

NISTIR 7200

Proximity Beacons and
Mobile Device Authentication:
An Overview and Implementation

Wayne Jansen
Serban Gavrila
Vlad Korolev

NISTIR 7200 Proximity Beacons and
Mobile Handheld Devices:
Overview and Implementation
Wayne Jansen
Serban Gavrila
Vlad Korolev

Computer Security Division
Information Technology Laboratory
National Institute of Standards and Technology
Gaithersburg, MD 20988-8930

June 2005

U.S. Department of Commerce
Carlos M. Gutierrez, Secretary

Technology Administration
Phillip J. Bond, Under Secretary of Commerce for Technology

National Institute of Standards and Technology
Hratch
G. Semerjian, Director (Acting)

C O M P U T E R S E C U R I T Y

Reports on Computer Systems Technology

The Information Technology Laboratory (ITL) at the National Institute of Standards and Technology
(NIST) promotes the U.S. economy and public welfare by providing technical leadership for the Nation’s
measurement and standards infrastructure. ITL develops tests, test methods, reference data, proof of
concept implementations, and technical analysis to advance the development and productive use of
information technology. ITL’s responsibilities include the development of technical, physical,
administrative, and management standards and guidelines for the cost-effective security and privacy of
sensitive unclassified information in Federal computer systems. This Interagency Report discusses ITL’s
research, guidance, and outreach efforts in computer security, and its collaborative activities with
industry, government, and academic organizations.

Certain commercial entities, equipment, or materials may be identified in this
document in order to describe an experimental procedure or concept adequately.

Such identification is not intended to imply recommendation or endorsement by the
National Institute of Standards and Technology, nor is it intended to imply that the
entities, materials, or equipment are necessarily the best available for the purpose.

National Institute of Standards and Technology Interagency Report
31 pages (2005)

 i

Abstract

The use of mobile handheld devices within the workplace is expanding rapidly. These devices
are no longer viewed as coveted gadgets for early technology adopters, but have instead become
indispensable tools that offer competitive business advantages for the mobile workforce. While
these devices provide productivity benefits, they also pose new risks to an organization’s security
by the information they contain or can access remotely.

Enabling adequate user authentication is the first line of defense against unauthorized use of an
unattended, lost, or stolen handheld device. This report describes an innovative type of
authentication mechanism that relies on the presence of a signal from a wireless beacon for
access to be granted. Such proximity beacons can be either organizational or personal oriented,
and require only that handheld devices support a common standard wireless interface for
Personal Area Network (PAN) communications, such as Bluetooth. Details of the design and
implementation for both personal and organizational proximity beacons are provided.

 ii

Table of Contents

Introduction ... 1
Background ... 3
The Multi-mode Authentication Framework (MAF)... 5
Personal Beacon Authentication ... 7

Operation... 7
Safeguards .. 10
Handler Implementation... 12
Token Implementation ... 15

Organizational Beacon Authentication ... 19
Operation... 19
Safeguards .. 20
Handler Implementation... 21
Token Implementation ... 28

Summary.. 30
References... 31

 iii

Introduction
With the trend toward a highly mobile workforce, the use of handheld devices such as Personal
Digital Assistants (PDAs) is growing at an ever-increasing rate. These devices are relatively
inexpensive productivity tools that are quickly becoming a necessity in government and industry.
Most handheld devices can be configured to send and receive electronic mail and browse the
Internet using wireless communications. While such devices have their limitations, they are
nonetheless extremely useful in managing appointments and contact information, reviewing
documents and spreadsheets, corresponding via electronic mail and instant messaging, delivering
presentations, and accessing remote corporate data.

Manufacturers produce handheld devices using a broad range of hardware and software. Unlike
desktops and notebook computers, handheld devices typically support a set of interfaces that are
oriented toward user mobility. Handheld devices are characterized by their small physical size,
limited storage and processing power, and battery-powered operation. Most Personal Digital
Assistant (PDA) devices provide adequate memory (at least 32MB Flash ROM and 64MB
RAM) and processing speed (200Mhz or higher) for basic organizational use. Such devices
come equipped with a LCD touch screen (one-quarter VGA or higher) and a microphone,
soundcard, and speaker, but usually lack a QWERTY keypad. One or more wireless interfaces,
such as infrared or radio (e.g., Bluetooth and WiFi) are also built-in for communication over
limited distances to other devices and network access points; so too are wired interfaces (e.g.,
serial and USB) for synchronizing data with a desktop computer. Many high-end PDA devices
also support Secure Digital (SD) and Compact Flash (CF) card slots for feature expansion. Over
their course of use, such handheld devices can accumulate significant amounts of sensitive
corporate information (e.g., medical or law enforcement data) and be configured for access to
corporate resources via wireless and wired communications.

One of the most serious security threats to any computing device is unauthorized use. User
authentication is the first line of defense against this threat. Unfortunately, management
oversight of user authentication is a persistent problem, particularly with handheld devices,
which tend to be at the fringes of an organization’s influence. Other security issues related to
authentication that loom over their use include the following items:

• Because of their small size, handheld devices are easily lost or stolen.
• User authentication may be disabled, a common default mode, divulging the contents of

the device to anyone who possesses it.
• Even if user authentication is enabled, the authentication mechanism may be weak or

easily circumvented.
• Once authentication is enabled, changing the authentication information regularly is

seldom done.
• Limit processing power of the device, may preclude the use of computationally intensive

authentication techniques or cryptographic algorithms.

Authentication using passwords is perhaps the best-known example of a proof by knowledge
mechanism. Other classes of authentication mechanisms include proof by possession (e.g., smart
cards) and proof by property (e.g., fingerprints). Two additional factors that can apply to each

 1

class of authentication mechanism are location and time of day. They refer respectively to
whether the authentication is being attempted at either an acceptable location or an acceptable
time. The mechanisms described in this report involve location as a facet of user authentication.

Establishing location benefits user authentication in several important ways:

• If a user attempts to authenticate from an unauthorized location, the authentication
mechanism can reject the attempt.

• If a user attempts to authenticate from a location outside a defined boundary, the
authentication framework can require that additional authentication mechanisms be
satisfied before granting access.

• If a user instantiates a new activity, such as accessing a specialized application, the
authentication framework can require that access to the functionality and related data be
conducted from with an appropriate location.

• If a user moves within or outside of a defined boundary, the authentication mechanism
can be triggered automatically to grant or deny access.

This report provides an overview of two kinds of location-based authentication mechanisms
involving proximity beacons that interface and communicate through standard interfaces
supported by most handheld devices. The report describes how each kind of beacon is used to
authenticate users on handheld devices and provides details of the solutions’ design and
implementation.

The authentication mechanisms were implemented in C and C++ on an iPAQ Personal Digital
Assistant (PDA), running the Familiar distribution of the Linux operating system from
handhelds.org and the Open Palmtop Integrated Environment (OPIE). OPIE is an open-source
implementation of the Qtopia graphical environment of TrollTech. OPIE and Qtopia are both
built with Qt/Embedded, a C++ toolkit for graphical user interface (GUI) and application
development for embedded devices, which includes its own windowing system. The Familiar
distribution was modified with MAF, a framework for multi-mode authentication [Jan03a]. The
framework includes a policy enforcement engine, which governs the behavior of both code
modules and users [Jan03b], and the facility to add new authentication mechanism modules and
have them execute in a prescribed order.

 2

Background
Physical location sensors come in many shapes and sizes and use many different techniques for
determining position. Physical sensor systems typically have two kinds of components:
appliances and infrastructure. An appliance is the equipment associated with an entity (e.g., a
Global Positioning System (GPS) receiver or mobile phone), while the infrastructure is the set
collection of sensor equipment, usually fixed, which needs to be in place for the appliances to
function (e.g., GPS satellites or mobile phone towers) [Ind03]. A communication medium
through which the devices and infrastructure communicate is also required. Other classes of
location systems, where the user carries no appliance and the solution relies entirely on
infrastructure components (e.g., infrared cameras or floor sensors), are outside the scope of this
discussion.

Physical location sensors can provide either position or proximity information. Position sensors
attempt to provide the coordinates of an entity (or more usually, an appliance) relative to some
coordinate system. The coordinate system may be fixed and global (e.g., the latitude, longitude
and altitude reported by a GPS receiver), or mobile and local (e.g., “3 meters to my right”).
Proximity sensors are less exact (e.g., within close or distant range of a sensor) [Ind03]. While
latitude-longitude-altitude coordinates are suitable for describing points on the globe, they do not
work as well for describing points indoors. Proximity sensors with overlapping detection regions
can form the basis of position sensors. Position information can be determined via triangulation
or trilateration. Both techniques use the geometry of triangles to calculate the relative position
between points. Triangulation uses both distance and angle measurements, whereas trilateration
uses only distance measurements.

Different sensors have different resolutions and associated errors, ranging from centimeters (e.g.,
the ultrasound positioning of the Active Bat system) to tens of meters (e.g. raw GPS) [Hig01,
Ind03, Haz04]. Different sensors also operate over different scales of distance, ranging from
zero (e.g. contact sensors and card readers) to global (e.g. GPS). Sensors may also be limited to
indoor or outdoor use. For example, the GPS, perhaps the best-known technology for
establishing location, requires a clear view of at least three of the two-dozen satellites orbiting
above the Earth to determine position [Hig01]. Because satellite reception in buildings is poor to
nonexistent, GPS is ineffective indoors [War97].

Thus, location can be treated in two ways: by position, where geographical or other physical
coordinates of a unit are resolved to some degree of accuracy, or by proximity, where a unit’s
presence, relative position, or absence within an area is determined. Determining positional
coordinates typically requires an extensive sensor infrastructure able to cooperate with an
appliance to estimate position algorithmically through monitored signals, using triangulation or
some other technique. Determining proximity, while less precise, typically requires a less
extensive infrastructure.

Two classes of solution prevail for resolving location. The first is where location information is
initially known only by the appliance, but not the infrastructure. The second is the reverse by
which location information is initially known only by the infrastructure and then released to the
appliance [Gru03].

 3

The first class of solutions makes the appliance more independent of infrastructure components
and services. It also has privacy benefits, since the approach can allow the user of the appliance
to decide when or whether to release the location information system wide. However, it requires
the appliance to be not only compatible with the infrastructure beacons, but also powerful
enough to make the needed computations and access control decisions. The second class of
solutions is less demanding on the appliance, since the device does not have to be powerful
enough to perform such computations and access control decisions (e.g., RFID or the Active Bat
[War97]), relying instead on infrastructure components and services. For example, pervasive
systems fall into this category, since they are by their very nature context-aware, one type of
context information being location information gathered from a variety of location sources and
sensors (e.g., the location of users, devices and services) [Gru03].

This report describes two kinds of authentication mechanisms that rely on proximity, which is
determined using a small number of proximity beacons for the infrastructure. The authentication
mechanisms are distinguished as either organizational or personal oriented, and in both cases
require only that participating handheld devices, which function as the appliances, support a
common standard wireless interface for Personal Area Network (PAN) communications, such as
Bluetooth. The mechanisms are designed to establish the relative location of a mobile device
with respect to a trusted beacon that, once discovered, serves as a security token, which is
contacted periodically to confirm its presence and to verify its authenticity.

 4

The Multi-mode Authentication Framework (MAF)
MAF was developed previously in a related effort to provide a structured environment for the
protection and execution of one or more authentication mechanisms operating on Linux handheld
devices [Jan03a]. The authentication mechanisms described in this report were implemented
specifically for this framework. Each authentication mechanism consists of two parts: an
authentication handler and a user interface (UI). Figure 1 illustrates these elements within a
Linux operating system environment, enhanced with kernel support for MAF.

Figure 1: Multi-mode Authentication Framework

Authentication handlers embody the procedure that performs the actual authentication. They
communicate with the kernel, listening for when to initiate authentication and reporting whether
authentication was successful. They communicate with the user interface components to bring
up specific screens, accept input, display messages, etc. on the device. Handlers also
communicate with any peripheral hardware devices needed for authentication, such as a security
token, and access the file system to store and retrieve information as needed. Handlers run in
user space as do their respective user interface.

The user interface for an authentication mechanism is implemented as a set of components of a
plug-in module for the OPIE desktop environment. Their function is to perform all necessary
interactions with the user. For example, with beacon applications they can be used to notify the
user of errors that occur. The plug-in module supports a socket interface to receive commands
from an authentication handler that runs as a separate process, and to route the commands to the
correct user interface component. Similarly, reverse routing is also supported for responses from
user interface components to an authentication handler.

The kernel has two key modifications to support the framework: the multi-mode authentication
functionality and the policy enforcement functionality.

 5

• Policy enforcement’s main responsibility is to impose different sets of policy rules on the

device, as signaled by multi-mode authentication, for one or more defined policy contexts
referred to as policy levels. For example, it can block hardware buttons and certain I/O
ports on the device until the user is authenticated at the lowest policy level, policy level 1.
Policy enforcement is also used to protect authentication information files, the user
interface and handler components, and policy enforcement information against improper
access. Moreover, it has the means to register and start up authorized handlers, if they
are not running, or restart them, if they terminate for some reason.

• The main responsibility of the multi-mode authentication functionality within the kernel

is to govern the authentication steps as they relate to the various policy levels that are
configured. Communication between the kernel and an authentication handler is done via
the /proc file system. The multi-mode authentication functionality maintains complete
knowledge about the mappings between authentication mechanisms and policy levels,
simplifying the development of the authentication handlers. One of its key functions is to
initiate user authentication when the device is powered on. It also controls the order and
frequency in which the handlers are awakened from suspended state and begin execution,
and ensures that messages from only legitimate handlers are accepted and processed.

Together, the kernel policy enforcement and multi-mode authentication extensions are essential
for securing authentication applications.

To create an additional authentication mechanism, a developer needs to create a new
authentication handler along with any required user interface objects and the policy rules to
protect the mechanism. Policy rules include limiting access to the storage objects used, the user
interface objects within the plug-in module, and the authentication handler itself. They also can
limit communications to peripheral devices and among the handler, the user interface, and
kernel. Note that writing an authentication mechanism that neither interacts with the user nor
requires a user interface component is possible. For example, the mechanism could be based on
a sensor that is continually monitored and whose input automatically triggers an authenticated or
non-authenticated transition.

 6

Personal Beacon Authentication
The personal beacon authentication mechanism relies on a security token in possession of the
user to satisfy authentication. A PDA is either in or out of the proximity of the beacon as
determined by the footprint of the communications signal. The mechanism periodically checks
on connectivity with the beacon and reports successful authentication if present and able to be
verified; otherwise, it reports failure. Conceptually, the mechanism operates somewhat like a
garage door opener that keeps open the door as long as the opener is on and its signal is received.
Roam too far from the door with the opener or turn it off and the door closes automatically.

A personal beacon supports a single PDA to which it is uniquely enrolled. A PDA and personal
beacon communicate using Personal Area Network (PAN) communications. Two variants of the
personal beacon were developed: one using near-field magnetic communications, the other using
Bluetooth radio communications. The solution could be readily adapted for other types of
wireless PAN communications technologies.

Bluetooth is a short-range wireless communications protocol for mobile devices, such as PDAs,
cell phones, and headsets, which operates in the globally available 2.4GHz frequency band.
Many models of mobile devices are often manufactured with built-in Bluetooth radios, which
allow short-range communication and have low power consumption compared to other wireless
technologies. Two PDAs with built-in Bluetooth radios were used for the Bluetooth prototype
implementation: one as the beacon and the other as the mobile device. The PDA simulating the
personal beacon token displays a fully functional virtual token via the touch screen.

Similarly, for the near-field magnetic communications prototype implementation, a pair of data
evaluation boards produced by Aura Communications was used by the two PDAs to
communicate.1 The boards create a 1.25-meter communication bubble that enables private
communications over a channel bit rate of 204.8 kbps and fully reusable frequencies only a few
meters away. The time-division-duplexed (TDD) digital communication system uses magnetic
induction technology, operating in the ISM band at 13.556 MHz, and requires very little power,
making it suitable for use by handheld devices in short-range wireless applications.

Operation
The personal beacon mechanism was designed for use with organizational handheld devices.
Therefore, the design incorporates a public key infrastructure (PKI) and the use of X.509
certificates. It is also easily amenable to work solely with public key pairs generated on the
token, if a PKI is unavailable for this application.

In the operation of the personal beacon, three phases are distinguished.

• The beacon setup phase – During this phase, the administrator generates a pair of
private/public Rivest-Shamir-Adelman (RSA) keys, obtains a user certificate for the
beacon, and stores the certificate and the private RSA key on the beacon. The
administrator also stores the root certificate (chain) of the Certificate Authority (CA) that

1 More information can be found at http://www.auracomm.com/

 7

http://www.auracomm.com/

issued the beacon certificate onto the client PDA. In the case of Bluetooth personal
beacons, the PDA and personal beacon can be paired to establish a long-term trusted
association between the two. A special class identifier is used to distinguish beacons
from other Bluetooth devices and simplify the pairing operation to the preferred beacon
assigned to the user.

• The beacon enrollment phase – During this phase, the (client) PDA tries to authenticate

the beacon for the first time. It consists of the following steps:

• The PDA tries to identify and connect to a personal beacon. Note that in the case of
the Bluetooth variant, the beacon’s identity is already known and could be used to
connect to the beacon directly. However, the PDA inquires for all Bluetooth devices
available and tries to connect only to devices of class “Access Point.” If no such
device exists, this phase fails. The enrollment phase also fails if such devices exist,
but no connection can be successfully made to any of them.

• The PDA starts the high-level protocol with the connected device, whereby it requests
and receives the user certificate. If the certificate transfer fails, or the certificate does
not verify, the PDA closes the connection and restarts the previous step with another
device as the prospective token.

• The PDA tries to authenticate the prospective token through a challenge-response
protocol, based on the certificate information. If the authentication exchange fails,
the PDA retries the above steps with another device. If the authentication succeeds,
the PDA concludes that the prospective token is the intended personal beacon, saves
the certificate (i.e., as a flag attesting that enrollment completed successfully) and the
communications address of the token (e.g., a MAC Address for Bluetooth) for
subsequent use in the authentication phase, and closes the connection.

• The authentication phase – During this phase, the (client) PDA initiates a challenge-

response exchange with the beacon and checks that its certificate remains in effect. The
authentication succeeds if and only if the verification is successful. This phase takes
place periodically to ensure that the beacon is present and enabled.

Challenge-Response Protocol
The underlying mechanism used to authenticate users via a personal beacon relies on a
challenge-response protocol compliant with FIPS 196 between the device and the beacon. The
PDA challenges the beacon for an appropriate and correct response that can be used to verify that
the token is the one originally enrolled by the device owner. The PDA relies on credential
information, obtained earlier from the beacon when the PDA owner initially enrolled the beacon
with the device.

Figure 2 illustrates a typical exchange between the PDA and beacon. The upper part of the
diagram shows the enrollment information exchange used to register a token (at right) with the
PDA (at left), while the remainder shows the exchanges used to verify the claimed identity.

 8

Figure 2: PDA and Beacon Exchange

Before the personal beacon token can be enrolled at the device, it must first be issued to the user.
A security administrator populates the token with the user’s credentials and other needed
information. Those credentials are issued by a Certification Authority (CA) and validated using
the certificate of the CA. Once the credentials are validated, they are retained at the device and
used to verify the user’s identity following FIPS 196 procedures.

For verification, the device and the token adhere to the following protocol [FIPS196]:

• The device, acting as the verifier, generates a random challenge "B" and passes it to the
token for signing with the private key associated with the enrolled identity certificate;

• The token, acting as the claimant, generates a random value "A", signs A||B with its
private key (“||” denotes concatenation), and returns A and the signature to the PDA;

• The device retrieves the enrolled identity certificate, verifies it, then verifies the token’s
signature over A||B using the public key in the certificate;

• If everything successfully verifies, authentication succeeds; otherwise, the authentication
attempt fails.

The authentication of an entity depends on two things: the verification of the claimant's binding
with its key pair, and the verification of the claimant's digital signature on the random number
challenge. Using a private key to generate digital signatures for authentication makes it
computationally infeasible for an attacker to masquerade as another entity, while using random
number challenges prevents an intruder from copying a valid response signed by the claimant

 9

and replaying it successfully at a later time. Including a random number of the claimant in the
response before signing it precludes the claimant from signing data that is solely defined by the
verifier. The security of the FIPS 196 protocol also hinges on the generation of random numbers
that have a low probability of being repeated.

Bluetooth Pairing
Bluetooth pairing is basically a process that consists of exchanging passkeys and setting up a
trusted connection between the PDA and the personal beacon. The following steps are required
to set up Bluetooth pairing between a PDA and the personal beacon:

• The PDA searches for Bluetooth enabled beacons in the area. The beacons must be set
up to be discoverable when other Bluetooth devices search. During the discovery
process, discoverable devices usually broadcast what they are (such as a beacon, a
printer, a mobile phone, a handheld, etc.), and their Bluetooth Device Name. Depending
on the device, its Device Name may be able to be changed to something more specific. If
multiple Bluetooth devices are in range, and they are all discoverable, identification helps
to select a specific beacon from other devices.

• Once the beacon is enrolled it can toggle off the discoverability setting, since the PDA

retains the address of the beacon. When discoverability is off, the beacon does not
respond when other devices search for it. Undiscoverable devices can still communicate
with other Bluetooth devices, but they must initiate the communications themselves, if
not paired with the device.

• After selecting the beacon, the PDA prompts for a passkey or PIN, which is shared by

both devices to prove that their respective owners agree to be part of the trusted pair.
With more advanced devices, such as mobile phones, both participants must agree on a
passkey and enter it on each device. With other types of devices, such as hands-free
headsets, where no interface exists for changing the passkey on the device, the passkey is
fixed. For such devices, their associated documentation provides the default passkey, and
how to change it, if possible. Often, the passkey is simply zero.

• Once the passkey is entered on the PDA, it is sent over to the beacon for comparison. If

the beacon is an advanced device that needs the user to enter the same passkey, it asks for
the passkey; otherwise, the beacon uses its standard, fixed passkey. If the beacon's
passkey is the same as that entered by the PDA, a trusted pair is formed. Each device
automatically accepts communication from the other, bypassing the discovery and
authentication process that normally happens during Bluetooth interactions.

Safeguards
For user authentication, the fundamental threat is an attacker impersonating a user and gaining
control of the device and its contents. Tokens such as the personal beacon should be designed to
resist physical tampering and avoid disclosing its base secret, the private key used to sign
challenges it receives. Presuming the design and implementation are effective, the following
vulnerabilities are the main candidates for exploitation:

 10

• The authentication mechanism can be bypassed
• Weak authentication algorithms and methods are used
• The implementation of a correct and effective authentication mechanism design is flawed
• The confidentiality and integrity of stored authentication information is not preserved

The Personal Beacon handler uses the challenge-response mechanism described in FIPS 196 in
order to authenticate the personal beacon token. In signing the challenge and verifying the
signature, the handler and the token use OpenSSL v0.9.7APIs that comply with the PKCS #1
standard. The private key held in the token should be used exclusively for authentication.

The Personal Beacon authentication mechanism embodied in the handler relies on MAF, which
in turn relies on the security of the underlying operating system implementation. The handler is
protected from substitution and overwrite respectively through the multi-mode authentication
and policy enforcement functionalities of MAF. Substitution is prevented through an entry in the
list of registered handlers (e.g., </usr/bin/handlerPB 2>) identifying its location, while overwrite
is prevented through policy rules in the MAF policy file (/etc/MAF/defaultPolicy).

The personal beacon handler uses the following data files stored on the PDA, which must also be
protected through policy enforcement functionality of MAF:

• /etc/MAF/cacert.pem: contains the X.509 certificate of the root CA that issued the user’s
certificate on the token. This file is installed on the device through security
administration.

• /root/Settings/PBcert.pem:2 contains the user’s X.509 certificate token. This file is
written at token enrollment, and afterwards it is read only when the handler is restarted.

• /root/Settings/PBaddr.txt:3 contains the token’s Bluetooth address. This file is written at
token registration, and afterwards it is read only when the handler is restarted.

The MAF policy file (/etc/MAF/defaultPolicy) must contain the following policy rules that grant
exclusive permission to the handler to read/write these files at any security level and also prevent
the handler from being overwritten [Jan03b]:

• <file /etc/MAF/cacert.pem /usr/bin/handlerPB 0>
• <file /root/Settings/PBcert.pem /usr/bin/handlerPB 0>
• <file /root/Settings/PBaddr.txt /usr/bin/handlerPB 0>

Policy rules specifying access to the Bluetooth stack are not yet available.4 If device pairing
would be used, then the binary file /etc/bluetooth/link_keys, where the BlueZ Unix Bluetooth
stack appends the symmetric key used in pairing, should also be protected by the following rules:

2 For the NFM variant the file name of the token’s certificate is NFMcert.pem.
3 Currently no counterpart file name is required in the NFM variant, since the addresses are not exposed in the
evaluation data boards used in the implementation.
4 For the NFM variant, the MAF policy file must instead contain policy rules that grant handlerNFM the permission
to access the serial interface to the evaluation data boards, from any policy level: <interface serial
/usr/bin/handlerNFM 0>.

 11

• <file /etc/bluetooth/link_keys /usr/bin/handlerPB 0>
• <file /etc/bluetooth/link_keys /usr/sbin/hcid 0>5

Handler Implementation
The Personal Beacon authentication handler operates as a polling handler, periodically checking
the status of the token, as well as initiating authentication with it. The following code excerpt
shows the main execution loop of the handler.

 crtBeaconState = 0;
 ...
 while (1)
 {
 previousState = crtBeaconState;

 kernelResponse = HandlerReady(11);
 if (kernelResponse == mmPoll)
 {
 crtBeaconState = Authenticate(previousState);
 if (enrollfailed) continue;

 if (crtBeaconState!= previousState)
 {
 if (!crtBeaconState)
 {
 TellUI("PB:shw:Authentication failed");
 sleep(2);
 TellUI("PB:clr:");
 TellKernel("AUTH-FAIL");
 }
 else
 {
 TellKernel("LEVEL 1");
 }
 }
 }
 else // kernelResponse = mmAuthenticate
 {
 crtBeaconState = Authenticate(previousState);
 if (enrollfailed) {
 TellKernel("AUTH-OK");
 continue;
 }
 TellKernel(crtBeaconState? "AUTH-OK" : "AUTH-FAIL");
 }
 }

The variable crtBeaconState stores the beacon current state as reported by the Authenticate()
function. The state “authenticated” (1) means the beacon is on and the handler has successfully
authenticated it. The state “not authenticated” (0) means no beacon is present, or the beacon
authentication has failed.

5 This rule lets Bluetooth use the link key when it connects, since the previous rule prevents any other library from
reading the keys.

 12

The variable previousState maintains the beacon state as detected at the previous polling or
authentication moment. Comparing the two state variables allows the handler to detect a change
in the beacon state from one polling moment to the next.

After saving the previous beacon state in previousState, the handler tells the kernel that it is a
polling handler by calling the HandlerReady() function with the polling interval of 11 seconds.6
Both the polling and the authentication procedures are performed by the same function,
Authenticate(), whose code is listed below:7

int Authenticate(int previousState)
{
 int res, dev, s;
 static int failedattempts = 0;

 now = time(NULL);
 if (kernelResponse == mmAuthenticate)
 {
 if (now < lastTry) lastTry = now;
 if (now - lastTry < AUTH_TRY)
 {
 // Too soon to try authenticate again
 return 0;
 }
 }

 // If last successful authentication was less than AUTH_CONFIRM
 // seconds ago, assume it's still valid.
 if ((now - lastAuth) < AUTH_CONFIRM)
 {
 // Consider authentication still valid
 return 1;
 }

 // If token not registered
 if (!TokenRegistered())
 {
 if (kernelResponse == mmPoll) return 0;
 res = RegisterAndAuth();
 if (res) lastAuth = now;
 return res;
 }
 lastTry = now;

 // Verify certificate if more than CERT_VERIF seconds
 // passed since last verification.
 if (now - lastVerif > CERT_VERIFY)
 {
 res = VerifyCert(pcert);
 if (res == 0) {

6 This is a default value; a different polling interval can be specified in a configuration file, as shown later in this
section. For the NFM variant, a 5 second interval is used.
7 The Authenticate() function for the NFM variant functions similarly, but has some slight differences.

 13

 errmsg = "Invalid certificate";
 return 0;
 }
 lastVerif = now;
 }

 // Connect to the stored token address.
 res = TryToConnect(-1, &s);
 if (res == 0)
 {
 if (!previousState) return 0;
 if (++failedattempts > maxfailedattempts) return 0;
 return 1;
 }

 // Authenticate.
 res = TryToAuth(s);
 if (res == 0)
 {
 if (!previousState) return 0;
 if (++failedattempts > maxfailedattempts) return 0;
 return 1;
 }
 failedattempts = 0;
 lastAuth = now;
 return 1;
}

First, this function refuses to perform authentication and returns the state “not authenticated” if
the last try was less than AUTH_TRY (about 4 seconds). The reason behind this is the
following: In the case of a failed authentication with the handler associated with level 1, the
policy level drops to 0, and the kernel tries to raise it to 1, instructing the handler to authenticate
the token. If the authentication fails again, this process repeats itself, flooding the token with
connection requests. Limiting authentication attempts to only every 4 seconds or so, avoids such
flooding.

The next few lines after that show that Authenticate() considers a successful authentication to be
still valid for at least the AUTH_CONFIRM period (about 20 seconds), to avoid costly
connections and data transfers.

If the personal beacon token is not yet registered, Authenticate() tries to enroll and authenticate
the token by calling the function RegisterAndAuth(). If the token is registered, Authenticate()
continues by verifying the user certificate (but not too often), in order to detect the eventual
expiration of the certificate. No revocation information is available to the handler.

Finally, Authenticate() tries to connect to the token, by using its stored Bluetooth address (for
the case where the token is already enrolled and its address has been stored in the handler’s file
system), then to authenticate. If the authentication is successful, the handler saves the time of
this authentication. Otherwise, if the token is currently authenticated (as reflected by the
parameter previousState), a limited number of failure attempts are allowed, before declaring the
authentication unsuccessful. The maximum number of failed attempts is by default 2, but it can

 14

be set to another value in a configuration file, /root/Settings/Pbconf.txt, using the format
“key=value”. The same configuration file can be used to specify the polling interval (which by
default is 11 seconds), as the following entries illustrate:

• maxFailedAttempts=1
• pollingInterval=10

Token Implementation
The personal beacon operates as a server to the client authentication handler on the PDA. The
personal beacon itself is simulated on the display of an iPAQ PDA. Its code executes as an
OPIE application whose graphical user interface is shown in Figure 3. The virtual token pictured
represents a key fob form factor, containing two LEDs and an on/off switch. The actual token
could have formats other than a key fob. A command line C-language version for
PDA/laptop/desktop computers is also available.

The beacon has three internal states: “off”, “on and unconnected”, and “on and connected”. The
on/off switch is used to power on or off the beacon and transition between the “off” and
consolidated “on” states. The state is reflected by the color of the left LED – green means on,
yellow means off. Turning the switch on causes the beacon to start listening for connections and
the LED at left to change color. Once a connection is established, the right LED blinks
whenever an authentication exchange occurs. The switch itself is labeled “On” or “Off” to
indicate whether pressing it will cause the beacon to start up or shutdown respectively.

Figure 3: Simulated Personal Beacon

Procedural Steps
The Personal Beacon starts up by initializing the OpenSSL libraries and reading the user PKI
credentials from files in PEM format (the private key is protected with a password, which for
now is hard-coded). These files are located in the $HOME/Setting/ directory, and their name is

 15

prefixed with PB or NFM (depending on the variant), where $HOME denotes the real user’s
home directory.

In the next step, the Personal Beacon builds and displays its interface according to the beacon’s
initial state (off, with both LEDs off and the On/Off button displaying “On”). When the user
clicks on the “On” button, the personal beacon creates an L2CAP server socket, enters the “on”
state (unconnected), and starts listening for connections from remote devices.8 It repeatedly
polls the server socket for connections with a timeout of 0.5 seconds. When it detects a
connection request, the beacon accepts the connection, creates a client socket, and enters the “on
connected” state.

In this new state, the beacon repeatedly polls the client socket for input requests from the device,
and the server socket for new connections. The beacon processes the input received on the client
socket with priority. If a new connection request arrives on the server socket, the old connection
is closed and a new one is established.9

Input on the client socket is interpreted as a request from the client PDA. The server processes
the request and returns the answer on the client socket. The next section describes the high level
protocol between the client PDA and the Personal Beacon. The last request from the client PDA
in a session should be “bye”; the server will close the connection with the client PDA.

When the user clicks on the button labeled “Off”, the server closes any open connection and
repaints its GUI so that the LEDs reflect the beacon state.10 Whenever the user suspends the
PDA on which the Personal Beacon runs, the following script located in the /etc/suspend-scripts/
directory automatically terminates the server:11

#!/bin/sh
LOGNAME=root
QTDIR=/opt/QtPalmtop
export LOGNAME QTDIR
/opt/QtPalmtop/bin/qcop “QPE/Application/serverPB” “close()”

Note that “serverPB” or “serverNFM” should be the name of the application executable. Using
the absolute path of qcop can be avoided by adding its location to the PATH variable and
exporting PATH in the script.

8 For the NFM variant, the personal beacon instead opens the serial port /dev/ttyC0 on the supporting PDA, saves
the port’s current parameters, and configures the serial port with the following parameters: 9600 bps, 8 data bits, no
parity, 1 stop bit. Note that the getty process running on the PDA may interfere with the personal beacon trying to
read from the serial port and needs to be disabled in /etc/inittab.
9 Instead of waiting for commands from the client (the authenticating PDA) arriving on the serial line, in the NFM
variant the server starts a timer that issues timeout signals to repeatedly call a function that processes the input
coming from the client on the serial line. That function polls the serial port file descriptor and returns after 0.5
seconds if no input is available during that interval. If there is some input, the server repaints the GUI with the right
LED turned on (green) for about 0.2 seconds (a “single shot” timer is used to turn off the led after that interval). The
server reads and processes the input data as a server command, and sends an answer back to the client.
10 For the NFM variant, the server stops the timer that was issuing the timeout signals to read input.
11 For the NFM variant, serverNFM replaces serverPB in the last line of the script.

 16

Personal Beacon Client/Server Protocol
The high-level protocol used by the authentication handler and the personal beacon server
comprises a few commands. Their descriptions and the request to and responses from the server
are described below.

• getCertLength – The command requests the length of the user’s certificate in bytes. The
server maintains the certificate in the PEM format. The server returns the certificate
length as a decimal value.

• getCertData|offset|length – The command asks for a chunk of the certificate, starting at

the indicated offset and for length bytes long. The offset and length are expressed in
decimal. The server should return a string of length bytes.12

• signChallenge|challenge – The command asks the server to sign a challenge, which is a

string (called B) of 16 bytes randomly generated by the client. When issuing the
command, the client must translate each byte of the challenge into two characters
representing its hexadecimal digits, resulting in a 32-byte string for the challenge. The
server returns the results of the signing operation, which is a 289-character string
obtained as follows:13
• The server generates a random string A of 16 bytes and translates each byte into two

characters representing its hexadecimal digits.
• The server signs (A || B) using the user’s private RSA key, and translates each byte of

the 128-bye signature into two characters representing its hexadecimal digits.
• The server concatenates the 32-byte representation of A, the character “|”, and the

256-byte representation of the signature. This is the result of the signing operation,
and it has 32 + 1 + 256 = 289 characters.

• bye – The command requests the server to disconnect from the remote device by closing

the client socket, resulting in the beacon state maintained at the client to become “on
unconnected”.14 The server returns the string BYE.

The following is an example of the client/server dialog conforming to this protocol, as seen from
the server side:

12 For the NFM variant, to avoid sending control characters over the serial line, the server translates every certificate
byte into two characters representing its hexadecimal digits. Thus, the command actually returns a string of
2*length characters, each being a hexadecimal digit. For example, the character ‘7’ (i.e., the byte with the value
0x37) is returned as a string of two characters “37”.
13 The challenge signing protocol for the NFM is slightly different. Instead of returning the results of the signing
operation, the command returns “ok” if signing succeeds or “Error: errmsg” if signing fails (the returned string does
not contain quotes). The server stores the result of the signing operation internally, which can then be retrieved via
additional commands: getSignLength and getSignData
getSignLength - The command asks the server for the length in bytes of the result of the signing operation. It should
return 289 in decimal (see the command signChallenge).
getSignData|offset|length - The command returns a chunk of the signChallenge result, of specified length and
starting at the specified offset.
14 The NFM variant does not use the bye command, because of the characteristics of the serial connection.

 17

getCertLength
1472
getCertData|0|128
...
getCertData|128|128
xCzAJBgNVBAYTAlVTMREwDwYDVQQI...
...
getCertData|1408|64
...
signChallenge|8120D79AD6231DF4C7FB2C2DD924036B
1E03120C57AED6555C9705EA32422D33|51BBBF778989B5D1A319BB9ABDA5504D...
bye
BYE

 18

Organizational Beacon Authentication
The organizational beacon is a small device that is placed in an area to establish a perimeter
where a distinct policy is in effect. To accomplish this, the organizational beacon offers an area
location service for discovery and use by PDAs and other mobile devices. One or more
organizational beacons define the area. Location is determined relative to a beacon. Mobile
devices equipped with an organizational beacon authentication mechanism sense the locale of the
organizational beacons and adjust their security policies accordingly. A device is either in or out
of the vicinity of the beacons, as determined by the footprint of their communications signal.

The organizational beacon authentication mechanism periodically checks for proximity to a
beacon and reports successful authentication if a beacon is detected and able to be verified;
otherwise, it reports failure. Multiple organizational beacons can be used to improve service
above that of a single beacon, or arranged to service a larger area. An organizational beacon
provides credential information for a PDA to verify using the Transport Layer Security (TLS)
protocol over Bluetooth. Many mobile devices are manufactured with built-in Bluetooth radios,
which allow short-range communication and have low power consumption. The solution could
also be adapted for other types of wireless PAN communications technologies.

Intrinsyc CerfCubes serve as the platform for the prototype organizational beacons.15 The
CerfCube 255 includes a PXA255 microprocessor, 32MB Flash ROM, and 64MB SDRAM, in a
convenient 3” x 3” x 3” form factor. It comes loaded with a Linux kernel and the Familiar
Distribution, including device drivers for all on-board peripherals. Peripheral support includes
Ethernet and several serial ports (one exposed). CerfCubes come equipped with a Compact
Flash connector that supports Type I and II cards, and can be used to add Bluetooth, WiFi, or
wireless WAN communications, local storage, etc.

Operation
The organizational beacon authentication mechanism operates in two distinct modes:
unauthenticated and authenticated. The mobile device is pre-configured with the specific policy
settings that are applied in both the presence and absence of a beacon. In the unauthenticated
mode, the following steps occur:

• The mobile device periodically scans for the available organizational beacons in the area.
• When the mobile device finds a prospective beacon, it establishes the wireless connection

to the beacon, and then tries to set up a secure TLS connection over that physical channel,
using the X.509 certificate supplied by the beacon.

• If the beacon is successfully authenticated and a TLS connection established, the mobile
device enters a readiness exchange with the beacon to verify that it is indeed a functional
organizational beacon.

• Once the mobile device verifies that the beacon is functional, it enables the policy on the
device for that location and switches to the authenticated mode.

• Otherwise, the mobile device blacklists the beacon for a period of time and retries the
above steps.

15 More information can be found at http://www.intrinsyc.com

 19

Once in the authenticated mode, the following steps occur:

• The mobile device periodically tries to reestablish a physical and TLS connection with
the last beacon to which it successfully authenticated.

• If the beacon is again successfully authenticated and a TLS connection established, the
mobile device verifies that the beacon is functional.

• Once the mobile device successfully verifies that the beacon is functional, it maintains
the associated policy on the device for that location and remains in the authenticated
mode.

• Otherwise, the mobile device retries the above steps again, allowing for a momentary out
of range condition.

• If the beacon cannot be successfully authenticated and vetted within a preset time period
(approx. 2 – 3 minutes), the mobile device switches to the unauthenticated mode and
changes policy accordingly.

The beacon operates as a server to the mobile device client, listening to the inquiries from mobile
devices and responding as needed. The software on the beacon interacts with a mobile device
only in the second and third steps of the unauthenticated mode and in the first and second steps
of the authenticated mode. The rest of the activities (e.g., responding to inquiries, establishing
Bluetooth connections, etc.) are performed entirely by its Bluetooth hardware. The range of the
beacon may also be tied to the capabilities of the Bluetooth hardware to increase or decrease the
strength the radio signal.

Beacons support specific types of policy, denoted by an identifier in their credentials. Assorted
beacons may be configured to support distinct policies for different areas. A mobile device,
running the client side of the organizational beacon authentication mechanism, is configured to
observe a specific policy in the presence of an associated beacon and disregard beacons that
identify other policies.

Safeguards
The authentication mechanism must ensure that the messages it receives from a beacon have
been created recently for the particular purpose intended and by the beacon claiming to have sent
it. The mechanism must be able to detect when a message has been modified or forged by an
attacker with access to the wireless network, or when a message issued previously (or for a
different purpose) is being replayed on the network by an attacker.

The security of organizational beacon relies on the TLS protocol and MAF. The TLS protocol
provides the assurance that the beacon is genuine. The security of the TLS protocol is based on
the challenge response mechanism and public key cryptography. The protocol is widely
accepted by the Internet community and is currently considered secure for financial transactions.
As with the personal beacon, the OpenSSL library (version v0.9.7) was used for cryptographic
functions and the TLS implementation. The OpenSSL is a widely accepted implementation of
cryptographic functions and the TLS protocol, under constant scrutiny by the open source
security community.

 20

The authentication mechanism assumes that beacon is physically secure and situated at the
correct location it identifies. The policy enforcement functionality of MAF is used for the
protection of sensitive files. The substitution of the handler program is prevented through the
entry in the list of registered handlers (e.g., </usr/bin/handlerBB 3>). The following rules
prevent overwrite of the handler and also grant it exclusive access to the CA’s public key
certificate and the governing policy identifier adhered to by the handler [Jan03b]:

• <file /etc/MAF/cacert.pem /usr/bin/handlerBB 0>
• <file /etc/MAF/OB-PolicyID /usr/bin/handlerBB 0>

Blocking access to the CA’s public key certificate and the governing policy identifier prevents an
attacker from substituting them with ones from a different organization to gain unauthorized
access to the mobile device.

Handler Implementation
The organizational beacon handler is a user space program that runs on the mobile device. It
communicates with the MAF mechanism in the kernel and the remote device that claims to be a
Bluetooth organizational beacon. The remote device must prove to the Bluetooth MAF handler
that it is a legitimate organizational beacon by successfully establishing a TLS channel, using its
X.509 certificate signed by the organization certificate authority. If the handler determines that
the remote device is indeed a legitimate beacon associated with a policy level it protects, the
handler tells the kernel that a successful authentication has occurred, allowing the kernel to
activate the policy if all other required conditions are met. Otherwise, the handler continues to
search for a legitimate beacon.

The organizational beacon handler is a polling handler, which means that it instructs the kernel to
make periodic contact, awakening it to perform the necessary operations. As explained earlier,
the handler has two modes of operation: authenticated and unauthenticated mode. In the
unauthenticated mode, the handler periodically performs a Bluetooth inquiry to find prospective
beacons. If inquiry process results in finding a Bluetooth device with the class of Access Point
(i.e., 0x082311), the handler attempts to establish L2CAP connection to the predetermined
Protocol Service Multiplex (PSM) (i.e., a designator similar to a TCP/IP port number). When
the L2CAP connection is established, the handler tries to set up a TLS session over this
connection and verify that the organization’s certificate authority signed the X.509 certificate
used by the server to set up the TLS session. If the signature verification succeeds, the handler
switches to the authenticated mode and signals the kernel that it can raise the current policy
level.

When the handler runs in the authenticated mode, it periodically tries to establish connection
with the last known beacon and authenticate the beacon using the same authentication steps as in
the unauthenticated mode. If the handler is unable to communicate successfully and verify the
beacon during a 2-minute interval, it switches to the unauthenticated mode and signals the kernel
that the authentication is no longer valid.

An excerpt of the main loop of the handler is provided below. Before each iteration of the loop
the handler records its current authentication state and then calls the HandlerReady function.

 21

The HandlerReady function is a part of MAF API; it puts the handler in the suspended state for
between 3 and 8 seconds or until the user requests authentication. When the handler resumes its
operation, the return code result contains the reason code for why it is being resumed. If the
result equals “mmPoll,” it means that the handler was awakened for the periodic status check.
In this case, the handler checks the current authentication is still valid by calling the
Authenticated function. This function returns TRUE if the authentication is still valid or FALSE
if it no longer authenticated. The handler then compares the current and last known
authentication values. If the values are different and the new authentication state is negative, the
handler sends the “AUTH-FAIL” signal to the kernel. If the values are different and the current
value is positive, the handler sends the “LEVEL 1” request to the kernel, which signals the
kernel to attempt a transition to the policy level of the handler.

Regardless of whether an authentication state changed or not the handler executes the Worker
routine. This routine confirms that the current beacon is still in the vicinity or performs a search
for a new beacon.

If the reason for resuming the handler was not “mmPoll,” it means that the kernel wants the
handler to return the current authentication status. The handler calls the Authenticate routine to
determine the current status of the handler, which sends “AUTH-OK” or “AUTH-FAIL”
message accordingly.

 while(1) {
 int result;

 // This is needed to know if the beacon state has changed
 lastState = beaconState;

 // Suspend the handler…
 result = HandlerReady (3 + rand() % 5);

 // What was the reason we got woken up
 if (result == mmPoll)
 {

 /// Check the authentication status
 beaconState = Authenticated ();

 /// Has the state changed??
 if (beaconState != lastState)
 { puts ("Beacon State Changed");
 if (!beaconState)
 {
 // Authentication no longer valid send the messages
 // to the kernel
 TellKernel ("AUTH-FAIL");
 }
 else
 {
 /// Since the message comes from the kernel...
 /// the numeric level value is ignored...

 22

 /// so we can put any number we want.. but we
 /// there must be a number here otherwise kernel
 /// will not accept this message
 TellKernel ("LEVEL 1");
 }
 }
 // Perform periodic maintenance

 Worker ();
 // Restart the loop
 continue;
 }
 // We got woken up because kernel wants us to authenticate
 TellKernel (Authenticated () ? "AUTH-OK" : "AUTH-FAIL");

 }
}

The code for the Authenticated function is given below. The function first obtains the current
time value and then compares how long a period passed since the last successful communication
with the beacon. If it took more then a 100 seconds, the function returns negative authentication;
otherwise, it returns positive authentication

int Authenticated ()
{
 Now = time(NULL);
 if ((Now - LastAuth) < AUTH_TIMEOUT)
 return TRUE;
 else
 return FALSE;
}

Beacon Table
The handler maintains a table of prospective beacons to carry out its function. The table contains
the information about all Bluetooth devices in the vicinity of the mobile device. The table has
the following fields: MAC Address, Last Seen, Last Contact, and Status. An example of such a
table is shown below.

Table 1: Prospective Beacon Table

MAC Address Last Seen Last Contact Status

00:02:92:21:AB:C8 20 20 Beacon

00:22:11:22:33:11 30 30 Not Beacon

00:22:99:11:11:11 20 20 Unknown

The MAC Address field contains the address of the Bluetooth device, while the fields Last Seen
and Last Contact contain the time value of when the device was last seen and when the last
successful communication with the device took place. The Status field contains the handler’s
idea of the device’s purpose. The Status field can be one of the following: “Beacon,” “Not

 23

Beacon,” and “Unknown.” When the remote Bluetooth device is initially entered into the table,
it is assigned the “Unknown” status. Later, when a successful communication with the remote
device takes place, the device is assigned the “Beacon” status. If the handler can establish a
connection to the remote device, but the device does not follow the beacon readiness protocol,
the device is assigned the “Not Beacon” status.

The handler populates the table by performing a Bluetooth inquiry process every 50 seconds.
The inquiry discovers Bluetooth devices in the vicinity and returns a list of their MAC
Addresses. The handler looks up each MAC Address received during the inquiry process to see
if it already exists in the beacon table. If the address does not exist, it is entered into the table.
For every MAC Address received during the inquiry process, the handler updates the
corresponding Last Seen entry in the handler table.

When the handler is not doing an inquiry, it tries to contact the devices in the beacon table whose
status is either “Beacon” or “Unknown.” The devices with “Beacon” status are contacted before
the devices with “Unknown” status. During the contact, the handler first tries to establish the
L2CAP connection to the remote device. The Last Contact value is updated before every attempt
to establish an L2CAP connection is made. If the connection succeeds, the handler performs the
TLS exchange described in the section below. If a failure occurs after the L2CAP connection
has been established, the handler sets the Status field of that beacon to “Not Beacon,” which
temporarily blacklists the beacon. If the TLS exchange results in the successful authentication,
the handler sets the Status to “Beacon,” sets the lastAuthentication variable to the current time,
and does not try to contact the other devices in the table.

The lastAuthentication variable is used to determine whether the current authentication is still
valid. If the time value stored in this variable is less then 120 seconds before the current time,
the handler considers the state to be unchanged, remaining valid. When the kernel sends an
authentication request to the handler, the handler checks the current time and the value of the
lastAuthentication variable and returns the positive response if the value is within 120 seconds of
the current time, or otherwise responds with negative authentication.

The Beacon table is periodically swept for stale entries. If the handler sees an entry with the Last
Seen value older than 60 seconds, the entry is removed from the table. The handler uses the Last
Contact column in conjunction with the Status column to prevent permanent blacklisting of
beacons that did not correctly follow the beacon readiness protocol previously. For example, it
could be the case that the beacon was just starting up and not all the software was fully
operational and able to complete the exchange. When the Status column for a particular entry
contains a “Not Beacon” value and the Last Contact time value is older than 20 seconds, the
handler changes the Status value to “Unknown.” The above process is implemented by the
Worker function, which is called from the main loop. The code for the Worker function is
shown below.

// This is a worker thread...
void Worker ()
{
 Now = time(NULL);

 printf ("Time Now is %d \n", Now);

 24

 if ((Now - LastAuth) < AUTH_TIMEOUT)
 {

 if ((Now - LastAuth) > AUTH_CONFIRM)
 {
 int res;
 puts ("Have to re-authenticate");
 LastAuthAttempt = Now;

 printf ("Last known beacon %d\n", LastKnownBeacon);

 if (LastKnownBeacon>=0 && LastKnownBeacon < N_BEACONS)
 // if (BeaconTable[LastKnownBeacon].State == sBeacon)
 {
 puts ("Last known beacon is still there");
 res = Authenticate (LastKnownBeacon);
 UpdateBeaconEntry(LastKnownBeacon,res,Now,&LastAuth);
 }
 }
 else
 puts ("Authentication Still Valid");
 }
 else
 {
 int res = 0;
 int i;
 puts ("Not authenticated");
 /// Time To Do Inquiry?
 if ((Now - LastInquiry) > INQ_INTRVL)
 { puts ("Time To Do Inquiry");
 PerformScan ();
 LastInquiry = Now; }

 /// Attempt to connect to beacons..
 for (i = 0 ; i < N_BEACONS ; i ++)
 {
 if (BeaconTable[i].State != sBeacon) continue;
 res = Authenticate (i);
 UpdateBeaconEntry(i,res,Now,&LastAuth);
 if (res == 1) { LastKnownBeacon = i; break;}
 }

 /// Attempt to connect to unknown devices if the previous loop
 /// did not yield any good results..
 if (res != 1)
 for (i = 0 ; i < N_BEACONS ; i ++)
 {
 if (BeaconTable[i].State != sUnknown) continue;
 res = Authenticate (i);
 Now = time(NULL);
 UpdateBeaconEntry(i,res,Now,&LastAuth);
 if (res == 1) { LastKnownBeacon = i;break;}
 }
 }

 25

 // Check the current
 Sweeper ();
}

TLS Protocol
Bluetooth organizational beacon handler uses the TLS protocol [RFC2246] to authenticate
prospective beacons. The TLS is a well-established and carefully scrutinized protocol for secure
transactions. In the current implementation, both the mobile device and organizational Beacon
use OpenSSL library (www.openssl.org) to provide the protocol functionality. Authentication of
the beacon is performed as a part of the initial TLS handshake.

The server and handler use two basic I/O (BIO) object pairs provided by the OpenSSL library.
Each BIO object pair contains both a source and a sink stream object. The first BIO object pair
corresponds to the high level of the TLS connection where unencrypted text is submitted and the
decrypted text is received. The second BIO object pair is a low level pair that conveys encrypted
text and TLS-specific messages.

Both the server and handler portions of the organizational beacon code manage the Bluetooth
specific aspects of the communication, such as establishing and tearing down connections,
determining the Message Transmission Unit (MTU) size, etc., as well as actual data
transmission. At every iteration, the source BIO object is asked whether it has any data to send.
If such data exist, the organizational beacon code extracts the data packets making sure that they
are smaller than the MTU size. Those packets are transmitted to the other side of the Bluetooth
connection. The organizational beacon code then determines whether there is any incoming data
on the Bluetooth connection. If such data is present, it is given to the sink part of the BIO pair.
This process is repeated until the disconnection request is received from the higher level or the
Bluetooth connection. The operation of the various protocol segments is illustrated in Figure 4.

 26

Figure 4: TLS Over Bluetooth Protocol Stack

When the TLS handshake is completed, the OpenSSL library executes a callback function
provided by the handler code. The callback function examines the credentials that were used to
establish the TLS session. The handler requires that the beacon uses an X.509 certificate signed
by the certificate authority known to the handler. The callback function checks that this
condition is satisfied and also checks the PolicyID against the policy ID stored on the device. If
all these conditions are satisfied, the handler accepts the connection and allows the high level
protocol to proceed. Otherwise, it issues a disconnection request and marks the remote device as
not a beacon.

Readiness Protocol
The purpose of the beacon readiness protocol is to confirm that the TLS connection established
is operational, and that the remote device is a functioning organizational beacon. The beacon
protocol is a simple three-way handshake. Three messages communicate the different stages of
the protocol: “SYN,” “ACK,” and “SYN-ACK.” Once the TLS connection is established, the
handler sends the “SYN” message to the server and goes into a waiting state. When the server
receives the “SYN” message, it responds with the “ACK” message and goes into the final stage.

The handler, receiving the “ACK” message, concludes that the session was completed
successfully and sends the final “SYN-ACK” message, and then issues a disconnection request
to the lower level. It also updates the lastAuthentication variable with the current time. If the
handler does not receive an “ACK” message as expected it resets back to the initial state. When
the server receives the “SYN-ACK” message, it also issues a disconnection request to the low
level and resets itself into the initial state. If the server does not receive the “SYN-ACK”
message as expected, it times out the connection and issue a disconnection request to the low

 27

level. When the low level segment receives a disconnection request, it empties all the sink
objects, flushes all the transmission buffers, and drops the Bluetooth connection.

At the same time, the high level segment of the protocol runs a similar process. The source
object of the high level BIO pair is examined to see if it has any outgoing data. In case the
incoming data is present, the handler or server code tries to interpret it as an element of the
beacon protocol. If it succeeds doing so, the code changes the internal state of the protocol
machine, puts the response token into the sink object, or if it is a last token in the protocol it
signals the low level to disconnect.

Token Implementation
The Bluetooth organizational beacon program, referred to as the beacon server, is a user space
program that listens to the inquiries from mobile devices, and responds to these inquires. The
beacon server proves its identity to mobile devices, but it does not require mobile devices to do
the same. The beacon server proves its identity by establishing the TLS channel between the
beacon server and the mobile device using the private certificate located on the server. The
beacon server’s certificate must be valid and be issued by the organization’s certificate authority
(or by a certificate authority having a valid certificate chain from the organization’s root
certificate authority). The mobile device must hold the public key of the organization’s
certificate authority to verify the authenticity of the beacon server certificate.

The Bluetooth stack on the organizational beacon is configured to respond to incoming inquires
and connections, known respectively as inquiry scan and page scan modes. The current
implementation requires the device class identifier to be set to 0x082318, a unique identifier
defined for beacon class devices. The new device class is used to improve the performance, by
filtering out other types of devices that may be present in an area (e.g., cell phones, printers, etc.)
and eliminating unnecessary connections to such non-beacon devices.

The beacon contains the server program that controls the authentication process. The beacon is a
simple server that listens to the incoming L2CAP connections. Once such connection occurs the
beacon server establishes TLS protocol connection and then observes its part of the beacon
exchange protocol. The TLS connection is handled in exactly the same way as for the handler.
The code for the main loop of the organizational beacon server is provided below.

 while(1) {
 char BA[20];

 if ((s1 = accept(s, (struct sockaddr *) &client_addr, &opt)) < 0)
 {
 perror("Error in accept call\n");
 exit(1);
 }

 ba2str (&client_addr.l2_bdaddr, BA);

 printf ("Connection from %s \n", BA);

 28

// Authenticate device
 BeaconAuthClient (s1);
 close(s1);

 }

The beacon is a slave device that can only accept one connection at the time. Fortunately, the
TLS exchange is fairly quick, significantly less than the Bluetooth connection time out.
Therefore, two devices could easily connect during that period. For example, if two devices try
to connect at the same time, the beacon picks the first device at random, processes the request,
and then disconnects. Meanwhile, the second device keeps sending the connection request
packets (Page Packets in BT terms). Once the transaction with the first device is complete, the
beacon sees the connection request from the second device and processes it. A third device,
however, would likely receive a connection time out and need to reattempt the connection.

 29

Summary
While mobile handheld devices provide productivity benefits, they also pose new risks
associated with the information and network access capabilities they acquire over time. Robust
user authentication provides safeguards against the risk of unauthorized use and access to a
device’s contents. This paper demonstrates how proximity-based authentication can be
implemented as either a primary authentication method or a supplemental technique used in
conjunction with another. The approach provides users the flexibility to perform their tasks
unimpeded within the bounds set by an organization. The methods used depend on available
PAN communications built into most handheld devices and require only a simple infrastructure
of as few as a single proximity beacon.

 30

References
[FIPS196] Entity Authentication Using Public Key Cryptography, Federal Information

Processing Standards Publication (FIPS PUB) 196, U.S. Department of Commerce,
National Institute of Standards and Technology, February 1997, <URL:
http://csrc.nist.gov/publications/fips/fips196/fips196.pdf>.

[Gru03] Marco Gruteser, Graham Schelle, Ashish Jain, Rick Han, Dirk Grunwald, Privacy-

Aware Location Sensor Networks, USENIX 9th Workshop on Hot Topics in
Operating Systems (HOTOS IX), May 2003, pp. 163-167, <URL:
http://systems.cs.colorado.edu/Papers/Generated/2003PrivacyAwareSensors.pdf>.

[Haz04] M. Hazas, H.Scott, J. Krumm, Location-Aware Computing Comes of Age, IEEE

Computer, 37, 2, February 2004.

[Hig01] J. Hightower, G. Borriello, Location Systems for Ubiquitous Computing, IEEE

Computer, 34, 8, August 2001.

[Ind03] Jaga Indulska, Peter Sutton, “Location management in Pervasive Systems,”

Workshop on Wearable, Invisible, Context-Aware, Ambient, Pervasive and
Ubiquitous Computing, February 2003, Adelaide, Australia. In Conferences in
Research and Practice in Information Technology series, Vol. 21, pp.143-152,
<URL:
http://www.itee.uq.edu.au/~peters/papers/indulska_sutton_wicapuc2003.pdf>.

[Jan03a] Wayne Jansen, Vlad Korolev, Serban Gavrila, Thomas Heute, Clément Séveillac, A

Framework for Multi-Mode Authentication: Overview and Implementation Guide,
NISTIR 7046, August 2003, <URL: http://csrc.nist.gov/publications/nistir/nistir-
7046.pdf>.

[Jan03b] Wayne Jansen, Tom Karygiannis, Michaela Iorga, Serban Gavrila, Vlad Korolev,

Security Policy Management for Handheld Devices, The 2003 International
Conference on Security and Management (SAM'03), June 2003, <URL:
http://csrc.nist.gov/mobilesecurity/Publications/SecurityPolicyManagementForPDA
s-IEEEformat.pdf>.

[RFC2246] The TLS Protocol, Version 1.0, IETF Network Working Group, Request for

Comments 2246, January 1999, <URL: http://www.ietf.org/rfc/rfc2246.txt>.

[War97] Andy Ward, Alan Jones, Andy Hopper, A New Location Technique for the Active

Office, IEEE Personal Communications, Vol. 4, No. 5, October 1997, pp 42-47,
<URL: http://www-lce.eng.cam.ac.uk/publications/files/tr.97.10.pdf>.

 31

http://csrc.nist.gov/publications/fips/fips196/fips196.pdf
http://systems.cs.colorado.edu/Papers/Generated/2003PrivacyAwareSensors.pdf
http://www.itee.uq.edu.au/~peters/papers/indulska_sutton_wicapuc2003.pdf
http://csrc.nist.gov/publications/nistir/nistir-7046.pdf
http://csrc.nist.gov/publications/nistir/nistir-7046.pdf
http://csrc.nist.gov/mobilesecurity/Publications/SecurityPolicyManagementForPDAs-IEEEformat.pdf
http://csrc.nist.gov/mobilesecurity/Publications/SecurityPolicyManagementForPDAs-IEEEformat.pdf
http://www.ietf.org/rfc/rfc2246.txt
http://www-lce.eng.cam.ac.uk/publications/files/tr.97.10.pdf

	Introduction
	Background
	The Multi-mode Authentication Framework (MAF)
	Personal Beacon Authentication
	Operation
	Challenge-Response Protocol
	Bluetooth Pairing

	Safeguards
	Handler Implementation
	Token Implementation
	Procedural Steps
	Personal Beacon Client/Server Protocol

	Organizational Beacon Authentication
	Operation
	Safeguards
	Handler Implementation
	Beacon Table
	TLS Protocol
	Readiness Protocol

	Token Implementation

	Summary
	References

