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AHRQ Quality Indicators 
Risk Adjustment and Hierarchical Modeling Approaches 

 
 

1 Introduction 

The Inpatient Quality Indicators (IQIs) are a set of measures that provide a perspective on 
hospital quality of care using hospital administrative data. These indicators reflect quality 
of care inside hospitals and include inpatient mortality for certain procedures and medical 
conditions; utilization of procedures for which there are questions of overuse, underuse, 
and misuse; and volume of procedures for which there is some evidence that a higher 
volume of procedures is associated with lower mortality. 

The IQIs are a software tool distributed free by the Agency for Healthcare Research and 
Quality (AHRQ). The software can be used to help hospitals identify potential problem 
areas that might need further study and which can provide an indirect measure of 
inhospital quality of care. The IQI software programs can be applied to any hospital 
inpatient administrative data. These data are readily available and relatively inexpensive 
to use. 

Inpatient Quality Indicators:  

• Can be used to help hospitals identify potential problem areas that might need 
further study.  

• Provide the opportunity to assess quality of care inside the hospital using 
administrative data found in the typical discharge record.  

• Include 15 mortality indicators for conditions or procedures for which mortality 
can vary from hospital to hospital.  

• Include 11 utilization indicators for procedures for which utilization varies across 
hospitals or geographic areas.  

• Include 6 volume indicators for procedures for which outcomes may be related to 
the volume of those procedures performed.  

• Are publicly available without cost , and are available for download  

The IQIs include the following 32 measures: 

1. Mortality Rates for Medical Conditions (7 Indicators)  
• Acute myocardial infarction (AMI) (IQI 15)  
• AMI, Without Transfer Cases (IQI 32)  
• Congestive heart failure (IQI 16)  
• Stroke (IQI 17)  
• Gastrointestinal hemorrhage (IQI 18)  
• Hip fracture (IQI 19)  
• Pneumonia (IQI 20)  

2. Mortality Rates for Surgical Procedures (8 Indicators)  
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• Esophageal resection (IQI 8)  
• Pancreatic resection (IQI 9)  
• Abdominal aortic aneurysm repair (IQI 11)  
• Coronary artery bypass graft (IQI 12)  
• Percutaneous transluminal coronary angioplasty (IQI 30)  
• Carotid endarterectomy (IQI 31)  
• Craniotomy (IQI 13)  
• Hip replacement (IQI 14)  

3. Hospital-level Procedure Utilization Rates (7 Indicators)  
• Cesarean section delivery (IQI 21)  
• Primary Cesarean delivery (IQI 33)  
• Vaginal Birth After Cesarean (VBAC), Uncomplicated (IQI 22)  
• VBAC, All (IQI 34)  
• Laparoscopic cholecystectomy (IQI 23)  
• Incidental appendectomy in the elderly (IQI 24)  
• Bi-lateral cardiac catheterization (IQI 25)  

4. Area-level Utilization Rates (4 Indicators)  
• Coronary artery bypass graft (IQI 26)  
• Percutaneous transluminal coronary angioplasty (IQI 27)  
• Hysterectomy (IQI 28)  
• Laminectomy or spinal fusion (IQI 29)  

5. Volume of Procedures (6 Indicators)  
• Esophageal resection (IQI 1)  
• Pancreatic resection (IQI 2)  
• Abdominal aortic aneurysm repair (IQI 4)  
• Coronary artery bypass graft (IQI 5)  
• Percutaneous transluminal coronary angioplasty (IQI 6)  
• Carotid endarterectomy (IQI 7)  
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2 Statistical Methods 
 
This section provides a brief overview of the structure of the administrative data from the 
Nationwide Inpatient Sample, and the statistical models and tools currently being used 
within the AHRQ Quality Indicators Project.  We then propose several alternative 
statistical models and methods for consideration, including (1) models that account for 
trends in the response variable over time; and (2) statistical approaches that adjust for the 
potential positive correlation on patient outcomes from the same provider.  We provide 
an overview of how these proposed alternative statistical approaches will impact the 
fitting of risk-adjusted models to the reference population, and on the tools that are 
provided to users of the QI methodology. 
 
This is followed by an overview of the statistical modeling investigation, including (1) 
the selection of five IQIs to investigate in this report, (2) fitting current and alternative 
statistical models to data from the Nationwide Inpatient Sample, (3) statistical methods to 
compare parameter estimates between current and alternative modeling approaches using 
a Wald test-statistic, and (4) statistical methods to compare differences between current 
and alternative modeling approaches on provider-level model predictions (expected and 
risk-adjusted rates). 
 

2.1 Structure of the Administrative Data 
 
Hospital administrative data are collected as a routine step in the delivery of hospital 
services throughout the U.S., and provide information on diagnoses, procedures, age, 
gender, admission source, and discharge status on all admitted patients.  These data can 
be used to describe the quality of medical care within individual providers (hospitals), 
within groups of providers (e.g., states, regions), and across the nation as a whole.  
Although in certain circumstances quality assessments based on administrative data are 
potentially prone to bias compared to possibly more clinically detailed data sources such 
as medical chart records, the fact that administrative data are universally available among 
the 37 States participating in the Healthcare Cost and Utilization Project (HCUP) allowed 
AHRQ to develop analytical methodologies to identify potential quality problems and 
success stories that merit further investigation and study. 
 
The investigation in this report focuses on five select inpatient quality indicators, as 
applied to the Nationwide Inpatient Sample (NIS) from 2001-2003.  The Nationwide 
Inpatient Sample represents a sample of administrative records from a sample of 
approximately 20 percent of the providers participating in the HCUP.  There is significant 
overlap in the HCUP hospitals selected in the NIS, with several of the hospitals being 
repeatedly sampled in more than one year. 
 
The NIS data is collected at the patient admission level.  For each hospital admission, 
data is collected on patient age, gender, admission source, diagnoses, procedures, and 
discharge status.  There is no unique patient identifier, so the same patient may be 
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represented more than once in the NIS data (with some patients potentially being 
represented more than once within the same hospital, and other patients potentially being 
represented more than once within multiple hospitals). 
 
The purpose of the QI statistical models is to provide parameter estimates for each quality 
indicator that are adjusted for age, gender, and all patient refined diagnosis related group 
(APR-DRG).  The APR-DRG classification methodology was developed by 3M, and 
provides a basis to adjust the QIs for the severity of illness or risk of mortality, and is 
explained elsewhere. 
 
For each selected quality indicator, the administrative data is coded to indicate whether 
they contain the outcome of interest as follows: 
 

Let Yijk represent the outcome for the jth patient admission within the ith hospital, 
for the kth Quality Indicator.  Yijk is equal to one for patients who experience the 
adverse event, zero for patients captured within the appropriate reference 
population but do not experience the adverse event, and is missing for all patients 
that are excluded from the reference population for the kth Quality Indicator. 
 

For each Quality Indicator, patients with a missing value for Yijk are excluded from the 
analysis dataset.  For all patients with Yijk = 0 or 1, appropriate age-by-gender and APR-
DRG explanatory variables are constructed for use in the statistical models. 

2.2 Current Statistical Models and Tools 
The following two subsections provide a brief overview of the statistical models that are 
currently fit to the HCUP reference population, and the manner in which these models are 
utilized in software tools provided by the AHRQ Quality Indicators Project. 

2.2.1 Models for the Reference Population 
Currently, a simple logistic regression model is applied to three years of administrative 
data from the HCUP for each Quality Indicator, as follows: 
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where Yijk represents the response variable for the jth patient in the ith hospital for the kth 
quality indicator;  (Age/Genderp)ij represents the pth age-by-gender zero/one indicator 
variable associated with the jth patient in the ith hospital; and  (APR-DRGq)ijk represents 
the qth APR-DRG zero/one indicator variable associated with the jth patient in the ith 
hospital for the kth quality indicator. 
 
For the kth quality indicator, we assume that there are Pk age-by-gender categories and Qk 
APR-DRG categories that will enter the model for risk-adjustment purposes. 
 
The αkp parameters capture the effects of each of the Pk age-by-gender categories on the 
QI response variable; and similarly, the θkq parameters capture the effects of each of the 
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Qk APR-DRG categories on the QI response variable.  The αkp and θkq parameters each 
have ln(odds-ratio) interpretation, when compared to the reference population.  The logit-
risk of an adverse outcome for the reference population is captured by the βk0 intercept 
term in the model associated with the kth Quality Indicator. 
 
Model (1) can be fit using several procedures in SAS.  For simplicity and consistency 
with other modeling approaches investigated in this report, we used SAS Proc Genmod to 
fit Model (1) to data from the Nationwide Inpatient Sample. 

2.2.2 Software Tools Provided to Users 
The AHRQ Quality Indicators Project provides access to software that can be 
downloaded by users to calculate expected and risk-adjusted QIs for their own sample of 
administrative data.  The expected rate represents the rate that the provider would have 
experienced if it’s quality of performance was identical to the reference (National) 
population, given the provider’s actual case mix (e.g. age, gender, DRG and comorbidity 
categories).  Expected rates are calculated based on combining the regression coefficients 
from the reference model (based on fitting Model (1) above to the reference HCUP 
population) with the patient characteristics from a specific provider.   
 
Risk-adjusted rates are the estimated performance if the provider had an "average" patient 
mix, given their actual performance.  It is the most appropriate rate upon which to 
compare across hospitals, and is calculated by adjusting the observed National Average 
Rate for the ratio of observed vs. expected rates at the provider-level:  
 
    Risk-adjusted rate = (Observed Rate  / Expected Rate) x National Average Rate       (2) 
 
The AHRQ Inpatient Quality Indicator software appropriately applies the National Model 
Regression Coefficients to the provider specific administrative records being analyzed to 
calculate both expected and risk-adjusted rates. 

2.3 Alternative Statistical Methods 
In the following sections, we propose several alternative statistical models and methods 
for consideration, including (1) models that account for trends in the response variable 
over time; and (2) statistical approaches that adjust for the potential positive correlation 
on patient outcomes from the same provider. 

2.3.1 Adjusting for Trends over Time 
The following alternative model formulation is proposed as a simple method for adjusting 
for the effects of quality improvement over time with the addition of a single covariate to 
Model (1): 
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The parameter λk adjusts the model for a simple linear trend over time (on the logit-scale 
for risk of an adverse event), with the covariate (Yearijk-2002) being a continuous 
variable that captures the calendar year that the jth patient was admitted to the ith hospital.  
This time-trend covariate is centered on calendar year 2002 in our analyses, to preserve a 
similar interpretation of the βk0 intercept term in Model (1), as our national reference 
dataset represents administrative records reported in calendar years 2001 through 2003. 
 
Additional complexities can be introduced into the above simple time-trend model to 
investigate (1) non-linear time-trends on the logit scale, and (2) any changes over time in 
the age-by-gender or APR-DRG variable effects on risk of adverse outcomes.  Such 
investigations were not explored within this report – but could be the subject of later data 
analyses.  The authors of this report also suggest combining data over a longer period of 
time (e.g., five years or more) to better capture long-term trends in hospital quality of 
care. 
 
The introduction of a time-trend into the model serves three purposes.  First, it provides 
AHRQ (and users) with an understanding of how hospital quality is changing over time 
through the interpretation of the λk parameter (or similar time-trend parameters in any 
expanded time-trend model).  Secondly, if the λk parameter is found to be statistically 
significant, the time-trend model will likely offer more precise expected and risk-adjusted 
rates.  Thirdly, it may allow more accurate model predictions (expected and risk-adjusted 
rates for providers) when users apply a model based on older data to more recent data 
(often, a user might utilize software that is based on a 2001-2003 reference population to 
calculate rates for provider-specific data from calendar year 2005). 
 
It is important to note that the authors of this report suggest exercising caution in 
extrapolating the results of the AHRQ models for prediction beyond the temporal range 
of observed data.  However, it is our understanding that this is a common practice among 
users of the Quality Indicators Methodology.  Given this type of use, a model which 
accounts for trends over time will likely provide more accurate predictions than a model 
that does not account for temporal trends. 

2.3.2 Adjusting for Within-Provider Correlation 
The current simple logistic regression modeling approach being used by AHRQ in the 
risk-adjusted model fitting assumes that all patient responses are independent and 
identically distributed.  However, it is likely that responses of patients from within the 
same hospital may be correlated, even after adjusting for the effects of age, gender, 
severity of illness and risk of mortality.  This anticipated positive correlation results from 
the fact that each hospital has a unique mixture of staff, policies and medical culture that 
combine to influence patient results.  It is often the case that fitting simple models to 
correlated data results in similar parameter estimates, but biased standard errors of those 
parameter estimates – however, this does not always hold true.  In the following two 
subsections, we provide an overview of generalized estimating equations (GEE) and 
generalized linear mixed modeling (GLIMMIX) approaches for adjusting the QI 
statistical models for the anticipated effects of within-provider correlation.  These 
approaches will be investigated on a sample of five selected Quality Indicators to 



 7

determine whether (or not) the parameter estimates from a simple logistic regression 
model result in different parameter estimates or provider-level model predictions 
(expected and risk adjusted rates), in comparison to GEE or GLIMMIX approaches that 
account for the within-provider correlation. 

2.3.2.1 Generalized Estimating Equations 
The GEE methodology, introduced by Liang and Zeger (1986), provides a method of 
analyzing correlated data under the conceptual framework of Generalized Linear Models 
making use of Quasi-Likelihood theory under a marginal model for estimating the fixed 
effects portion of the model.  The responses from studies with correlated data can often 
be organized into clusters, where observations from within a cluster may be statistically  
dependent, and observations from two different clusters are assumed independent.  In the 
context of the AHRQ Quality Indicators project, the providers (hospitals) serve as 
clusters.     
 
The marginal model for correlated binary outcomes (such as those from the AHRQ QI 
Project) can be thought of as a simple extension to a simple logistic regression model that 
directly incorporates the within-cluster correlation among patient responses from within 
the same hospital.  To estimate the regression parameters in a marginal model, we make 
assumptions about the marginal distribution of the response variable (e.g. assumptions 
about the mean, it’s dependence on the explanatory variables, the variance and the 
covariance among responses from within the same hospital).  The cross-sectional model 
(Model (1)) and time-trend model (Model (3)) can be fit using the generalized estimating 
equations approach using SAS Proc Genmod, through the introduction of a repeated 
statement that accounts for the within-provider clustering.  Appendix A, section A-1 
provides additional detail for the GEE methodology.    
 

2.3.2.2 Generalized Linear Mixed Models 
In the previous section, we described marginal models for correlated/clustered data using 
a generalized estimating equations approach.  An alternative approach for accounting for 
the within-hospital correlation is through the introduction of random effects into 
Model(1) as follows: 
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where γki is a random effect associated with each provider, and is assumed to follow a 
normal distribution with mean zero, and variance 2

Hospσ .  The time-trend model can be 
similarly expanded using a random effects model, as follows: 
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where γ0ki and γ1ki are random intercept and slope terms associated with each provider 
(thus allowing each provider to depart from the fixed effects portion of the model with a 
provider-specific trend over time).  In Model (5), we assume that γ0ki and γ1ki jointly 
follow a multivariate normal distribution with mean zero and covariance matrix 
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Models (4) and (5) can be fit using SAS Proc GLIMMIX, and can also be expanded to 
allow for different probability distributions for the random effects (i.e. we can relax the 
assumption of normality for the random effects, if necessary).   

2.3.3 Impact of Adopting Alternative Methods on Model Fitting and 
Tools 

Currently, the risk-adjusted models for each quality indicator are fit to three calendar 
years of administrative data from the HCUP using various different data manipulations 
and model fitting procedures available from within the SAS software system.  The 
addition of a time-trend covariate (or series of covariates) will not introduce any 
significant additional complexity to fitting these models to the reference (national) data.  
Adjusting the models for the anticipated positive correlation among patient responses 
from within the same hospital will require the use of Generalized Estimating Equations 
(GEE) approaches available through Proc GENMOD in SAS, or the use of Generalized 
Linear Mixed Modeling (GLIMMIX) approaches available through Proc GLIMMIX in 
SAS.  Both of these methods are more computationally intense compared to fitting a 
simple logistic regression model, and may be subject to convergence problems and model 
mis-specification that is typical of such iterative modeling approaches. 
 
Once the models are fit to the reference (national) population, integration of the modeling 
results into the software tools provided to users should be relatively straightforward.  The 
introduction of a time-trend model would require the user to keep track of the calendar 
year associated with each patient response, for inclusion as a predictor variable in the 
model.  If additional time-trend variables (either non-linear, or interactions with the other 
predictor variables) are introduced, the software can be quickly updated to accommodate 
these model changes. 
 
Use of the GLIMMIX approach may yield additional information, in which the vector of 
random effects from the National Model can be exploited to determine the distribution of 
expected risk of adverse events (after adjusting for age, gender, severity of illness, and 
risk of mortality) across participating hospitals.  This distribution can be used to identify 
(approximately) where within the national distribution of providers a particular hospital 
lies (currently, the AHRQ methodology only provides information related to whether an 
individual user is above or below the national mean).  This use of the estimated vector of 
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random effects would require additional software development at AHRQ, as well as 
additional work to ensure that the GLIMMIX random effects model is adequately fitting 
the data from the reference population. 

2.4 Overview of Statistical Modeling Investigation 
The purpose of this report is to investigate the use of alternative modeling approaches to 
potentially adjust the risk-adjusted Quality Indicator Models for the effects of trends over 
time and the effects of positive correlation among responses from within the same 
hospital.  In the following sections, we provide: 
 

• an overview of the five Inpatient Quality Indicators that were selected for this 
investigation; 

• a description of the various models fit to the Nationwide Inpatient Sample; 
• statistical methodology used to assess whether or not the alternative modeling 

approaches yield parameter estimates that are significantly different from each 
other;  

• statistical methodology used to assess whether or not the alternative modeling 
approaches yield provider-level estimates (expected and risk-adjusted rates of 
adverse events) that are significantly different from each other; and 

• statistical methodology used for bootstrap sampling of the NIS sample to further 
assess differences in results attributable to model selection. 
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2.4.1 Selection of IQIs to Investigate 
The following five Inpatient Quality Indicators were selected for exploration in this 
report (with the descriptions for each QI copied directly from the AHRQ Guide to 
Prevention Quality Indicators): 
 
IQI 11:  Abdominal Aortic Aneurism Repair Mortality Rate 
Abdominal aortic aneurysm (AAA) repair is a relatively rare procedure that requires 
proficiency with the use of complex equipment; and technical errors may lead to 
clinically significant complications, such as arrhythmias, acute myocardial infarction, 
colonic ischemia, and death.  The adverse event for this Quality Indicator is recorded as 
positive for any patient who dies with a code of AAA repair in any procedure field, and a 
diagnosis of AAA in any field.  The reference population for this Quality Indicator 
includes any patient discharge with ICD-9-CM codes of 3834, 3844, and 3864 in any 
procedure field and a diagnosis code of AAA in any field.  The reference population 
excludes patients with missing discharge disposition, who transfer to another short-term 
hospital, MDC 14 (pregnancy, childbirth, and puerperium), and MDC 15 (newborns and 
other neonates). 
 
IQI 14:  Hip Replacement Mortality Rate 
Total hip arthroplasty (without hip fracture) is an elective procedure preformed to 
improve function and relieve pain among patients with chronic osteoarthritis, rheumatoid 
arthritis, or other degenerative processes involving the hip joint. The adverse event for 
this Quality Indicator is recorded as positive for any patient who dies with a code of 
paritial or full hip replacement in any procedure field.  The reference population for this 
Quality Indicator includes any patient with procedure code of partial or full hip 
replacement in any field, and includes only discharges with uncomplicated cases: 
diagnosis codes for osteoarthritis of hip in any field.  The reference population excludes 
patients with missing discharge disposition, who transfer to another short-term hospital, 
MDC 14 (pregnancy, childbirth, and puerperium), and MDC 15 (newborns and other 
neonates). 
 
IQI 17:  Acute Stroke Mortality Rate 
Quality treatment for acute stroke must be timely and efficient to prevent potentially fatal 
brain tissue death, and patients may not present until after the fragile window of time has 
passed. The adverse event for this Quality Indicator is recorded as positive for any 
patient who dies with a principal diagnosis code of stroke.  The reference population for 
this Quality Indicator includes any patient aged 18 or older with a principal diagnosis 
code of stroke.  The reference population excludes patients with missing discharge 
disposition, who transfer to another short-term hospital, MDC 14 (pregnancy, childbirth, 
and puerperium), and MDC 15 (newborns and other neonates). 
 
IQI 19:  Hip Fracture Mortality Rate 
Hip fractures, which are a common cause of morbidity and functional decline among 
elderly patients are associated with a significant increase in the subsequent risk of 
mortality.  The adverse event for this Quality Indicator is recorded as positive for any 
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patient who dies with a principal diagnosis code of hip fracture.  The reference 
population for this Quality Indicator includes any patient aged 18 or older with a 
principal diagnosis code of hip fracture.  The reference population excludes patients with 
missing discharge disposition, who transfer to another short-term hospital, MDC 14 
(pregnancy, childbirth, and puerperium), and MDC 15 (newborns and other neonates). 
 
IQI 25:  Bilateral Cardiac Catherization Rate 
Righ- side coronary catheterization incidental to left side catheterization has little 
additional benefit for patient without clinical indications for right-side catheterization.  
The adverse event for this Quality Indicator is recorded as positive for any patient with 
coronary artery disease who has simultaneous right and left heart catheterizations in any 
procedure field (excluding valid indications for right-sided catherization in any diagnosis 
field, MDC 14 (pregnancy, childbirth, and puerperium), and MDC 15 (newborns and 
other neonates)).   The reference population for this Quality Indicator includes any 
patient with coronary artery disease discharged with heart catheterization in any 
procedure field.  The reference population excludes patients with MDC 14 (pregnancy, 
childbirth, and puerperium), and MDC 15 (newborns and other neonates). 

2.4.2 Fitting Current and Alternative Models to NIS Data 
For each selected IQI, we fit risk-adjusted cross-sectional and time-trend adjusted models 
using a simple logistic regression, generalized estimating equations and generalized 
linear mixed modeling approach (for a combined six models for each IQI).  The models 
were fit to three-years of combined data from the Nationwide Inpatient Sample, which 
represents an approximate 20 percent sample of hospitals from within the HCUP (with 
administrative records included for all patients treated within each selected hospital). 
 
The data were processed to eliminate any patient records that are excluded from the 
reference population prior to modeling (thus, only patients with a zero or one response 
were included in the analysis for each IQI).  The form of the model followed what was 
included in the models currently fit to the HCUP data – with minor modifications to 
remove covariates that represented very sparse cells.   
 
For the GEE and GLIMMIX approaches, we retained both the robust and model-based 
variance/covariance matrices for the vector of parameter estimates, to allow for 
appropriate statistical comparisons using both methods.  We also retained the vector of 
random effects from the GLIMMIX approach, to assess for distributional assumptions. 

2.4.3 Fitting Current and Alternative Models to Boot Strap Samples 
of NIS Data  

Bootstrapping is a statistical method used for estimating statistical modeling error based 
on resampling, with the resulting error estimates often being used for choosing among 
various models.  Large sample theory suggests that the parameter estimates from the 
three modeling approaches: Simple Logistic, GEE and Generalized linear models should 
converge to the same parameter estimates ( β̂ ).  Standard errors of β̂  will likely diverge 
between these three approaches due to manner in which each method accounts for the 
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within-hospital correlation.  These differences in standard errors would affect confidence 
intervals for the AHRQ QIs.  
 
The bootstrap analyses used the NIS sample data as a population from which repeated 
samples were drawn.  To assess whether the parameter estimates from the three modeling 
approaches converge to the same values as a function of sample size, we investigated 
bootstrap samples of varying sizes – expressed as a proportion of the size of the NIS 
sample itself.  Our analyses focused on bootstrap samples that had a total patient 
population of approximately 25%, 50%, 100%, 150%, 250% and 500% the size of the 
NIS sample.  For each target population size described above, 100 bootstrap samples 
were selected and evaluated to compare the three statistical modeling methods. 
 
The bootstrap samples were conducted at the hospital level, in order to preserve the 
within-hospital correlation observed within the NIS sample.  For each QI, the observed 
NIS sample was divided into four strata based on the summary of patient counts within 
each hospital (with the summary counts representing the number of patients in the 
denominator for each QI).  Each strata contained an approximately equal number of 
patients, however the first strata consisted of the largest hospitals (and therefore had 
fewer hospitals represented in the strata), the second strata consisted of the next largest 
hospitals, with the fourth strata consisting of the smallest hospitals (thereby having the 
largest number of hospitals represented in this strata). 
 
Bootstrap sampling occurred with selection probabilities weighted by the number of 
patients represented within each hospital (i.e. proportional to size sampling).    Due to the 
fact that sampling was conducted at the hospital level within each strata, the sampling 
process was conducted sequentially with replacement until the target sample size of 
patients was exceeded within each strata.  We then determined whether the sample size 
was closer to the target by including/excluding the last hospital selected in the sampling 
scheme. 
 
As each hospital was selected into the bootstrap sample, it was given a unique hospital 
identifier for use in the statistical models, and all patient records (across all years) within 
the selected hospital were utilized in the analysis.  The data were then combined across 
the four strata, and evaluated using the three statistical modeling techniques (simple 
logistic regression, generalized estimating equations, and generalized linear mixed 
models) for the original cross sectional model and the model that adjusts for trends over 
time. 
 
This bootstrap sampling and model fitting was repeated 100 times at each 25, 50, 100, 
150, 250, and 500  percent of the observed NIS sample size.  The results of these 
bootstrap analyses were evaluated using methods described below in Section 2.5.   

2.5 Methods to Compare Parameter Estimates 
 
The current and the two alternative modeling approaches were investigated on a sample 
of five selected Quality Indicators to determine whether (or not) the parameter estimates 
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from a simple logistic regression model result in different parameter estimates or 
provider-level model predictions (expected and risk adjusted rates), in comparison to 
GEE or GLIMMIX approaches that account for the within-provider correlation.  The 
following three subsections we provide statistical tests to assess for significant 
differences between a specific pair of modeling approaches.    
 
When comparing two or more sets of results, researchers naturally focus on pairwise 
differences.  For example, does the GEE method consistently provide lower estimates of 
the intercept relative to the simple logistic regression model? 
  
The answers to these questions may be expressed as either absolute or relative differences 
based on the modeling results. An absolute difference is a subtraction; a relative 
difference is a ratio.  
 
In the methods described in the subsections below, differences between the parameter 
estimates from any specific pair of models were calculated and used for (1) a Global 
Wald Test, and (2) paired ttest for testing intercept differences, as follows: 
 

                    ( )GEESLRGEESLRDifference ββ ˆˆ)( −=−  
 
Statistics presenting relative difference relate to the average between the two methods 
being compared: 
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In the above formulas, SLRβ̂  and GEEβ̂  represent the parameter estimates from the simple 
logistic and GEE models.  The relative differences between (1) simple logistic and 
Generalized linear models and (2) GEE and Generalized linear models were calculated in 
a similar fashion. 
 
In the sections that follow describing the results of the bootstrap sampling investigations, 
measures of pairwise modeling differences and relative differences (i.e. SLR vs GEE, 
SLR vs GLIMMIX, and GEE vs GLIMMIX) are provided based on the mean vector of 
parameter estimates across 100 bootstrap samples at a particular target sample size 
(relative to the size of the NIS sample).  
 

2.5.1 Box Plots 
 
Box plots (Chambers 1983) are an excellent tool for conveying location and variation 
information in data sets, particularly for detecting and illustrating location and variation 
changes between different groups of data.  A box plot displays the median (represented 
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by the center horizontal line), the 25th percentile (represented by the bottom of the box), 
and the 75th percentile (represented by the top of the box).   The vertical lines, or 
whiskers, are drawn from the box to the most extreme point within 1.5 * interquartile 
range.  (An interquartile range is the distance between the 25th and the 75th percentiles.)  
Any value more extreme than this is identified individually with stars.     
 
Box plots of both specific parameter estimates from the three modeling approaches, as 
well as differences in parameter estimates between any pair of specific models were 
produced for each of the five selected QIs to graphically compare the estimates from 
three different modeling approaches.    
 
 

2.5.2 Wald Test 
 
Given that the parameter estimates from each of the logistic regression models follow an 
approximate normal distribution (as shown in McCulloch & Nelder, 1989 within the 
Generalized Linear Model conceptual framework), a Wald Statistic can be used to assess 
whether there are statistically significant differences between the full set of parameter 
estimates yielded from a specific pair of modeling approaches.  For example, when 
comparing the simple linear regression model results to the results of the GEE approach, 
we have the following Wald Statistics: 

( ) ( )GEESLRGEE/SLR

T

GEESLR
ˆˆVˆˆW β−ββ−β= −1

1  

In the above formulas, SLRβ̂  and GEEβ̂  represent the parameter estimates from the simple 
logistic and GEE models and 1−

GEE/SlRV  represents an appropriate covariance matrix for the 
difference between regression parameters from the simple logistic and GEE models.   
 
Under the null hypothesis, that there are no statistically significant differences between 
the simple logistic regression model and GEE parameter estimates, the above three Wald 
test statistics are expected to follow a 2

)p(Χ distribution (a Chi-squared distribution with p 
degrees of freedom, where p represents the number of explanatory variables that were 
used within the statistical model). 
 
The Global Wald test described above could be extended to asses the differences in 
parameter estimates between (1) simple logistic and generalized linear models (SLR vs. 
GLIMMIX) and (2) GEE and generalized linear models (GEE vs. GLIMMIX). 
 
The results provided later in the report focus on the application of the Wald Test in two 
ways: 
 

1. We applied the Wald Test Statistic to each pair of parameter estimates as fit to the 
NIS sample.  In this application, we did not have an appropriate measure of 

1−
GEE/SlRV - rather, we have the inverse covariance matrix of parameter estimates 

from the SLR model fit to the NIS sample ( 1−
SlRV ), and we have the inverse 
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covariance matrix from the GEE model fit to the NIS sample ( 1−
GEEV ).  Thus, by 

substituting in either of these inverse covariance matrices – the Wald Test 
Statistic answers the question:  When fitting a model to the NIS sample – did the 
use of the GEE method provide parameter estimates that were statistically 
different from the SLR method (assuming that the SLR method is the valid 
method, and using ( 1−

SlRV ) as the inverse variance estimate)?  Alternatively, we 
could address the parallel question: When fitting a model to the NIS sample – did 
the use of the SLR method provide parameter estimates that were statistically 
different from the GEE method (assuming that the GEE method is the valid 
method, and using ( 1−

GEEV ) as the inverse variance estimate)?    
2. We also applied the Wald Statistic across each set of bootstrap results.  Under the 

generalized linear model framework, we can assume that the 100 observed vectors 
of pairwise differences in parameter estimates follow a multivariate normal 
distribution.  Thus a simple mean vector of parameter estimate differences and 
corresponding covariance matrix can be constructed and used as input for a Wald 
Test to appropriately assess for pairwise modeling differences across all 
parameters fit in the model.   

 

2.5.3 T-Tests 
One-sample T-test (or paired t-test) can be used to test whether there are statistically 
significant differences in estimates of a single parameter (e.g., the intercept) between a 
specific pair of modeling approaches.  Since each pair of models fit to identical data sets, 
we assume a natural pairing of the estimates exist and utilizing the correlation among 
pairs of estimates from models fit to identical datasets will result in higher power to 
detect existing differences between the means.  Here the null hypothesis is to test whether 
the mean change in intercept estimates from any two methodologies are significantly 
different from zero i.e. Ho: µ1 - µ2 = 0.  Note that this test of hypothesis assumes that the 
differences between paired observations are normally distributed. The test statistic that 
was used to make a decision whether or not to reject the null hypothesis is given by the 
following formula.    
 

n
S

DT
1

=  

where D is the sample mean of the paired differences and is the S 2 is the sample variance 
of the paired differences, n is the number of paired observations and T is the student-t 
quantile with n-1degrees of freedom under the null hypothesis.   
 
The paired t-test described above could be extended to each of the parameters included in 
the model, but only differences in intercept estimates between (1) simple logistic and 
generalized linear models (SLR vs. GLIMMIX) and (2) GEE and generalized linear 
models (GEE vs. GLIMMIX) using t-test are presented in this report.   
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2.5.4 Methods to Compare Provider-Level Model Predictions 
For each select IQI, we identified a simple random sample of 50 providers to use for 
assessing differences between provider-level model predictions (both expected and risk-
adjusted rates).  Simple descriptive statistics (mean and standard deviation) were 
generated for the distribution differences in provider-level model predictions to assess 
whether (or not) changes in the model might result in any potential bias or increased 
variability in provider-level estimates. 
 
The distributional summaries were conducted separately for the cross-sectional and time-
trend models (so that the statistics isolate any differences attributable to adjusting the 
models for the potential correlation among responses within the same provider). 
 
Subsequent analyses will be conducted at a later date to provide comparisons between the 
cross-sectional and time-trend models within each model type (and potentially across 
model types).
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3 Results 
 
All models were successfully fit to the NIS data source.  The GLIMMIX approach 
initially suffered from convergence problems while using the default optimization 
techniques, but converged for all five IQIs (both cross sectional and time-trend adjusted 
models) when using Newton-Raphson optimization with ridging.  Due to the large 
sample size of the dataset, the personal computer used to fit the model ran out of memory 
when calculating the robust variance-covariance matrix associated with the parameter 
estimates for IQI-25 with the GLIMMIX approach (the computer had 2GB of RAM).  
 
Section 3.1 below provides summary statistics for the quality indicator response variables 
that were modeled from within the National Inpatient Sample.  Sections 3.2 through 3.6 
provide model results for each of the five select IQIs explored in this report. 

3.1 Summary Statistics for NIS Data 
Table 3.1 below provides summary statistics for the five selected quality indicators.  The 
summary statistics include: 
 

• The number of adverse events observed 
• The number of patients in the reference population 
• The number of hospitals that had patients within the reference population 
• The mean response (proportion of patients who experienced the adverse event) 
• The standard error associated with the mean response 
• Select percentiles from the distribution (5th, 25th, 50th, 75th, and 95th) 

 
Separate summary statistics were generated for each year of data (2001, 2002, and 2003) 
and then for all years combined.  Prior to calculating the mean, standard error, and 
percentiles, the responses were averaged at the hospital level.  These statistics therefore 
represent the distribution of hospital mean responses, and are presented in two ways 
(weighted and unweighted).  The weighted results weigh each provider according to the 
number of patients observed within the reference population, whereas the unweighted 
results treat each hospital equally. 
 
The weighted analysis mean was used as the National Average Rate when constructing 
the provider-specific risk-adjusted rates.  Conceptually, the standard-error of the mean 
from the unweighted analysis should be proportional to the standard-error of the mean 
from the vector of random effects intercepts generated using the GLIMMIX approach 
from the cross-sectional model (although we anticipate that the variability of the random 
effects would be smaller due to the fact that other factors (age, gender, severity of illness 
and risk of mortality) are explaining variability in the Quality Indicator response variable. 
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Table 3.1 Summary Statistics (at the Provider Level) for the Five 
Selected Quality Indicators 

Summary Statistics  
IQI 

 
Year 

 
Analysis 
Type 

ncases nPop nHosp Mean Std 
Error 

5th 
%ile 

25th 
%ile 

50th 
%ile 

75th 
%ile 

95th 
%ile 

Unweighted  0.141 0.010 0.000 0.000 0.067 0.161 0.500 
2001  Weighted  

 
726 

 
8833.0 

 
470  0.082 0.004 0.000 0.032 0.063 0.107 0.222

Unweighted  0.152 0.011 0.000 0.000 0.070 0.188 0.750 
2002  Weighted  

 
655 

 
8099.0 

 
449  0.081 0.005 0.000 0.028 0.063 0.098 0.231

Unweighted  0.132 0.011 0.000 0.000 0.050 0.143 0.500 
2003  Weighted  

 
558 

 
8144.0 

 
447  0.069 0.004 0.000 0.027 0.048 0.078 0.200

Unweighted  0.149 0.007 0.000 0.000 0.071 0.176 0.667

 
 
 
 
11  

All  
Years  Weighted  

 
1939 

 
 25076 

 
1050 0.077 0.003 0.000 0.034 0.057 0.094 0.208

Unweighted  0.004 0.001 0.000 0.000 0.000 0.000 0.022 
2001  Weighted  

 
104 

 
 34628 

 
687  0.003 0.000 0.000 0.000 0.000 0.001 0.015

Unweighted  0.004 0.001 0.000 0.000 0.000 0.000 0.020 
2002  Weighted  

 
112 

 
 39677 

 
682  0.003 0.000 0.000 0.000 0.000 0.002 0.014

Unweighted  0.004 0.001 0.000 0.000 0.000 0.000 0.016 
2003  Weighted  

 
86 

 
 39068 

 
689  0.002 0.000 0.000 0.000 0.000 0.000 0.012

Unweighted  0.004 0.000 0.000 0.000 0.000 0.000 0.020

 
 
 
 
14  

All  
Years  Weighted  

 
302 

 
113373 

 
1544 0.003 0.000 0.000 0.000 0.000 0.003 0.013

Unweighted  0.115 0.003 0.000 0.065 0.105 0.143 0.250 
2001  Weighted  

 
12616 

 
108886 

 
957  0.116 0.002 0.045 0.086 0.115 0.140 0.186

Unweighted  0.113 0.003 0.000 0.067 0.103 0.143 0.250 
2002  Weighted  

 
12298 

 
109670 

 
959  0.112 0.001 0.050 0.084 0.112 0.134 0.183

Unweighted  0.108 0.003 0.000 0.060 0.100 0.139 0.238 
2003  Weighted  

 
12385 

 
108720 

 
951  0.114 0.001 0.046 0.087 0.112 0.137 0.194

Unweighted  0.111 0.002 0.000 0.069 0.102 0.141 0.238

 
 
 
 
17  

All  
Years  Weighted  

 
37299 

 
327276 

 
2095 0.114 0.001 0.053 0.089 0.112 0.136 0.184

Unweighted  0.036 0.003 0.000 0.000 0.026 0.044 0.095 
2001  Weighted  

 
1916 

 
 60318 

 
809  0.032 0.001 0.000 0.017 0.031 0.043 0.066

Unweighted  0.039 0.003 0.000 0.000 0.026 0.047 0.092 
2002  Weighted  

 
2008 

 
 60597 

 
800  0.033 0.001 0.000 0.019 0.031 0.044 0.069

Unweighted  0.037 0.003 0.000 0.000 0.024 0.043 0.100 
2003  Weighted  

 
1919 

 
 60559 

 
804  0.032 0.001 0.000 0.019 0.029 0.040 0.070

Unweighted  0.038 0.002 0.000 0.000 0.027 0.044 0.091

 
 
 
 
19  
 

All  
Years  Weighted  

 
5843 

 
181474 

 
1806 0.032 0.000 0.005 0.020 0.031 0.041 0.065

Unweighted  0.098 0.006 0.000 0.032 0.065 0.121 0.293 
2001  Weighted  

 
22858 

 
283099 

 
437  0.081 0.003 0.018 0.037 0.061 0.103 0.208

Unweighted  0.085 0.005 0.000 0.030 0.057 0.111 0.255 
2002  Weighted  

 
21455 

 
286259 

 
444  0.075 0.003 0.014 0.038 0.059 0.097 0.196

Unweighted  0.086 0.005 0.000 0.026 0.056 0.103 0.267 
2003  Weighted  

 
21697 

 
298744 

 
455  0.073 0.003 0.015 0.031 0.056 0.087 0.201

Unweighted  0.090 0.004 0.000 0.029 0.057 0.107 0.261

 
 
 
 
25  

All  
Years  Weighted  

 
66010 

 
868102 

 
997  0.076 0.002 0.017 0.037 0.057 0.095 0.208
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3.2 IQI 11 – Abdominal Aortic Aneurysm Repair Mortality Rate 

3.2.1 Model Parameter Estimates from Fitting Models to NIS Sample 
Data 

 
Below we provide the model parameter estimates from fitting the simple logistic 
regression, generalized estimating equations, and generalized linear mixed model to the 
2001-2003 Nationwide Inpatient Sample for IQI 11 (Abdominal Aortic Aneurysm Repair 
Mortality Rate).  Table 3.2.1a provides the parameter estimates associated with the cross-
sectional model, and Table 3.2.1b provides the parameter estimates associate with the 
model that adjusts for a simple linear trend over time.  Across these two tables, we see 
that the parameter estimates and associated standard errors are quite comparable among 
the three modeling approaches.  In fact, the estimated correlation coefficient from the 
GEE modeling approach is nearly zero in both the cross-sectional (ρ=0.0073) and time-
trend adjusted (ρ=0.0073) models.  The estimated variance components associated with 
provider-specific random effects from the GLIMMIX model were subtle, yet statistically 
significant in both models (σ2

Btw Hosp = 0.191 for the cross sectional model, and 0.185 for 
the time-trend model).  The variance component that captures provider-specific variation 
in the time-trend slope was estimated as zero. 
 
Table 3.2.1c provides the Wald Statistics to determine whether there are statistically 
significant differences between the vector of parameter estimates generated by each 
modeling approach.  The Wald Statistics consider pair-wise comparisons, and suggest 
that there were no significant differences between the different modeling approaches for 
IQI 11 when applied to the data from the NIS. 
 
Table 3.2.1a Parameter Estimates from Cross Sectional Models fit to IQI-11 

(Abdominal Aortic Artery Repair Mortality Rate) 
 

Simple Logistic Regression 
Model 

Generalized Estimating 
Equations Model 

Generalized Linear 
Mixed Model 

Parameter 

Estimate Std Err p value Estimate Std Err p value Estimate Std Err p value 
Intercept -1.218 0.258 0.000 -1.198 0.255 0.000 -1.177 0.262 0.000 
SEX 0.074 0.184 0.689 0.062 0.181 0.734 0.038 0.188 0.839 
AGE1 -0.905 0.111 0.000 -0.898 0.109 0.000 -0.938 0.113 0.000 
AGE13 -0.410 0.128 0.001 -0.408 0.125 0.001 -0.431 0.130 0.001 
AGE15 0.354 0.199 0.076 0.354 0.196 0.071 0.393 0.203 0.052 
AGE27 0.261 0.231 0.259 0.253 0.227 0.265 0.281 0.235 0.233 
C2 0.626 1.147 0.585 0.684 1.118 0.541 0.750 1.164 0.519 
C3 -0.697 1.063 0.512 -0.645 1.028 0.530 -0.555 1.069 0.604 
C4 -0.507 1.075 0.637 -0.403 1.023 0.693 -0.354 1.089 0.745 
C5 -3.141 0.299 0.000 -2.979 0.291 0.000 -3.099 0.302 0.000 
C6 -2.619 0.272 0.000 -2.487 0.267 0.000 -2.565 0.275 0.000 
C7 -0.938 0.254 0.000 -0.893 0.251 0.000 -0.880 0.257 0.001 
C8 1.451 0.239 0.000 1.451 0.237 0.000 1.496 0.242 0.000 
C9 -1.465 0.243 0.000 -1.366 0.241 0.000 -1.387 0.247 0.000 
ρ 0.0073 . .  
σ2

Btw Hosp 
 

 0.191 0.043 . 
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The effect of the YEAR parameter (which captures the trend over time) was highly 
significant for all three modeling approaches, as seen in Table 3.2.1b below. 
 
Table 3.2.1b Parameter Estimates from Time Trend Models fit to IQI-11 

(Abdominal Aortic Artery Repair Mortality Rate)  
 

Simple Logistic Regression 
Model 

Generalized Estimating 
Equations Model 

Generalized Linear 
Mixed Model 

Parameter 

Estimate Std Err p value Estimate Std Err p value Estimate Std Err p value 
Intercept -1.224 0.258 0.000 -1.203 0.255 0.000 -1.182 0.262 0.000 
SEX 0.076 0.184 0.681 0.064 0.181 0.725 0.041 0.187 0.828 
AGE1 -0.907 0.111 0.000 -0.900 0.109 0.000 -0.939 0.113 0.000 
AGE13 -0.409 0.128 0.001 -0.407 0.125 0.001 -0.429 0.130 0.001 
AGE15 0.355 0.199 0.075 0.355 0.196 0.069 0.394 0.203 0.052 
AGE27 0.261 0.232 0.260 0.252 0.227 0.267 0.279 0.235 0.235 
C2 0.678 1.146 0.554 0.723 1.121 0.519 0.769 1.165 0.509 
C3 -0.677 1.062 0.524 -0.629 1.029 0.541 -0.546 1.069 0.609 
C4 -0.485 1.075 0.652 -0.381 1.022 0.710 -0.325 1.087 0.765 
C5 -3.152 0.299 0.000 -2.990 0.291 0.000 -3.110 0.302 0.000 
C6 -2.626 0.272 0.000 -2.496 0.267 0.000 -2.573 0.275 0.000 
C7 -0.943 0.254 0.000 -0.897 0.252 0.000 -0.885 0.258 0.001 
C8 1.450 0.239 0.000 1.449 0.237 0.000 1.493 0.242 0.000 
C9 -1.453 0.243 0.000 -1.357 0.241 0.000 -1.379 0.247 0.000 
YEAR -0.108 0.034 0.001 -0.105 0.035 0.002 -0.101 0.037 0.007 
ρ 0.0071 . .  
σ2

Hosp 0.185 0.043 . 
σ2

Year 

 
 

0.000 . . 
 
 
Table 3.2.1c Wald Test Statistics and (P-Value) Comparing Models fit to IQI-11 

(Abdominal Aortic Artery Repair Mortality Rate) in the NIS Sample 
 

Cross Sectional Model Time Trend Model  
SLR GEE GLIMMIX SLR GEE GLIMMIX 

SLR  7.880 
( 0.895) 

6.21 
(0.961) 

 7.624 
(0.938) 

6.05 
(0.979) 

GEE 6.070 
(0.965) 

 2.452 
(1.000) 

5.907 
(0.981) 

 2.400 
(1.000) 

GLIMMIX 4.117 
(0.995) 

2.311 
(1.000) 

 4.047 
(0.998) 

2.260 
(1.000) 

 

• Wald Test uses the estimated covariance matrix from the model listed in each row 
 
 
 
Table 3.2.1d below provides the mean and standard deviation of differences between 
model predictions (expected rates above the diagonal, and risk-adjusted rates below the 
diagonal) from a random sample of 50 providers within the NIS reference population for 
IQI 11.  For example, the mean difference in expected rates between the simple logistic 
regression and GEE approaches for the cross sectional model was 0.004 (relative to a 
national mean response rate of 0.077 from Table 3.1). Mean differences (and standard 
deviations) attributable to model specification (simple logistic vs GEE vs GLIMMIX) for 
the risk-adjusted rates appear to be higher than the expected rates. 
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Table 3.2.1d Estimated Differences (and Standard Deviation) in Provider-Level 

Model Predictions of Expected and Risk Adjusted Rates for IQI-11  
(Abdominal Aortic Artery Repair Mortality Rate) 

 
Cross Sectional Model Time Trend Model  

SLR GEE GLIMMIX SLR GEE GLIMMIX 
SLR  -0.004 

(0.001) 
-0.002 
(0.002) 

 -0.004 
(0.001) 

-0.002 
(0.002) 

GEE 0.061 
(0.065) 

 0.001 
(0.002) 

0.061 
(0.068) 

 0.001 
(0.002) 

GLIMMIX 0.033 
(0.032) 

-0.028 
(0.037) 

 0.034 
(0.034) 

-0.027 
(0.038) 

 

* In each 3x3 table above, Expected Rate Differences (and Standard Deviations) are above the diagonal,   
and Adjusted Rate Differences (and Standard Deviations) are below the diagonal.  
 

3.2.2 Model Parameter Estimates from Fitting Models to Boot Strap 
Samples of NIS Data   

Both cross sectional and time-trend adjusted models (especially GLIMMIX) fit for 
quality indicator IQI-11 (Abdominal Aortic Aneurysm Repair Mortality Rate) for 
bootstrap samples with target sample size of 25% to 100% of the observed NIS sample 
suffered greatly from rare occurrence of the response variable within selected hospitals – 
thereby producing degenerate solutions or suffering from convergence problems.  Our 
bootstrap results therefore focus on bootstrap sample sizes that are approximately 150%, 
250% and 500% larger than the NIS sample. 
 
Tables 3.2.2a and 3.2.2b provide an overview of the results for the cross sectional and 
time-trend adjusted models fit to 100 bootstrap samples with population size 
approximately 150% of the size of the NIS sample.  Each table provides the mean across 
the 100 bootstrap samples of the model parameter estimates and standard errors from the 
Simple Logistic Regression Model.  The table also provides average absolute and relative 
differences between each pair of modeling approaches.  Box plots of model specific 
intercept estimates and differences in intercept estimates between each pair of modeling 
approaches when target sample sizes ranging from 150% to 500% of the observed NIS 
samples for cross-sectional models are displayed in figures 3.2.2a  and 3.2.2c.  Figures 
3.2.2b and 3.2.2d presents the similar boxplots for the time-trend models.  The results (p-
values) from global Wald tests performed to assess whether there are statistically 
significant difference between a pair of model parameter estimates are provided in Table 
3.2.2c.  Results (p-values) from pair-wise T-test to test for intercept differences are also 
included in Table 3.2.2c.  Both Wald and T-tests are performed at 5% level of 
significance. 
 
As seen from tables 3.2.2a and 3.2.2b parameter estimates from the three modeling 
approaches are very close for all the independent covariates included in the models.  
Average differences in parameter estimates between any pair of models are 
comparatively small.  Relative differences between model estimates for most part are 
small except for some parameters like gender, C3, and C4.   The variability in parameter 
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estimates and differences (intercept) are quite pronounced as seen in box plots. As the 
sample size increases the variability decreases as expected.    
 
The Box plots of estimated intercepts for each modeling method in Figures 3.2.2a (cross 
sectional) and 3.2.2b (time-trend adjusted) demonstrate a high degree of overlap in the 
distribution of estimated intercepts among the three modeling approaches.  However, 
Figures 3.2.2c and 3.2.2d show that the distribution of pairwise differences in parameter 
estimates from each individual bootstrap sample are not concentrated near the reference 
line at zero – indicating that there may be very subtle, yet statistically significant 
differences between the three modeling techniques.  The Global Wald tests demonstrate 
highly significant differences between modeling techniques across all target sample sizes 
and modeling approach combinations.  The paired t-test for intercept differences were not 
statistically significant for GEE vs. GLIMMIX for the cross-sectional model, and SLR 
vs. GEE and GEE vs. GLIM for time trend models at target sample size of 150%.  Also 
there are no statistically significant differences between estimated intercepts between 
GEE and GLIMMIX models for target sample sizes at 250 and 500% of the NIS sample 
as seen from table 3.2.2c.   
   
 
 
Table 3.2.2a. Average Models Estimates and Relative Standard Errors from Simple 
Logistic Model Fit, Differences and Relative Differences in Model Estimates from a 
Specific Pair of Modeling Approaches for the Inpatient Quality Indicator IQI-11 
(Abdominal Aortic Artery Repair Mortality Rate)  For Each Parameter in the 
Model (Cross-Sectional)   

Cross-Sectional 

Simple Logistic 
Regression 

Difference between model 
estimates from a pair of modeling 

approaches 

Relative Difference between model 
estimates from a pair of modeling 

approaches Parameter 

Estimate Std. 
Error 

SLR vs. 
GEE 

SLR vs. 
GLIM 

GEE vs. 
GLIM 

SLR vs.  
GEE 

SLR vs. 
GLIM 

GEE vs. 
GLIM 

Intercept -1.359 0.2264 -0.011 -0.012 -0.001 0.008 0.009 0.001 
SEX 0.121 0.1558 0.012 0.038 0.026 0.101 0.372 0.273 

AGE1 -0.862 0.0931 -0.003 0.035 0.038 0.004 0.039 0.043 
AGE13 -0.377 0.1070 0.000 0.025 0.025 0.000 0.064 0.064 
AGE15 0.300 0.1682 -0.002 -0.042 -0.039 0.008 0.130 0.122 
AGE27 0.265 0.1943 0.008 -0.024 -0.032 0.030 0.086 0.116 

C2 0.743 0.9635 -0.049 -0.114 -0.065 0.063 0.142 0.079 
C3 -0.358 0.8428 -0.026 -0.114 -0.088 0.075 0.378 0.305 
C4 -0.241 0.8506 -0.073 -0.118 -0.044 0.360 0.646 0.304 
C5 -3.078 0.2592 -0.132 -0.053 0.080 0.044 0.017 0.027 
C6 -2.620 0.2390 -0.112 -0.060 0.052 0.044 0.023 0.020 
C7 -0.835 0.2227 -0.039 -0.065 -0.026 0.048 0.081 0.033 
C8 1.516 0.2110 -0.005 -0.055 -0.050 0.003 0.036 0.032 
C9 -1.426 0.2144 -0.092 -0.087 0.005 0.067 0.063 0.004 
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Table 3.2.2b.  Average Models Estimates and Relative Standard Errors from Simple 
Logistic Model Fit, Differences and Relative Differences in Model Estimates from a 
Specific Pair of Modeling Approaches for the Inpatient Quality Indicator IQI-11 
(Abdominal Aortic Artery Repair Mortality Rate)  For Each Parameter in the 
Model (Cross-Sectional)   
 

Time-Trend 

Simple Logistic 
Regression 

Difference between model 
estimates from a pair of modeling 

approaches 

Relative Difference between model 
estimates from a pair of modeling 

approaches Parameter 

Estimate Std. 
Error 

SLR vs. 
GEE 

SLR vs. 
GLIM 

GEE vs. 
GLIM 

SLR vs.  
GEE 

SLR vs. 
GLIM 

GEE vs. 
GLIM 

Intercept -1.263 0.2281 -0.006 -0.002 0.004 0.005 0.002 0.003 
SEX 0.125 0.1557 0.012 0.038 0.026 0.098 0.357 0.261 

AGE1 -0.864 0.0932 -0.003 0.033 0.037 0.004 0.038 0.042 
AGE13 -0.375 0.1071 0.000 0.025 0.024 0.001 0.064 0.063 
AGE15 0.300 0.1681 -0.002 -0.041 -0.039 0.008 0.129 0.121 
AGE27 0.263 0.1944 0.008 -0.023 -0.031 0.032 0.083 0.115 

C2 0.781 0.9634 -0.039 -0.087 -0.049 0.048 0.106 0.058 
C3 -0.353 0.8429 -0.025 -0.108 -0.083 0.074 0.361 0.289 
C4 -0.215 0.8504 -0.072 -0.117 -0.045 0.401 0.745 0.372 
C5 -3.092 0.2594 -0.132 -0.053 0.079 0.044 0.017 0.026 
C6 -2.632 0.2391 -0.111 -0.060 0.051 0.043 0.023 0.020 
C7 -0.843 0.2229 -0.040 -0.065 -0.025 0.048 0.080 0.032 
C8 1.511 0.2111 -0.005 -0.053 -0.048 0.003 0.035 0.031 
C9 -1.418 0.2145 -0.088 -0.082 0.006 0.064 0.060 0.005 

Year -0.098 0.0281 -0.004 -0.011 -0.006 0.046 0.118 0.071 
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Note: Box plots for target sample at 25% , 50%,  and 100% are not included since the models did not converge or 

a very few runs successfully fitted the models. 
 
Figure 3.2.2a: Box Plots of the Model Specific Estimates of the Intercepts Obtained from fitting 

Cross-Sectional Models to 100 Boot Strap Sampling with Target Sampling at 
25%, 50%, 100%, 150%, and 250% of the Observed NIS Sample Data for IQI-11.    
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Note: Box plots for target sample at 25% , 50%,  and 100% are not included since the models did not converge or 

a very few runs successfully fitted the models. 
 
Figure 3.2.2b: Box Plots of the Model Specific Estimates of the Intercepts Obtained from fitting 

Time-Trend Models to 100 Boot Strap Sampling with Target Sampling at 25%, 
50%, 100%, 150%, and 250% of the Observed NIS Sample Data for IQI-11.    
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Note: Box plots for target sample at 25% , 50%,  and 100% are not included since the models did not converge or 

a very few runs successfully fitted the models. 
 
Figure 3.2.2c: Box Plots of the Differences in Model Specific Estimates of the Intercepts from a 

Specific Pair of Cross-Sectional Models Fitted to 100 Boot Strap Sampling Runs 
with Target Sampling at 25%, 50%, 100%, 150%, and 250% of the Observed NIS 
Sample Data for IQI-11.    
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Note: Box plots for target sample at 25% , 50%,  and 100% are not included since the models did not converge or 

a very few runs successfully fitted the models.  
 
Figure 3.2.2d: Box Plots of the Differences in Model Specific Estimates of the Intercepts from a 

Specific Pair of Time-Trend Models Fitted to 100 Boot Strap Sampling Runs with 
Target Sampling at 25%, 50%, 100%, 150%, and 250% of the Observed NIS 
Sample Data for IQI-11.    

 
Table 3.2.2C Wald Test Statistics and (P-Value) Comparing Models fit to IQI-11 

(Abdominal Aortic Artery Repair Mortality Rate) 
 

P-values 
Cross-Sectional Models Time-Trend Models Test 

Percent of 
Observed 
Sample SLR vs. 

GEE 
SLR vs. 
GLIM 

GEE vs. 
GLIM 

SLR vs.  
GEE 

SLR vs. 
GLIM 

GEE vs. 
GLIM 

25% . . . . . . 
50% . . . . . . 

100% . . . . . . 
150% < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 
250% < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 

Global Wald 
Test 

500% < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 
25% . . . . . . 
50% . . . . . . 

100% . . . . . . 
150% < 0.0001 < 0.0001 0.4678 < 0.0001 0.3877 0.0275 
250% < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 0.7179 

T-Test for 
Intercept 

Difference 

500% < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 0.0590 
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3.3 IQI 14 – Hip Replacement Mortality Rate 

3.3.1 Model Parameter Estimates from Fitting Models to NIS Sample 
Data 

 
Below we provide the model parameter estimates from fitting the simple logistic 
regression, generalized estimating equations, and generalized linear mixed model to the 
2001-2003 Nationwide Inpatient Sample for IQI 14 (Hip Replacement Mortality Rate).  
Table 3.3.1a provides the parameter estimates associated with the cross-sectional model, 
and Table 3.3.1b provides the parameter estimates associate with the model that adjusts 
for a simple linear trend over time.  Across these two tables, we see that the parameter 
estimates and associated standard errors are identical among the three modeling 
approaches, with the estimated correlation coefficient from the GEE modeling approach 
being estimated as zero in both the cross-sectional and time-trend adjusted  models.  The 
estimated variance components associated with provider-specific random effects from the 
GLIMMIX model was also zero in both models, as well as the variance component that 
captures provider-specific variation in the time-trend slope was estimated as zero. 
 
Table 3.3.1c provides the Wald Statistics to determine whether there are statistically 
significant differences between the vector of parameter estimates generated by each 
modeling approach as applied to the NIS sample.  The Wald Statistics consider pair-wise 
comparisons, and suggest that there were no significant differences between the different 
modeling approaches for IQI 14. 
 
Table 3.3.1a Parameter Estimates from Cross Sectional Models fit to IQI-14 

(Hip Replacement Mortality Rate) 
 

Simple Logistic Regression 
Model 

Generalized Estimating 
Equations Model 

Generalized Linear 
Mixed Model 

Parameter 

Estimate Std Err p value Estimate Std Err p value Estimate Std Err p value 
Intercept -2.377 0.394 0.000 -2.376 0.394 0.000 -2.377 0.394 0.000 
SEX -0.363 0.215 0.091 -0.363 0.215 0.091 -0.363 0.215 0.091 
AGE1 -1.573 0.343 0.000 -1.573 0.343 0.000 -1.573 0.343 0.000 
AGE10 -1.539 0.404 0.000 -1.539 0.405 0.000 -1.539 0.404 0.000 
AGE11 -1.586 0.333 0.000 -1.587 0.333 0.000 -1.586 0.333 0.000 
AGE12 -1.017 0.274 0.000 -1.017 0.274 0.000 -1.017 0.274 0.000 
AGE13 -0.608 0.252 0.016 -0.608 0.252 0.016 -0.608 0.252 0.016 
AGE15 0.549 0.441 0.213 0.549 0.441 0.213 0.549 0.441 0.213 
AGE24 0.347 0.543 0.523 0.347 0.543 0.524 0.347 0.543 0.523 
AGE25 0.079 0.461 0.865 0.079 0.462 0.864 0.079 0.461 0.865 
AGE26 0.142 0.355 0.690 0.141 0.355 0.691 0.142 0.355 0.690 
AGE27 -0.092 0.335 0.783 -0.092 0.335 0.783 -0.092 0.335 0.783 
C1 -4.016 0.399 0.000 -4.020 0.399 0.000 -4.016 0.399 0.000 
C2 -2.260 0.383 0.000 -2.262 0.383 0.000 -2.260 0.383 0.000 
C3 0.088 0.378 0.815 0.088 0.378 0.816 0.088 0.378 0.815 
C4 2.061 0.384 0.000 2.061 0.384 0.000 2.061 0.384 0.000 
C5 0.384 0.559 0.492 0.384 0.559 0.492 0.384 0.559 0.492 
ρ 0.0000 . .  
σ2

Btw Hosp 
 

 0.000 . . 
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The effect of the YEAR parameter (which captures the trend over time) was highly 
significant for all three modeling approaches, as seen in Table 3.3.1b below. 
 
Table 3.3.1b Parameter Estimates from Time Trend Models fit to IQI-14   

(Hip Replacement Mortality Rate) 
 

Simple Logistic Regression 
Model 

Generalized Estimating 
Equations Model 

Generalized Linear 
Mixed Model 

Parameter 

Estimate Std Err p value Estimate Std Err p value Estimate Std Err p value 
Intercept -2.385 0.394 0.000 -2.385 0.394 0.000 -2.385 0.394 0.000 
SEX -0.372 0.215 0.083 -0.372 0.215 0.083 -0.372 0.215 0.083 
AGE1 -1.570 0.343 0.000 -1.571 0.343 0.000 -1.570 0.343 0.000 
AGE10 -1.547 0.404 0.000 -1.547 0.405 0.000 -1.547 0.404 0.000 
AGE11 -1.595 0.333 0.000 -1.596 0.334 0.000 -1.595 0.333 0.000 
AGE12 -1.027 0.275 0.000 -1.027 0.275 0.000 -1.027 0.275 0.000 
AGE13 -0.622 0.252 0.014 -0.622 0.253 0.014 -0.622 0.252 0.014 
AGE15 0.564 0.441 0.201 0.564 0.442 0.202 0.564 0.441 0.201 
AGE24 0.369 0.543 0.497 0.368 0.544 0.498 0.369 0.543 0.497 
AGE25 0.089 0.461 0.846 0.090 0.462 0.845 0.089 0.461 0.846 
AGE26 0.156 0.355 0.661 0.155 0.355 0.662 0.156 0.355 0.661 
AGE27 -0.070 0.335 0.835 -0.070 0.335 0.834 -0.070 0.335 0.835 
C1 -4.013 0.399 0.000 -4.019 0.399 0.000 -4.013 0.399 0.000 
C2 -2.250 0.384 0.000 -2.252 0.384 0.000 -2.250 0.384 0.000 
C3 0.102 0.378 0.788 0.101 0.378 0.789 0.102 0.378 0.788 
C4 2.085 0.384 0.000 2.085 0.384 0.000 2.085 0.384 0.000 
C5 0.401 0.560 0.474 0.400 0.560 0.475 0.401 0.560 0.474 
YEAR -0.200 0.076 0.009 -0.201 0.076 0.008 -0.200 0.076 0.009 
ρ -0.0001 . .  
σ2

Hosp 0.000 .  
σ2

Year 

 
 

0.000 .  
 
 
Table 3.3.1c Wald Test Statistics and (P-Value) Comparing Models fit to IQI-14 

(Hip Replacement Mortality Rate) 
 

Cross Sectional Model Time Trend Model  
SLR GEE GLIMMIX SLR GEE GLIMMIX 

SLR  0.001 
(1.000) 

0.000 
(1.000) 

 0.002 
(1.000) 

0.000 
(1.000) 

GEE 0.001 
(1.000) 

 0.001 
(1.000) 

0.002 
(1.000) 

 0.002 
(1.000) 

GLIMMIX 0.000 
(1.000) 

0.001 
(1.000) 

 0.000 
(1.000) 

0.002 
(1.000) 

 

• Wald Test uses the estimated covariance matrix from the model listed in each row 
 

 
Table 3.3.1d below provides the mean and standard deviation of differences between 
model predictions (expected rates above the diagonal, and risk-adjusted rates below the 
diagonal) from a random sample of 50 providers within the NIS reference population for 
IQI 14.  Due to the fact that the three modeling approaches yielded identical parameter 
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estimates (the within-provider correlation was estimated as zero), there were no 
differences in expected or risk-adjusted rates attributable to the modeling approach. 
 
Table 3.3.1d Estimated Differences (and Standard Deviation) in Provider-Level 

Model Predictions of Expected and Risk Adjusted Rates for IQI-14  
  (Hip Replacement Mortality Rate) 
 

Cross Sectional Model Time Trend Model  
SLR GEE GLIMMIX SLR GEE GLIMMIX 

SLR  0.000 
(0.000) 

0.000 
(0.000) 

 0.000 
(0.000) 

0.000 
(0.000) 

GEE -0.000 
(0.000) 

 0.000 
(0.000) 

-0.000 
(0.000) 

 0.000 
(0.000) 

GLIMMIX -0.000 
(0.000) 

-0.000 
(0.000) 

 -0.000 
(0.000) 

-0.000 
(0.000) 

 

* In each 3x3 table above, Expected Rate Differences (and Standard Deviations) are above the diagonal,   
and Adjusted Rate Differences (and Standard Deviations) are below the diagonal. 

 

3.3.2 Model Parameter Estimates from Fitting Models to Boot Strap 
Samples of NIS Data   

Both cross sectional and time-trend adjusted models (especially GLIMMIX) fitted for 
quality indicators IQI-19 (Abdominal Aortic Aneurysm Repair Mortality Rate) for 
bootstrap samples with target sample size of 25% and 50% of the observed NIS sample 
suffered greatly from convergence problems due to rare occurrence of the response 
within some of the selected hospitals included in the sample which resulted in 
convergence problems and degenerate solutions.   
 
Tables 3.3.2a and 3.3.2b provide an overview of the results for the cross sectional and 
time-trend adjusted models fit to 100 bootstrap samples with population size 
approximately 100% of the size of the NIS sample.  Each table provides the mean across 
the 100 bootstrap samples of the model parameter estimates and standard errors from the 
Simple Logistic Regression Model.  The table also provides average absolute and relative 
differences between each pair of modeling approaches.  Box plots of model specific 
intercept estimates and differences in intercept estimates between each pair of modeling 
approaches when target sample sizes ranging from 50% to 250% of the observed NIS 
samples for cross-sectional models are displayed in figures 3.3.2a  and 3.3.2c.  Figures 
3.3.2b and 3.3.2d presents the similar boxplots for the time-trend models.  The results (p-
values) from global Wald tests performed to assess whether there are statistically 
significant difference between a pair of model parameter estimates are provided in Table 
3.3.2c.  Results (p-values) from pair-wise T-test to test for intercept differences are also 
included in Table 3.3.2c.  Both Wald and T-tests are performed at 5% level of 
significance. 
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Parameter estimates from all three modeling approaches are very close to each other for 
IQI-14 as seen in Tables 3.3.2a and 3.3.2b. Differences as well as relative differences are 
very small for all parameters for all pairs of modeling approaches.  Variability in 
parameter estimates are small for target sample size at 250% for all three modeling 
approaches.  The Box plots of intercepts in Figures 3.3.2a and 3.3.2b show comparability 
among the three modeling approaches, and the Box plots of differences in Figures 3.3.2c 
and 3.3.2d show that there is less variability and the results are more concentrated around 
the zero reference line.  The Global Wald test for assessing differences among all 
modeled parameters demonstrates statistically significant differences for all paired 
modeling approaches with the exception of comparing SLR vs GLIMMIX at 50% target 
sample.  These significant differences are likely attributable to the large sample size and  
tight variance/covariance estimates among parameter estimates.  This drives the inverse 
of the variance covariance matrix (V-1) towards larger values, which in turn pushes the 
Wald test statistic to find statistically significant differences among parameter estimates 
that are seemingly very similar. 
 
Comparisons between intercept estimates for SLR vs. GEE and GEE vs. GLIMMIX 
using paired t-tests resulted in statistically significant differences for all target sample 
sizes for time-trend models where as there are no statistically significant differences 
found for intercept differences between SLR and GLIMMIX which means GEE intercept 
differences probably are different from SLR and GLIMMIX.   
 
Table 3.3.2a. Average Models Estimates and Relative Standard Errors from Simple 
Logistic Model Fit, Differences and Relative Differences in Model Estimates from a 
Specific Pair of Modeling Approaches for the In Patient Quality Indicator IQI-14 
(IQI 14 – Hip Replacement Mortality Rate) For Each Parameter in the Model 
(Cross-Sectional)   

Cross-Sectional 

Simple Logistic 
Regression 

Difference between model 
estimates from a pair of modeling 

approaches 

Relative Difference between model 
estimates from a pair of modeling 

approaches Parameter 

Estimate Std. 
Error 

SLR vs. 
GEE 

SLR vs. 
GLIM 

GEE vs. 
GLIM 

SLR vs.  
GEE 

SLR vs. 
GLIM 

GEE vs. 
GLIM 

Intercept -2.308 0.4017 -0.001 -0.000 0.000 0.000 0.000 0.000 
SEX -0.370 0.2198 -0.000 -0.001 -0.001 0.000 0.002 0.002 
AGE1 -1.487 0.3462 -0.003 -0.000 0.003 0.002 0.000 0.002 
AGE10 -1.739 0.4578 -0.005 -0.001 0.004 0.003 0.001 0.002 
AGE11 -1.614 0.3479 -0.002 -0.000 0.002 0.001 0.000 0.001 
AGE12 -1.079 0.2868 -0.001 -0.001 0.000 0.001 0.001 0.000 
AGE13 -0.777 0.2668 -0.001 -0.002 -0.001 0.001 0.002 0.001 
AGE15 0.445 0.4550 0.002 0.001 -0.001 0.004 0.003 0.001 
AGE24 0.417 0.6213 0.005 0.002 -0.002 0.011 0.005 0.006 
AGE25 0.125 0.4806 -0.002 0.001 0.003 0.013 0.010 0.023 
AGE26 0.198 0.3685 0.000 0.001 0.001 0.001 0.004 0.004 
AGE27 0.028 0.3534 0.001 0.001 0.001 0.024 0.047 0.023 
C1 -4.199 0.4108 -0.004 -0.001 0.003 0.001 0.000 0.001 
C2 -2.301 0.3903 0.000 -0.001 -0.001 0.000 0.000 0.000 
C3 -0.026 0.3862 0.001 -0.000 -0.001 0.030 0.016 0.047 
C4 1.918 0.3920 0.001 0.000 -0.001 0.001 0.000 0.001 
C5 0.175 0.6196 0.001 0.000 -0.001 0.008 0.002 0.005 
Note: Target Sample for the 100 runs is 150% of the Observed NIS sample.   
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Table 3.3.2b. Average Models Estimates and Relative Standard Errors from Simple 
Logistic Model Fit, Differences and Relative Differences in Model Estimates from a 
Specific Pair of Modeling Approaches for the In Patient Quality Indicator IQI-14 
(IQI 14 – Hip Replacement Mortality Rate) For Each Parameter in the Model 
(Cross-Sectional)   

Time -Trend 
Simple Logistic 

Regression 

Difference between model 
estimates from a pair of modeling 

approaches 

Relative Difference between model 
estimates from a pair of modeling 

approaches 

Parameter 

Estimate Std. 
Error 

SLR vs. 
GEE 

SLR vs. 
GLIM 

GEE vs. 
GLIM 

SLR vs.  
GEE 

SLR vs. 
GLIM 

GEE vs. 
GLIM 

Intercept  -2.106 0.4086 -0.007 -0.001 0.006 0.003 0.000 0.003 
SEX  -0.380 0.2199 0.000 -0.001 -0.001 0.000 0.002 0.002 
AGE1  -1.480 0.3465 -0.003 -0.000 0.003 0.002 0.000 0.002 
AGE10  -1.759 0.4583 -0.003 -0.001 0.002 0.002 0.001 0.001 
AGE11  -1.625 0.3480 -0.001 -0.001 0.000 0.000 0.000 0.000 
AGE12  -1.095 0.2872 -0.000 -0.001 -0.001 0.000 0.001 0.000 
AGE13  -0.797 0.2673 -0.000 -0.002 -0.002 0.000 0.003 0.002 
AGE15  0.454 0.4552 0.003 0.001 -0.001 0.006 0.003 0.003 
AGE24  0.452 0.6217 0.004 0.003 -0.001 0.009 0.006 0.003 
AGE25  0.134 0.4809 -0.002 0.002 0.004 0.016 0.011 0.027 
AGE26  0.213 0.3689 0.000 0.001 0.001 0.001 0.005 0.004 
AGE27  0.058 0.3539 0.000 0.001 0.001 0.001 0.025 0.024 
C1  -4.200 0.4110 -0.000 -0.001 -0.000 0.000 0.000 0.000 
C2  -2.293 0.3906 0.002 -0.000 -0.002 0.001 0.000 0.001 
C3  -0.015 0.3866 0.002 -0.000 -0.002 0.101 0.009 0.111 
C4  1.940 0.3925 0.001 0.000 -0.001 0.001 0.000 0.000 
C5  0.186 0.6203 0.002 0.001 -0.002 0.013 0.004 0.009 
Year  -0.209 0.0782 0.006 0.001 -0.005 0.027 0.003 0.024 
Note: Target Sample for the 100 runs is 150% of the Observed NIS sample.   
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Note: Box plots for target sample at 25% are not included since the models did not converge. 
 
Figure 3.3.2a: Box Plots of the Model Specific Estimates of the Intercepts Obtained from fitting 

Cross-Sectional Models to 100 Boot Strap Sampling with Target Sampling at 
25%, 50%, 100%, 150%, and 250% of the Observed NIS Sample Data for IQI-14.    
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Note: Box plots for target sample at 25% are not included since the models did not converge. 
 
Figure 3.3.2b: Box Plots of the Model Specific Estimates of the Intercepts Obtained from fitting 

Time-Trend Models to 100 Boot Strap Sampling with Target Sampling at 25%, 
50%, 100%, 150%, and 250% of the Observed NIS Sample Data for IQI-14.   
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Note: Box plots for target sample at 25% are not included since the models did not converge. 
 
Figure 3.3.2c: Box Plots of the Differences in Model Specific Estimates of the Intercepts from a 

Specific Pair of Cross-Sectional Models Fitted to 100 Boot Strap Sampling Runs 
with Target Sampling at 25%, 50%, 100%, 150%, and 250% of the Observed NIS 
Sample Data for IQI-14.     
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Note: Box plots for target sample at 25% are not included since the models did not converge. 

 
Figure 3.3.2d: Box Plots of the Differences in Model Specific Estimates of the Intercepts from a 

Specific Pair of Time-Trend Models Fitted to 100 Boot Strap Sampling Runs with 
Target Sampling at 25%, 50%, 100%, 150%, and 250% of the Observed NIS 
Sample Data for IQI-14.    

 
 
Table 3.3.2C. Wald Test Statistics and (P-Value) Comparing Models fit to IQI-14  
  (IQI 14 – Hip Replacement Mortality Rate) 

P-values 
Cross-Sectional Models Time-Trend Models Test 

Percent of 
Observed 
Sample SLR vs. 

GEE 
SLR vs. 
GLIM 

GEE vs. 
GLIM 

SLR vs.  
GEE 

SLR vs. 
GLIM 

GEE vs. 
GLIM 

25% . . . . . . 
50% < 0.0001 0.4284 < 0.0001 < 0.0001 < 0.0001 0.0002 

100% < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 0.02091 
150% < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 

Global Wald 
Test 

250% < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 
25% . . . . . . 
50% 0.5098 0.5992 0.9256 < 0.0001 0.4893 0.0001 

100% 0.0252 0.7000 0.1580 < 0.0001 0.0144 < 0.0001 
150% < 0.0001 0.0931 < 0.0001 < 0.0001 0.9966 < 0.0001 

T-Test for 
Intercept 

Difference 
250% < 0.0001 0.0347 < 0.0001 < 0.0001 0.0499 < 0.0001 
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3.4 IQI 17 – Acute Stroke Mortality Rate 
 

3.4.1 Model Parameter Estimates from Fitting Models to NIS Sample 
Data 

 
Below we provide the model parameter estimates from fitting the simple logistic 
regression, generalized estimating equations, and generalized linear mixed model to the 
2001-2003 Nationwide Inpatient Sample for IQI 17 (Acute Stroke Mortality Rate).  Table 
3.4.1a provides the parameter estimates associated with the cross-sectional model, and 
Table 3.4.1b provides the parameter estimates associate with the model that adjusts for a 
simple linear trend over time.  Across these two tables, we see that the parameter 
estimates and associated standard errors are comparable among the three modeling 
approaches (but with noticeable differences).  In this model, the estimated correlation 
coefficient from the GEE modeling approach is nearly zero in both the cross-sectional 
(ρ=0.0082) and time-trend adjusted (ρ=0.0079) models.  The estimated variance 
components associated with provider-specific random effects from the GLIMMIX model 
were small, yet statistically significant in both models (σ2

Btw Hosp = 0.173 for the cross 
sectional model, and 0.161 for the time-trend model).  The variance component that 
captures provider-specific variation in the time-trend slope was estimated as statistically 
significant (σ2

Year = 0.019). 
 
The effect of the YEAR parameter (which captures the trend over time) was highly 
significant for all three modeling approaches, as seen in Table 3.4.1b below. 
 
Table 3.4.1c provides the Wald Statistics to determine whether there are statistically 
significant differences between the vector of parameter estimates generated by each 
modeling approach.  The Wald Statistics consider pair-wise comparisons, and suggest 
that there were significant differences between the different modeling approaches for IQI 
17.  In fact, the first row of Table 3.2.1c suggests that there are highly significant 
differences between the parameter estimates from the simple logistic regression model 
compared to both approaches (GEE and GLIMMIX) that adjust for the potential within-
hospital correlation among responses.  This first row corresponds to a Wald Test that uses 
the estimated variance/covariance matrix from the simple logistic regression model.  The 
corresponding Wald-Statistic Results that utilize the variance-covariance matrices from 
the GEE or GLIMMIX approaches are contained in the SLR columns (on each side of the 
table) – and interestingly enough do not meet the threshold of being significantly 
different.  These variance/covariance matrices are model-based and may be subject to 
model misspecification.  A subsequent iteration of this report will integrate similar Wald 
Test statistics using the robust variance/covariance estimates for the GEE and GLIMMIX 
approaches. 
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Another interesting phenomenon is that there are statistically significant differences 
between the GEE and GLIMMIX approaches (for both the cross-sectional and time-trend 
models).  Again, this result necessitates further diagnoses of the fit of these models. 
 
Table 3.4.1a Parameter Estimates from Cross Sectional Models fit to IQI-17 

(Acute Stroke Mortality Rate) 
Simple Logistic Regression 

Model 
Generalized Estimating 

Equations Model 
Generalized Linear 

Mixed Model 
Parameter 

Estimate Std Err p value Estimate Std Err p value Estimate Std Err p value 
Intercept -1.727 0.068 0.000 -1.655 0.066 0.000 -1.660 0.069 0.000 
SEX 0.067 0.028 0.018 0.063 0.028 0.024 0.063 0.028 0.028 
AGE1 -0.951 0.177 0.000 -0.910 0.173 0.000 -0.945 0.180 0.000 
AGE2 -0.994 0.168 0.000 -0.935 0.163 0.000 -0.952 0.170 0.000 
AGE3 -0.682 0.110 0.000 -0.640 0.107 0.000 -0.663 0.112 0.000 
AGE4 -0.663 0.090 0.000 -0.619 0.088 0.000 -0.636 0.091 0.000 
AGE5 -0.669 0.068 0.000 -0.636 0.067 0.000 -0.662 0.069 0.000 
AGE6 -0.472 0.055 0.000 -0.439 0.054 0.000 -0.454 0.056 0.000 
AGE7 -0.483 0.049 0.000 -0.454 0.048 0.000 -0.473 0.049 0.000 
AGE8 -0.453 0.047 0.000 -0.421 0.046 0.000 -0.437 0.048 0.000 
AGE9 -0.442 0.044 0.000 -0.411 0.043 0.000 -0.422 0.045 0.000 
AGE10 -0.375 0.040 0.000 -0.352 0.039 0.000 -0.362 0.041 0.000 
AGE11 -0.419 0.037 0.000 -0.393 0.036 0.000 -0.405 0.037 0.000 
AGE12 -0.329 0.034 0.000 -0.311 0.033 0.000 -0.320 0.035 0.000 
AGE13 -0.208 0.034 0.000 -0.197 0.033 0.000 -0.205 0.034 0.000 
AGE15 -0.366 0.279 0.190 -0.336 0.271 0.215 -0.336 0.284 0.236 
AGE16 -0.211 0.252 0.403 -0.203 0.244 0.405 -0.235 0.255 0.356 
AGE17 -0.304 0.162 0.060 -0.287 0.157 0.068 -0.292 0.163 0.075 
AGE18 -0.252 0.129 0.051 -0.243 0.126 0.053 -0.258 0.131 0.048 
AGE19 0.126 0.093 0.177 0.127 0.091 0.163 0.134 0.094 0.155 
AGE20 -0.114 0.077 0.140 -0.107 0.075 0.155 -0.110 0.078 0.160 
AGE21 -0.149 0.069 0.030 -0.131 0.067 0.049 -0.125 0.069 0.073 
AGE22 -0.150 0.066 0.023 -0.149 0.064 0.021 -0.152 0.067 0.022 
AGE23 -0.049 0.062 0.425 -0.050 0.060 0.408 -0.051 0.062 0.411 
AGE24 -0.138 0.055 0.013 -0.134 0.054 0.013 -0.139 0.056 0.013 
AGE25 -0.014 0.048 0.764 -0.018 0.047 0.700 -0.018 0.049 0.716 
AGE26 -0.045 0.044 0.301 -0.041 0.043 0.342 -0.039 0.044 0.380 
AGE27 -0.087 0.042 0.039 -0.083 0.041 0.044 -0.083 0.042 0.050 
C1 -1.548 0.140 0.000 -1.465 0.130 0.000 -1.558 0.141 0.000 
C2 -0.111 0.082 0.175 -0.113 0.079 0.154 -0.114 0.083 0.169 
C3 1.019 0.070 0.000 0.986 0.068 0.000 1.022 0.071 0.000 
C4 2.289 0.074 0.000 2.260 0.072 0.000 2.341 0.075 0.000 
C5 -0.211 0.085 0.013 -0.222 0.082 0.007 -0.236 0.086 0.006 
C6 0.411 0.066 0.000 0.377 0.064 0.000 0.383 0.067 0.000 
C7 1.578 0.068 0.000 1.535 0.066 0.000 1.580 0.069 0.000 
C8 3.312 0.068 0.000 3.290 0.066 0.000 3.375 0.069 0.000 
C9 -2.565 0.077 0.000 -2.425 0.074 0.000 -2.610 0.077 0.000 
C10 -1.224 0.066 0.000 -1.204 0.064 0.000 -1.264 0.067 0.000 
C11 0.295 0.067 0.000 0.277 0.064 0.000 0.284 0.067 0.000 
C12 2.126 0.067 0.000 2.089 0.065 0.000 2.152 0.067 0.000 
C13 -2.451 0.094 0.000 -2.387 0.090 0.000 -2.525 0.095 0.000 
C14 -0.958 0.068 0.000 -0.984 0.066 0.000 -1.030 0.069 0.000 
C15 0.359 0.072 0.000 0.315 0.070 0.000 0.315 0.073 0.000 
C16 2.031 0.078 0.000 1.987 0.076 0.000 2.047 0.079 0.000 
C17 -0.014 0.072 0.843 -0.010 0.069 0.880 -0.007 0.073 0.922 
ρ 0.0082 . .  
σ2

Hosp 
 

 0.173 0.011 . 
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Table 3.4.1b Parameter Estimates from Time Trend Models fit to IQI-17 
(Acute Stroke Mortality Rate) 

 
Simple Logistic Regression 

Model 
Generalized Estimating 

Equations Model 
Generalized Linear 

Mixed Model 
Parameter 

Estimate Std Err p value Estimate Std Err p value Estimate Std Err p value 
Intercept -1.725 0.068 0.000 -1.656 0.066 0.000 -1.662 0.069 0.000 
SEX 0.066 0.028 0.020 0.062 0.028 0.025 0.062 0.028 0.029 
AGE1 -0.951 0.177 0.000 -0.913 0.173 0.000 -0.944 0.180 0.000 
AGE2 -0.990 0.168 0.000 -0.936 0.163 0.000 -0.951 0.170 0.000 
AGE3 -0.681 0.110 0.000 -0.640 0.107 0.000 -0.664 0.112 0.000 
AGE4 -0.661 0.090 0.000 -0.620 0.088 0.000 -0.638 0.091 0.000 
AGE5 -0.669 0.068 0.000 -0.637 0.067 0.000 -0.663 0.069 0.000 
AGE6 -0.468 0.055 0.000 -0.438 0.054 0.000 -0.454 0.056 0.000 
AGE7 -0.480 0.049 0.000 -0.453 0.048 0.000 -0.474 0.049 0.000 
AGE8 -0.451 0.047 0.000 -0.421 0.046 0.000 -0.438 0.048 0.000 
AGE9 -0.441 0.045 0.000 -0.412 0.043 0.000 -0.423 0.045 0.000 
AGE10 -0.375 0.040 0.000 -0.353 0.039 0.000 -0.363 0.041 0.000 
AGE11 -0.420 0.037 0.000 -0.395 0.036 0.000 -0.405 0.037 0.000 
AGE12 -0.331 0.034 0.000 -0.313 0.033 0.000 -0.322 0.035 0.000 
AGE13 -0.209 0.034 0.000 -0.198 0.033 0.000 -0.205 0.034 0.000 
AGE15 -0.352 0.279 0.207 -0.326 0.271 0.229 -0.334 0.284 0.240 
AGE16 -0.207 0.252 0.411 -0.201 0.244 0.410 -0.232 0.255 0.363 
AGE17 -0.307 0.162 0.058 -0.290 0.158 0.066 -0.291 0.164 0.075 
AGE18 -0.257 0.129 0.046 -0.246 0.126 0.050 -0.258 0.131 0.048 
AGE19 0.129 0.093 0.167 0.129 0.091 0.157 0.135 0.094 0.154 
AGE20 -0.113 0.077 0.142 -0.107 0.075 0.156 -0.110 0.078 0.160 
AGE21 -0.150 0.069 0.029 -0.132 0.067 0.049 -0.123 0.069 0.076 
AGE22 -0.150 0.066 0.023 -0.149 0.064 0.021 -0.152 0.067 0.023 
AGE23 -0.048 0.062 0.433 -0.049 0.060 0.415 -0.050 0.062 0.424 
AGE24 -0.137 0.055 0.013 -0.133 0.054 0.014 -0.139 0.056 0.013 
AGE25 -0.014 0.048 0.770 -0.018 0.047 0.705 -0.018 0.049 0.708 
AGE26 -0.044 0.044 0.317 -0.040 0.043 0.354 -0.038 0.044 0.386 
AGE27 -0.086 0.042 0.039 -0.083 0.041 0.044 -0.083 0.042 0.049 
C1 -1.550 0.140 0.000 -1.468 0.130 0.000 -1.558 0.141 0.000 
C2 -0.112 0.082 0.173 -0.113 0.079 0.155 -0.113 0.083 0.174 
C3 1.016 0.070 0.000 0.986 0.068 0.000 1.021 0.071 0.000 
C4 2.291 0.074 0.000 2.264 0.072 0.000 2.344 0.075 0.000 
C5 -0.210 0.085 0.014 -0.221 0.082 0.007 -0.234 0.086 0.006 
C6 0.409 0.066 0.000 0.378 0.064 0.000 0.383 0.067 0.000 
C7 1.579 0.068 0.000 1.538 0.066 0.000 1.582 0.069 0.000 
C8 3.314 0.068 0.000 3.293 0.066 0.000 3.378 0.069 0.000 
C9 -2.568 0.077 0.000 -2.429 0.074 0.000 -2.609 0.077 0.000 
C10 -1.225 0.066 0.000 -1.204 0.064 0.000 -1.263 0.067 0.000 
C11 0.297 0.067 0.000 0.280 0.065 0.000 0.286 0.067 0.000 
C12 2.128 0.067 0.000 2.093 0.065 0.000 2.155 0.067 0.000 
C13 -2.458 0.094 0.000 -2.391 0.090 0.000 -2.526 0.095 0.000 
C14 -0.965 0.068 0.000 -0.987 0.066 0.000 -1.030 0.069 0.000 
C15 0.353 0.072 0.000 0.313 0.070 0.000 0.314 0.073 0.000 
C16 2.026 0.078 0.000 1.986 0.076 0.000 2.047 0.079 0.000 
C17 -0.011 0.072 0.874 -0.009 0.070 0.901 -0.005 0.073 0.945 
YEAR -0.065 0.008 0.000 -0.053 0.010 0.000 -0.059 0.013 0.000 
ρ 0.0079 . .  
σ2

Hosp 0.161 0.011 . 
σ2

Year 

 
 

0.019 0.007 . 
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Table 3.4.1c Wald Test Statistics and (P-Value) Comparing Models fit to IQI-17 
(Acute Stroke Mortality Rate) 

 
Cross Sectional Model Time Trend Model  

SLR GEE GLIMMIX SLR GEE GLIMMIX 
SLR  154.85 

(0.000) 
127.77 
(0.000) 

 149.27 
(0.000) 

120.62 
(0.000) 

GEE 57.362 
(0.102) 

 64.972 
(0.027) 

56.246 
(0.143) 

 62.365 
(0.054) 

GLIMMIX 49.287 
(0.306) 

70.869 
(0.008) 

 46.309 
(0.460) 

68.044 
(0.019) 

 

* Wald Test uses the estimated covariance matrix from the model listed in each row 
 
 
Table 3.4.1d below provides the mean and standard deviation of differences between 
model predictions (expected rates above the diagonal, and risk-adjusted rates below the 
diagonal) from a random sample of 50 providers within the NIS reference population for 
IQI 17.  For example, the mean difference in expected rates between the simple logistic 
regression and GEE approaches for the cross sectional model was -0.006 (relative to a 
national mean response rate of 0.114 from Table 3.1). Mean differences (and standard 
deviations) attributable to model specification (simple logistic vs GEE vs GLIMMIX) for 
the risk-adjusted rates appear to be higher than the expected rates. 
 
Table 3.4.1d Estimated Differences (and Standard Deviation) in Provider-Level 

Model Predictions of Expected and Risk Adjusted Rates for IQI-17  
(Acute Stroke Mortality Rate) 

 
Cross Sectional Model Time Trend Model  

SLR GEE GLIMMIX SLR GEE GLIMMIX 
SLR  -0.006 

(0.001) 
-0.002 
(0.001) 

 -0.005 
(0.001) 

-0.002 
(0.001) 

GEE 0.021 
(0.015) 

 0.004 
(0.000) 

0.021 
(0.015) 

 0.004 
(0.001) 

GLIMMIX 0.007 
(0.004) 

-0.014 
(0.011) 

 0.007 
(0.005) 

-0.014 
(0.011) 

 

* In each 3x3 table above, Expected Rate Differences (and Standard Deviations) are above the diagonal,   
and Adjusted Rate Differences (and Standard Deviations) are below the diagonal. 
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3.4.2 Model Parameter Estimates from Fitting Models to Boot Strap 
Samples of NIS Data   

Both cross sectional and time-trend adjusted models (especially GLIMMIX) fitted for 
quality indicators IQI-19 (Abdominal Aortic Aneurysm Repair Mortality Rate) for 
bootstrap sampling runs with target sample size of 25% and 50% of the observed NIS 
sample had convergence problems due to small sample size or rare occurrence of the 
event.   
 
Tables 3.4.2a and 3.4.2b provide an overview of the results for the cross sectional and 
time-trend adjusted models fit to 100 bootstrap samples with population size 
approximately 100% of the size of the NIS sample.  Each table provides the mean across 
the 100 bootstrap samples of the model parameter estimates and standard errors from the 
Simple Logistic Regression Model.  The table also provides average absolute and relative 
differences between each pair of modeling approaches.  Box plots of model specific 
intercept estimates and differences in intercept estimates between each pair of modeling 
approaches when target sample sizes ranging from 25% to 250% of the observed NIS 
samples for cross-sectional models are displayed in figures 3.4.2a  and 3.4.2c.  Figures 
3.4.2b and 3.4.2d presents the similar boxplots for the time-trend models.  The results (p-
values) from global Wald tests performed to assess whether there are statistically 
significant difference between a pair of model parameter estimates are provided in Table 
3.4.2c.  Results (p-values) from pair-wise T-test to test for intercept differences are also 
included in Table 3.4.2c.  Both Wald and T-tests are performed at 5% level of 
significance. 
 
All three model  specific parameter estimates are quite comparable and the variability 
decreases as target sample size increases.  For both cross-sectional and time trend models 
the intercept differences between GEE and GLIMMIX models are always the highest for 
all target sample sizes as seen from figures 3.4.2c and 3.4.2d. All global Wald tests and t-
tests for intercept differences are highly significant which means the three modeling 
approaches are statistically different.   
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Table 3.4.2a. Average Models Estimates and Relative Standard Errors from Simple 
Logistic Model Fit, Differences and Relative Differences in Model Estimates from a 
Specific Pair of Modeling Approaches for the In Patient Quality Indicator IQI-17 
(IQI 17 – Acute Stroke Mortality Rate) For Each Parameter in the Model (Cross-
Sectional) 

Cross-Sectional 

Simple Logistic 
Regression 

Difference between model 
estimates from a pair of modeling 

approaches 

Relative Difference between model 
estimates from a pair of modeling 

approaches Parameter 

Estimate Std. 
Error 

SLR vs. 
GEE 

SLR vs. 
GLIM 

GEE vs. 
GLIM 

SLR vs.  
GEE 

SLR vs. 
GLIM 

GEE vs. 
GLIM 

Intercept  -1.727 0.0671 -0.053 -0.037 0.016 0.031 0.022 0.009 
SEX  0.077 0.0286 0.003 0.002 -0.001 0.033 0.022 0.011 
AGE1  -0.896 0.1742 -0.033 -0.004 0.030 0.038 0.004 0.034 
AGE2  -0.961 0.1700 -0.053 -0.040 0.013 0.057 0.043 0.015 
AGE3  -0.634 0.1097 -0.037 -0.018 0.019 0.060 0.028 0.032 
AGE4  -0.635 0.0890 -0.036 -0.022 0.014 0.059 0.035 0.024 
AGE5  -0.669 0.0676 -0.027 -0.001 0.026 0.042 0.002 0.040 
AGE6  -0.440 0.0548 -0.026 -0.011 0.015 0.061 0.026 0.036 
AGE7  -0.475 0.0485 -0.023 -0.004 0.019 0.050 0.008 0.042 
AGE8  -0.416 0.0467 -0.027 -0.013 0.014 0.068 0.031 0.036 
AGE9  -0.416 0.0443 -0.027 -0.018 0.009 0.067 0.044 0.023 
AGE10  -0.352 0.0403 -0.021 -0.012 0.008 0.061 0.036 0.025 
AGE11  -0.407 0.0367 -0.021 -0.011 0.010 0.054 0.027 0.027 
AGE12  -0.314 0.0344 -0.015 -0.008 0.007 0.049 0.025 0.025 
AGE13  -0.195 0.0339 -0.009 -0.003 0.006 0.049 0.018 0.031 
AGE15  -0.404 0.2783 -0.033 -0.034 -0.001 0.084 0.088 0.004 
AGE16  -0.324 0.2563 -0.004 0.032 0.036 0.012 0.095 0.107 
AGE17  -0.391 0.1621 -0.014 -0.006 0.008 0.036 0.016 0.020 
AGE18  -0.279 0.1274 -0.008 0.007 0.015 0.029 0.024 0.053 
AGE19  0.133 0.0925 -0.003 -0.011 -0.009 0.021 0.082 0.062 
AGE20  -0.143 0.0765 -0.007 -0.004 0.003 0.049 0.027 0.023 
AGE21  -0.154 0.0684 -0.016 -0.024 -0.007 0.111 0.166 0.055 
AGE22  -0.181 0.0655 0.000 0.005 0.005 0.001 0.026 0.025 
AGE23  -0.085 0.0616 0.002 0.007 0.005 0.027 0.079 0.052 
AGE24  -0.157 0.0554 -0.001 0.005 0.007 0.008 0.034 0.042 
AGE25  -0.012 0.0484 0.004 0.005 0.001 0.320 0.358 0.039 
AGE26  -0.060 0.0440 -0.003 -0.003 -0.000 0.046 0.053 0.007 
AGE27  -0.099 0.0424 -0.003 -0.002 0.001 0.026 0.017 0.009 
C1  -1.506 0.1349 -0.052 0.013 0.065 0.035 0.009 0.044 
C2  -0.128 0.0810 0.004 0.006 0.002 0.029 0.046 0.017 
C3  0.987 0.0687 0.026 -0.000 -0.026 0.026 0.000 0.027 
C4  2.268 0.0727 0.020 -0.049 -0.069 0.009 0.021 0.030 
C5  -0.226 0.0843 0.011 0.023 0.012 0.047 0.095 0.049 
C6  0.375 0.0651 0.027 0.023 -0.004 0.075 0.063 0.012 
C7  1.568 0.0674 0.033 -0.005 -0.038 0.021 0.003 0.025 
C8  3.299 0.0672 0.015 -0.062 -0.077 0.005 0.019 0.023 
C9  -2.601 0.0757 -0.100 0.038 0.138 0.039 0.015 0.054 
C10  -1.244 0.0652 -0.013 0.034 0.047 0.010 0.027 0.037 
C11  0.271 0.0659 0.012 0.006 -0.006 0.044 0.021 0.023 
C12  2.118 0.0659 0.027 -0.027 -0.054 0.013 0.013 0.026 
C13  -2.574 0.0971 -0.038 0.062 0.101 0.015 0.024 0.039 
C14  -1.017 0.0677 0.026 0.060 0.034 0.025 0.057 0.032 
C15  0.326 0.0717 0.035 0.034 -0.001 0.114 0.110 0.004 
C16  2.039 0.0772 0.033 -0.021 -0.054 0.016 0.010 0.027 
C17  -0.024 0.0709 -0.003 -0.005 -0.002 0.118 0.235 0.118 
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Table 3.4.2 b. Average Models Estimates and Relative Standard Errors from Simple 
Logistic Model Fit, Differences and Relative Differences in Model Estimates from a 
Specific Pair of Modeling Approaches for the In Patient Quality Indicator IQI-17 
(IQI 17 – Acute Stroke Mortality Rate) For Each Parameter in the Model (Time-
Trend)  

Simple Logistic 
Regression 

Difference between model estimates 
from a pair of modeling approaches 

Relative Difference between model 
estimates from a pair of modeling 

approaches  Parameter 

Estimate Std. 
Error 

SLR vs. 
GEE 

SLR vs. 
GLIM 

GEE vs. 
GLIM 

SLR vs.  
GEE 

SLR vs. 
GLIM 

GEE vs. 
GLIM 

Intercept  -1.657 0.0676 -0.035 -0.019 0.016 0.021 0.012 0.010 
SEX  0.075 0.0286 0.002 0.001 -0.001 0.028 0.015 0.013 
AGE1  -0.896 0.1744 -0.030 -0.001 0.029 0.034 0.001 0.034 
AGE2  -0.957 0.1700 -0.049 -0.035 0.014 0.051 0.036 0.015 
AGE3  -0.632 0.1096 -0.035 -0.016 0.018 0.055 0.026 0.031 
AGE4  -0.633 0.0891 -0.033 -0.020 0.014 0.053 0.031 0.023 
AGE5  -0.668 0.0676 -0.026 -0.001 0.025 0.038 0.001 0.039 
AGE6  -0.435 0.0548 -0.023 -0.008 0.015 0.053 0.018 0.037 
AGE7  -0.472 0.0485 -0.020 -0.001 0.019 0.043 0.002 0.042 
AGE8  -0.414 0.0467 -0.025 -0.010 0.014 0.060 0.025 0.037 
AGE9  -0.414 0.0443 -0.025 -0.016 0.009 0.060 0.038 0.023 
AGE10  -0.352 0.0403 -0.019 -0.011 0.008 0.055 0.032 0.025 
AGE11  -0.409 0.0368 -0.021 -0.011 0.010 0.052 0.028 0.026 
AGE12  -0.316 0.0344 -0.016 -0.009 0.007 0.050 0.028 0.023 
AGE13  -0.196 0.0339 -0.009 -0.004 0.006 0.047 0.018 0.030 
AGE15  -0.389 0.2784 -0.027 -0.028 -0.001 0.070 0.071 0.002 
AGE16  -0.319 0.2564 -0.001 0.035 0.036 0.004 0.109 0.113 
AGE17  -0.393 0.1622 -0.014 -0.007 0.007 0.036 0.019 0.018 
AGE18  -0.285 0.1274 -0.010 0.003 0.014 0.036 0.012 0.050 
AGE19  0.137 0.0926 -0.001 -0.008 -0.007 0.008 0.061 0.053 
AGE20  -0.143 0.0765 -0.006 -0.003 0.003 0.044 0.022 0.024 
AGE21  -0.155 0.0684 -0.017 -0.024 -0.007 0.108 0.155 0.053 
AGE22  -0.181 0.0655 0.000 0.005 0.004 0.001 0.025 0.024 
AGE23  -0.084 0.0616 0.003 0.007 0.005 0.031 0.088 0.055 
AGE24  -0.157 0.0554 -0.001 0.005 0.007 0.008 0.035 0.043 
AGE25  -0.011 0.0484 0.005 0.006 0.001 0.424 0.511 0.061 
AGE26  -0.058 0.0440 -0.002 -0.002 -0.000 0.031 0.032 0.000 
AGE27  -0.099 0.0424 -0.002 -0.001 0.001 0.024 0.014 0.009 
C1  -1.508 0.1349 -0.051 0.011 0.063 0.034 0.007 0.043 
C2  -0.128 0.0810 0.003 0.005 0.002 0.024 0.039 0.015 
C3  0.985 0.0687 0.024 -0.002 -0.025 0.024 0.002 0.026 
C4  2.271 0.0728 0.019 -0.048 -0.067 0.008 0.021 0.030 
C5  -0.225 0.0843 0.011 0.023 0.012 0.048 0.100 0.050 
C6  0.373 0.0651 0.025 0.021 -0.004 0.067 0.056 0.012 
C7  1.569 0.0674 0.032 -0.006 -0.037 0.020 0.004 0.024 
C8  3.301 0.0672 0.014 -0.061 -0.076 0.004 0.019 0.023 
C9  -2.605 0.0757 -0.099 0.035 0.133 0.038 0.013 0.053 
C10  -1.246 0.0652 -0.014 0.031 0.045 0.011 0.025 0.037 
C11  0.272 0.0659 0.011 0.005 -0.006 0.040 0.018 0.023 
C12  2.120 0.0659 0.026 -0.027 -0.053 0.012 0.013 0.025 
C13  -2.582 0.0971 -0.042 0.056 0.098 0.016 0.022 0.039 
C14  -1.025 0.0677 0.020 0.053 0.033 0.020 0.052 0.032 
C15  0.319 0.0717 0.031 0.029 -0.002 0.096 0.090 0.007 
C16  2.034 0.0773 0.029 -0.025 -0.054 0.014 0.012 0.027 
C17  -0.021 0.0709 -0.002 -0.004 -0.002 0.076 0.179 0.111 
Year  -0.068 0.0080 -0.015 -0.015 -0.000 0.217 0.218 0.002 
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Figure 3.4.2a: Box Plots of the Model Specific Estimates of the Intercepts Obtained from fitting 

Cross-Sectional Models to 100 Boot Strap Sampling with Target Sampling at 
25%, 50%, 100%, 150%, and 250% of the Observed NIS Sample Data for IQI-17.    
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Figure 3.4.2b: Box Plots of the Model Specific Estimates of the Intercepts Obtained from fitting 

Time-Trend Models to 100 Boot Strap Sampling with Target Sampling at 25%, 
50%, 100%, 150%, and 250% of the Observed NIS Sample Data for IQI-17.    
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Figure 3.4.2c: Box Plots of the Differences in Model Specific Estimates of the Intercepts from a 
Specific Pair of Cross-Sectional Models Fitted to 100 Boot Strap Sampling Runs 
with Target Sampling at 25%, 50%, 100%, 150%, and 250% of the Observed NIS 
Sample Data for IQI-17.    
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Figure 3.4.2d: Box Plots of the Differences in Model Specific Estimates of the Intercepts from a 

Specific Pair of Time-Trend Models Fitted to 100 Boot Strap Sampling Runs with 
Target Sampling at 25%, 50%, 100%, 150%, and 250% of the Observed NIS 
Sample Data for IQI-17.    

 
 
Table 3.4.2c. Wald Test Statistics and (P-Value) Comparing Models fit to IQI-17  

  (IQI 17 – Acute Stroke Mortality Rate) 
 

P-values 
Cross-Sectional Models Time-Trend Models Test 

Percent of 
Observed 
Sample SLR vs. 

GEE 
SLR vs. 
GLIM 

GEE vs. 
GLIM 

SLR vs.  
GEE 

SLR vs. 
GLIM 

GEE vs. 
GLIM 

25% < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 
50% < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 

100% < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 
150% < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 

Global Wald 
Test 

250% < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 
25% < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 
50% < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 

100% < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 
150% < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 

T-Test for 
Intercept 

Difference 
250% < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 
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3.5 IQI 19 – Hip Fracture Mortality Rate 
 

3.5.1 Model Parameter Estimates 
Below we provide the model parameter estimates from fitting the simple logistic 
regression, generalized estimating equations, and generalized linear mixed model to the 
2001-2003 Nationwide Inpatient Sample for IQI 19 (Hip Fracture Mortality Rate).  Table 
3.5.1a provides the parameter estimates associated with the cross-sectional model, and 
Table 3.5.1b provides the parameter estimates associate with the model that adjusts for a 
simple linear trend over time.  Across these two tables, we see that the parameter 
estimates and associated standard errors are quite comparable among the three modeling 
approaches.  In fact, the estimated correlation coefficient from the GEE modeling 
approach is nearly zero (ρ=0.0017) in both the cross-sectional and time-trend adjusted 
models.  The estimated variance components associated with provider-specific random 
effects from the GLIMMIX model were subtle, yet statistically significant in both models 
(σ2

Btw Hosp = 0.126 for the cross sectional model, and 0.109 for the time-trend model).  
The variance component that captures provider-specific variation in the time-trend slope 
was statistically significant (σ2

Year = 0.043). 
 
Table 3.5.1c provides the Wald Statistics to determine whether there are statistically 
significant differences between the vector of parameter estimates generated by each 
modeling approach.  The Wald Statistics consider pair-wise comparisons, and suggest 
that there were no significant differences between the different modeling approaches for 
IQI 19. 
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Table 3.5.1a Parameter Estimates from Cross Sectional Models fit to IQI-19 
(Hip Fracture Mortality Rate)  

 
Simple Logistic Regression 

Model 
Generalized Estimating 

Equations Model 
Generalized Linear 

Mixed Model 
Parameter 

Estimate Std Err p value Estimate Std Err p value Estimate Std Err p value 
Intercept -1.569 0.139 0.000 -1.565 0.139 0.000 -1.560 0.141 0.000 
SEX -0.310 0.043 0.000 -0.310 0.043 0.000 -0.317 0.044 0.000 
AGE3 -2.610 1.007 0.010 -2.569 0.979 0.009 -2.609 1.008 0.010 
AGE4 -1.244 0.459 0.007 -1.224 0.452 0.007 -1.233 0.461 0.007 
AGE5 -2.137 0.587 0.000 -2.131 0.580 0.000 -2.167 0.588 0.000 
AGE6 -0.905 0.271 0.001 -0.912 0.269 0.001 -0.955 0.273 0.000 
AGE7 -0.729 0.224 0.001 -0.728 0.222 0.001 -0.732 0.225 0.001 
AGE8 -0.860 0.225 0.000 -0.853 0.223 0.000 -0.866 0.226 0.000 
AGE9 -0.525 0.170 0.002 -0.524 0.169 0.002 -0.546 0.172 0.001 
AGE10 -0.453 0.122 0.000 -0.454 0.122 0.000 -0.462 0.123 0.000 
AGE11 -0.713 0.096 0.000 -0.711 0.096 0.000 -0.721 0.097 0.000 
AGE12 -0.449 0.071 0.000 -0.448 0.071 0.000 -0.453 0.072 0.000 
AGE13 -0.296 0.061 0.000 -0.293 0.061 0.000 -0.293 0.062 0.000 
AGE17 1.740 1.245 0.162 1.703 1.219 0.162 1.744 1.248 0.162 
AGE18 -0.155 1.109 0.889 -0.167 1.094 0.879 -0.173 1.110 0.876 
AGE19 0.950 0.835 0.256 0.951 0.826 0.249 0.965 0.837 0.249 
AGE20 0.687 0.420 0.102 0.690 0.418 0.099 0.746 0.422 0.077 
AGE21 -0.103 0.376 0.785 -0.098 0.373 0.793 -0.099 0.378 0.794 
AGE22 0.437 0.310 0.159 0.430 0.307 0.161 0.446 0.311 0.152 
AGE23 0.345 0.232 0.137 0.348 0.230 0.131 0.376 0.234 0.108 
AGE24 -0.053 0.171 0.755 -0.048 0.170 0.776 -0.046 0.172 0.788 
AGE25 0.141 0.124 0.256 0.140 0.123 0.255 0.135 0.125 0.279 
AGE26 -0.078 0.093 0.401 -0.074 0.092 0.420 -0.078 0.093 0.405 
AGE27 -0.074 0.077 0.339 -0.073 0.077 0.340 -0.078 0.078 0.313 
C1 -3.211 0.166 0.000 -3.191 0.166 0.000 -3.223 0.167 0.000 
C2 -2.221 0.145 0.000 -2.204 0.145 0.000 -2.224 0.146 0.000 
C3 -0.330 0.142 0.020 -0.325 0.142 0.022 -0.325 0.143 0.023 
C4 1.293 0.145 0.000 1.298 0.145 0.000 1.328 0.146 0.000 
C5 -3.925 0.169 0.000 -3.886 0.169 0.000 -3.930 0.170 0.000 
C6 -2.462 0.143 0.000 -2.440 0.143 0.000 -2.461 0.144 0.000 
C7 -0.377 0.140 0.007 -0.369 0.140 0.008 -0.365 0.141 0.010 
C8 1.427 0.143 0.000 1.431 0.143 0.000 1.458 0.145 0.000 
C9 -1.960 0.177 0.000 -1.928 0.175 0.000 -1.920 0.178 0.000 
C10 -0.639 0.146 0.000 -0.623 0.145 0.000 -0.597 0.147 0.000 
C11 1.058 0.145 0.000 1.063 0.145 0.000 1.097 0.147 0.000 
C12 2.582 0.161 0.000 2.584 0.161 0.000 2.620 0.163 0.000 
C13 -0.502 0.152 0.001 -0.492 0.152 0.001 -0.483 0.153 0.002 
ρ 0.0017 . .  
σ2

Hosp 
 

 0.126 0.017 . 
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The effect of the YEAR parameter (which captures the trend over time) was highly 
significant for all three modeling approaches, as seen in Table 3.5.1b below. 
 
Table 3.5.1b Parameter Estimates from Time Trend Models fit to IQI-19   

(Hip Fracture Mortality Rate)  
 

Simple Logistic Regression 
Model 

Generalized Estimating 
Equations Model 

Generalized Linear 
Mixed Model 

Parameter 

Estimate Std Err p value Estimate Std Err p value Estimate Std Err p value 
Intercept  -1.570 0.139 0.000 -1.567 0.139 0.000 -1.566 0.141 0.000 
SEX  -0.311 0.043 0.000 -0.311 0.043 0.000 -0.318 0.044 0.000 
AGE3  -2.609 1.007 0.010 -2.570 0.980 0.009 -2.618 1.008 0.009 
AGE4  -1.242 0.460 0.007 -1.222 0.452 0.007 -1.230 0.461 0.008 
AGE5  -2.141 0.587 0.000 -2.135 0.581 0.000 -2.177 0.588 0.000 
AGE6  -0.897 0.270 0.001 -0.903 0.269 0.001 -0.949 0.273 0.001 
AGE7  -0.727 0.224 0.001 -0.725 0.222 0.001 -0.731 0.225 0.001 
AGE8  -0.858 0.225 0.000 -0.851 0.223 0.000 -0.866 0.226 0.000 
AGE9  -0.521 0.170 0.002 -0.520 0.169 0.002 -0.546 0.172 0.001 
AGE10  -0.448 0.122 0.000 -0.449 0.122 0.000 -0.458 0.123 0.000 
AGE11  -0.714 0.096 0.000 -0.713 0.096 0.000 -0.722 0.097 0.000 
AGE12  -0.447 0.071 0.000 -0.446 0.071 0.000 -0.454 0.072 0.000 
AGE13  -0.296 0.061 0.000 -0.293 0.061 0.000 -0.293 0.062 0.000 
AGE17  1.751 1.246 0.160 1.715 1.220 0.160 1.770 1.248 0.156 
AGE18  -0.159 1.109 0.886 -0.170 1.093 0.876 -0.170 1.110 0.879 
AGE19  0.952 0.836 0.254 0.954 0.826 0.248 0.975 0.837 0.244 
AGE20  0.682 0.420 0.105 0.685 0.418 0.101 0.747 0.422 0.077 
AGE21  -0.107 0.376 0.777 -0.102 0.373 0.785 -0.099 0.378 0.794 
AGE22  0.443 0.310 0.152 0.437 0.307 0.154 0.452 0.311 0.146 
AGE23  0.347 0.232 0.135 0.350 0.230 0.129 0.380 0.234 0.105 
AGE24  -0.059 0.171 0.729 -0.054 0.170 0.750 -0.049 0.172 0.778 
AGE25  0.143 0.124 0.249 0.142 0.123 0.249 0.137 0.125 0.272 
AGE26  -0.079 0.093 0.393 -0.075 0.092 0.413 -0.077 0.093 0.408 
AGE27  -0.074 0.077 0.339 -0.073 0.077 0.340 -0.077 0.078 0.320 
C1  -3.213 0.166 0.000 -3.192 0.166 0.000 -3.221 0.168 0.000 
C2  -2.220 0.145 0.000 -2.204 0.145 0.000 -2.219 0.146 0.000 
C3  -0.326 0.142 0.022 -0.321 0.142 0.024 -0.317 0.143 0.027 
C4  1.299 0.145 0.000 1.304 0.145 0.000 1.338 0.146 0.000 
C5  -3.927 0.169 0.000 -3.887 0.169 0.000 -3.928 0.170 0.000 
C6  -2.461 0.143 0.000 -2.439 0.143 0.000 -2.456 0.144 0.000 
C7  -0.374 0.140 0.008 -0.366 0.140 0.009 -0.358 0.142 0.012 
C8  1.433 0.143 0.000 1.437 0.143 0.000 1.468 0.145 0.000 
C9  -1.966 0.177 0.000 -1.933 0.175 0.000 -1.919 0.178 0.000 
C10  -0.641 0.146 0.000 -0.625 0.145 0.000 -0.592 0.147 0.000 
C11  1.057 0.145 0.000 1.062 0.145 0.000 1.102 0.147 0.000 
C12  2.589 0.161 0.000 2.592 0.161 0.000 2.634 0.163 0.000 
C13  -0.501 0.152 0.001 -0.490 0.152 0.001 -0.478 0.154 0.002 
YEAR  -0.063 0.018 0.001 -0.066 0.019 0.000 -0.066 0.021 0.002 
ρ 0.0017 . .  
σ2

Hosp 0.109 0.018 . 
σ2

Year 

 
 

0.043 0.019 . 
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Table 3.5.1c Wald Test Statistics and (P-Value) Comparing Models fit to IQI-19 
(Hip Fracture Mortality Rate) 

 
Cross Sectional Model Time Trend Model  

SLR GEE GLIMMIX SLR GEE GLIMMIX 
SLR  1.473 

(1.000) 
3.396 

(1.000) 
 1.557 

(1.000) 
3.440 

(1.000) 
GEE 1.178 

(1.000) 
 2.391 

(1.000) 
1.252 

(1.000) 
 2.509 

(1.000) 
GLIMMIX 2.614 

(1.000) 
2.332 

(1.000) 
 2.696 

(1.000) 
2.470 

(1.000) 
 

• Wald Test uses the estimated covariance matrix from the model listed in each row 
 
 
Table 3.5.1d below provides the mean and standard deviation of differences between 
model predictions (expected rates above the diagonal, and risk-adjusted rates below the 
diagonal) from a random sample of 50 providers within the NIS reference population for 
IQI 17.  The mean difference in expected rates and risk-adjusted rates was nearly zero for 
all modeling approach pairwise comparisons – despite the fact that the GLIMMIX 
modeling approaches identified statistically significant variance components associated 
with the random effects. 
 
Table 3.5.1d Estimated Differences (and Standard Deviation) in Provider-Level 

Model Predictions of Expected and Risk Adjusted Rates for IQI-19  
  (Hip Fracture Mortality Rate) 
 

Cross Sectional Model Time Trend Model  
SLR GEE GLIMMIX SLR GEE GLIMMIX 

SLR  -0.000 
(0.000) 

-0.000 
(0.001) 

 -0.000 
(0.000) 

-0.000 
(0.001) 

GEE 0.004 
(0.006) 

 0.000 
(0.000) 

0.004 
(0.006) 

 0.000 
(0.000) 

GLIMMIX 0.001 
(0.005) 

-0.003 
(0.005) 

 0.001 
(0.005) 

-0.003 
(0.006) 

 

* In each 3x3 table above, Expected Rate Differences (and Standard Deviations) are above the diagonal,   
and Adjusted Rate Differences (and Standard Deviations) are below the diagonal. 
 

3.5.2 Model Parameter Estimates from Fitting Models to Boot Strap 
Samples of NIS Data   

Both cross sectional and time-trend adjusted models (especially GLIMMIX) fitted for 
quality indicators IQI-19 (Abdominal Aortic Aneurysm Repair Mortality Rate) for 
bootstrap sampling runs with target sample size of 25% and 50% of the observed NIS 
sample had convergence problems due to small sample size or rare occurrence of the 
event.   
 
Tables 3.5.2a and 3.5.2b provide an overview of the results for the cross sectional and 
time-trend adjusted models fit to 100 bootstrap samples with population size 
approximately 100% of the size of the NIS sample.  Each table provides the mean across 
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the 100 bootstrap samples of the model parameter estimates and standard errors from the 
Simple Logistic Regression Model.  The table also provides average absolute and relative 
differences between each pair of modeling approaches.  Box plots of model specific 
intercept estimates and differences in intercept estimates between each pair of modeling 
approaches when target sample sizes ranging from 100% to 250% of the observed NIS 
samples for cross-sectional models are displayed in Figures 3.5.2a  and 3.5.2c.  Figures 
3.5.2b and 3.5.2d presents the similar boxplots for the time-trend models.  The results (p-
values) from global Wald tests performed to assess whether there are statistically 
significant difference between a pair of model parameter estimates are provided in Table 
3.5.2c.  Results (p-values) from pair-wise t-test to test for intercept differences are also 
included in Table 3.5.2c.  Both Wald and t-tests are performed at 5% level of 
significance. 
 
 
Both cross-sectional and time-trend model parameter estimates from three modeling 
approaches match very closely.  Larger differences and relative differences among any 
pair of models are found for parameters Age25 and Age 26 compared to other 
parameters.  Box plots of intercept estimates for all three modeling approaches show 
similar spread for both cross-sectional and time-trend models.  Box plots of intercept 
differences show that the results of SLR and GEE modeling approaches are more similar 
to each other compared to GLIMMIX.  Variability in the intercept differences from valid 
bootstrap runs is smaller for target sample size at 50% as expected.  All overall Wald test 
results show significant differences in the three modeling approaches for both cross-
sectional and time-trend models at all target sample sizes explored for IQI-19.  Intercept 
differences are statistically significant for SLR and GEE for both cross-sectional and 
time-trend models based on the paired t-test results.  Table 3.5.2c shows that there are no 
statistically significant differences in intercept differences found between SLR and 
GLIMMIX models for the cross-sectional model, and between the GEE and GLIMMIX 
models for time-trend model at 100% target sample size.    
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Table 3.5.2a.  Average Models Estimates and Relative Standard Errors from 
Simple Logistic Model Fit, Differences and Relative Differences in Model Estimates 
from a Specific Pair of Modeling Approaches for the Inpatient Quality Indicator 
IQI-19 (IQI-19 – Hip Fracture Mortality Rate)  For Each Parameter in the Model 
(Cross-Sectional) 

Cross-Sectional 

Simple Logistic 
Regression 

Difference between model 
estimates from a pair of 

modeling approaches 

Relative Difference between model 
estimates from a pair of modeling 

approaches Parameter 

Estimate Std. 
Error 

SLR vs. 
GEE 

SLR vs. 
GLIM 

GEE vs. 
GLIM 

SLR vs.  
GEE 

SLR vs. 
GLIM 

GEE vs. 
GLIM 

Intercept  -1.634 0.1420 -0.011 -0.006 0.005 0.007 0.004 0.003 
SEX  -0.310 0.0434 -0.000 0.018 0.018 0.001 0.056 0.057 
AGE3  -2.386 0.8902 -0.092 -0.005 0.087 0.039 0.002 0.037 
AGE4  -1.431 0.5252 -0.049 0.011 0.060 0.035 0.007 0.042 
AGE5  -2.194 0.6436 -0.024 0.064 0.088 0.011 0.029 0.040 
AGE6  -1.080 0.2989 0.011 0.091 0.080 0.010 0.081 0.071 
AGE7  -0.765 0.2298 -0.014 -0.001 0.013 0.019 0.001 0.018 
AGE8  -0.836 0.2263 -0.017 0.015 0.032 0.021 0.018 0.039 
AGE9  -0.583 0.1737 -0.009 0.036 0.045 0.015 0.061 0.076 
AGE10  -0.481 0.1232 -0.002 0.019 0.021 0.005 0.039 0.044 
AGE11  -0.660 0.0952 -0.005 0.018 0.023 0.008 0.027 0.035 
AGE12  -0.464 0.0718 -0.004 0.012 0.016 0.009 0.025 0.034 
AGE13  -0.269 0.0608 -0.008 -0.005 0.003 0.030 0.017 0.012 
AGE17  1.535 1.2103 0.081 -0.021 -0.102 0.054 0.014 0.068 
AGE18  0.174 1.0819 0.004 -0.031 -0.035 0.023 0.161 0.184 
AGE19  0.872 0.9449 -0.019 -0.052 -0.033 0.021 0.058 0.036 
AGE20  0.895 0.4421 -0.010 -0.117 -0.107 0.011 0.123 0.111 
AGE21  -0.422 0.4326 -0.029 -0.020 0.008 0.070 0.049 0.021 
AGE22  0.403 0.3126 0.012 -0.019 -0.031 0.030 0.047 0.076 
AGE23  0.378 0.2366 0.002 -0.058 -0.060 0.004 0.143 0.148 
AGE25  -0.013 0.1725 -0.008 -0.010 -0.002 0.954 1.373 0.623 
AGE24  0.101 0.1233 0.002 0.012 0.009 0.024 0.125 0.100 
AGE26  -0.019 0.0926 -0.007 -0.002 0.005 0.449 0.097 0.356 
AGE27  -0.100 0.0771 -0.002 0.006 0.008 0.016 0.060 0.076 
C1  -3.130 0.1681 -0.051 0.040 0.091 0.016 0.013 0.029 
C2  -2.159 0.1474 -0.038 0.022 0.060 0.018 0.010 0.028 
C3  -0.285 0.1446 -0.011 0.001 0.012 0.040 0.003 0.043 
C4  1.359 0.1473 -0.010 -0.066 -0.056 0.007 0.047 0.040 
C5  -3.875 0.1716 -0.091 0.033 0.124 0.024 0.008 0.032 
C6  -2.418 0.1452 -0.051 0.019 0.070 0.021 0.008 0.029 
C7  -0.316 0.1429 -0.015 -0.007 0.008 0.049 0.023 0.026 
C8  1.477 0.1457 -0.006 -0.061 -0.055 0.004 0.040 0.036 
C9  -1.925 0.1820 -0.084 -0.054 0.030 0.045 0.029 0.016 
C10  -0.551 0.1484 -0.034 -0.054 -0.020 0.065 0.104 0.039 
C11  1.122 0.1480 -0.008 -0.066 -0.058 0.007 0.057 0.050 
C12  2.685 0.1637 -0.001 -0.086 -0.085 0.000 0.031 0.031 
C13  -0.440 0.1545 -0.022 -0.019 0.003 0.050 0.044 0.007 
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Table 3.5.2b.  Average Models Estimates and Relative Standard Errors from Simple 
Logistic Model Fit, Differences and Relative Differences in Model Estimates from a 
Specific Pair of Modeling Approaches for the Inpatient Quality Indicator IQI-19 
(IQI-19 – Hip Fracture Mortality Rate)  For Each Parameter in the Model (Time-
Trend) 

Time-Trend 

Simple Logistic 
Regression 

Difference between model estimates 
from a pair of modeling approaches 

Relative Difference between model 
estimates from a pair of modeling 

approaches Parameter 

Estimate Std. 
Error 

SLR vs. 
GEE 

SLR vs. 
GLIM 

GEE vs. 
GLIM 

SLR vs.  
GEE 

SLR vs. 
GLIM 

GEE vs. 
GLIM 

Intercept  -1.571 0.1431 -0.021 -0.022 -0.001 0.013 0.014 0.001 
SEX  -0.311 0.0434 0.000 0.018 0.018 0.000 0.057 0.057 
AGE3  -2.389 0.8905 -0.089 -0.003 0.086 0.038 0.001 0.037 
AGE4  -1.428 0.5253 -0.050 0.011 0.061 0.035 0.008 0.043 
AGE5  -2.198 0.6439 -0.023 0.065 0.088 0.010 0.029 0.040 
AGE6  -1.073 0.2989 0.010 0.090 0.080 0.009 0.081 0.072 
AGE7  -0.764 0.2298 -0.015 -0.001 0.014 0.020 0.002 0.018 
AGE8  -0.834 0.2263 -0.016 0.017 0.033 0.020 0.020 0.040 
AGE9  -0.579 0.1737 -0.008 0.037 0.046 0.014 0.063 0.077 
AGE10  -0.476 0.1232 -0.002 0.022 0.024 0.004 0.044 0.048 
AGE11  -0.662 0.0952 -0.005 0.018 0.023 0.007 0.027 0.035 
AGE12  -0.462 0.0718 -0.003 0.014 0.017 0.007 0.030 0.037 
AGE13  -0.269 0.0608 -0.008 -0.004 0.004 0.030 0.016 0.014 
AGE17  1.553 1.2106 0.076 -0.023 -0.099 0.050 0.015 0.065 
AGE18  0.167 1.0820 0.000 -0.032 -0.032 0.003 0.175 0.178 
AGE19  0.874 0.9453 -0.021 -0.055 -0.034 0.024 0.061 0.037 
AGE20  0.894 0.4420 -0.009 -0.117 -0.108 0.010 0.123 0.113 
AGE21  -0.424 0.4327 -0.029 -0.021 0.007 0.070 0.051 0.019 
AGE22  0.410 0.3124 0.011 -0.020 -0.031 0.027 0.047 0.075 
AGE23  0.382 0.2366 0.001 -0.058 -0.059 0.004 0.141 0.144 
AGE24  -0.018 0.1725 -0.008 -0.014 -0.006 0.586 1.248 0.810 
AGE25  0.103 0.1233 0.003 0.012 0.010 0.026 0.127 0.101 
AGE26  -0.020 0.0926 -0.008 -0.004 0.003 0.495 0.251 0.252 
AGE27  -0.100 0.0771 -0.002 0.006 0.007 0.016 0.056 0.071 
C1  -3.132 0.1681 -0.053 0.038 0.091 0.017 0.012 0.029 
C2  -2.159 0.1474 -0.038 0.021 0.059 0.018 0.010 0.027 
C3  -0.281 0.1446 -0.011 0.001 0.012 0.041 0.003 0.044 
C4  1.365 0.1473 -0.010 -0.066 -0.056 0.008 0.047 0.040 
C5  -3.878 0.1716 -0.093 0.032 0.125 0.024 0.008 0.033 
C6  -2.417 0.1452 -0.051 0.018 0.069 0.021 0.007 0.029 
C7  -0.313 0.1429 -0.015 -0.008 0.008 0.050 0.025 0.025 
C8  1.483 0.1458 -0.007 -0.061 -0.054 0.005 0.040 0.036 
C9  -1.931 0.1820 -0.086 -0.058 0.028 0.046 0.031 0.015 
C10  -0.551 0.1484 -0.035 -0.057 -0.022 0.065 0.108 0.043 
C11  1.122 0.1480 -0.008 -0.068 -0.059 0.008 0.059 0.051 
C12  2.693 0.1638 -0.002 -0.086 -0.084 0.001 0.031 0.031 
C13  -0.439 0.1545 -0.022 -0.020 0.002 0.051 0.047 0.004 
Year  -0.063 0.0180 0.010 0.017 0.007 0.148 0.237 0.090 
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Note: Box plots for target sample at 25% and 50% are not included since the models did not converge. 

 
Figure 3.5.2a: Box Plots of the Model Specific Estimates of the Intercepts Obtained from fitting 

Cross-Sectional Models to 100 Boot Strap Sampling with Target Sampling at 
25%, 50%, 100%, 150%, and 250% of the Observed NIS Sample Data for IQI-19.    
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Note: Box plots for target sample at 25% and 50% are not included since the models did not converge. 

 
Figure 3.5.2b: Box Plots of the Model Specific Estimates of the Intercepts Obtained from fitting 

Time-Trend Models to 100 Boot Strap Sampling with Target Sampling at 25%, 
50%, 100%, 150%, and 250% of the Observed NIS Sample Data for IQI-19.   
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Note: Box plots for target sample at 25% and 50% are not included since the models did not converge. 

 
Figure 3.5.2c: Box Plots of the Differences in Model Specific Estimates of the Intercepts from a 

Specific Pair of Cross-Sectional Models Fitted to 100 Boot Strap Sampling Runs 
with Target Sampling at 25%, 50%, 100%, 150%, and 250% of the Observed NIS 
Sample Data for IQI-19.    
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Note: Box plots for target sample at 25% and 50% are not included since the models did not converge. 

 
Figure 3.5.2d: Box Plots of the Differences in Model Specific Estimates of the Intercepts 

from a Specific Pair of Time-Trend Models Fitted to 100 Boot Strap 
Sampling Runs with Target Sampling at 25%, 50%, 100%, 150%, and 
250% of the Observed NIS Sample Data for IQI-19.    

 
 
Table 3.5.2c Wald Test Statistics and (P-Value) Comparing Models fit to IQI-19 (IQI-19 

– Hip Fracture Mortality Rate) 
 

P-values 
Cross-Sectional Models Time-Trend Models Test 

Percent of 
Observed 
Sample SLR vs. 

GEE 
SLR vs. 
GLIM 

GEE vs. 
GLIM 

SLR vs.  
GEE 

SLR vs. 
GLIM 

GEE vs. 
GLIM 

25% . . . . . . 
50% . . . . . . 

100% < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 
150% < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 

Global Wald 
Test 

250% < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 
25%       
50%       

100% < 0.0001 0.1598 0.0895 < 0.0001 < 0.0001 0.6859 
150% < 0.0001 0.0026 < 0.0001 < 0.0001 < 0.0001 0.0842 

T-Test for 
Intercept 

Difference 
250% < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 
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3.6 IQI 25 – Bilateral Cardiac Catheterization Rate 
 

3.6.1 Model Parameter Estimates 
Below we provide the model parameter estimates from fitting the simple logistic 
regression, generalized estimating equations, and generalized linear mixed model to the 
2001-2003 Nationwide Inpatient Sample for IQI 25 (Bilateral Cardiac Catheterization 
Rate).  Table 3.6.1a provides the parameter estimates associated with the cross-sectional 
model, and Table 3.6.1b provides the parameter estimates associate with the model that 
adjusts for a simple linear trend over time.  Across these two tables, we see that the 
parameter estimates and associated standard errors are comparable, but with noticeable 
differences among the three modeling approaches.  The estimated correlation coefficient 
from the GEE modeling approach was largest for this Quality Indicator (compared to the 
other four QIs investigated), with ρ=0.0412 in the cross-sectional and ρ=0.0405 in the 
time-trend adjusted model.  The estimated variance components associated with provider-
specific random effects from the GLIMMIX model were also comparatively larger, and 
statistically significant in both models (σ2

Btw Hosp = 0.779 for the cross sectional model, 
and 0.766 for the time-trend model).  The variance component that captures provider-
specific variation in the time-trend slope was statistically significant (σ2

Year = 0.031). 
 
The effect of the YEAR parameter (which captures the trend over time) was highly 
significant for all three modeling approaches, as seen in Table 3.6.1b below. 
 
Table 3.6.1c provides the Wald Statistics to determine whether there are statistically 
significant differences between the vector of parameter estimates generated by each 
modeling approach.  The Wald Statistics consider pair-wise comparisons, and suggest 
that there were highly significant differences between the different modeling approaches 
for IQI 25. 



AHRQ Quality Indicators 
Risk Adjustment and Hierarchical Modeling 

Draft Report 

Draft Report 59 Do Not Cite or Quote 

Table 3.6.1a Parameter Estimates from Cross Sectional Models fit to IQI-25 
(Bilateral Cardiac Catheterization Rate)  
 

Simple Logistic Regression 
Model 

Generalized Estimating 
Equations Model 

Generalized Linear 
Mixed Model 

Parameter 

Estimate Std Err p value Estimate Std Err p value Estimate Std Err p value 
Intercept  -1.820 0.038 0.000 -1.871 0.042 0.000 -2.169 0.050 0.000 
SEX  -0.115 0.036 0.001 -0.121 0.036 0.001 -0.127 0.038 0.001 
AGE1  -0.307 0.214 0.152 -0.283 0.209 0.174 -0.273 0.222 0.219 
AGE2  -0.556 0.158 0.000 -0.465 0.150 0.002 -0.499 0.163 0.002 
AGE3  -0.829 0.089 0.000 -0.687 0.083 0.000 -0.751 0.092 0.000 
AGE4  -0.964 0.061 0.000 -0.830 0.058 0.000 -0.907 0.063 0.000 
AGE5  -0.903 0.043 0.000 -0.771 0.041 0.000 -0.840 0.044 0.000 
AGE6  -0.850 0.036 0.000 -0.722 0.035 0.000 -0.787 0.037 0.000 
AGE7  -0.765 0.033 0.000 -0.640 0.032 0.000 -0.694 0.034 0.000 
AGE8  -0.591 0.031 0.000 -0.500 0.031 0.000 -0.537 0.033 0.000 
AGE9  -0.472 0.031 0.000 -0.385 0.030 0.000 -0.410 0.032 0.000 
AGE10  -0.308 0.030 0.000 -0.238 0.029 0.000 -0.248 0.031 0.000 
AGE11  -0.212 0.030 0.000 -0.153 0.029 0.000 -0.155 0.031 0.000 
AGE12  -0.072 0.030 0.015 -0.037 0.029 0.202 -0.031 0.031 0.315 
AGE13  0.002 0.031 0.941 0.021 0.031 0.492 0.029 0.033 0.367 
AGE15  0.555 0.366 0.129 0.469 0.364 0.197 0.462 0.385 0.230 
AGE16  0.473 0.259 0.067 0.456 0.247 0.065 0.492 0.267 0.066 
AGE17  0.251 0.165 0.128 0.239 0.154 0.120 0.268 0.170 0.116 
AGE18  0.277 0.104 0.008 0.283 0.097 0.004 0.302 0.107 0.005 
AGE19  0.278 0.070 0.000 0.297 0.065 0.000 0.323 0.072 0.000 
AGE20  0.299 0.056 0.000 0.295 0.053 0.000 0.321 0.058 0.000 
AGE21  0.221 0.049 0.000 0.210 0.048 0.000 0.229 0.051 0.000 
AGE22  0.126 0.046 0.006 0.148 0.045 0.001 0.160 0.048 0.001 
AGE23  0.152 0.044 0.001 0.162 0.043 0.000 0.177 0.046 0.000 
AGE24  0.057 0.043 0.180 0.079 0.042 0.059 0.084 0.045 0.059 
AGE25  0.070 0.042 0.094 0.084 0.041 0.039 0.089 0.043 0.041 
AGE26  0.034 0.041 0.408 0.055 0.040 0.173 0.058 0.043 0.175 
AGE27  -0.045 0.043 0.300 -0.022 0.042 0.601 -0.028 0.045 0.543 
C1  -1.333 0.063 0.000 -1.119 0.058 0.000 -1.263 0.064 0.000 
C2  -0.980 0.034 0.000 -0.822 0.034 0.000 -0.916 0.036 0.000 
C3  -0.123 0.033 0.000 -0.079 0.032 0.014 -0.088 0.034 0.011 
C4  0.218 0.041 0.000 0.275 0.039 0.000 0.298 0.043 0.000 
C5  -1.340 0.032 0.000 -1.191 0.035 0.000 -1.319 0.034 0.000 
C6  -0.658 0.031 0.000 -0.576 0.030 0.000 -0.634 0.032 0.000 
C7  0.159 0.035 0.000 0.169 0.034 0.000 0.177 0.036 0.000 
C8  0.548 0.054 0.000 0.544 0.052 0.000 0.570 0.056 0.000 
C9  -1.019 0.049 0.000 -0.939 0.048 0.000 -1.033 0.050 0.000 
C10  -0.451 0.035 0.000 -0.379 0.034 0.000 -0.415 0.036 0.000 
C11  0.268 0.037 0.000 0.307 0.036 0.000 0.343 0.038 0.000 
C12  0.836 0.041 0.000 0.860 0.040 0.000 0.947 0.043 0.000 
C13  0.638 0.039 0.000 0.625 0.038 0.000 0.681 0.041 0.000 
C14  0.491 0.037 0.000 0.502 0.036 0.000 0.555 0.038 0.000 
C15  0.921 0.031 0.000 0.907 0.031 0.000 0.995 0.032 0.000 
C16  1.032 0.053 0.000 1.028 0.052 0.000 1.128 0.055 0.000 
C17  -0.954 0.032 0.000 -0.933 0.033 0.000 -1.014 0.033 0.000 
C18  -0.308 0.031 0.000 -0.282 0.030 0.000 -0.309 0.032 0.000 
C19  0.214 0.036 0.000 0.202 0.036 0.000 0.219 0.038 0.000 
C20  0.628 0.080 0.000 0.612 0.079 0.000 0.652 0.084 0.000 
C21  -0.068 0.028 0.017 -0.008 0.028 0.761 -0.010 0.030 0.738 
ρ 0.0412 . .  
σ2

Hosp 
 

 0.779 0.041 . 
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Table 3.6.1b Parameter Estimates from Time Trend Models fit to IQI-25 
(Bilateral Cardiac Catheterization Rate) 

Simple Logistic Regression 
Model 

Generalized Estimating 
Equations Model 

Generalized Linear 
Mixed Model 

Parameter 

Estimate Std Err p value Estimate Std Err p value Estimate Std Err p value 
Intercept  -1.817 0.038 0.000 -1.870 0.042 0.000 -2.167 0.050 0.000 
SEX  -0.116 0.036 0.001 -0.122 0.036 0.001 -0.130 0.038 0.001 
AGE1  -0.298 0.215 0.165 -0.277 0.209 0.184 -0.263 0.222 0.236 
AGE2  -0.549 0.158 0.001 -0.464 0.150 0.002 -0.499 0.163 0.002 
AGE3  -0.824 0.089 0.000 -0.688 0.083 0.000 -0.755 0.092 0.000 
AGE4  -0.963 0.061 0.000 -0.832 0.058 0.000 -0.908 0.063 0.000 
AGE5  -0.901 0.043 0.000 -0.773 0.041 0.000 -0.844 0.044 0.000 
AGE6  -0.847 0.036 0.000 -0.723 0.035 0.000 -0.788 0.037 0.000 
AGE7  -0.764 0.033 0.000 -0.642 0.032 0.000 -0.696 0.034 0.000 
AGE8  -0.589 0.031 0.000 -0.500 0.031 0.000 -0.539 0.033 0.000 
AGE9  -0.470 0.031 0.000 -0.386 0.030 0.000 -0.411 0.032 0.000 
AGE10  -0.308 0.030 0.000 -0.240 0.029 0.000 -0.250 0.031 0.000 
AGE11  -0.213 0.030 0.000 -0.154 0.029 0.000 -0.157 0.031 0.000 
AGE12  -0.072 0.030 0.015 -0.038 0.029 0.190 -0.032 0.031 0.298 
AGE13  0.003 0.031 0.935 0.020 0.031 0.503 0.028 0.033 0.384 
AGE15  0.568 0.366 0.121 0.475 0.365 0.192 0.462 0.385 0.230 
AGE16  0.475 0.259 0.066 0.458 0.248 0.064 0.504 0.267 0.060 
AGE17  0.250 0.165 0.130 0.239 0.154 0.121 0.275 0.170 0.106 
AGE18  0.279 0.104 0.008 0.286 0.097 0.003 0.301 0.108 0.005 
AGE19  0.281 0.070 0.000 0.298 0.065 0.000 0.328 0.072 0.000 
AGE20  0.301 0.056 0.000 0.297 0.054 0.000 0.323 0.058 0.000 
AGE21  0.222 0.049 0.000 0.211 0.048 0.000 0.232 0.051 0.000 
AGE22  0.127 0.046 0.006 0.149 0.045 0.001 0.163 0.048 0.001 
AGE23  0.154 0.044 0.001 0.163 0.043 0.000 0.179 0.046 0.000 
AGE24  0.058 0.043 0.175 0.080 0.042 0.056 0.086 0.045 0.053 
AGE25  0.070 0.042 0.090 0.084 0.041 0.038 0.091 0.043 0.037 
AGE26  0.034 0.041 0.408 0.055 0.040 0.172 0.060 0.043 0.165 
AGE27  -0.045 0.043 0.303 -0.022 0.043 0.610 -0.026 0.045 0.573 
C1  -1.343 0.063 0.000 -1.122 0.058 0.000 -1.266 0.064 0.000 
C2  -0.987 0.034 0.000 -0.826 0.034 0.000 -0.919 0.036 0.000 
C3  -0.128 0.033 0.000 -0.081 0.032 0.011 -0.090 0.034 0.009 
C4  0.215 0.041 0.000 0.273 0.040 0.000 0.298 0.043 0.000 
C5  -1.345 0.032 0.000 -1.192 0.035 0.000 -1.320 0.034 0.000 
C6  -0.660 0.031 0.000 -0.576 0.030 0.000 -0.632 0.032 0.000 
C7  0.158 0.035 0.000 0.169 0.034 0.000 0.177 0.036 0.000 
C8  0.544 0.054 0.000 0.542 0.053 0.000 0.570 0.056 0.000 
C9  -1.026 0.049 0.000 -0.942 0.048 0.000 -1.035 0.050 0.000 
C10  -0.459 0.035 0.000 -0.382 0.034 0.000 -0.417 0.036 0.000 
C11  0.267 0.037 0.000 0.307 0.036 0.000 0.344 0.038 0.000 
C12  0.836 0.041 0.000 0.861 0.040 0.000 0.949 0.043 0.000 
C13  0.633 0.039 0.000 0.623 0.039 0.000 0.682 0.041 0.000 
C14  0.489 0.037 0.000 0.501 0.036 0.000 0.555 0.038 0.000 
C15  0.920 0.031 0.000 0.907 0.031 0.000 0.995 0.032 0.000 
C16  1.034 0.053 0.000 1.030 0.052 0.000 1.129 0.055 0.000 
C17  -0.962 0.032 0.000 -0.936 0.033 0.000 -1.017 0.033 0.000 
C18  -0.313 0.031 0.000 -0.285 0.030 0.000 -0.311 0.032 0.000 
C19  0.212 0.036 0.000 0.201 0.036 0.000 0.219 0.038 0.000 
C20  0.626 0.080 0.000 0.612 0.079 0.000 0.648 0.084 0.000 
C21  -0.069 0.028 0.014 -0.009 0.028 0.755 -0.009 0.030 0.753 
YEAR  -0.073 0.005 0.000 -0.072 0.007 0.000 -0.077 0.016 0.000 
ρ 0.0405 . .  
σ2

Hosp 0.766 0.042 . 
σ2

Year 

 
 

0.031 0.007  
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Table 3.6.1c Wald Test Statistics and (P-Value) Comparing Models fit to IQI-25 
(Bilateral Cardiac Catheterization Rate) 

 
Cross Sectional Model Time Trend Model  

SLR GEE GLIMMIX SLR GEE GLIMMIX 
SLR  466.78 

(0.000) 
4037.6 
(0.000) 

 457.86 
(0.000) 

4035.7 
(0.000) 

GEE 146.63 
(0.000) 

 213.69 
(0.000) 

145.58 
(0.000) 

 214.20 
(0.000) 

GLIMMIX 158.45 
(0.000) 

309.24 
(0.000) 

 155.51 
(0.000) 

308.95 
(0.000) 

 

• Wald Test uses the estimated covariance matrix from the model listed in each row 
 
 
Table 3.6.1d below provides the mean and standard deviation of differences between 
model predictions (expected rates above the diagonal, and risk-adjusted rates below the 
diagonal) from a random sample of 50 providers within the NIS reference population for 
IQI 17.  For example, the mean difference in expected rates between the GEE and 
GLIMMIX approaches for the cross sectional model was -0.016 (relative to a national 
mean response rate of 0.076 from Table 3.1).  This estimated difference is quite high 
relative to the national mean response rate, demonstrating that model choice could have a 
significant effect on provider-level estimates. 
 
Mean differences (and standard deviations) attributable to model specification (simple 
logistic vs GEE vs GLIMMIX) for the risk-adjusted rates appear to be higher than the 
expected rates. 
 
Table 3.6.1d Estimated Differences (and Standard Deviation) in Provider-Level 

Model Predictions of Expected and Risk Adjusted Rates for IQI-25  
  (Bilateral Cardiac Catheterization Rate) 
 

Cross Sectional Model Time Trend Model  
SLR GEE GLIMMIX SLR GEE GLIMMIX 

SLR  -0.005 
(0.003) 

0.016 
(0.006) 

 -0.005 
(0.003) 

0.016 
(0.006) 

GEE 0.008 
(0.008) 

 0.021 
(0.003) 

0.008 
(0.007) 

 0.021 
(0.003) 

GLIMMIX -0.036 
(0.044) 

-0.044 
(0.049) 

 -0.036 
(0.045) 

-0.044 
(0.051) 

 

* In each 3x3 table above, Expected Rate Differences (and Standard Deviations) are above the diagonal,   
and Adjusted Rate Differences (and Standard Deviations) are below the diagonal. 
 
 



AHRQ Quality Indicators 
Risk Adjustment and Hierarchical Modeling 

Draft Report 

Draft Report 62 Do Not Cite or Quote 

3.6.2 Model Parameter Estimates from Fitting Models to Boot Strap 
Samples of NIS Data   

 
Both cross sectional and time-trend adjusted models fitted successfully for quality 
indicators IQI-25 (Abdominal Aortic Aneurysm Repair Mortality Rate) for all bootstrap 
sampling runs with target sample size of 25% to 250% of the observed NIS sample.   
 
Tables 3.6.2a and 3.6.2b provide an overview of the results for the cross sectional and 
time-trend adjusted models fit to 100 bootstrap samples with population size 
approximately 100% of the size of the NIS sample.  Each table provides the mean across 
the 100 bootstrap samples of the model parameter estimates and standard errors from the 
Simple Logistic Regression Model.  The table also provides average absolute and relative 
differences between each pair of modeling approaches.  Box plots of model specific 
intercept estimates and differences in intercept estimates between each pair of modeling 
approaches when target sample sizes ranging from 25% to 250% of the observed NIS 
samples for cross-sectional models are displayed in Figures 3.6.2a  and 3.6.2c.  Figures 
3.6.2b and 3.6.2d presents the similar boxplots for the time-trend models.  The results (p-
values) from global Wald tests performed to assess whether there are statistically 
significant difference between a pair of model parameter estimates are provided in Table 
3.6.2c.  Results (p-values) from pair-wise t-test to test for intercept differences are also 
included in Table 3.6.2c.  Both Wald and t-tests are performed at 5% level of 
significance. 
 
Parameter estimates from three modeling approaches for both cross-sectional and time-
trend models are comparable since the differences in model specific parameter estimates 
between models are so small.  Relative differences among a pair of models are also small 
for all paramteres except for Age13 covariate as seen from Tables 3.6.2.a and 3.6.2b.  
Box plots of intercept estimates from three modeling approaches show that SLR and GEE 
estimates are closer to each other than to GLIMMIX estimates, and GLIMIX intercept 
estimates are consistently smaller compared to SLR and GEE for all target sample sizes 
considered.  This is true for both cross-sectional and time-trend models.  Box plots of 
intercept differences in SLR and GEE estimates are close to the reference line zero 
compared to the other two differences (SLR vs. GLIMMIX and GEE vs. GLIMMIX) 
which provides additional evidence that SLR and GEE intercept models are similar.  All 
global Wald test as well as t-tests for intercept differences are found to be statistically 
significant for both cross-sectional and time –trend models at all target sample sizes 
explored for IQI-25.   
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Table 3.6.2a. Average Models Estimates and Relative Standard Errors from Simple 
Logistic Model Fit, Differences and Relative Differences in Model Estimates from a 
Specific Pair of Modeling Approaches for the In Patient Quality Indicator IQI-25 
(IQI 25 – Bilateral Cardiac Catheterization Rate) For Each Parameter in the Model 
(Cross-Sectional) 

Cross-Sectional 

Simple Logistic 
Regression 

Difference between model estimates 
from a pair of modeling approaches 

Relative Difference between model 
estimates from a pair of modeling 

approaches Parameter 

Estimate Std. 
Error 

SLR vs. 
GEE 

SLR vs. 
GLIM 

GEE vs. 
GLIM 

SLR vs.  
GEE 

SLR vs. 
GLIM 

GEE vs. 
GLIM 

Intercept  -1.842 0.0311 0.051 0.361 0.310 0.027 0.178 0.151 
SEX  -0.126 0.0297 0.003 0.008 0.005 0.026 0.064 0.039 
AGE1  -0.155 0.1700 -0.009 -0.027 -0.017 0.061 0.188 0.127 
AGE2  -0.531 0.1305 -0.068 -0.040 0.028 0.136 0.079 0.058 
AGE3  -0.830 0.0740 -0.117 -0.060 0.057 0.152 0.075 0.076 
AGE4  -0.969 0.0504 -0.119 -0.052 0.067 0.131 0.055 0.076 
AGE5  -0.912 0.0353 -0.124 -0.063 0.061 0.146 0.071 0.075 
AGE6  -0.848 0.0296 -0.116 -0.059 0.057 0.147 0.072 0.075 
AGE7  -0.767 0.0269 -0.112 -0.063 0.049 0.157 0.086 0.071 
AGE8  -0.596 0.0256 -0.085 -0.050 0.034 0.153 0.088 0.065 
AGE9  -0.474 0.0252 -0.083 -0.061 0.022 0.191 0.137 0.055 
AGE10  -0.320 0.0246 -0.069 -0.061 0.008 0.241 0.208 0.033 
AGE11  -0.215 0.0243 -0.059 -0.058 0.001 0.319 0.310 0.009 
AGE12  -0.078 0.0243 -0.034 -0.039 -0.005 0.560 0.681 0.133 
AGE13  -0.000 0.0256 -0.020 -0.029 -0.008 2.000 2.000 0.341 
AGE15  0.385 0.3071 0.020 0.026 0.006 0.054 0.071 0.016 
AGE16  0.447 0.2144 -0.001 -0.025 -0.024 0.003 0.054 0.051 
AGE17  0.259 0.1370 -0.009 -0.035 -0.026 0.034 0.126 0.092 
AGE18  0.279 0.0867 -0.001 -0.013 -0.012 0.004 0.046 0.042 
AGE19  0.312 0.0573 -0.009 -0.034 -0.025 0.028 0.103 0.075 
AGE20  0.310 0.0462 0.006 -0.017 -0.024 0.021 0.053 0.075 
AGE21  0.248 0.0407 0.012 -0.007 -0.018 0.048 0.027 0.075 
AGE22  0.154 0.0379 -0.013 -0.024 -0.011 0.079 0.146 0.066 
AGE23  0.154 0.0365 -0.006 -0.018 -0.012 0.037 0.110 0.074 
AGE24  0.091 0.0351 -0.010 -0.015 -0.005 0.107 0.154 0.048 
AGE25  0.089 0.0342 -0.008 -0.012 -0.004 0.087 0.132 0.044 
AGE26  0.054 0.0339 -0.019 -0.022 -0.003 0.300 0.339 0.040 
AGE27  -0.041 0.0357 -0.020 -0.015 0.006 0.659 0.439 0.238 
C1  -1.312 0.0506 -0.182 -0.053 0.129 0.149 0.041 0.108 
C2  -0.948 0.0281 -0.128 -0.043 0.084 0.144 0.047 0.098 
C3  -0.117 0.0272 -0.023 -0.013 0.010 0.218 0.114 0.104 
C4  0.215 0.0336 -0.037 -0.055 -0.018 0.158 0.227 0.070 
C5  -1.314 0.0267 -0.125 -0.011 0.115 0.100 0.008 0.092 
C6  -0.639 0.0253 -0.065 -0.014 0.052 0.107 0.021 0.086 
C7  0.167 0.0285 0.004 -0.003 -0.006 0.021 0.017 0.038 
C8  0.565 0.0435 0.020 -0.001 -0.021 0.036 0.002 0.038 
C9  -1.031 0.0417 -0.060 0.024 0.085 0.060 0.023 0.083 
C10  -0.453 0.0290 -0.057 -0.023 0.034 0.135 0.052 0.083 
C11  0.280 0.0307 -0.031 -0.064 -0.033 0.105 0.206 0.101 
C12  0.858 0.0340 -0.017 -0.098 -0.081 0.019 0.108 0.089 
C13  0.655 0.0323 0.027 -0.022 -0.049 0.042 0.033 0.075 
C14  0.491 0.0304 -0.005 -0.054 -0.049 0.010 0.104 0.094 
C15  0.935 0.0257 0.020 -0.063 -0.083 0.022 0.065 0.087 
C16  1.061 0.0437 0.015 -0.080 -0.096 0.015 0.073 0.088 
C17  -0.946 0.0265 -0.000 0.071 0.071 0.000 0.073 0.073 
C18  -0.294 0.0254 -0.013 0.012 0.025 0.045 0.041 0.086 
C19  0.217 0.0302 0.023 0.010 -0.013 0.113 0.047 0.066 
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C20  0.654 0.0664 0.024 -0.010 -0.034 0.038 0.014 0.052 
C21  -0.062 0.0235 -0.046 -0.044 0.002 1.207 1.115 0.139 
 
Table 3.6.2b. Average Models Estimates and Relative Standard Errors from Simple 
Logistic Model Fit, Differences and Relative Differences in Model Estimates from a 
Specific Pair of Modeling Approaches for the In Patient Quality Indicator IQI-25 
(IQI 25 – Bilateral Cardiac Catheterization Rate) For Each Parameter in the Model 
(Time-Trend) 

Time-Trend 

Simple Logistic 
Regression 

Difference between model estimates 
from a pair of modeling approaches 

Relative Difference between model 
estimates from a pair of modeling 

approaches Parameter 

Estimate Std. 
Error 

SLR vs. 
GEE 

SLR vs. 
GLIM 

GEE vs. 
GLIM 

SLR vs.  
GEE 

SLR vs. 
GLIM 

GEE vs. 
GLIM 

Intercept  -1.763 0.0314 0.053 0.355 0.302 0.029 0.183 0.154 
SEX  -0.126 0.0297 0.004 0.010 0.006 0.033 0.075 0.042 
AGE1  -0.144 0.1698 -0.005 -0.025 -0.020 0.034 0.189 0.156 
AGE2  -0.521 0.1303 -0.061 -0.033 0.028 0.125 0.066 0.059 
AGE3  -0.824 0.0740 -0.111 -0.054 0.057 0.145 0.068 0.077 
AGE4  -0.969 0.0504 -0.116 -0.049 0.067 0.127 0.052 0.075 
AGE5  -0.909 0.0353 -0.120 -0.058 0.062 0.141 0.066 0.075 
AGE6  -0.844 0.0296 -0.112 -0.054 0.057 0.142 0.067 0.075 
AGE7  -0.766 0.0269 -0.109 -0.060 0.049 0.153 0.081 0.072 
AGE8  -0.594 0.0256 -0.081 -0.046 0.035 0.146 0.081 0.065 
AGE9  -0.472 0.0252 -0.079 -0.057 0.023 0.183 0.127 0.056 
AGE10  -0.319 0.0246 -0.067 -0.058 0.009 0.233 0.199 0.034 
AGE11  -0.215 0.0243 -0.058 -0.056 0.002 0.313 0.301 0.011 
AGE12  -0.078 0.0243 -0.033 -0.038 -0.005 0.536 0.643 0.117 
AGE13  0.000 0.0256 -0.019 -0.027 -0.008 1.907 1.934 0.344 
AGE15  0.400 0.3070 0.027 0.043 0.015 0.071 0.114 0.042 
AGE16  0.448 0.2143 -0.002 -0.023 -0.022 0.004 0.050 0.047 
AGE17  0.262 0.1367 -0.011 -0.037 -0.026 0.041 0.133 0.092 
AGE18  0.281 0.0867 -0.002 -0.014 -0.012 0.007 0.048 0.041 
AGE19  0.315 0.0572 -0.008 -0.034 -0.025 0.026 0.101 0.076 
AGE20  0.310 0.0462 0.006 -0.018 -0.023 0.018 0.056 0.074 
AGE21  0.248 0.0407 0.012 -0.007 -0.019 0.048 0.027 0.075 
AGE22  0.156 0.0379 -0.013 -0.025 -0.012 0.080 0.151 0.071 
AGE23  0.156 0.0365 -0.006 -0.019 -0.013 0.037 0.113 0.076 
AGE24  0.092 0.0351 -0.011 -0.017 -0.005 0.116 0.167 0.051 
AGE25  0.088 0.0342 -0.008 -0.013 -0.005 0.091 0.137 0.047 
AGE26  0.054 0.0339 -0.020 -0.023 -0.004 0.309 0.356 0.048 
AGE27  -0.041 0.0357 -0.021 -0.016 0.005 0.691 0.487 0.224 
C1  -1.325 0.0506 -0.190 -0.060 0.130 0.154 0.046 0.108 
C2  -0.956 0.0281 -0.132 -0.048 0.084 0.148 0.051 0.097 
C3  -0.123 0.0272 -0.026 -0.016 0.010 0.237 0.139 0.099 
C4  0.212 0.0336 -0.039 -0.058 -0.019 0.169 0.239 0.071 
C5  -1.320 0.0267 -0.129 -0.015 0.114 0.103 0.011 0.092 
C6  -0.641 0.0253 -0.067 -0.016 0.051 0.110 0.025 0.085 
C7  0.165 0.0285 0.003 -0.003 -0.006 0.017 0.019 0.036 
C8  0.560 0.0435 0.018 -0.003 -0.021 0.032 0.005 0.038 
C9  -1.038 0.0416 -0.065 0.019 0.084 0.065 0.018 0.083 
C10  -0.460 0.0290 -0.062 -0.028 0.034 0.144 0.063 0.082 
C11  0.278 0.0307 -0.033 -0.065 -0.033 0.110 0.210 0.100 
C12  0.856 0.0341 -0.018 -0.098 -0.081 0.020 0.109 0.088 
C13  0.647 0.0324 0.024 -0.026 -0.050 0.037 0.040 0.077 
C14  0.488 0.0304 -0.007 -0.056 -0.049 0.014 0.108 0.094 
C15  0.933 0.0257 0.019 -0.063 -0.082 0.021 0.065 0.086 
C16  1.059 0.0437 0.015 -0.080 -0.095 0.014 0.072 0.087 
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C17  -0.955 0.0265 -0.006 0.066 0.071 0.006 0.067 0.072 
C18  -0.299 0.0254 -0.015 0.010 0.025 0.052 0.032 0.084 
C19  0.215 0.0303 0.023 0.010 -0.013 0.114 0.050 0.065 
C20  0.650 0.0665 0.022 -0.011 -0.033 0.035 0.016 0.051 
C21  -0.064 0.0235 -0.048 -0.046 0.002 1.200 1.119 0.122 
Year  -0.076 0.0042 -0.001 0.004 0.005 0.013 0.047 0.060 
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Figure 3.6.2a: Box Plots of the Model Specific Estimates of the Intercepts Obtained from fitting 

Cross-Sectional models to 100 Boot Strap Sampling with Target Sampling at 25%, 
50%, 100%, 150%, and 250% of the Observed NIS Sample Data for IQI-25.    
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Figure 3.6.2b: Box Plots of the Model Specific Estimates of the Intercepts Obtained from fitting 

Time-Trend to 100 Boot Strap Sampling with Target Sampling at 25%, 50%, 
100%, 150%, and 250% of the Observed NIS Sample Data for IQI-25.   
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1 = SLR - GEE     2 = SLR - GLIMMIX     3 = GEE - GLIMMIX
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Figure 3.6.2c: Box Plots of the Differences in Model Specific Estimates of the Intercepts from a 

Specific Pair of Cross-Sectional Models Fitted to 100 Boot Strap Sampling Runs 
with Target Sampling at 25%, 50%, 100%, 150%, and 250% of the Observed NIS 
Sample Data for IQI-25.    
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Figure 3.6.2d: Box Plots of the Differences in Model Specific Estimates of the Intercepts from a 
Specific Pair of Time-Trend Models Fitted to 100 Boot Strap Sampling Runs with 
Target Sampling at 25%, 50%, 100%, 150%, and 250% of the Observed NIS 
Sample Data for IQI-25.    

 
 
Table 3.6.2c Wald Test Statistics and (P-Value) Comparing Models fit to IQI-25  

  (IQI 25 – Bilateral Cardiac Catheterization Rate) 
 

P-values 
Cross-Sectional Models Time-Trend Models Test 

Percent of 
Observed 
Sample SLR vs. 

GEE 
SLR vs. 
GLIM 

GEE vs. 
GLIM 

SLR vs.  
GEE 

SLR vs. 
GLIM 

GEE vs. 
GLIM 

25% < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 
50% < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 

100% < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 
150% < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 

Global Wald 
Test 

250% < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 
25% < 0.0001 < 0.0001 < 0.0001 0.0033 < 0.0001 < 0.0001 
50% < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 

100% < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 
150% < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 

T-Test for 
Intercept 

Difference 
250% < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 
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4 Conclusions 
 
The results of this investigation demonstrated that there can be subtle, yet statistically 
significant differences in the parameter estimates yielded from different modeling 
approaches for fitting covariate adjusted logistic regression models for the Quality 
Indicator Project.  As anticipated, accounting for positive correlation among patients 
within the same hospital using the GEE and GLIMMIX approaches resulted in 
meaningful differences in standard errors associated with the parameter estimates 
compared to the standard errors yielded from a simple logistic regression model.  
However, based on analyses applied to the NIS sample data, we also observed 
statistically significant differences in the vector of parameter estimates in 2 of the five 
QI’s selected for this investigation.  This result was not anticipated, as large sample 
theory suggests that all three methods should converge to the same true parameter values. 
 
Careful inspection of these differences showed that some of these differences, while 
statistically significant, were very subtle.  This is not surprising based on the very large 
sample size associated with the NIS, which has the effect of magnifying even the smallest 
of observed differences.  For 4 of the 5 QI’s investigated, changes in the modeling 
approach did not create a meaningful difference in the expected rates (relative to the 
National mean response).   However, in many cases, the differences in provider-level 
estimates of expected and risk-adjusted rates between the modeling approaches were 
significantly different than zero based on the random samples of 50 providers.  This is 
suggestive of a subtle, yet statistically significant bias. 
 
The results of the bootstrap sampling analyses also demonstrated (and perhaps amplified) 
the fact that there are differences between the three statistical methods for fitting the 
covariate adjusted logistic regression models.  The bootstrap results showed that 
variability among parameter estimates shrunk as the sample sizes increased, as expected.  
However, there were small, yet systematic differences in the parameter estimates between 
the methods that were found to be statistically significant. 
 
It is also not outside the realm of possibility that the observed differences in the 
parameter estimates are attributable to choices of convergence criteria and/or estimation 
method between the SLR, GEE, and GLIMMIX when implemented in SAS.  These 
models are compute intense and difficult to fit – and further work to investigate the cause 
of differences between model fitting methods in application to the AHRQ QI project is 
recommended. 
 
From a certain perspective, the simple logistic regression model can be thought of a 
special case of the GEE approach (in which the correlation coefficient is constrained to a 
value of zero) and of the GLIMMIX approach (in which the variance component(s) 
associated with the random effects are also constrained to a value of zero).  Of course, in 
practice, we allow these parameters to be unconstrained with the data suggesting whether 
the correlation coefficient (GEE) or variance components (GLIMMIX) depart from zero.  
In this case, we clearly can recommend either the GEE or GLIMMIX approach as being 
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superior to the simple logistic regression modeling approach because they will properly 
account for the potential effects of positive correlation among patients treated within the 
same provider. 
 
The choice between the GEE and GLIMMIX approaches is more difficult, with both 
approaches offering distinct advantages.  The GEE approach is more likely to converge in 
all cases, using a marginal model with a method of moments estimator to handle the 
within-provider correlation.  The GLIMMIX approach may require more careful 
modeling of the data, but offers more flexibility in using the variance components to 
characterize the distribution of quality among the population of observed providers.  
Through appropriate interpretation of the variance components from the GLIMMIX 
modeling approach, the AHRQ methodology may be augmented to allow individual 
providers to assess where they might be located within the National distribution of 
providers (rather than a simple comparison of whether they are above or below the 
National mean response). 
 
Finally, the simple adjustment for a linear trend over time resulted in a highly significant 
negative slope for all QI’s investigated.  Inclusion of covariates in future QI models to 
adjust for changes in quality of care over time is recommended as a method for 
improving the model prediction in application.  Addition of time-trend estimation within 
the QI’s may also provide AHRQ and other users with valuable insight into how rates are 
changing over time both Nationally, and among individual providers via interpretation of 
the random effect variance components from the GLIMMIX model. 
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APPENDIX –A 
 

Generalized Estimating Equations 
 

In many studies, we are faced with a problem where the responses Yi are not independent 
of each other ( Cov[Yi,Yj]  0 when i j ).  The responses from studies with correlated 
data can often be organized into clusters, where observations from within a cluster are 
dependent, and observations from two different clusters are independent: 
 
Yij is the jth response from the ith cluster: Cov[Yij,Yi'j']= 0 when i i' 
       Cov[Yij,Yij']  0 when j j' 
 
In the context of the AHRQ Quality Indicators project, the providers (hospitals) serve as 
clusters.  There are usually two objectives for the analysis of clustered data: 
 
 1)  Describing the response variable Yij as a function of explanatory variables 

(Xij),and 
 2)  Measuring the within-cluster dependence. 
 
When Yij is continuous and follows a normal distribution, there is a well developed set of 
statistical methodology for meeting the above two objectives.  This methodology usually 
assumes that the residuals from within each cluster are jointly normal, so that each cluster 
is distributed MVN(Xiβ, Σi).  Thus, when faced with normally distributed dependent 
responses, the assumption of a multivariate normal distribution allows us to model 
clustered data with our usual maximum likelihood solutions. 
 
When the response variable does not follow a normal distribution, we are often left 
without a multivariate generalization which allows us to meet the two objectives for the 
analysis of clustered data through use of a maximum likelihood solution.  For example, 
there are no multivariate extensions of the binomial distribution that provides a likelihood 
function for clustered data. 
 
The theory of Generalized Estimating Equations (GEE) provides a statistical 
methodology for analyzing clustered data under the conceptual framework of Generalized 
Linear Models.  GEE was developed in 1986 by Kung-Yee Liang and Scott Zeger, and is 
an estimating procedure which makes use of Quasi-Likelihood theory under a marginal 
model. 
 
When the regression analysis for the mean is of primary interest, the β coefficients can be 
estimated by solving the following estimating equation: 

 
where  μi(β) = E[Yi], the marginal expectation of Yi 

 0=))(-Y)(,;Y(cov )( = ),(U iii
1-

K

=1i
1

i βμαβ′αβ β∂
μ∂∑  

 



AHRQ Quality Indicators 
Risk Adjustment and Hierarchical Modeling 

Draft Report 

Draft Report 74 Do Not Cite or Quote 

 
Note that U1 (the GEE) has exactly the same form as the score equation from a simple 
logistic regression model, with the exception that: 
 
  1)   Yi is now an niΗ1 vector which comprises the ni observations from the ith cluster 
  2)    The covariance matrix, cov(Yi), for Yi depends not only on β, but on α which 

characterizes the within cluster dependence. 
 
The additional complication of the parameter α can be alleviated by iterating until 
convergence between solving U1( β, α(β) ) = 0 and updating α(β), an estimate of α.   
Thus, the GEE approach is simply to choose parameter values β so that the expected μi(β) 
is as close to the observed Yi as possible, weighting each cluster of data inversely to its 
variance matrix cov(Yi;β,α) which is a function of the within-cluster dependence. 
 
The marginal GEE approach has some theoretical and practical advantages: 
 
  1) No joint distribution assumption for Yi = (Yi1,...,Yini) is required to use the method.  

The GEE approach utilizes a method of moments estimator for α, the within-cluster 
dependence parameter. 

 
  2) β, the solution of U1( β, α(β) ) = 0, has high efficiency compared to the maximum 

likelihood estimate of β in many cases studied. 
 
  3) Liang and Zeger have proposed the use of both a model-based and a robust 

variance of β.  The model-based variance of β is more efficient – but is sensitive to 
misspecification of the model for within-cluster dependence. The robust variance is 
less efficient, but provides valid inferences for β even when the model for 
dependence is misspecified. 

 
 Specifically, suppose the investigators mistakenly assume that the observations 

from the same cluster are independent from each other.  The 95% confidence 
interval for each regression coefficient βj, j=1,..,p, based upon βj ∀ 1.96 (Vβ )2 
remains valid in large sample situations.  Thus, investigators are protected against 
misspecification of the within-cluster dependence structure.  This is especially 
appealing when the data set is comprised of a large number of small clusters. 

 
When the within-cluster dependence is of primary interest, this marginal GEE approach 
has an important limitation – in that β and α are estimated as if they are independent of 
each other.  Consequently, very little information from β is used when estimating α. 
 
The marginal model for correlated binary outcomes (such as those from the AHRQ QI 
Project) can be thought of as a simple extension to a simple logistic regression model that 
directly incorporates the within-cluster correlation among patient responses from within 
the same hospital.  To estimate the regression parameters in a marginal model, we make 
assumptions about the marginal distribution of the response variable (e.g. assumptions 
about the mean, it’s dependence on the explanatory variables, the variance of each Yij, 
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and the covariance among responses from within the same hospital).  The cross-sectional 
model (Model (1)) and time-trend model (Model (3)) can be fit using the generalized 
estimating equations approach using SAS Proc Genmod, through the introduction of a 
repeated statement that accounts for the within-provider clustering. 

 
 


