fact:asset:identifier:ldap LDAP directory string (distinguished name) of the asset, if 
assigned 

urn:xccdf:fact:asset:identifier:active_directory Active Directory realm to which the asset belongs, if assigned 

urn:xccdf:fact:asset:identifier:nis_domain NIS domain of the asset, if assigned 

urn:xccdf:fact:asset:environmental_information:
owning_organization 

Organization that tracks the asset on its inventory 

urn:xccdf:fact:asset:environmental_information:
current_region 

Geographic region where the asset is located 

urn:xccdf:fact:asset:environmental_information:
administration_unit 

Name of the organization that does system administration for the 
asset 

urn:xccdf:fact:asset:environmental_information:
administration_poc:title 

Title (e.g., Mr, Ms, Col) of the system administrator for an asset 

urn:xccdf:fact:asset:environmental_information:
administration_poc:e-mail 

E-mail address of the system administrator for the asset 

urn:xccdf:fact:asset:environmental_information:
administration_poc:first_name 

First name of the system administrator for the asset 

urn:xccdf:fact:asset:environmental_information:
administration_poc:last_name 

Last name of the system administrator for the asset 

6.6.4 <xccdf:rule-result> Element 

6.6.4.1 Properties 

The <xccdf:rule-result> element within the <xccdf:TestResult> element holds the result 

of applying an <xccdf:Rule> from the benchmark to a target system or component of a target system. 

Table 25 describes the <xccdf:rule-result> element’s properties. 



SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.2 

 

 42  

Table 25: <xccdf:rule-result> Element Properties 

Property Type Count Description 

result 
(element) 

string  1 Result of applying this <xccdf:Rule> to a target or target component: 

MUST be set to one of the values listed in Table 26. 

override 
(element) 

special 0-n An XML block explaining how and why an auditor chose to override the 
result. See Section 6.6.4.3. 

ident 
(element) 

string 0-n A long-term globally meaningful identifier for the issue, vulnerability, 

platform, etc. copied from the <xccdf:Rule>. SHALL have a @system 

attribute designating the URI of the organization or scheme that assigned 

the identifier. An <xccdf:ident> element MAY also have other attributes 

pulled from other namespaces in order to provide additional metadata for 
the given identifier. See Section 6.4.4.3 for more on this element. 

metadata 
(element) 

special 0-n XML metadata associated with this <xccdf:rule-result>. For example, 

this element could hold a copy of the metadata of the <xccdf:Rule> that 

served as the source for these results. Benchmark consumers MAY also 

add their own metadata to the <xccdf:rule-result> elements they 

produce. See Section 6.2.4 for additional information. 

message 
(element) 

string 0-n Diagnostic messages from the checking engine, with a REQUIRED 

@severity attribute that denotes the seriousness or conditions of the 

message. There are three message severity values: “error”, “warning”, and 
“info”. These elements SHALL NOT affect scoring; they are present merely 
to convey diagnostic information from the checking engine. Benchmark 
consumers MAY choose to log these messages or display them to the user. 

instance 
(element) 

string 0-n Name of the target subsystem or component to which this result applies, for 

a multiply instantiated <xccdf:Rule>. The element is important for an 

<xccdf:Rule> that applies to components of the target system, especially 

when a target might have several such components, and where the 

@multiple attribute of the <xccdf:Rule> is set to true. For example, an 

<xccdf:Rule> might specify a particular setting that needs to be applied 

on every interface of a firewall; for benchmark results, a firewall target with 

three interfaces could have three <xccdf:rule-result> elements with 

the same rule id, each with an independent value for the <xccdf:result> 

element. For more discussion of multiply instantiated <xccdf:Rule> 

elements, see Section 7.2.3.4. 

The OPTIONAL @context and @parentContext attributes provide 

context and hierarchy information for nested contexts. If the @context 

attribute is omitted, the value of the context SHALL default to “undefined”. At 

most one <xccdf:instance> child of an <xccdf:rule-result> MAY 

have a context of “undefined”. 

fix 
(element) 

string 0-n Fix script for this target platform, if available (would normally appear only for 
result values of “fail”). See Table 9. It is assumed to have been ‘instantiated’ 
by the testing tool and any substitutions or platform selection already made. 

check 
(element) 

special 

(1-n 
instances 
of check) 

XOR  

(1 
instance 
of 
complex-
check) 

Encapsulated or referenced results to detailed testing output from the 
checking engine (if any). Consists of the URI that designates the checking 
system, and detailed output data from the checking engine. The detailed 
output data MAY take the form of encapsulated XML or text data, or it MAY 
be a reference to an external URI. (Note: this is analogous to the form of the 

<xccdf:Rule> element’s <xccdf:check> element, used for referring to 

checking engine input.) See Section 6.4.4.4. 

complex-
check 
(element)  

special A copy of the <xccdf:Rule> element’s <xccdf:complex-check> 

element where each component <xccdf:check> element of the 

<xccdf:complex-check> element is an encapsulated or referenced 

results to detailed testing output from the checking engine (if any) as 
described above. See Section 6.4.4.4. 



SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.2 

 

 43  

Property Type Count Description 

idref 
(attribute) 

identifier 1 Identifier of an <xccdf:Rule> (from the benchmark designated in the 

<xccdf:TestResult>). 

role 
(attribute) 

string 0-1 The role string copied from the @role attribute of the <xccdf:Rule>. 

severity 
(attribute) 

string 0-1 The @severity attribute value copied from the <xccdf:Rule> (default: 

“unknown”). 

time 
(attribute) 

dateTime 0-1 Time when application of this instance of this <xccdf:Rule> was 

completed. 

version 
(attribute) 

string 0-1 The version number string copied from the <xccdf:version> element of 

the <xccdf:Rule>. 

weight 
(attribute) 

decimal 0-1 The weight number copied from the @weight attribute of the 

<xccdf:Rule>. Expressed as a non-negative real number (0.0 or greater, 

maximum 3 digits, default 1.0). 

6.6.4.2 <xccdf:result> Element 

Table 26 lists the possible results of a single test (assigned to the <xccdf:result> element). 

Table 26: Possible Results for a Single Test 

Result and 
Abbreviation 

Description 

pass [P] The target system or system component satisfied all the conditions of the <xccdf:Rule>. 

fail [F] The target system or system component did not satisfy all the conditions of the 

<xccdf:Rule>. 

error [E] The checking engine could not complete the evaluation, therefore the status of the target’s 

compliance with the <xccdf:Rule> is not certain. This could happen, for example, if a testing 

tool was run with insufficient privileges and could not gather all of the necessary information.  

unknown [U] The testing tool encountered some problem and the result is unknown. For example, a result of 
‘unknown’ might be given if the testing tool was unable to interpret the output of the checking 
engine (the output has no meaning to the testing tool). 

notapplicable [N] The <xccdf:Rule> was not applicable to the target of the test. For example, the 

<xccdf:Rule> might have been specific to a different version of the target OS, or it might 

have been a test against a platform feature that was not installed.  

notchecked [K] The <xccdf:Rule> was not evaluated by the checking engine. This status is designed for 

<xccdf:Rule> elements that have no <xccdf:check> elements or that correspond to an 

unsupported checking system. It may also correspond to a status returned by a checking 
engine if the checking engine does not support the indicated check code.  

notselected [S] The <xccdf:Rule> was not selected in the benchmark.  

informational [I] The <xccdf:Rule> was checked, but the output from the checking engine is simply 

information for auditors or administrators; it is not a compliance category. This status value is 

designed for <xccdf:Rule> elements whose main purpose is to extract information from the 

target rather than test the target.  

fixed [X] The <xccdf:Rule> had failed, but was then fixed (possibly by a tool that can automatically 

apply remediation, or possibly by the human auditor).  

6.6.4.3 <xccdf:override> Element 

The <xccdf:override> element provides a mechanism for an auditor to change the result assigned 

by the checking tool or to document the reason for deviation from the rule requirement. This is necessary 



SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.2 

 

 44  

when checking a rule requires reviewing manual procedures or other non-IT conditions, and/or when a 

check gives an inaccurate result on a particular target system. The <xccdf:override> element 

SHALL contain the properties listed in Table 27. Note that the <xccdf:override> element is 

unrelated to the @override attribute (Section 6.3.1). If the <xccdf:override> element is present, 

the <xccdf:result> element SHALL be changed to match the <xccdf:override> element's 

<xccdf:new-result> property. 

Table 27: <xccdf:override> Element Properties 

Property Type Count Description 

old-result (element) string 1 The rule result status before this override 

new-result (element) string 1 The new, override rule result status 

remark (element) string 1 Rationale or explanation text for why or how the override was applied. 

It MAY have an @xml:lang attribute (see Section 6.2.10). 

time (attribute) dateTime 1 When the override was applied 

authority (attribute) string 1 Name or other identification for the human principal authorizing the 
override 

 

The example below shows how an <xccdf:override> element would appear in an <xccdf:rule-

result>. Note: if an <xccdf:override> element is added to an <xccdf:rule-result> that 

was previously signed, it will break any XML digital signature applied to the enclosing 

<xccdf:TestResult> element. 

<xccdf:rule-result idref="xccdf_org.example_rule_rule76" time="2005-04-26T14:38:19Z" 

severity="low"> 

  <xccdf:result>pass</xccdf:result> 

  <xccdf:override time="2005-04-26T15:03:20Z" authority="Bob Smith"> 

    <xccdf:old-result>fail</xccdf:old-result>  

    <xccdf:new-result>pass</xccdf:new-result> 

    <xccdf:remark> 

      Manual inspection showed this rule is satisfied. The relevant registry 

      key was protected per policy, but with a more restrictive ACL than the 

      benchmark was designed to check. The rule result has been overridden to ‘pass’. 

    </xccdf:remark> 

  </xccdf:override> 

  <xccdf:instance context="registry"> 

    HKLM\SOFTWARE\Policies 

  </xccdf:instance> 

  <xccdf:check system="http://www.mitre.org/XMLSchema/oval-definitions-5"> 

    <xccdf:check-content-ref href="oval-out.xml" name="oval:org.example:def:123"/> 

  </xccdf:check> 

</xccdf:rule-result> 

6.6.5 <xccdf:tailoring-file> Element 

The <xccdf:tailoring-file> element in the <xccdf:TestResult> element is used to 

provide information about an <xccdf:Tailoring> element. Table 28 shows the properties of an 

<xccdf:tailoring-file> element. The <xccdf:tailoring-file> element MUST be 

present if and only if one of the <xccdf:Profile> elements of the <xccdf:Tailoring> element 

was applied or created during the activities that created the given <xccdf:TestResult> element. 

“Applied” refers to applying a profile during benchmark profile processing, while “created” refers to a 



SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.2 

 

 45  

user’s manual tailoring actions resulting in the generation of a new <xccdf:Tailoring> element. 

(See Section 6.7 for information on <xccdf:Tailoring>.)  

Table 28: <xccdf:tailoring-file> Element Properties 

Property Type Count Description 

href (attribute) URI 1 Persistent location of the <xccdf:Tailoring> element 

id (attribute) identifier 1 Identifier for the <xccdf:Tailoring> element 

version (attribute) string 1 Version of the <xccdf:Tailoring> element 

time (attribute) dateTime 1 Timestamp for the <xccdf:Tailoring> element 

6.7 <xccdf:Tailoring> Element 

6.7.1 Basics 

An <xccdf:Tailoring> element allows named tailorings (i.e., profiles) of a benchmark to be defined 

separately from the benchmark itself. There are several reasons why this might be desirable: 

 The benchmark might not be controlled by the organization wishing to add the profile to it. 

 The benchmark might have digital signatures that would be corrupted by benchmark 

modification. 

 The benchmark might undergo revision by its author, so modifications by a different party would 

represent a development fork that complicates maintenance. 

 It enables the capturing of manual tailoring actions in a well-defined format (see Section 5.2). 

The profiles in an <xccdf:Tailoring> element can be used in two ways. First, an organization 

might wish to pre-define a set of tailoring actions to be applied on top of or instead of the tailoring 

performed by a benchmark's profiles. This may be necessary to adjust the benchmark to the local needs of 

an enterprise. By creating new <xccdf:Profile> elements with these tailorings and saving them in 

the <xccdf:Tailoring> element, these can be applied to future assessments. The 

<xccdf:Tailoring> elements also serve as records of these additional tailoring actions, providing 

the context needed to interpret <xccdf:TestResult> elements. 

In addition, an <xccdf:Tailoring> element can be used to to record manual tailoring actions 

performed during the course of an assessment. Manual tailoring actions SHOULD be limited to actions 

that could be performed using selectors in an <xccdf:Profile> element. If this is done, any manual 

tailoring action can be recorded in a series of selectors in a newly defined <xccdf:Profile> element. 

By storing this <xccdf:Profile> in an <xccdf:Tailoring> element, the processes that led to a 

particular set of <xccdf:TestResult> elements can be saved for future reference. Of course, such an 

<xccdf:Tailoring> element could then be used as input to subsequent assessments. 

6.7.2 Properties 

An <xccdf:Tailoring> element holds one or more <xccdf:Profile> elements. These 

<xccdf:Profile> elements record additional tailoring activities that apply to a given 

<xccdf:Benchmark>. <xccdf:Tailoring> elements are separate from benchmark documents, 

but each <xccdf:Tailoring> element is associated with a specific benchmark document. By 



SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.2 

 

 46  

defining these tailoring actions separately from the benchmark document to which they apply, these 

actions can be recorded without affecting the integrity of the source itself. 

Table 29 lists the possible properties for the <xccdf:Tailoring> element. 

Table 29: <xccdf:Tailoring> Element Properties 

Property Type Count Description 

benchmark 
(element) 

special 0-1  Identifies the Benchmark to which this tailoring applies. A tailoring document is 

only applicable to a single Benchmark. The <xccdf:benchmark> element 

holds the associated Benchmark's location URI, version string, and id value. 
Note, however, that this is a purely informative field. Benchmark consumers are 
not required to perform any lookup or even verify that a tailoring document is 
being applied to the correct Benchmark. 

status 
(element) 

special 0-n Status of the tailoring and date at which it attained that status. Authors MAY 
use this element to record the maturity or consensus level of a tailoring. See 
Section 6.2.8. 

dc-status 
(element) 

special 0-n Holds additional status information using the Dublin Core format. See Section 
6.2.8. 

version 
(element) 

special 1  The version of this tailoring, with a REQUIRED @time attribute (when it was 

created). This is necessary because, under some circumstances, a copy of a 
tailoring document might be automatically generated. Without the version and 
timestamp, tracking of these automatically created tailoring documents could 
become problematic. 

metadata 
(element) 

special 0-n XML metadata for the tailoring. See Section 6.2.4. 

Profile 
(element) 

Profile 1-n Profiles that reference and customize sets of items in a Benchmark; see 
Section 6.5. These elements are identical to Profiles that might be found in a 
normal Benchmark. Moreover, they can extend the Profiles in the tailoring 
document's associated Benchmark using normal Profile extension mechanics. 
However, Profiles in the tailoring document cannot themselves be extended. 
For this reason, no Profile in the tailoring document should have its abstract 
property set to "true". 

signature 
(element) 

special 0-1 A digital signature asserting authorship and allowing verification of the integrity 
of the tailoring. See Section 6.2.7. 

id 
(attribute) 

special 1  Unique identifier for this element. See Section 6.2.3.  

Id 
(attribute) 

special 0-1 An identifier used for referencing elements included in an XML signature. See 
Section 6.2.7. 

6.7.3 Profile Shadowing 

Profiles in an <xccdf:Tailoring> element MAY “shadow” profiles in the associated benchmark 

document. When a tailoring profile shadows a benchmark profile, it assumes the identifier of that profile 

in all subsequent processing, and the shadowed benchmark profile effectively becomes invisible. 

Shadowing occurs when the tailoring profile's @id AND @extends attributes are both identical to the 

@id attribute of the benchmark profile. Note that a tailoring profile MAY extend a benchmark profile 

without shadowing it; the tailoring profile would simply use an identifier different from the identifier of 

the benchmark profile. However, a tailoring profile's @id attribute SHALL NOT duplicate a benchmark 

profile's id unless the tailoring profile is extending the benchmark profile.  

Table 30 summarizes this behavior. In this table, consider an <xccdf:Tailoring> element with a 

single <xccdf:Profile> whose @id and @extends attributes have the given values. This 



SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.2 

 

 47  

<xccdf:Tailoring> element is associated with an <xccdf:Benchmark> that likewise has an 

<xccdf:Profile> whose @id attribute has the given value. 

Table 30: Profile Shadowing Behavior 

Tailoring 
Profile 

Benchmark 
Profile Behavior 

id extends id 

A A A The tailoring profile shadows the benchmark profile. If profile "A" is selected 
and applied, it will be the profile of that name as defined in the 

<xccdf:Tailoring> element. 

B A A The tailoring profile extends but does not shadow the benchmark profile. If 
profile "A" is applied, it is the benchmark profile of that name that is applied. If 
profile "B" is applied, it is the tailoring profile of that name that is applied. 

A B A An error is thrown during processing: the tailoring profile identifier duplicates 
the identifier of a benchmark profile without extending that profile. 

6.7.4 Tailoring Actions and Profile Selectors 

As mentioned earlier, a tailoring profile can be used to record manual tailoring actions and to serve as a 

record of these actions when evaluating a given <xccdf:TestResult>. In such a case, the following 

user tailoring actions are represented by the profile selectors designated in Table 31. 

Table 31: Tailoring Actions and Profile Selectors 

Action Selector 

User selects or de-selects a Rule <xccdf:select> 

User provides a value for use with a given Value <xccdf:set-value> 

User provides a list of values for use with a given Value <xccdf:set-complex-value> 

User switches the check that a Rule is to perform <xccdf:refine-rule> 

User changes the weight of a Rule or Group <xccdf:refine-rule> 

 



SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.2 

 

 48  

7. XCCDF Processing 

7.1 Introduction 

The XCCDF specification is designed to support automated XCCDF document processing by a variety of 

products. There are three basic types of processing that a benchmark consumer might apply to an XCCDF 

document: 

 Tailoring involves loading an XCCDF benchmark document, applying customizations through 

the application of profiles or through user actions, and then generating an XCCDF benchmark 

document that incorporates the tailoring. 

 Document Generation involves loading an XCCDF benchmark document and generating textual 

or formatted output, usually in a form suitable for printing or human perusal. 

 Assessing involves loading an XCCDF benchmark document, checking target systems or data 

sets that represent the target systems, computing one or more scores, and generating one or more 

<xccdf:TestResult> elements. Some products also generate other outputs or store 

compliance information in some kind of database. 

XML schema validation SHOULD be performed by benchmark consumers prior to processing XCCDF 

benchmark documents. 

Digital signature generation and validation MAY be performed by products as part of processing. 

However, because signatures are only valid on a source document, not valid after the document has been 

processed, products that perform signature validation on source documents MUST do so after XInclude 

processing and before performing any other processing on those documents. 

7.2 Loading and Traversal 

7.2.1 Introduction 

Each type of processing includes two common steps: loading the XCCDF document, then traversing its 

contents to generate output. Loading and traversal are discussed below. Note that loading MUST be 

complete before traversal begins. 

7.2.2 Loading 

Table 32 explains the basics of the loading processing sequence. 

Table 32: Loading Processing Sequence Sub-Steps 

Sub-Step Description 

Loading.Import Import the XCCDF document into the program and build an initial internal 
representation of its elements and attributes. If the document cannot be read or 
parsed, then Loading fails. (At the beginning of this step, any inclusion processing 
specified with XInclude elements MUST be performed in compliance with 
[XINCLUDE]. The resulting XML information set SHOULD be validated against the 
XCCDF schema; if validation fails, then Loading fails. XML Inclusion processing is 
independent of all XCCDF processing and MUST happen before any XCCDF 
validation or other processing.) Go to the next sub-step. 



SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.2 

 

 49  

Sub-Step Description 

Loading.Noticing For each <xccdf:notice> element of the <xccdf:Benchmark> element, add the 

notice to the product’s set of legal notices. If a notice with an identical @id value is 

already a member of the set, then an error SHOULD be raised. Go to the next sub-
step. 

Loading.Resolve If the @resolved attribute of the <xccdf:Benchmark> element is set to true, which 

asserts that the other Loading.Resolve sub-steps are unnecessary, then Loading 
succeeds, otherwise go to the next sub-step. 

Loading.Resolve.Items For each item in the <xccdf:Benchmark> that has an @extends attribute, resolve it 

by using the following steps: 

(1)  resolve the extended item (i.e., perform Loading.Resolve.Items on the extended 
item) 

(2)  insert the necessary property sequences from the extended item into the 
appropriate locations in the extending item (see Table 33 below) 

(3)  remove the @extends attribute 

If any item’s @extends identifier does not match the identifier of a visible item of the 

same type, then Loading fails. If the directed graph formed by the @extends attributes 

includes a loop, then indicate a processing error and Loading fails, otherwise go to the 
next sub-step. 

Loading.Resolve.Profiles For each <xccdf:Profile> in the <xccdf:Benchmark> that has an @extends 

attribute, resolve the set of properties in the extending <xccdf:Profile> by 

applying the following steps:  

(1)  resolve the extended <xccdf:Profile> (i.e., perform Loading.Resolve.Profiles 

on the extended profile) 

(2)  insert the necessary property sequences from the extended <xccdf:Profile> 

into the appropriate locations in the extending <xccdf:Profile> (see Table 33 

below) 

If any @extends identifier does not match the identifier of another 

<xccdf:Profile> in the <xccdf:Benchmark>, then Loading fails. If the directed 

graph formed by the @extends attributes includes a loop, then indicate a processing 

error and Loading fails. Otherwise, go to the next sub-step.  

Loading.Resolve.Tailoring If no <xccdf:Tailoring> element is being applied to this <xccdf:Benchmark>, 

go to the next sub-step. Otherwise, for each <xccdf:Profile> in the 

<xccdf:Tailoring> element that has an @extends attribute, resolve the set of 

properties in the extending <xccdf:Profile> by applying the following steps:  

(1)  prepend the property sequence from the extended <xccdf:Profile> to that of 

the extending <xccdf:Profile> (see Table 33 below) 

(2)  if the <xccdf:Profile> element’s @id and @extends attributes are both 

identical to the @id of an <xccdf:Profile> element in the source 

<xccdf:Benchmark>, then set the @abstract attribute of the extended 

<xccdf:Profile> in the source <xccdf:Benchmark> to true.  

If any <xccdf:Profile> @extends attribute identifier does not match the identifier 

of another <xccdf:Profile> in the source <xccdf:Benchmark>, then Loading 

fails. If any tailoring profile's identifier duplicates the identifier of a benchmark profile in 
the source benchmark without also extending that profile, then Loading fails. 
Otherwise, go to the next sub-step. 

Loading.Resolve.Abstract For each item in the <xccdf:Benchmark> for which the @abstract attribute is true, 

remove the item. Any item for which the @abstract attribute is true SHALL NOT be 

included in any generated document and SHALL NOT be exported to any checking 

engine or used in any check. For each <xccdf:Profile> in the 

<xccdf:Benchmark> for which the @abstract attribute is true, remove the 

<xccdf:Profile>. Go to the next sub-step. 

Loading.Resolve.Finalize Set the <xccdf:Benchmark> @resolved attribute to true; Loading succeeds. 

 



SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.2 

 

 50  

If Loading succeeds for an XCCDF document, the internal data model SHOULD be complete and every 

item SHOULD contain all of its own content. An XCCDF document that has no @extends or @abstract 

attributes is called a resolved document.  

During the Loading.Resolve.Items and Loading.Resolve.Profiles steps, the processor MUST flatten 

inheritance relationships. The conceptual model for XCCDF object properties is a list of name-value 

pairs; property values defined in an extending object are added to the list inherited from the extending 

object. Where they are added to this list depends on the inheritance processing model for the given 

property. There are five such models: 

 None – the property value or values are not inherited. 

 Prepend – the property values are inherited from the extended object, but values on the 

extending object come first, and inherited values follow. 

 Append – the property values are inherited from the extended object; additional values may be 

defined on the extending object and appear after the inherited values. 

 Replace – the property value is inherited; a property value explicitly defined on the extending 

object replaces an inherited value. 

 Override – if explicitly tagged as ‘override’ (by setting the @override attribute to “true”), the 

property is processed as if it uses the Replace model. Otherwise, the property is processed as if it 

uses the Append model.  

Table 33 shows the inheritance processing model for each of the properties supported on 

<xccdf:Rule>, <xccdf:Group>, <xccdf:Value>, and <xccdf:Profile> elements. 

Table 33: Inheritance Processing Model 

Processing 
Model 

Properties Remarks 

None abstract, cluster-id, extends, id, signature, status, 
dc-status 

These properties cannot be inherited at all; 
they MUST be given explicitly 

Prepend source, choices  

Append requires, conflicts, ident, fix, value, complex-value, 
default, complex-default, lower-bound, upper-bound, 
match, select, refine-value, refine-rule, set-value, 
set-complex-value, profile-note 

 

Replace hidden, prohibitChanges, selected, version, weight, 
operator, interfaceHint, check, complex-check, role, 
severity, type, interactive, multiple, note-tag, impact-
metric 

For the check property, checks with different 
systems or different selectors SHALL be 
considered different properties 

Override title, description, platform, question, rationale, 
warning, reference, fixtext 

For properties that have a locale specified 
(xml:lang), values with different locales 
SHALL be considered different properties 

 

Group extension is deprecated in XCCDF 1.2; however, if it is used, the Loading.Resolve.Items step 

MUST generate a fresh unique id for any Group, Rule, or Value object that gets created through extension 

of its enclosing Group. This could be accomplished by generating and assigning a random unique id 

during Loading.Resolve.Items. It should be emphasized, however, that use of this feature is strongly 

discouraged because the lack of any standardized procedure for id generation means that tools from 

different vendors are unlikely to handle group extension the same way, leading to problems with 

interoperability. 

 



SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.2 

 

 51  

7.2.3 Traversal 

7.2.3.1 Introduction 

The second processing step is Traversal. The concept behind Traversal is basically an in-order, depth-first 

walk through all the items that make up a benchmark. The following subsections explain how Traversal 

works for Benchmark, item, Profile, and check elements. 

7.2.3.2 Benchmark Processing Algorithm 

Table 34 explains the basics of the benchmark processing algorithm. 

Table 34: Benchmark Processing Algorithm Sub-Steps 

Sub-Step Description 

Benchmark.Front Process the properties of the <xccdf:Benchmark> element that are not processed 

in other sub-steps. 

Benchmark.Profile If the identifier of an <xccdf:Profile> was specified, then apply the settings in 

the <xccdf:Profile> to the <xccdf:Benchmark>. At most one 

<xccdf:Profile> id MAY be specified in a single instance of document 

generation or assessment. 

Benchmark.ManualTailoring Benchmark consumer products that are also benchmark producers MAY allow users 
to apply manual tailoring actions at this time. If that happens, the product SHOULD 

generate a new <xccdf:Tailoring> element to record these actions. The nature 

of this element depends on prior actions: 

 If no <xccdf:Profile> was applied in the Benchmark.Profile step, then the 

new <xccdf:Tailoring> element contains a single <xccdf:Profile> 

consisting of selectors documenting user tailoring. This new 

<xccdf:Profile> does not extend any other <xccdf:Profile> and must 

have its own unique identifier. 

 If an <xccdf:Profile> from the source <xccdf:Benchmark> was applied 

in the Benchmark.Profile step, then the new <xccdf:Tailoring> element 

contains a single <xccdf:Profile> consisting of selectors documenting user 

tailoring. This <xccdf:Profile> extends the applied source benchmark 

profile and duplicates its identifier (i.e., it shadows that source benchmark 
profile). 

 If an <xccdf:Profile> from some other <xccdf:Tailoring> element was 

applied in the Benchmark.Profile step, then the new <xccdf:Tailoring> 

element is created as a copy of the utilized <xccdf:Tailoring> element with 

the same id, an iterated version, and an updated timestamp. Selectors 
documenting user tailoring actions are then appended to the copy of the applied 
tailoring profile. 

In all cases, <xccdf:TestResult> elements will record the new/modified 

<xccdf:Profile> in the new <xccdf:Tailoring> element in order to provide 

traceability of user tailoring actions.  

Benchmark.Content If the processing type is Tailoring, skip to the next sub-step. Otherwise, for each 

item in the <xccdf:Benchmark>, initiate Item.Process (see Table 35). 

Benchmark.Back Finalize the processing of the <xccdf:Benchmark>. 

 

The sub-steps Front and Back will be different for each kind of processing, and each product MAY 

perform specialized handling of the benchmark properties that are processed during the Front and Back 

sub-steps. For document generation, profiles MAY be processed separately as part of Benchmark.Back to 

generate part of the output document. 



SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.2 

 

 52  

7.2.3.3 Item Processing Algorithm 

7.2.3.3.1 Basics 

Table 35 explains the basics of the item processing algorithm. Note that when the processing type is 

Tailoring, Item processing is not performed. 

Table 35: Item Processing Algorithm Sub-Steps 

Sub-Step Description 

Item.Process Examine the contents of the <xccdf:requires> and <xccdf:conflicts> elements; if any 

instances of <xccdf:requires> have all their items unselected, or any <xccdf:conflicts> 

instances have any items selected, then set the @selected attribute to false. See Section 

7.2.3.3.2. 

Item.Select If any of the following conditions holds, cease processing of this item. 

 The processing type is Document Generation, and the item’s @hidden attribute is true. 

 The processing type is Assessing, and the item’s @selected attribute is false. If this item is 

a rule, its result becomes notselected (see Table 26). 

 The processing type is Assessing, and the item is a rule with a @role attribute whose value 

is “unchecked”. The result of this rule becomes notchecked (see Table 26). 

 The processing type is Assessing, and the current platform (if known by the product) is not a 
member of the set of platforms for this item. If this item is a rule, its result becomes 
notapplicable (see Table 26). 

At the beginning of Document Generation, a user may have specified a platform to constrain 
document generation. If the user-defined platform used for document generation is not a member 
of the set of platforms for this item, then the product MAY stop processing of this item. 

Group.Front If the item is an <xccdf:Group>, then process its properties. 

Group.Content If the item is an <xccdf:Group>, then for each item in the <xccdf:Group>, initiate 

Item.Process. 

Rule.Content If the item is an <xccdf:Rule>, then process its properties (see Section 7.2.3.5). 

Value.Content If the item is an <xccdf:Value>, then process its properties. 

 

The list below describes some of the processing in more detail. 

 For Document Generation, the key to processing is to generate an output stream that can be 

formatted as a readable or printable document. The exact formatting discipline depends on the 

tool and the target output format. In general, the @selected attribute is not germane to 

Document Generation.  

 For Assessing, the key to processing is applying the <xccdf:Rule> checks to the target 

system or collecting data about the target system. It is also possible that some <xccdf:Rule> 

checks will need to be applied to multiple contexts or features of the target system or trigger 

multiple blocks of code in the checking language, generating multiple pass or fail results for a 

single <xccdf:Rule> element. For more information, see the <xccdf:multi-check> 

discussion in Section 6.4.4.4 and the <xccdf:multiple> discussion in Section 6.4.4.2. 

7.2.3.3.2 <xccdf:requires> and <xccdf:conflicts> Elements 

To prevent ambiguity, benchmark consumers MUST process the items of the <xccdf:Benchmark> in 

order, and MUST NOT change the selected property of any <xccdf:Rule> or <xccdf:Group> 

more than once during a processing session. It should be emphasized that <xccdf:Group> and 

<xccdf:Rule> elements SHALL NOT change from deselected to selected based on their 



SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.2 

 

 53  

<xccdf:requires> and <xccdf:conflicts> elements. Also, <xccdf:requires> and 

<xccdf:conflicts> elements SHALL only change their parent item; they SHALL NOT modify 

other items in the <xccdf:Benchmark>. Finally, note also that <xccdf:requires> and 

<xccdf:conflicts> elements SHALL NOT be evaluated more than once. Later changes to a 

Benchmark's state might result in deselections that would cause a previous evaluation of requires/conflicts 

properties to come to a different conclusion. However, prior evaluations SHALL NOT change, even if 

their results become "incorrect" after subsequent items are processed.  

Rules and Groups may contain any number of <xccdf:requires> and <xccdf:conflicts> 

elements and if any of these elements do not evaluate to true, then that item SHALL become deselected. 

Essentially, the results of the individual <xccdf:requires> and <xccdf:conflicts> elements 

are ANDed together to determine whether a given item's <xccdf:requires> and 

<xccdf:conflicts> elements are met.  

Here are a few examples of the processing of <xccdf:requires> and <xccdf:conflicts> 

elements. In all examples, it is assumed that application of profiles and/or manual tailoring has already 

occurred.  

Example #1 – Simple requires/conflicts example  

Below is a simple example of an <xccdf:Rule> that uses <xccdf:requires> and 

<xccdf:conflicts>:  

<xccdf:Rule id="xccdf_org.example_rule_Rule1" selected="true">  

 ..  

 <xccdf:requires idref="xccdf_org.example_rule_Rule2  

                           xccdf_org.example_rule_Rule3"/>  

 <xccdf:requires idref="xccdf_org.example_group_Group1" />  

 <xccdf:conflicts idref="xccdf_org.example_rule_Rule4" />  

 ...  

</xccdf:Rule> 

The above <xccdf:Rule> would only be selected if at least one of Rule2 or Rule3 was selected, if 

Group1 was selected, and if Rule4 was not selected. Expressed in boolean logic format, Rule1's 

requires/conflicts parameters would be met if and only if:  

((Rule2 OR Rule3) AND Group1 AND ~Rule4) 

In the above algebra, a name evaluates to "true" if and only if the named item is selected. Note that if 

Rule1 were already de-selected, the requires/conflicts evaluation becomes moot – Rule1 would never 

change to selected even if all its requires and conflicts properties were met. Likewise, Rule1's requires 

and conflicts statements never affect Rule2, Rule3, Rule4, or Group1.  

Example #2 – Ordering of requires/conflicts  

As mentioned earlier, an item's compliance with its <xccdf:requires> and <xccdf:conflicts> 

elements is only evaluated at one point in time and subsequent changes to the benchmark's state, even if 

they would make those evaluations "incorrect" if re-run, do not change the prior results. Consider the 

following <xccdf:Rule> elements:  

<xccdf:Rule id="xccdf_org.example_rule_Rule1" selected="true">  

 ...  

 <xccdf:requires idref="xccdf_org.example_rule_Rule2">  

 ...  



SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.2 

 

 54  

</xccdf:Rule>  

<xccdf:Rule id="xccdf_org.example_rule_Rule2" selected="true">  

 ...  

 <xccdf:requires idref="xccdf_org.example_rule_Rule3">  

 ...  

</xccdf:Rule>  

<xccdf:Rule id="xccdf_org.example_rule_Rule3" selected="false">  

 ...  

 <xccdf:requires idref="xccdf_org.example_rule_Rule4">  

 ...  

</xccdf:Rule>  

<xccdf:Rule id="xccdf_org.example_rule_Rule4" selected="true">  

 ...  

</xccdf:Rule>  

In the above example, Rule1 requires Rule2, Rule2 requires Rule3, and Rule3 requires Rule4, although 

since Rule3 is already deselected, its requires statements are irrelevant. Looking at the above scenario, 

one might be tempted to believe that Rule1, Rule2, and Rule3 will all end up deselected, but this is not the 

case. The following steps show how item processing of these Rules would proceed. For this example, we 

will assume we are doing assessment.  

1. Item.Process(Rule1) – Because Rule2 is required, we see if Rule2 is selected. It is, so we make 

no change to Rule1's selection status.  

2. Item.Select(Rule1) – Rule1 is selected. Continue processing Rule1.  

3. Rule.Content(Rule1) – Process Rule1's content.  

4. Item.Process(Rule2) – Because Rule3 is required, we see if Rule3 is selected. It is not, so we set 

selected on Rule2 to false.  

5. Item.Select(Rule2) – Rule2 is not selected. Terminate processing of Rule2.  

6. Item.Process(Rule3) – Because Rule4 is required, we see if Rule4 is selected. It is, but Rule 3 is 

already de-selected and remains so.  

7. Item.Select(Rule3) – Rule3 is not selected. Terminate processing of Rule3.  

8. Item.Process(Rule4) – Rule4 has no requires/conflicts properties so this step is skipped.  

9. Item.Select(Rule4) – Rule4 is selected. Continue processing Rule4.  

10. Rule.Content(Rule4) – Process Rule4's content.  

The final result was that Rule1 and Rule4 were selected and processed while Rule2 and Rule3 were de-

selected and not processed. This happens even though Rule1 requires Rule2. Because we have completed 

processing of Rule1's content before we start processing of Rule2, by the time we realize that Rule2's 

requires statement cannot be met and Rule2 becomes deselected, the effect this change would have on 

Rule1 is moot because Rule1 has already been run.  

This example demonstrates the importance of processing items in the order in which they appear in the 

benchmark XML. If a benchmark consumer processed these items in a different order (for example, from 

the bottom up), this would result in a different set of Rule contents being processed, which would violate 

the XCCDF specification.  

Example #3 – Requires, conflicts, and Groups  

Example #2 shows how a Rule's content might be processed even though a Rule that it requires is not 

(eventually) selected. Another way this can happen is if a required Rule is contained in a deselected 

Group. Consider the following example:  



SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.2 

 

 55  

<xccdf:Rule id="xccdf_org.example_rule_Rule1" selected="false">  

 ...  

</xccdf:Rule>  

<xccdf:Group id="xccdf_org.example_group_Group1" selected="false">  

 ...  

 <xccdf:Rule id="xccdf_org.example_rule_Rule2" selected="true">  

  ...  

  <xccdf:requires idref="xccdf_org.example_rule_Rule1" />  

  ...  

 </xccdf:Rule>  

 ...  

</xccdf:Group>  

<xccdf:Rule id="xccdf_org.example_rule_Rule3" selected="true">  

 ...  

 <xccdf:requires idref="xccdf_org.example_rule_Rule2" />  

 ...  

</xccdf:Rule>  

Because Group1 is deselected, none of its contents will ever be processed. Thus, even though Rule2 

would never be run and even though its requires property would not be met, it remains selected and, as 

such, allows the requires statement of Rule3 to evaluate to true. The following steps show how Item 

Processing of these Rules would proceed. For this example, we will assume we are doing assessment.  

1. Item.Process(Rule1) – Rule1 has no requires/conflicts properties so this step is skipped.  

2. Item.Select(Rule1) – Rule1 is not selected. Terminate processing of Rule1.  

3. Item.Process(Group1) – Group1 has no requires/conflicts properties so this step is skipped.  

4. Item.Select(Group1) – Group1 is not selected. Terminate processing of Group1. Note that we 

never get to the Group.Content step so Rule2 never undergoes any form of processing.  

5. Item.Process(Rule3) – Because Rule2 is required, we see if Rule2 is selected. It is, so we make 

no change to Rule3's selection status.  

6. Item.Select(Rule3) – Rule3 is selected. Continue processing Rule3.  

7. Rule.Content(Rule3) – Process Rule3's content.  

Rule3 is run even though it requires a Rule that is not run. 

7.2.3.4 Profile Selector Processing  

Profile selectors (<xccdf:select>, <xccdf:refine-value>, <xccdf:set-value>, 

<xccdf:set-complex-value>, and <xccdf:refine-rule> elements) SHALL be processed 

in the order in which they appear in the XML. Since these selectors are processed under the “append” 

extension processing model, an extending <xccdf:Profile> MAY override the inherited selectors of 

the <xccdf:Profile> it extends.  

<xccdf:Profile> selector processing can be understood more easily by looking at an example. 

Assume the existence and initial configuration of an <xccdf:Benchmark> with the <xccdf:Rule>, 

<xccdf:Group>, and <xccdf:Value> elements listed in Table 36: 

 



SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.2 

 

 56  

Table 36: Profile Selector Example: Initial Configuration 

Item id cluster-id selected Defined Selectors 

Rule  Rule1  Cluster2  false  (empty)  

Rule  Rule2   true (empty), sel3  

Rule  Rule3  Cluster1  true  (empty)  

Rule  Rule4  Cluster1  true  sel1, sel5  

Rule  Rule5  Cluster3  true  sel1  

Group  Group1  Cluster1  true   

Group  Group2  Cluster1  true  

Value  Value1    (empty), sel1, sel2  

Value  Value2  Cluster2   (empty), sel1, sel2, sel5  

Value  Value3  Cluster2   (empty), sel1, sel5, sel6  

Value  Value4  Cluster3   (empty), sel4  

Based on this configuration, the initial state of the <xccdf:Benchmark> is as listed in Table 37: 

Table 37: Profile Selector Example: Initial Benchmark State 

Item id Selected? Applicable Selector 

Rule1  not selected  (empty)  

Rule2  selected  (empty)  

Rule3  selected  (empty)  

Rule4  selected  -none-  

Rule5  selected  -none-  

Group1  selected  -none-  

Group2  selected  -none-  

Value1   (empty)  

Value2   (empty)  

Value3   (empty)  

Value4   (empty)  

Now consider the following <xccdf:Profile> definitions:  

<xccdf:Profile id="xccdf_org.example_profile_Profile1" abstract="true">  

 ...  

 <xccdf:select idref="xccdf_org.example_rule_Rule1" selected="true" />  

 <xccdf:select idref="Cluster1" selected="false" />  

 <xccdf:select idref="xccdf_org.example_group_Group1" selected="true" />  

 <xccdf:refine-value idref="xccdf_org.example_value_Value1" selector="sel1" />  

 <xccdf:refine-value idref="Cluster2" selector="sel2" />  

 <xccdf:set-value idref="xccdf_org.example_value_Value4">NEWVALUE</set-value>  

 <xccdf:refine-rule idref="xccdf_org.example_rule_Rule2" selector="sel3" />  

 <xccdf:refine-rule idref="Cluster3" selector="sel1" />  

</xccdf:Profile> 

<xccdf:Profile id="xccdf_org.example_profile_Profile2" extends="Profile1">  

 ...  

 <xccdf:select idref="xccdf_org.example_rule_Rule1" selected="false" />  

 <xccdf:select idref="xccdf_org.example_rule_Rule3" selected="true" />  



SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.2 

 

 57  

 <xccdf:refine-value idref="Cluster2" selector="sel5" />  

 <xccdf:refine-rule idref="xccdf_org.example_rule_Rule5" selector="sel6" />  

</xccdf:Profile>  

 

Because Profile selectors are appended under extension, after Loading steps have completed, Profile2's 

effective list of selectors would look like the following (with numbers added for reference and identifier 

names condensed for brevity): 

1. <select idref="Rule1" selected="true" />  

2. <select idref="Cluster1" selected="false" />  

3. <select idref="Group1" selected="true" />  

4. <refine-value idref="Value1" selector="sel1" />  

5. <refine-value idref="Cluster2" selector="sel2" />  

6. <set-value idref="Value4">NEWVALUE</set-value>  

7. <refine-rule idref="Rule2" selector="sel3" />  

8. <refine-rule idref="Cluster3" selector="sel1" />  

9. <select idref="Rule1" selected="false" />  

10. <select idref="Rule3" selected="true" />  

11. <refine-value idref="Cluster2" selector="sel5" />  

12. <refine-rule idref="Rule5" selector="sel6" />  

If Profile2 is selected, then the Benchmark.Profile processing step will cause the following changes to the 

resolved Benchmark as each selector is processed:  

1. Rule1 becomes "selected"  

2. Rule3, Rule4, Group1, and Group2 become "not selected" due to their associations with Cluster1  

3. Group1 becomes "selected", overriding the change to this setting from line 2  

4. Value1 changes to using the "sel1" selector  

5. Value2 and Value3 change to using the "sel2" selector due to their associations with Cluster2. 

However, since Value3 does not utilize any selector named "sel2", the effectively associates 

Value3 with the empty selector. Note that Rule1 is not affected even though it is a member of 

Cluster2. This is because a refine-value selector only affects Values.  

6. The effective value of Value4 changes to "NEWVALUE"  

7. Rule2 changes to using the "sel3" selector  

8. Rule5 changes to using the "sel1" selector due to its association with Cluster3  

9. Rule1 becomes "not selected", overriding the change to this setting from line 1  

10. Rule3 becomes "selected", overriding the change to this setting from line 2  

11. Value2 and Value3 change to using the "sel5" selector due to their associations with Cluster2. 

This overrides the change to these settings from line 5.  

12. Rule5 changes to using the "sel6" selector, but since it does not utilize any selector named "sel6" 

this would lead to the use of the empty selector. Since Rule5 does not define any empty selector 

either, this Rule would effectively not utilize any selectable field. Since the check field is the only 

selectable field in a Rule, this means that Rule5 would have no check associated with it (i.e., 

Inherited from 

Profile1 

Added from 

Profile2 



SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.2 

 

 58  

under evaluation, it would return a result of "notchecked"). This overrides the change to this 

setting from line 8.  

The final configuration of the <xccdf:Benchmark> due to application of Profile2 would be as shown 

in Table 38: 

Table 38: Profile Selector Example: Final Benchmark State 

Item id Selected? Applicable Selector 

Rule1  not selected  (empty)  

Rule2  selected  sel3  

Rule3  selected  (empty)  

Rule4  not selected  -none-  

Rule5  selected  sel6 (Not defined so this becomes -none-)  

Group1  selected  -none-  

Group2  not selected  -none-  

Value1   sel1  

Value2   sel5  

Value3   sel5 

Value4   ="NEWVALUE" 

This example demonstrates how a single item could be tailored multiple times due to the influence of 

multiple selectors. 

It should also be noted that selectors do not need to be of the same type to override each other's behaviors. 

All three of the value selectors, <xccdf:refine-value>, <xccdf:set-value>, and 

<xccdf:set-complex-value>, can affect the <xccdf:value> or <xccdf:complex-

value> element of a named <xccdf:Value>. However, an <xccdf:Value> may have only one 

<xccdf:value> or one <xccdf:complex-value> element selected at any time. As a result, the 

use of any of the aforementioned selectors to change an <xccdf:value> or <xccdf:complex-

value> will replace any prior tailoring of that <xccdf:value> or <xccdf:complex-value>. 

7.2.3.5 Check Processing  

7.2.3.5.1 Basics 

During the Rule.Content sub-step of the item processing algorithm, the properties of a given 

<xccdf:Rule> are processed, including its check structures. If an <xccdf:Rule> contains an 

<xccdf:complex-check>, then the benchmark consumer MUST process it and MUST ignore any 

<xccdf:check> elements that are also contained by the <xccdf:Rule>. However, within a given 

<xccdf:complex-check>, processing of component checks SHALL follow the same procedures 

described below.  

 

Check processing involves selecting one supported <xccdf:check> element and then executing its 

check code. Table 39 explains the basics of the check processing algorithm. 

 

 



SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.2 

 

 59  

Table 39: Check Processing Algorithm Sub-Steps 

Sub-Step Description 

Check.Initialize Create an empty list of candidate checks. 

Check.Selector Identify the <xccdf:check> elements that are candidates for use. 

 If a selector has been identified for this Rule and there is at least one <xccdf:check> 

element with a matching @selector attribute, then add all such <xccdf:check>.elements 

to the candidate list in the order in which they appear and proceed to the next sub-step. 

 Otherwise, if there is at least one <xccdf:check> element with an absent or empty 

@selector attribute, then add all such <xccdf:check>.elements to the candidate list in 

the order in which they appear and proceed to the next sub-step. 

 Otherwise, there are no valid candidate checks. Stop check processing and give this 

<xccdf:Rule> a result of "notchecked". 

Check.System Iterate through each <xccdf:check> element that appears in the candidate list (in order). If the 

system given in the element's @system attribute is supported by an available checking engine: 

 If the parent element is an <xccdf:Rule>, terminate this sub-step and proceed to the next 

sub-step using that <xccdf:check>. The next sub-step will only be applied to a single 

<xccdf:check> element. 

 If the parent element is an <xccdf:complex-check>, add this <xccdf:check> to the list 

of applicable checks and continue iterating through the list of checks. After all 

<xccdf:check> elements have been processed, the remaining check processing sub-steps 

must be applied to each <xccdf:check> in the list of applicable checks. This may result in 

the following sub-steps being applied to multiple <xccdf:check> elements.  

 If the list of candidate <xccdf:check> elements is exhausted without finding one that uses 

a supported system, stop check processing and give this <xccdf:Rule> a result of 

"notchecked". 

Check.Content Iterate through each <xccdf:check-content-ref> element in the <xccdf:check> element 

(in order). If the reference can be resolved (i.e., if the checking-language code can be made 
available to the checking engine) then terminate this sub-step and proceed to the next sub-step 

using the referenced content. If the list of <xccdf:check-content-ref> elements is 

exhausted without any reference being resolvable, then if there is an <xccdf:check-content> 

element, proceed to the next step using the included content. Otherwise, stop check processing 

and give this <xccdf:Rule> a result of "notchecked". 

Check.Export Make the referenced checking-language code, as well as any exported values as indicated by 

<xccdf:check-export> elements, available to the checking engine. (This can be done 

immediately or it can be done in a batch after all <xccdf:Rule> elements in the benchmark 

have been processed.) If this <xccdf:Rule> has a @role attribute whose value is “unscored”, 

give this <xccdf:Rule> a result of “informational”. Otherwise, give this <xccdf:Rule> a result 

appropriate to the result returned by the checking engine. 

 

A benchmark consumer SHALL NOT “backtrack” in the processing of these steps. For example, once a 

check with a preferred system is selected by the benchmark consumer (Check.System), the benchmark 

consumer SHALL NOT attempt to use a different check that uses a different system, even if none of the 

originally selected check's content can be resolved. 

Figure 2 provides a flowchart that illustrates check processing. 

 



SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.2 

 

 60  

 

 

 

7.2.3.5.2 Rules with Multiple Results 

Many XCCDF documents include <xccdf:Rule> elements that apply to system components. For 

example, a host OS benchmark could contain <xccdf:Rule> elements that apply to all users, and a 

router benchmark could contain <xccdf:Rule> elements that apply to all network interfaces. When the 

system holds many such components, it may not be adequate for a benchmark consumer to report that an 

<xccdf:Rule> failed; it MAY report exactly which components failed the <xccdf:Rule>. 

A processing engine that performs a checking system test MAY deliver one or more results in response to 

a check. In the most common case, each <xccdf:Rule> will yield one <xccdf:rule-result> 

element. In a case where an <xccdf:Rule> was applied multiple times to multiple components of the 

system under test, a single <xccdf:Rule> could yield multiple <xccdf:rule-result> elements. 

If the <xccdf:Rule> @multiple attribute is set to true, then each instance of the assessment target 

SHOULD be reported separately. Similarly, if an <xccdf:check> element leads to the execution of 

multiple checks (i.e., an <xccdf:check-content-ref> that lacks a @name attribute is used) and 

the @multi-check attribute is set to true, each check executed MUST be reported separately. 

Otherwise, an <xccdf:Rule> contributes to the positive score only if ANDing the results of all 

instances of that <xccdf:Rule> produces a test result of ‘pass’ according to the truth table that appears 

in the description of the <xccdf:complex-check> element in Section 6.4.4.4. If any component of 

the target system fails the checking system test, then the entire <xccdf:Rule> SHALL be considered 

to have failed. This is sometimes called “strict scoring”. See Section 6.4.4.2 for more information on the 

@multiple attribute and Section 6.4.4.4 for the @multi-check attribute. 

When creating multiple <xccdf:rule-result> elements that stem from a single <xccdf:Rule> , 

each of these <xccdf:rule-result> elements MUST identify the same <xccdf:Rule> in its 

@idref attribute.  

All 

<xccdf:check> 

elements and 

content 

Empty 
Working 

Set  

Check. 

Selector 
All checks 

with 

matching 

selector 

Checks 
with 

different 

selectors 

Check. 

System 

 

All other 

checks 

First check 

with 

supported 
system 

 

Check. 

Content 

  

All other 

check 

content 

First 

reachable 
check 

content 

 

Check. 

Initialize 

Check.Export 

Figure 2: Check Processing Flowchart (when the check’s parent is an <xccdf:Rule>) 



SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.2 

 

 61  

 When multiple <xccdf:rule-result> elements are caused by multiple target instances with 

@multiple set to true, the <xccdf:instance> element of the <xccdf:rule-result> 

element SHOULD include, at minimum, the instance name. It MAY include additional 

information to provide additional context for that instance.  

 When multiple <xccdf:rule-result> elements are caused by multiple executed checks 

with @multi-check set to true, the <xccdf:check> element of the <xccdf:rule-

result> element MUST identify the executed check. This SHOULD be done by including an 

<xccdf:check-content-ref> element that explicitly points to the corresponding result 

content for each of the checks executed to produce this particular result. Alternatively, it MAY be 

done by including the checking result structure directly in an <xccdf:check-content> 

element. 

It is possible for a single <xccdf:Rule> to reference multiple checks, some of which test multiple 

target instances. This would lead to both the <xccdf:instance> and <xccdf:check> elements 

being utilized in the manner described above. 

7.2.3.6 Other Processing 

7.2.3.6.1 XHTML Formatting 

Some text-valued XCCDF elements may contain formatting specified with elements from [XHTML] (see 

Section 6.2.2). How a benchmark consumer handles embedded XHTML content in XCCDF text 

properties is implementation-dependent, but every benchmark consumer MUST be able to process 

XCCDF content even when embedded XHTML elements are present. Products that perform document 

generation processing SHOULD attempt to preserve the formatting semantics implied by the Text and 

List modules, support the link semantics implied by the Hypertext module, and incorporate the images 

referenced via the Image module. Such products MAY also wish to establish conventions for each of the 

<div> or <span> class attribute values (see Table 2).  

7.2.3.6.2 Locale 

XCCDF textual content may use the @xml:lang attribute to specify natural language locales. 

Benchmark producers and consumers SHOULD employ @xml:lang attributes whenever possible to 

create localized output. If a product has an effective language selected, it SHOULD use textual content 

corresponding to that language and SHOULD NOT use textual content corresponding to other languages. 

If a product does not have an effective language selected or ignores @xml:lang attributes, it MUST 

display all textual content in order. 

7.2.3.6.3 Text Substitution 

Text substitution when the <xccdf:sub> element's @idref attribute holds the id of an 

<xccdf:plain-text> element always behaves the same way: any <xccdf:sub> element 

reference to an <xccdf:plain-text> element SHOULD be replaced by the string content of that 

element. 

When the <xccdf:sub> element's @idref attribute holds the id of an <xccdf:Value> element, the 

<xccdf:sub> element's @use attribute MUST be consulted.  



SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.2 

 

 62  

 If the value of the @use attribute is "value", then the <xccdf:sub> element SHOULD be 

replaced by a string representation of the content of the currently-selected <xccdf:value> or 

<xccdf:complex-value> element of the referenced <xccdf:Value> element.  

 If the value of the @use attribute is "title", then the <xccdf:sub> element SHOULD be 

replaced by the body of the <xccdf:title> element of the referenced <xccdf:Value> 

element. The <xccdf:title> element's @xml:lang attribute may be used to select the 

appropriate title to use if multiple titles are present. At the tool author’s discretion, the title MAY 

be followed by the <xccdf:Value> element’s currently-selected <xccdf:value> element, 

suitably demarcated.  

 If the value of the @use attribute is "legacy", then during Tailoring, process the <xccdf:sub> 

element as if @use was set to "title", but during Document Generation or Assessment, process 

the <xccdf:sub> element as if @use was set to "value".  

Any appearance of the <xccdf:instance> element in the content of an <xccdf:fix> element 

SHOULD be replaced by a locale-appropriate string to represent a target system instance name. 

During creation of <xccdf:TestResult> elements, any <xccdf:fix> elements present in applied 

Rules and matching the platform to which the test was applied SHOULD be subjected to substitution and 

the resulting string used as the value of the <xccdf:fix> element for the <xccdf:rule-result> 

element. Each <xccdf:sub> element SHALL be replaced by what the @idref attribute references, 

which is either the appropriate string from the referenced <xccdf:Value> element, as described 

above, or the <xccdf:plain-text> definition used during the test. Formatting for this replacement is 

implementation-dependent for a referenced <xccdf:Value> element, but for an <xccdf:plain-

text> definition it is a simple string replacement. Also, each <xccdf:instance> element SHOULD 

be replaced by the value of the <xccdf:rule-result> element’s <xccdf:instance> element. 

Benchmark consumers MUST support resolution of XHTML <object> elements, regardless of whether 

XHTML rendering is supported. The XHTML <object> element supports substitutions of a variety of 

information from an item or profile, or the string content of an <xccdf:plain-text> definition. To 

avoid possible conflicts with uses of an XHTML <object> that should not be processed specially, each 

XCCDF <object> reference MUST be a relative URI beginning with “#xccdf:”. The following URI 

values can be used to refer to things from an XHTML <object> element, using the @data attribute: 

 #xccdf:value:id.Insert the value of the <xccdf:plain-text> block, 

<xccdf:Value>, or <xccdf:fact> with id id. The value of the reference SHOULD be 

substituted for the entire <object> element and its content (if any). If the id cannot be resolved, 

then the textual content of the <object> element SHOULD be retained. 

 #xccdf:title:id. Insert the string content of the <xccdf:title> element of the item 

with id id. Use the current language value locale setting, if any. The <xccdf:title> string 

SHOULD be substituted for the entire <object> element and its content (if any). If the id 

cannot be resolved, then the textual content of the <object> element SHOULD be retained.  

7.2.3.6.4 Reference Processing 

XCCDF benchmark consumers MUST support reference processing that uses the XHTML anchor (“a”) 

element. The anchor element can be used to create an intra-document link to an XCCDF item or profile. 



SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.2 

 

 63  

To avoid possible conflicts with uses of the XHTML anchor element that should not be processed 

specially, each XCCDF anchor reference MUST be a relative URI beginning with “#xccdf:”. The URI 

value #xccdf:link:id can be used to refer to things from an anchor element, using the @href 

attribute. This creates an intra-document link to the point in the document where the item id is described. 

The content of the element SHOULD be the text of the link. 

7.3 Assessment Outputs 

7.3.1 Overview 

When a benchmark consumer performs an assessment against a system, it accepts as inputs the state of 

the system and a benchmark, and MAY produce any of the following output (also shown in Figure 3): 

 Benchmark report – A human-readable report about testing, including the score, and a listing of 

which rules passed and which failed on the system. If a given rule applies to multiple parts or 

components of the system, then multiple pass/fail entries MAY appear on this list. The report 

MAY also include recommended steps for improving compliance. The format of the report is not 

specified here, but might be some form of formatted or rich text (e.g., HTML). 

 Benchmark results – Machine-readable testing results, meant for storage, long-term tracking, or 

incorporation into other reports (e.g., a site-wide report). This SHOULD be in XCCDF, using the 

<xccdf:TestResult> element. 

 Fix scripts – Machine-readable content, usually text, the application of which will remediate 

some or all of the non-compliance issues found by the benchmark consumer. These scripts MAY 

be included in <xccdf:TestResult> elements (see Section 6.6). 

Benchmark Reports

Fix scripts or updates

Benchmark results

Benchmark

Compliance

Checking Tool

xml
System

Under

Test

XCCDF

state

rules

 

Figure 3: Workflow for Assessing Benchmark Compliance 

7.3.2 Scoring Models 

7.3.2.1 Overview 

XCCDF has four scoring models, which are defined below. Tools MAY support additional proprietary or 

community models. A benchmark MAY recommend one or more scoring models to be used when 

computing a benchmark score by indicating them in the <xccdf:Benchmark> element’s 

<xccdf:model> element. A tool MAY use any score computation model designated by the user. In the 



SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.2 

 

 64  

four models defined below, a result of “fixed” SHALL be treated as a “pass” result for scoring purposes; 

other scoring models MAY handle this differently.  

7.3.2.2 The Default Model 

This model is identified by the URI “urn:xccdf:scoring:default”. Tools MUST support this model. 

In the default model, computation of the XCCDF score proceeds independently for each collection of 

siblings in each Group, and then for the siblings within the <xccdf:Benchmark>. This relative-to-

siblings weighted scoring model is designed for flexibility and to foster independent authorship of 

collections of Rules. Benchmark authors should keep the model in mind when assigning weights to 

Groups and Rules.  

The elements of an <xccdf:Benchmark> form the nodes of a tree. The default model score 

computation algorithm simply computes a normalized weighted sum at each tree node, omitting Rules 

and Groups that are not selected and Groups that have no selected Rules under them. The algorithm that 

SHALL be used at each selected node is listed in Table 40. 

Table 40: Default Model Algorithm Sub-Steps 

Sub-Step Description 

Score.Default.Rule If the node is a Rule, initialize rule_count and rule_score to 0. Then for each 
associated rule-result: 

-   if the rule-result’s result is not a member of the set {notapplicable, notchecked, 
informational, notselected}, then add 1 to rule_count. 

-   if the rule-result’s result is “pass”, add 1 to rule_score. 

When this has been done for every rule-result associated with this Rule: 

-   if rule_count is 0, set this Rule’s score and count to 0. 

-   otherwise, set the Rule’s count to 1 and the Rule’s score to 100 * rule_score / 
rule_count. 

Score.Default.Group.Init If the node is a Group or the Benchmark, assign a count of 0, a score s of 0.0, 
and an accumulator a of 0.0. 

Score.Default.Group.Recurse For each selected child of this Group or Benchmark, do the following: (1) compute 
the count and weighted score for the child using this algorithm, (2) if the child’s 
count value is not 0, then add the child’s weighted score to this node’s score s, 
add 1 to this node’s count, and add the child’s weight value to the accumulator a. 

Score.Default.Group.Normalize Normalize this node’s score: compute s = s / a. 

Score.Default.Weight Assign the node a weighted score equal to the product of its score and its weight. 

 

The final test score is the normalized score value on the root node of the tree (the 

<xccdf:Benchmark> element). 

7.3.2.3 The Flat Model 

This model is identified by the URI “urn:xccdf:scoring:flat”. The algorithm in Table 41 SHALL be used 

to compute the score. 



SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.2 

 

 65  

Table 41: Flat Model Algorithm Sub-Steps 

Sub-Step Description 

Score.Flat.Init Initialize both the score s and the maximum score m to 0.0. 

Score.Flat.Rules For each Rule: 

   Initialize rule_count and rule_score to 0. 

   For each rule-result associated with that Rule: 

      - if the rule-result’s result is not a member of the set {notapplicable, notchecked, 
informational, notselected}, then add 1 to rule_count. 

      - if the rule-result’s result is “pass”, add 1 to rule_score. 

   If rule_count is not 0: 
      - add the Rule’s weight to m. 
      - add the Rule’s weight * rule_score / rule_count to s. 

 

Thus, the flat model simply computes the sum of the weights for the Rules that passed as the score, and 

the sum of the weights of all the applicable Rules as the maximum possible score. This model is simple 

and easy to compute, but scores between different target systems may not be directly comparable because 

the maximum score can vary. Tools SHOULD support this model. 

7.3.2.4 The Flat Unweighted Model 

This model is identified by the URI “urn:xccdf:scoring:flat-unweighted”. It is computed exactly the same 

way as the flat model, except that all weights not set to 0 are taken to be 1.0. Items with weights of 0 

remain 0 in this model and, as such, do not contribute to the final score. Essentially, the model computes 

the number of rules that passed. Tools SHOULD support this model. 

7.3.2.5 The Absolute Model 

This model is identified by the URI “urn:xccdf:scoring:absolute”. It gives a score of 1 only when all 

applicable Rules in the benchmark pass, and 0 otherwise. It is computed by applying the Flat Model and 

returning 1 if s=m, and 0 otherwise. Tools MAY support this model. 



SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.2 

 

 66  

Appendix A—Converting XCCDF 1.1.4 Content to XCCDF 1.2 

XCCDF 1.2 contains several changes that are not transparently backwards compatible with XCCDF 1.1.4 

content. This said, converting content between the two versions can be done easily. This appendix notes 

changes that prevent transparent backwards compatibility and describes procedures to convert content 

from the older version to the newer one. See Appendix B for a more comprehensive list of changes from 

XCCDF 1.1.4 to XCCDF 1.2. 

A.1 Changes to the XCCDF XML Namespace 

The XML namespace of XCCDF changed from "http://checklists.nist.gov/xccdf/1.1" in XCCDF 1.1.4 to 

"http://checklists.nist.gov/xccdf/1.2" in XCCDF 1.2. All XCCDF 1.1.4 content that needs to be validated 

against the XCCDF 1.2 schema must use the XCCDF 1.2 namespace. 

A.2 Conversion of Identifiers 

XCCDF 1.2 enforces a canonical format for the @id attributes (identifiers) of all major XCCDF 

elements: <xccdf:Benchmark>, <xccdf:Rule>, <xccdf:Group>, <xccdf:Value>, 

<xccdf:Profile>, <xccdf:TestResult>, and <xccdf:Tailoring>. As such, the values of 

@id attributes in XCCDF 1.1.4 are unlikely to be compliant with this new format. Fortunately, 

conversion from XCCDF 1.1.4 identifiers to XCCDF 1.2 identifiers is simple and mechanical using the 

following steps: 

1. Specify a reverse-DNS style namespace (e.g., com.company or gov.agency), denoted as N 

2. For each major XCCDF element (as listed above) 

a. Denote the type T as the name of that type of element expressed in all lower case (i.e., 

benchmark, rule, group, value, profile, testresult) 

b. Denote the XCCDF 1.1.4 id of that element as I 

c. The new id value of that element becomes: xccdf_N_T_I 

This procedure allows any XCCDF 1.1.4 identifier to be replaced with a recognizably similar identifier 

value (since the old identifier value becomes part of the new identifier value) that complies with the new 

restrictions imposed by XCCDF 1.2. Note that references to identifiers will also need to be updated to 

match the changed identifier values. 

A.3 Conversion of <xccdf:sub> Elements 

XCCDF 1.2 gives authors a greater degree of control of how <xccdf:sub> elements get replaced 

during text substitution. In previous versions, when an <xccdf:sub> element referenced an 

<xccdf:Value> element, either the <xccdf:Value> element's title or currently-selected value 

would be substituted for the <xccdf:sub> element, depending on the processing model. In XCCDF 

1.2, authors can use the <xccdf:sub> element's @use attribute to control substitution regardless of the 

processing model. 

In XCCDF 1.2 the default value of the @use attribute is "value", which causes the referenced 

<xccdf:Value> element's currently-selected value to be inserted during text substitution. In all legacy 

content, which would not have a @use attribute and would therefore use this default, this would represent 

a change in behavior. To ensure that documents converted from XCCDF 1.1.4 to XCCDF 1.2 continue to 

have the same text substitution processing as before, every <xccdf:sub> element in the resulting 



SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.2 

 

 67  

XCCDF 1.2 document should be given a @use attribute with a value of "legacy". The "legacy" setting 

indicates that substitution processing should be performed in the context-dependent manner employed by 

XCCDF 1.1.4 and before. 

A.4 Properties Removed or Deprecated Since XCCDF 1.1.4 

Several properties of <xccdf:Benchmark>, <xccdf:Rule>, and <xccdf:Group> elements were 

removed or deprecated between XCCDF 1.1.4 and XCCDF 1.2. Table 42 identifies these properties, 

explains the rationale behind their removal or deprecation, and identifies alternative operations that 

subsume their capabilities. Converting content from XCCDF 1.1.4 to XCCDF 1.2 should make use of 

these alternative operations. 

Table 42: Alternative Operations for Removed and Deprecated XCCDF 1.1.4 Constructs 

Parent 
Element 

Property 
Name 

Rationale and Alternatives 

Benchmark platform-
definitions 

All three of these properties were used to define sets of platforms to which a 
benchmark might apply. All used schemas that are no longer maintained and these 
properties have been deprecated in XCCDF since XCCDF 1.1.3 or earlier. All three 
properties have been removed from XCCDF 1.2. Instead of these properties, use the 

<cpe2:platform-specification> property to define sets of platforms. 

Benchmark Platform-
Specification 

Benchmark cpe-list 

Group extends, 
abstract 

Group extension has been deprecated in XCCDF 1.2 because it was shown to have 
multiple issues that make it unlikely for content that employs this feature to be 
interoperable across XCCDF-compliant tools. When dealing with XCCDF 1.1.4 
content that employs group extension, the groups should be fully resolved when 
converting to XCCDF 1.2. This is to say, the act of creating the extended groups 
should be performed and completed, and the result then becomes the groups of the 
XCCDF 1.2 document. 

Rule impact-metric The impact-metric element was found to have little use in standard XCCDF use 
cases, so it has been deprecated. Content stored in the impact-metric element in 
XCCDF 1.1.4 content should be copied to an <impact-metric> element within the 
corresponding Rule's metadata to preserve it when converting to XCCDF 1.2. 

 



SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.2 

 

 68  

Appendix B—Change Log 

Release 0 – 1 February 2008 

 The specification for XCCDF 1.1.4 was released as final. 

 

Release 1 – 29 July 2010 (Initial public comment draft) 

Functional Additions/Changes: 

 The flexibility of the metadata field was greatly expanded and metadata fields were added to all 

major XCCDF structures. 

 The dc-status field was added to several major XCCDF structures to store status information 

using Dublin Core Elements 1.1 metadata. 

 Results of checks can be negated. 

 XCCDF 1.2 adds the concept of a complex value capable of holding lists. 

 The processing of Profile selectors explicitly permits selectors to have overlapping scopes. 

 The XCCDF 1.2 specification defines some sample classes to support stylistic labeling of 

XHTML content. 

 The use of the check-import element was clarified and the import-xpath attribute was added to 

better support import of XML structures from checking systems. 

Deprecations/Removals: 

 The impact-metric element in Rules and the role attribute in Rules and rule-results were 

deprecated. 

 Group extension (abstract and extends attributes) was deprecated. 

 

Release 2 – 27 July 2011 (Second public comment draft) 

Editorial Changes: 

 The document was completely reorganized (see Table 43 below for mappings from the structure 

of the previous releases to this draft). 

 The document was thoroughly edited. RFC 2119 language (SHALL, SHOULD, MAY, etc.) was 

added to explicitly declare requirements and recommendations for XCCDF documents and 

products.  

 The document has a short glossary of key terms. 

Functional Additions: 

 There is a new section that explicitly defines high-level XCCDF conformance requirements for 

products and documents. 

 This draft introduces the concept of a tailoring document. The schema now has a top-level 

Tailoring element, as well as a tailoring-file element within the TestResult element. Also, a 

Benchmark.ManualTailoring sub-step was added to the benchmark processing algorithm. 

 There is a new appendix that explains how to convert XCCDF 1.1.4 content to XCCDF 1.2. 

 The multi-check attribute was added to the Rule’s check element, to be used to drive result 

reporting behavior when multiple checks are executed to determine compliance with a single 

Rule. 

Functional Changes: 

 The XCCDF namespace has been changed from “http://checklists.nist.gov/xccdf/1.1” to 

“http://checklists.nist.gov/xccdf/1.2”. XCCDF 1.2 is no longer backwards compatible with 

XCCDF 1.1.4. 



SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.2 

 

 69  

 Use of Common Platform Enumeration (CPE) version 2.3 for platform specification is required. 

Formatted string bindings are required for CPE names and applicability language expressions in 

XCCDF documents. 

 The id attribute of Benchmark, Rule, Group, Value, Profile, TestResult, and Tailoring elements 

has a mandatory standard format intended to enable global uniqueness of identifiers. 

 The TestResult element supports referencing asset identification information located in an 

external document. 

 The pre-defined scoring models have been modified to compute scores per Rule rather than per 

rule-result. 

 Complex-values support zero-length lists. 

Deprecations/Removals: 

 The following platform-related properties deprecated in earlier versions of XCCDF have been 

removed from version 1.2: cpe-list, platform-definitions, and Platform-Specification. 

 

Table 43: Mapping Previous Release Sections to This Release 

Release 0 (XCCDF 1.1.4 Final) or  
Release 1 (Initial Public Comment Draft) 

Release 2 (Second Public Comment Draft) 

1. Introduction 5.1 

    1.1 Background 5.1 

    1.2 Vision for Use 5.1 

    1.3 Summary of Changes since Version 1.0 Appendix B (also, deleted all changes pertaining to 
previous XCCDF versions) 

2. Requirements Dropped 

    2.1 Structure and Tailoring Requirements 5.2 

    2.2 Inheritance and Inclusion Requirements 5.2 

    2.3 Document and Report Formatting Requirements 6.2.2 

    2.4 Rule Checking Requirements 6.4.4.1 

    2.5 Test Results Requirements 5.3 

    2.6 Metadata and Security Requirements 6.2.7 (signatures), 6.2.4 (metadata), rest deleted 

3. Data Model 6.1 (object data types), 6.4.5.1 (Value), 6.3.1 (scoring 
weight), data model figure deleted 

    3.1 Benchmark Structure 6.3.1 

    3.2 Object Content Details 6.2.2 (type conventions), 6.3.2 (table, count conventions) 

          Benchmark 6.3.2 (Benchmark table), 6.2.8 (status, dc-status), 6.2.2 
(HTML markup fields, classifiers), 6.2.5 (CPE names), 
6.2.9 (plain-text), 6.2.4 (metadata), 6.3.2 (style, style-href), 
6.2.7 (signature) 

          Item 6.4.1 (Item table), 6.2.8 (status, dc-status), 6.4.1 (hidden, 
cluster-id) 

              Group 6.4.1 and 6.4.3 (Group table), 7.2.3.3.2 (requires and 
conflicts), 6.2.5 (platform), 6.4.1 (weight) 

              Rule 6.4.1 and 6.4.4.2 (Rule table) 6.3.1 and 7.2.2 (extension), 
6.4.4.2 (multiple), 6.4.4.4 (multi-check), 6.2.5 (platform), 
6.4.4.2 (ident), 6.4.4.4 (check), 6.4.4.5 (fixtext, fix) 



SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.2 

 

 70  

Release 0 (XCCDF 1.1.4 Final) or  
Release 1 (Initial Public Comment Draft) 

Release 2 (Second Public Comment Draft) 

              Value 6.4.5.2 (Value table), 6.4.5.1 (Value types), 6.4.5.2 and 
6.3.1 (type, default, abstract, extends), 6.4.5.4 (operator), 
6.4.5.5 (selectors), 6.4.5.2 (upper-bound, lower-bound), 
6.4.5.3 (choices), 6.4.5.2 (match), 6.4.1 (prohibitChanges, 
hidden), 6.4.5.2 (interactive, interfaceHint, source) 

          Profile 6.5.2 (Profile table), 6.5.1 (definition, extension), 6.5.2 
(note-tag), 6.2.8 (status, dc-status), 6.5.3 (selectors) 

          TestResult 6.6.2 and 6.6.1 

              rule-result 6.6.4.1 (rule-result Table), 6.6.4.2 (test results), 6.6.4.1 
(instance, metadata, check), 6.6.4.3 (override) 

    3.3 Processing Models 7.1, dropped Transformation and Test Report Generation 

              Loading Processing Sequence 7.2.2 

              Benchmark Processing Algorithm 7.2.3.2 

              Item Processing Algorithm 7.2.3.3.1, 7.2.3.3.2 

              Profile Selector Processing 7.2.3.4 

              Substitution Processing  7.2.3.6.3 

              Rule Application and Compliance Scoring 7.3.1 

              Rule Check Processing 7.2.3.5.1 

              Multiply-Instantiated Rules 7.2.3.5.2 

              Scoring and Results Model 7.3.2, 7.3.3 

              Score Computation Algorithms 7.3.3 

4. XML Representation N/A 

    4.1 XML Document General Considerations 6.3.1, 6.2.1, 7.2.3.6.1 (XHTML requirements) 

    4.2 XML Element Dictionary N/A 

          <Benchmark> 6.3.2 

          <Group> 6.4.1, 6.4.3 

          <Profile> 6.5.1, 6.5.2 

          <Rule> 6.4.1, 6.4.4.1, 6.4.4.2 

          <TestResult> 6.6.2, 6.6.1 

          <Value> 6.4.1, 6.4.5.1, 6.4.5.2 

          <benchmark> 6.6.2 

          <check> 6.4.4.4, 6.4.4.2 

          <check-import> 6.4.4.4 

          <check-export> 6.4.4.4 

          <check-content> 6.4.4.4 

          <check-content-ref> 6.4.4.4 

          <choices> 6.4.5.3 

          <choice> 6.4.5.3 

          <complex-check> 6.4.4.4 

          <complex-choice> 6.4.5.3 

          <complex-default> 6.4.5.3, 6.4.5.5 

          <complex-value> 6.4.5.3, 6.4.5.5 

          <conflicts> 6.4.1 



SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.2 

 

 71  

Release 0 (XCCDF 1.1.4 Final) or  
Release 1 (Initial Public Comment Draft) 

Release 2 (Second Public Comment Draft) 

          <cpe-list> Appendix A 

          <dc-status> 6.2.8 

          <default> 6.4.5.2 

          <description> Section 6 (several places), 6.2.9 (sub) 

          <external-type> Removed from XCCDF 

          <fact> 6.6.2 

          <fix> 6.4.4.5, 6.6.4.1 (child of rule-result) 

          <fixtext> 6.4.4.5 

          <front-matter> 6.3.2 

          <ident> 6.4.4.2 

          <identity> 6.6.2 

          <impact-metric> 6.4.4.2 

          <instance> 6.6.4.1 (child of rule-result), 6.4.4.5 (child of fix) 

          <item> N/A 

          <lower-bound> 6.4.5.2 

          <match> 6.4.5.2 

          <message> 6.6.4.1 

          <metadata> 6.2.4 

          <model> 6.3.2 

          <new-result> 6.6.4.3 

          <notice> 6.3.2 

          <old-result> 6.6.4.3 

          <organization> 6.6.2 

          <override> 6.6.4.3 

          <param> 6.3.2 

          <plain-text> 6.3.2, 6.2.9 

          <platform> 6.2.5 

          <platform-specification> Appendix A 

          <platform-definitions>, <Platform-Specification> Appendix A 

          <profile> 6.6.2 

          <profile-note> 6.4.4.2 

          <question> 6.4.1 

          <rationale> 6.4.1 

          <rear-matter> 6.3.2 

          <reference> 6.2.6 

          <refine-rule> 6.5.2, 6.5.3 

          <refine-value> 6.2.3, 6.5.3 

          <remark> Section 6 (several places) 

          <requires> 6.4.1 

          <result> 6.6.4.1, 6.6.4.2 

          <rule-result> 6.6.4.1 



SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.2 

 

 72  

Release 0 (XCCDF 1.1.4 Final) or  
Release 1 (Initial Public Comment Draft) 

Release 2 (Second Public Comment Draft) 

          <score> 6.6.2 

          <select> 6.5.2, 6.5.3 

          <set-complex-value> 6.5.2, 6.5.3 

          <set-value> 6.5.2, 6.5.3 

          <signature> 6.2.7 

          <source> 6.4.5.2 

          <status> 6.2.8 

          <sub> 6.2.9 

          <target> 6.6.2 

          <target-address> 6.6.2 

          <target-facts> 6.6.2 

          <title> Section 6 (several places) 

          <upper-bound> 6.4.5.2 

          <value> 6.4.5.2 

          <version> Section 6 (several places) 

          <warning> 6.4.1, 6.4.2 

    4.3 Handling Text and String Content N/A 

          XHTML Formatting and Locale 7.2.3.6.1, 6.2.2, 6.2.10 

          String Substitution and Reference Processing 7.2.3.6.3, 7.2.3.6.4 

5. Conclusions N/A 

Appendix A. XCCDF Schema Removed from specification, posted separately as .xsd file 

Appendix B. Sample Benchmark File Dropped 

Appendix C. Pre-Defined URIs N/A 

    Long-Term Identification Systems 6.4.4.3 

    Check Systems 6.4.4.4 

    Scoring Models 7.3.3 

    Target Platform Facts 6.6.3 

    Remediation Systems 6.4.4.5 

Appendix D. References 2 

Appendix E. Acronym List 3.2 

 

Release 3 – 29 September 2011 

Editorial Changes: 

 Minor editorial changes were made throughout the publication. 

 An example of using the requires and conflicts elements was added. 

Functional Additions: 

 A use attribute was added to the sub element, to distinguish between replacement with values and 

titles during substitution processing. 

Functional Changes: 

 The requirements and recommendations related to limits on the use of metadata were clarified. 



SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.2 

 

 73  

 The requirements for CPE version 2.3 names were changed; formatted string bindings are 

recommended for CPE names and applicability language expressions in XCCDF documents, but 

URI bindings may be used instead of formatted string bindings. 

 Multiple instances of the dc-status element are allowed in all locations, instead of just one 

instance. 

 The ident property can contain attributes from external namespaces. 

Deprecations/Removals: 

 The role attribute in Rules and rule-results, which had been deprecated in an earlier draft, was 

restored. 

Release - November 2011 

Editorial Changes: 

 Typos were fixed in several tables correcting incorrect assertions about the presence or 

requirement of certain attributes and child elements 

 Several element types that were previously defined inline were split out into their own global 

types, bringing them into alignment with prior conventions in the XCCDF schema. 

 Annotations in the XCCDF schema were extensively revised and expanded to better reflect the 

information present in the revised specification 

Deprecations/Removals: 

 The profileIdKeyRef keyref constraint in the Benchmark element was removed. This keyref 

constraint required that profile references in a TestResult to match the id of a Profile in a 

Benchmark and was causing problems when the Profile existed only in a Tailoring file. 

 The overridableIdrefType complex type was removed from the schema since it proved to be 

unreferenced. 

 The import statement for the Dublin Core schema was removed as it was no longer necessary in 

the XCCDF schema. 


	1. Introduction
	1.1 Purpose and Scope
	1.2 Document Structure
	1.3 Document Conventions

	2. Normative References
	3. Terms, Definitions, and Abbreviations
	3.1 XCCDF Terminology
	3.2 Acronyms and Abbreviations

	4. Conformance
	4.1 Product Conformance
	4.2 Benchmark Document Conformance

	5. XCCDF Overview
	5.1 Introduction
	5.2 Checklist Structure and Tailoring
	5.3 Test Results

	6. XCCDF Data Model
	6.1 Introduction
	6.2 General XML Information
	6.2.1 XCCDF Namespace and XML Schema
	6.2.2 Element and Attribute Formatting
	6.2.3 Element Identifiers
	6.2.4 <xccdf:metadata> Element
	6.2.5 Platform Names
	6.2.6 <xccdf:reference> Element
	6.2.7 <xccdf:signature> Element
	6.2.8 Status Tracking
	6.2.9 Text Substitution
	6.2.10 @xml:lang Attribute

	6.3 <xccdf:Benchmark>
	6.3.1 Basics
	6.3.2 Properties

	6.4 Item Elements
	6.4.1 Properties
	6.4.2 <xccdf:warning> Element
	6.4.3 <xccdf:Group> Element
	6.4.4 <xccdf:Rule> Element
	6.4.4.1 Basics
	6.4.4.2 Properties
	6.4.4.3 <xccdf:ident> Elements
	6.4.4.4 <xccdf:check> and <xccdf:complex-check> Elements
	6.4.4.5 <xccdf:fixtext> and <xccdf:fix> Elements

	6.4.5 <xccdf:Value> Element
	6.4.5.1 Basics
	6.4.5.2 Properties
	6.4.5.3 <xccdf:choices> Element
	6.4.5.4 @operator Attribute
	6.4.5.5 @selector Attribute


	6.5 <xccdf:Profile> Element
	6.5.1 Basics
	6.5.2 Properties
	6.5.3 Selectors

	6.6 <xccdf:TestResult> Element
	6.6.1 Basics
	6.6.2 Properties
	6.6.3 <xccdf:fact> Element
	6.6.4 <xccdf:rule-result> Element
	6.6.4.1 Properties
	6.6.4.2 <xccdf:result> Element
	6.6.4.3 <xccdf:override> Element

	6.6.5 <xccdf:tailoring-file> Element

	6.7 <xccdf:Tailoring> Element
	6.7.1 Basics
	6.7.2 Properties
	6.7.3 Profile Shadowing
	6.7.4 Tailoring Actions and Profile Selectors


	7. XCCDF Processing
	7.1 Introduction
	7.2 Loading and Traversal
	7.2.1 Introduction
	7.2.2 Loading
	7.2.3 Traversal
	7.2.3.1 Introduction
	7.2.3.2 Benchmark Processing Algorithm
	7.2.3.3 Item Processing Algorithm
	7.2.3.3.1 Basics
	7.2.3.3.2 <xccdf:requires> and <xccdf:conflicts> Elements

	7.2.3.4 Profile Selector Processing
	7.2.3.5 Check Processing
	7.2.3.5.1 Basics
	7.2.3.5.2 Rules with Multiple Results

	7.2.3.6 Other Processing
	7.2.3.6.1 XHTML Formatting
	7.2.3.6.2 Locale
	7.2.3.6.3 Text Substitution
	7.2.3.6.4 Reference Processing



	7.3 Assessment Outputs
	7.3.1 Overview
	7.3.2 Scoring Models
	7.3.2.1 Overview
	7.3.2.2 The Default Model
	7.3.2.3 The Flat Model
	7.3.2.4 The Flat Unweighted Model
	7.3.2.5 The Absolute Model
	Appendix A— Converting XCCDF 1.1.4 Content to XCCDF 1.2
	A.1 Changes to the XCCDF XML Namespace
	A.2 Conversion of Identifiers
	A.3 Conversion of <xccdf:sub> Elements
	A.4 Properties Removed or Deprecated Since XCCDF 1.1.4

	Appendix B— Change Log





