COMPRESSED NATURAL GAS VEHICLES

This section supplies the driving range and fuel economy values for vehicles designed to be operated on compressed natural gas (CNG). For bi-fuel vehicles, the values for both gasoline and CNG are shown. Bi-fuel vehicles are designed to be operated on either of two fuels, in separate tanks, and can switch between the two.

CNG fuel is normally dispensed in "equivalent gallons," where one equivalent gallon is equal to 121.5 cubic feet of CNG. Therefore, the fuel economy values are shown in miles per gallon-equivalent. Annual fuel cost estimates are based on an average fuel price of $\$ 1.30$ per gallon of CNG and $\$ 1.55$ per gallon of gasoline.

The driving range is shown in miles and represents the distance the vehicle can travel on a full tank (or tanks) of fuel during combined city and highway driving (55\% city and 45\% highway).

LIQUEFIED PETROLEUM GAS (PROPANE) VEHICLES

This section contains the estimated city and highway fuel economy values and the driving range for passenger cars and light trucks designed to be operated on liquefied petroleum gas (LPG), which is commonly known as propane. For bi-fuel vehicles, both the gasoline and the LPG mpg values and driving ranges are listed, if available. Bi-fuel LPG vehicles have two fuel tanks. Annual fuel cost estimates are based on an average fuel price of $\$ 1.30$ per gallon of LPG and $\$ 1.55$ per gallon of gasoline.

DIESEL VEHICLES

This section contains fuel economy values for diesel-fueled vehicles. Diesel fuel contains approximately 10% more energy per gallon than gasoline. In addition, diesel engines have higher compression ratios, run "lean," and are unthrottled, giving them a substantial fuel economy advantage over gasoline engines. Annual fuel cost is estimated assuming 15,000 miles of travel each year (55\% city and 45% highway) and a diesel fuel cost of $\$ 1.40$ per gallon.

SUBCOMPAGT CARS				
VOLKSWAGEN				
New Beetle (diesel)	A-4 1.9/4	34/44 \$552		
	M-5..... 1.9/4	42/49 \$466		
COMPAGT CARS				
VOLKSWAGEN				
Golf (diesel)	$\begin{aligned} & \text { A-4 1.9/4 } \\ & \text { M-5.... } 1.9 / 4 \end{aligned}$. 34/45 \$552		
		42/49 \$466		
Jetta (diesel)	A-4 1.9/4	34/45	... \$552	
	M-5 1.9/4	. $42 / 49$... \$466	

		$\begin{aligned} & \text { No } \\ & \text { No } \\ & \text { © } \\ & \text { O} \\ & \text { 을 } \end{aligned}$			
SMALL STATION MACONS					
VOLKSWAGEN					
Jetta Wagon (diesel)	A-4	.. 1.9/4	.. 34/4	\$552	
	M-5.	... 1.9/4	.. 42/50	... \$466	

ELECTRIC VEHICLES

This section contains the driving range and fuel economy values for fully electric-powered passenger vehicles. The fuel economy values for electric vehicles are shown in kilowatt-hours per 100 miles, instead of miles per gallon. A lower number of kilowatt-hours means a more efficient vehicle.

The driving range is shown in miles and represents the maximum distance the vehicle can travel under optimum conditions before the battery needs recharging. The actual energy consumption and range of the vehicle will vary depending on driving conditions, battery condition, and accessory usage, and is strongly affected by outside temperature and the use of heating and air conditioning. Fuel costs will vary considerably because of the differences in electricity costs across the United States.

You can calculate the fuel cost (in dollars) of driving your electric vehicle for a year by multiplying the energy consumption for the vehicle as listed below (in kilowatt-hours/100 miles) by your local electricity rate (in dollars per kilowatt-hour), multiplying that by the annual miles the vehicle will be driven, and dividing by 100.

Check with your dealer for availability, as some electric vehicles may be offered for sale or lease only in certain parts of the country.

	Battery	Motor	City/Hwy	Fuel	Range
SPORT UTMLIV VEMICHE 2MD					
TOYOTA					
RAV4 EV .	Nickel	50 kW AC*	27/34	Elec	136

RAV4 electric vehicles are available to fleet buyers in Massachusetts, New York and Vermont, and to anyone in California.

* Kilowatts of alternating current
ABBREVIATIONS:
A-............tomatic Transmission
A-SSpecial Automatic Transmission
AVcontinuously Variable Transmission
CityMPG on City Test Procedure
Conv Convertible
D Diesel
Elec Electric Vehicle
Eng Size Engine Volume in Liters
FFV Flexible Fuel Vehicle

[^0]This section contains the driving range and fuel economy values for ethanol flexible-fuel passenger cars and light trucks. Ethanol flexible-fuel vehicles are designed to operate on gasoline, E85 (a mixture of 85% ethanol and 15% gasoline), or any mixture of the two fuels. Annual fuel cost is estimated assuming 15,000 miles of travel each year (55% city and 45% highway) and an average fuel cost of $\$ 1.80$ per gallon of E 85 and $\$ 1.55$ per gallon of gasoline.

The driving range and fuel economy values are shown for both gasoline and E85. When operating your FFV on mixtures of gasoline and E85, such as when alternating between using these fuels, your driving range and fuel economy values will be somewhere between those listed for the two fuels, depending on the actual percentage of gasoline and E85 in the tank.

FUEL CELL VEHICLES

Advanced Transportation Technology

Although fuel cell vehicles (FCVs) are not expected to reach the mass market before 2010, a limited number will be available for sale or lease to demonstration fleets in 2003-4. Vehicle availability will be restricted to drivers in certain parts of the country with a readily accessible hydrogen supply. The vehicle listed below is the first FCV to be emission-certified by EPA.

FCVs represent a radical departure from conventional vehicles with internal combustion engines. They use emerging technology with the potential to substantially reduce harmful emissions, as well as energy use and our dependence on foreign oil. Like battery-electric vehicles, FCVs are propelled by electric motors. The important difference, however, is that rather than storing electricity by recharging batteries, fuel cells produce electricity directly from the chemical energy of hydrogen fuel.

FCVs are more efficient than vehicles with internal combustion engines, and the only by-product of a hydrogen fuel cell is water. Like hybrid-electric and battery-electric vehicles, FCVs may also incorporate other advanced automotive technologies to increase efficiency.

	Fuel Cell	Motor	Miles per KG of Hydrogen City/Hwy	Energy Storage Device	Fuel	Range
COMPACT CAR						
HONDA						
FCX	Proton Ex	60 kW	51/48	a Capaci	Hydro	. 170 mi

* Kilowatts of direct current

Availability: A limited number of 2003 Honda FCX fuel cell vehicles (approximately 10 vehicles) are expected to be available for lease to certain customers in the southern California area.

[^0]: Hwy MPG on Highway Test Procedure M-.......... Manual Transmission
 NA............ NotAvailable
 T Turbocharger/Supercharger Trans Transmission Type

