

Tradeoffs of stratification

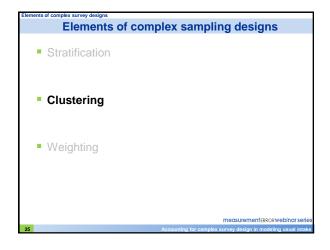
Balanced sampling across strata yields

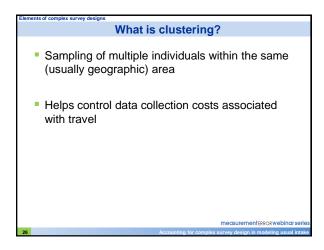
- More precise estimates for small strata,

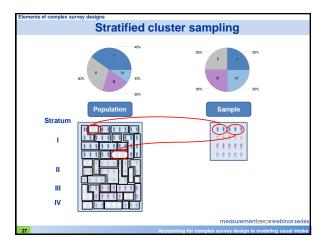
- But less precise estimates for large strata

Stratified sampling need not be balanced

- If all subpopulations are not of equal interest







Effects of clustering

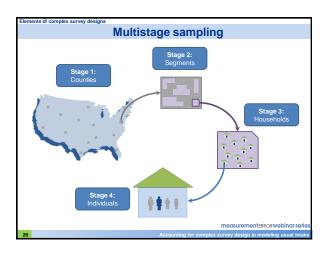
 Observations from individuals sampled from the same cluster tend to be correlated
 Loss of precision

 Multistage designs with several levels of clustering possible

 First-level clusters (Primary Sampling Units; PSUs) tend to induce largest portion of sampling variability

 measurementsecewebing series

Accounting for complex survey design in modeling usual intake



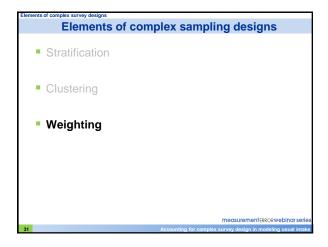
Advantages of multistage sampling

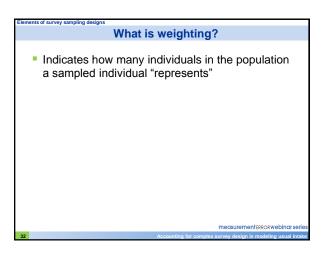
Allows stepwise development of sampling frame:

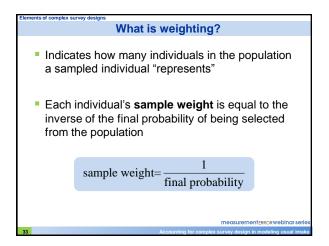
- Enumerate counties in the US, then census block groups within selected counties, then households within selected block groups

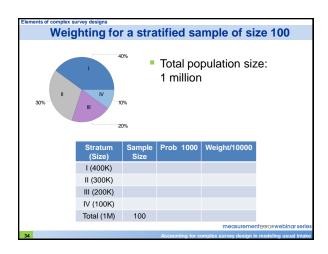
- Eliminates the need for master list of households

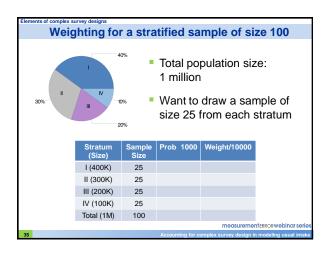
Can greatly reduce data collection costs

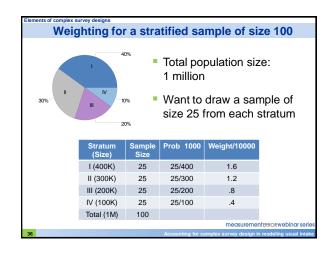


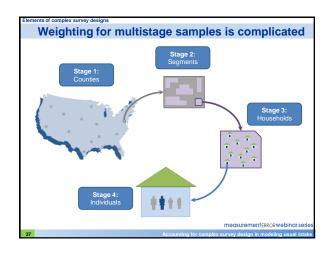


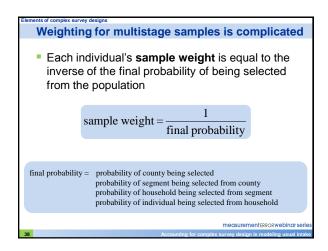




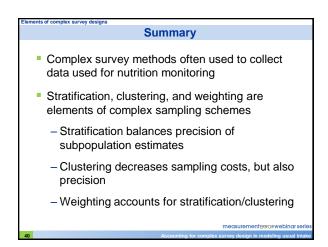


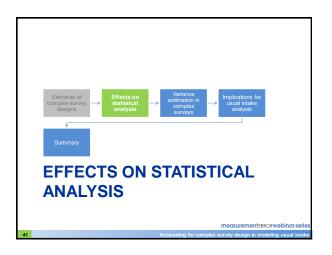






Additional considerations for weighting Can incorporate Differential selection probabilities due to stratification and clustering Differential nonresponse probabilities Weighted counts of sampled individuals with particular demographic characteristics often set to reproduce "known" population counts — poststratification



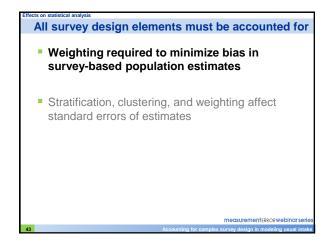


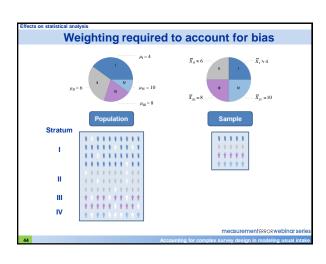
All survey design elements must be accounted for

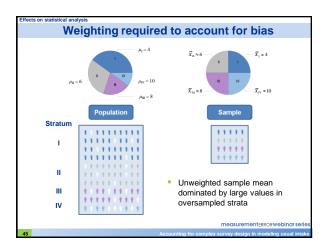
Weighting required to minimize bias in survey-based population estimates

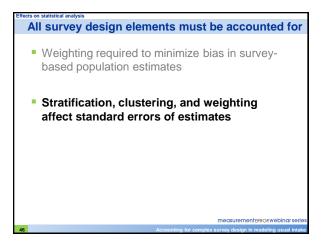
Stratification, clustering, and weighting affect standard errors of estimates

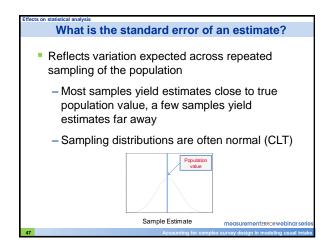
Recounting for complex survey design in modeling usual intakendary.

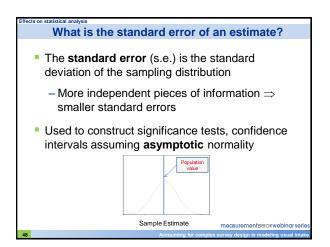












ffects on statistical analysi

Standard errors estimated from sample

- In practice, only one sample is obtained
 - Standard errors must be estimated from the data at hand
- Basic statistical theory provides estimation methods for standard errors of "smooth" statistics
 - Means
 - "Mean-like": regression parameters, ratios

measurementerrorwebinar serie

megsurementERROR

ffects on statistical analysi

Standard errors estimated from sample

- Estimating standard errors for percentiles is especially challenging
 - Not "mean-like" for purposes of CLT
 - Sampling distributions less well-behaved
- May require alternative methods for tests/CIs
 - Standard error still reflects variation over repeated sampling

measurementerrorwebinar serie

ects on statistical analysis

Standard errors in complex surveys

- Theoretical derivation based on asymptotic normality of weighted cluster means within strata
- Not all statistical software is fully "survey-aware"
 - "Weighted analysis" might not be sufficient
 - Stratification/clustering may also be important

measurementERROR webinar serie

orte on etatietical analys

Stratification/clustering reduces degrees of freedom

Stratification and clustering result in fewer independent pieces of information

degrees of freedom = (number of clusters) - (number of strata)

- For example, NHANES 2003-6 has
 - -20,470 individuals
 - -60 clusters, 30 strata \Rightarrow 30 d.f.

measurementERROR weblnar series

fects on statistical analys

Total calcium intake for women in NHANES 2003-6

- Subset of 2601 women ages 31-70 with reliable data on first 24HR
- Parameter of interest: population mean calcium intake from foods and dietary supplements
- Estimates based on combination of data from 24HR and dietary supplement questionnaire

measurement ERROR webinar serie

Accounting for complex survey design in modeling usual intak

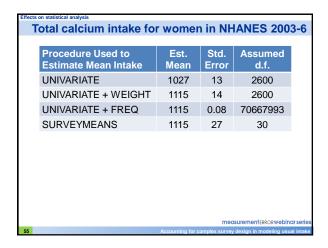
ffects on statistical analysis

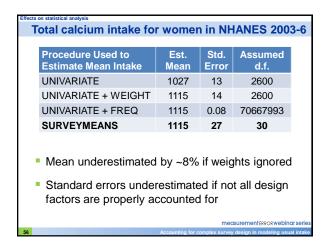
Total calcium intake for women in NHANES 2003-6

- Multiple ways to compute the estimate and its standard error using SAS
 - UNIVARIATE ignoring the weights
 - UNIVARIATE with a WEIGHT statement
 - UNIVARIATE with a FREQ statement
 - SURVEYMEANS with STRATA, CLUSTER, and WEIGHT statements
- Only the last way incorporates all design factors

measurement ERROR webinar series

counting for complex survey design in modeling usual intake





Statistical methods for complex surveys limited

Inference based on t-tests easiest to extend to complex surveys

- Asymptotic normality, standard error formulae established for many mean-like statistics

Other statistical methods more difficult to extend

- E.g., likelihood ratio tests

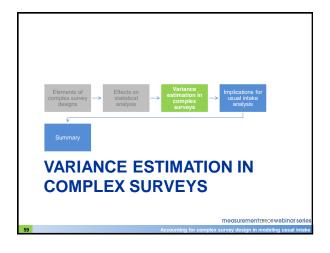
Summary

Stratification, clustering, and weighting must be accounted for in analysis of survey data

Many statistical techniques have no survey analogues

Inference may need to be simplistic, e.g., t-tests

Need proper estimates of standard errors



Variance estimation in complex surveys

Variance estimation techniques

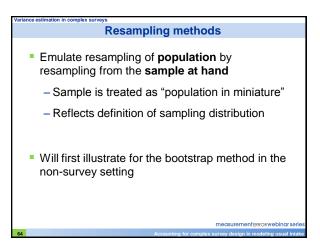
Taylor linearization

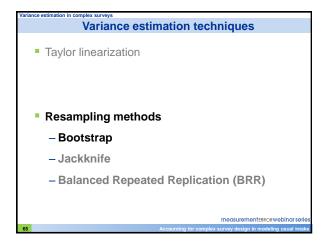
Resampling methods
— Bootstrap
— Jackknife
— Balanced Repeated Replication (BRR)

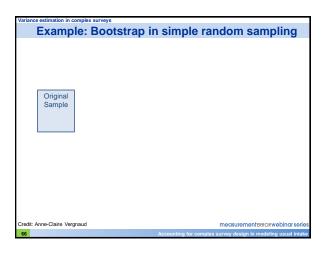
Variance estimation techniques Taylor linearization Resampling methods Bootstrap Jackknife Balanced Repeated Replication (BRR)

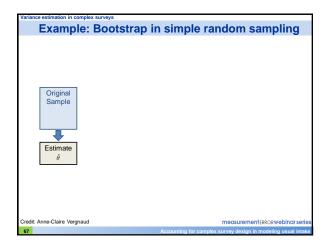
Taylor linearization Used by default in most "survey-aware" software - "Textbook" formulae for standard estimators Hard to extend to more complex estimators in general survey designs - Monte Carlo-based usual intake percentiles (as in NCI method) especially problematic

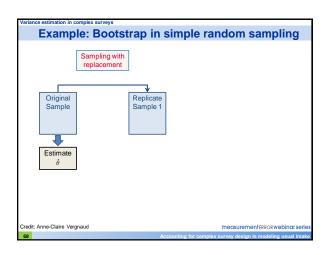
Variance estimation techniques Taylor linearization Resampling methods Bootstrap Jackknife Balanced Repeated Replication (BRR)

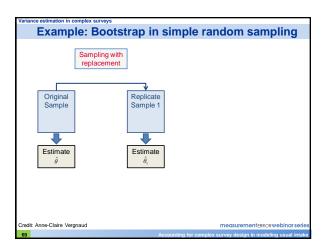


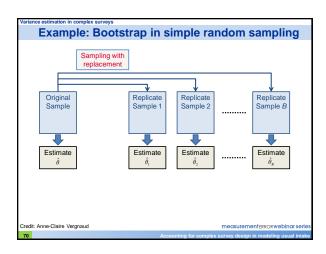


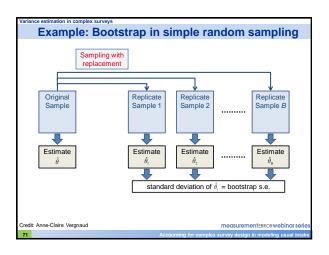


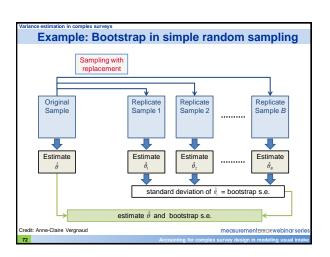












Example: Bootstrap in simple random sampling

- Key to bootstrap is with-replacement sampling
- In a given bootstrap sample,
 - Some individuals will appear multiple times
 - Some individuals will not appear at all
- Number of times an individual appears is analogous to a sampling weight

Resampling via weight perturbation

- Resampling operationalized using a set of weights for each sample (replicate and original)
 - In SRS, all weights for original sample are 1
- Eliminates need to store multiple copies of data set with many analysis variables per person

Resampling via weight perturbation

- Resampling in complex surveys operationalized using sets of "perturbed" weights
- Bootstrap, jackknife, BRR methods differ in the
 - Numbers of weight sets needed
 - Ways weight sets are constructed
 - Formulae for computing variability among replicate estimates

Bootstrap in complex surveys

- Bootstrap samples must be drawn according to sampling plan used to draw the original sample
 - Computationally intensive (B very large)
- Offers robust method for constructing CIs
 - Bounds based on 95% of empirical distribution of bootstrap estimates
 - May work better for poorly-behaved sampling distributions of "non-smooth" statistics

Use of bootstrap in usual intake estimation

- Recommended for estimating standard errors of complex statistics for Canadian Community Health Survey, Nutrition Cycle 2.2
- Used for estimating standard errors of model parameters and usual intake percentiles calculated using the NCI method
 - Simulation study for SRS (Tooze et al., 2010)
 - Dutch National Food Consumption Survey (Verkaik-Kloosterman et al., in press)

Variance estimation techniques

- Taylor linearization
- Resampling methods
 - Bootstrap
 - Jackknife
 - Balanced Repeated Replication (BRR)

Jackknife in complex surveys

- Creation of perturbed weight sets
 - One set of weights per cluster
 - Weight set k deletes (zero-weights) all the observations in cluster k
 - Redistributes missing weight among other observations in same stratum as cluster k
 - Leaves weights unchanged for observations in all the other strata

Jackknife in complex surveys

- For surveys with many clusters, many weight sets must be generated
 - Less computationally intensive than bootstrap
- Each set of jackknife weights may need to be poststratified to recover subpopulation sizes

Use of jackknife in usual intake estimation

- Alternative to Taylor linearization for
 - Usual intake model parameters
 - ISU method percentiles
- Not applicable to Monte Carlo-based usual intake percentiles

Variance estimation techniques

Taylor linearization

- Resampling methods
 - Bootstrap
 - Jackknife
 - Balanced Repeated Replication (BRR)

Balanced repeated replication in complex surveys

- Limited to stratified cluster designs with two clusters/stratum
- Most aggressive perturbation of weights
 - Weight set k deletes(zero-weights) the observations in half of the clusters, and
 - Doubles the weights for observations in the remaining clusters
 - Perturbation factors 0 and 2

Balanced repeated replication in complex surveys

- Fewer weight sets than for jackknife
 - Smallest multiple of 4 greater than number of strata
- Choice of which cluster to zero/double determined by a Hadamard matrix
 - Orthogonality property minimizes number of weight sets required
 - "Balances" the influence of each cluster

Balanced repeated replication in complex surveys

- Standard BRR can be unstable due to extreme perturbations
- Fay's modified BRR uses perturbation factors less extreme than 0 and 2
- Each set of BRR weights may need to be poststratified to recover subpopulation sizes

Use of BRR in usual intake estimation Alternative to Taylor linearization for the What We Eat In America (WWEIA) portion of the US National Health and Nutrition Examination Survey (NHANES) BRR works for Monte Carlo-based percentiles as well as usual intake model parameters - Application of NCI method, including multiple simulation studies and analyses of NHANES

Summary

- "Survey-aware" software typically uses Taylor linearization to estimate standard errors
 - Limited to basic, "mean-like" estimators
 - Low computational burden
- Resampling methods offer an alternative to Taylor linearization for complex estimators

IMPLICATIONS FOR USUAL **INTAKE ANALYSIS**

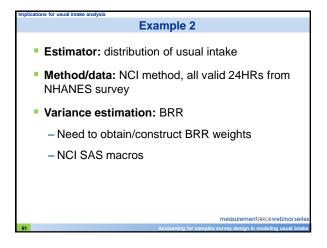
Typical research question

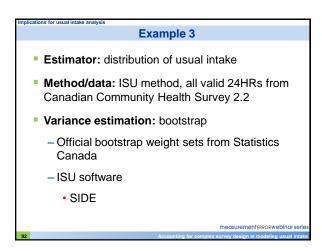
What is the usual intake of component X among subgroup Y in my population?

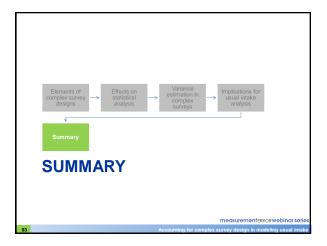
To answer, must consider:

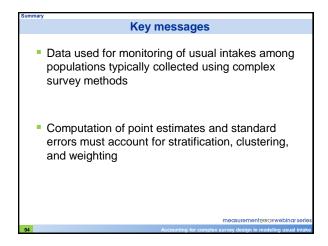
- Estimator of interest
- Method of analysis and its data requirements
- Technique for variance estimation and how to use software to properly implement

Example 1 Estimator: mean of usual intake distribution Method/data: mean, all valid first-day 24HRs from NHANES survey Variance estimation: Taylor linearization - Procedures available in common software SAS SUDAAN Stata









No "one size fits all" approach to modeling usual intake using data from a complex survey

Particulars of analyses depend on:
Research question
Available data
Desired modeling method (e.g., NCI method, ISU method)
"Survey-aware" features of modeling software
Statistical expertise/support

