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Hello and welcome to the eighth session in the Measurement Error Webinar Series. I’m 
Kevin Dodd, a statistician at the U.S. National Cancer Institute, and I’ll be moderating 
today’s webinar, in which we’ll continue with our focus on examining diet and health 
relationships.   

A few notes before we get started with today’s presentation: The webinar is being 
recorded so that we can make it available on our Web site. All phone lines have been 
muted and will remain that way throughout the webinar. There will be a question and 
answer session following the presentation; please use the Chat feature to submit a 
question. 

A reminder: You can find the slides for today’s presentation on the Web site that has 
been set up for series participants. The URL is available in the Notes box at the top left 
of the screen. Other resources available include the glossary of key terms and notation, 
and the recordings of the preceding webinars.   

Now I’d like to introduce Dr. Victor Kipnis, our presenter for today. Victor is a 
mathematical statistician in the Biometry Research Group, Division of Cancer 
Prevention, at the National Cancer Institute of the United States. Victor’s research focus 
is on the design and analysis of nutritional studies, including the structure of dietary 
measurement error, its effects on study results, and methods of adjusting for it in 
nutritional epidemiology and surveillance. Dr. Kipnis played a leading role in the design 
and analysis of the Observing Protein and Energy Nutrition, or OPEN, biomarker study 
carried out at NCI in 2001-2002 and is a lead statistician on the NIH-AARP Diet and 
Health cohort study. In today’s session, Victor will discuss methods of assessing diet and 
health relationships using a food frequency questionnaire as the main dietary 
instrument, with a focus on episodically consumed dietary components. Victor.   



This series is dedicated 
to the memory of

Dr. Arthur Schatzkin

In recognition of his internationally renowned 
contributions to the field of nutrition epidemiology and 
his commitment to understanding measurement error 

associated with dietary assessment.
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This lecture, as all webinars in the series, is dedicated to the memory of Arthur 
Schatzkin—a friend, a colleague who throughout his career had been very much 
interested in understanding measurement error and its role in nutritional epidemiology.   
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And this is a list of all the people involved in this project. As you may see they are from 
different institutions and even from different countries.   



Assessing diet-health relationships with FFQ: focus on episodically-consumed dietary components4







Learning objectives

Learning objectives

 
Review statistical risk models for evaluating diet- 
health relationships in nutritional epidemiology

 
Learn application of regression calibration to correct 
for FFQ measurement error using repeat short-term 
reference measurements in a substudy

 
With focus on episodically-consumed dietary 
components, learn application of a new 
methodology to carry out regression calibration in 
risk models with energy-adjusted dietary covariates
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Learning objectives for today’s talk: I will review statistical models for evaluating diet-
health relationships in nutritional epidemiology. We’ll learn applications of the 
regression calibration method to correct for measurement error when one uses short-
term reference measurements in a substudy and the food frequency questionnaire, or 
FFQ, as the main instrument in the study. And my focus today will be on episodically 
consumed dietary components. And this will necessitate application of a new 
methodology to carry out regression calibration, and so we’ll review this as well.  
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Outline

Outline

Risk models in nutritional epidemiology

Dietary measurement error

Regression calibration

Modeling episodically-consumed dietary components

Two-part model and its extensions
Three-part model for episodic component & energy

Example: NIH-AARP Diet & Health Study

Simulation study

Summary & discussion
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This is my outline. I would like to say from the beginning that this talk is going to be at a 
little bit more elevated level than the previous talks and I will review a little bit more 
flexible risk models in nutritional epidemiology that will involve some transformations of 
exposures and covariates. And because I will be focusing on episodically consumed 
dietary components, regression calibration needs to be explained in a slightly more 
general way, which will also involve some transformations. Some of them will be 
nonlinear and the models are going to be nonlinear. And, inevitably, I will have to 
introduce some formulas, but I will try my best, I promise, to explain what is behind 
those formulas in plain English.  

I will show you some examples from the NIH-AARP Diet & Health Study and some 
simulation results, and we’ll end up with a summary and discussion.  
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RISK MODELS IN 
NUTRITIONAL EPIDEMIOLOGY



Slide 6 

And I will take you through this step by step, and I will start with the risk models.  
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
 


 


 


 


 


 

Risk models in nutritional epidemiology

Types of epidemiologic studies

Animal experiments

Ecological studies

Cross-sectional studies

Case-control studies

Cohort studies (main focus here)

Randomized prevention trials
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There are many types of epidemiologic studies. I will concentrate today on cohort 
studies, and you will see in a moment why.   
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





Risk models in nutritional epidemiology

Risk models: exposure

 
We consider studies that relate: 

 
Dietary exposure thought to be most relevant is 
usual (long-term average) daily dietary intake

 
Health outcome examples: continuous (e.g., blood 
pressure), binary (event, no event), time to event 
(survival analysis)
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What we would like to do is to relate dietary exposure to a health outcome, and this 
relationship, of course, will be adjusted for some confounders or covariates. The dietary 
exposure thought to be the most relevant is usual, which is long-term average daily 
dietary intake. 

As to the health outcomes, there are several examples. They could be continuous; for 
example, blood pressure or cholesterol. They could be binary (event, no event), say, 
cancer, no cancer. Or they could be time to event in survival analysis.   
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Risk models in nutritional epidemiology

Risk models: general description


 – 

– 

–

Notations:

Y - health outcome 

T = (T1 , … , Tp )t - vector of dietary components

 Z = (Z1 , … , Zq )t - vector of adjusting covariates

– 

– 


 

 

 r(Y | T,Z) - outcome risk function

( T,Z; ) - covariate-based predictor 
(is a vector of parameters)

Risk model:  r(Y | T,Z) = ( T,Z; )
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In my notations, the health outcome will be denoted by Y. T is a vector of dietary 
components. Z is a vector of adjusting covariates or confounders. And by r I will consider 
the outcome risk function—I will explain what it means in a moment—and by η, a 
covariate-based predictor, because remember, what we want to do is to relate the risk 
function for the outcome to covariate-based predictors. So this model in its more 
general form is displayed here.   
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
 – 

– 

– 

Risk models in nutritional epidemiology

Risk models: examples

Common risk models:

Linear regression for continuous outcome 
(e.g., blood pressure, cholesterol level)

Logistic regression for binary outcome 
(event, no event)

Cox regression for survival analysis 
(time to event)
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What are the common risk models? Well, I’m sure you all are familiar with those. They 
could include the linear regression for a continuous outcome. You could do the logistic 
regression for a binary outcome or Cox regression in survival analysis.   
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
 – 

– 

Risk models in nutritional epidemiology

Risk models: risk function (1)

Linear regression

Outcome: Y  - continuous variable 
(e.g., blood pressure, cholesterol level, etc.)

Risk function: conditional expected value (mean) 
given covariates, i.e.,

 ( | , ) | ,r Y YT Z T ZE
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So in the linear regression, the outcome is a continuous variable; as I said, it could be 
blood pressure, cholesterol level, etc., etc. And the risk function is the conditional 
expectation or conditional mean given the covariates.  

Let me explain what that means. Basically, for any given set of covariates, we have a 
bunch of possible outcomes—actually, the whole distribution. And what we will try to 
do is to consider as the risk of the health outcome some important characteristics of this 
distribution. And in this case, it’s its conditional mean.   



Assessing diet-health relationships with FFQ: focus on episodically-consumed dietary components12

Risk models in nutritional epidemiology

Risk models: risk function (2)


 – 

– 

Logistic regression

Outcome: binary variable 1   if event
Y  

0   if no event

Risk function: logit of the probability of event (log 
odds of event) conditional on covariates, i.e.,

( 1| , )( | , ) log
1 ( 1| , )

Yr Y
Y



 

T ZT Z
T Z

P
P



Slide 12 

In the case of the logistic regression, outcome is a binary variable, usually denoted by 1 
in case of event or 0 if there is no event. And the risk function is the logit of the 
probability of event or, in other words, is the log odds of event, which is the probability 
of having an event over the probability of not having an event, and then you take the log 
of this.   
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Risk models in nutritional epidemiology

Risk models: risk function (3)



– 

– 

 
Cox regression

Outcome:  Y = t (time to event)

Risk function: log of the hazard function 
h(t | T, Z) conditional on covariates, i.e.,

r(Y | T,Z) = log h(t | T,Z)
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In the case of the Cox regression, the outcome is actually a time, time to event, and the 
risk function becomes the log of the hazard function, denoted here by h, which is again 
conditional on the covariates.    



Assessing diet-health relationships with FFQ: focus on episodically-consumed dietary components14

Risk models in nutritional epidemiology

Risk models: risk predictor (1)


 

Commonly used predictor is a linear function of 
covariates 

 
1

, ;
k

p q

o T k
k l

T  
 

   T Z α
1

lZ lZ

– Note: 0 is a constant in linear and logistic 
regressions and 0 = h0 (t) (baseline hazard) 
in Cox regression 


 

Convenient but doesn’t always provide a good fit

– Example: orange vegetables vs. lung cancer in 
NIH-AARP Diet and Health Study (to be 
discussed later)
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What we would like to do is to use a predictor of the covariates to relate the covariates 
to the risk function. And the commonly used predictor is a linear function of covariates 
given by this formula. And why a linear function? It’s the simplest function. It can be 
well studied and so is the most convenient one.  

I would like to emphasize that in this linear function, the intercept has a slightly 
different meaning in linear and logistic regressions versus the Cox regression. In the 
linear and logistic regressions, it’s just a constant. In the Cox regression, it’s a baseline 
hazard.  

So, as I said, it’s the most convenient risk predictor, but sometimes this most convenient 
predictor doesn’t fit well. And we’ll see an example of this when we study the 
relationship between orange vegetables versus lung cancer in the NIH-AARP Diet & 
Health Study.   
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



Risk models in nutritional epidemiology

Risk models: risk predictor (2)

  *

1 1
, ;

k

p q

o T k Z
k l

T  
 

   T Z α *
l lZ

A more flexible risk model specifies predictor as 
li  near over transformed covariates 

where for any variable *V V  gv,  (V )                        denotes its 
transformed value 

Popular transformations include power functions      
 vg V( )  V and logarithm vg V( )  logV
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There are many ways to consider more complicated risk predictors, and one which is still 
relatively simple but rather flexible is to transform covariates in such a way that over the 
transformed variables or on transformed scales, the predictor is still linear. The 
transformation is done using some function, g, and I will denote the transformed 
variables by putting this asterisk as a superscript. Popular transformations include the 
power functions such as square root, for example, or logarithms.   
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


 – 

–

Risk models in nutritional epidemiology

Risk models: risk predictor (3)

Risk model:

 Tk
Slope        represents the effect of exposure Tk

Due to exposure transformation, this effect 
depends not only on change in exposure (case of 
linear predictor on original scale) but also on its 
initial value 

 Effect of changing exposure from  Tk0 to 
T Tk k1 0  Tk on risk r(Y | T,Z) is 

   0 0k k kT T k k T kg T T g T     

o T 
p q

r Y( | ,T Z)   T  *
kk

ZZ l
k l 1 1

*
l
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And here is my risk model with a predictor linear over, generally speaking, transformed 
covariates. And α, or the slope, for exposure Tk represents the effect of this exposure on 
the outcome. Now, one has to be careful, because with the transformations the 
interpretation of the meaning of this effect should be considered with some care. If we 
use the linear predictor on the original scale, then the effect would depend only on 
change in the exposure. And so for any given change in the exposure, the product of the 
slope times the change will be your effect. 

With the transformation, it’s not only the change, but where you start. So the effect 
depends on the initial value as well. But it could be done for the initial value on the 
original scale and it’s introduced here by this formula. So you take the initial value; you 
take the initial value plus the change, so this is the final value. You transform both to the 
scale where you fitted your risk model, and then you multiply it by the slope, and this is 
the effect.   



Assessing diet-health relationships with FFQ: focus on episodically-consumed dietary components17

MEASUREMENT ERROR
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All right, let’s go to the second block, which is measurement error.   
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Measurement error

Dietary measurement error (1)







 

 

 

Problem in nutritional epidemiology: true usual 
intakes are unknown and measured with error

Assessment of diet in nutritional epidemiology is 
commonly done by food frequency questionnaire 
(FFQ) querying diet over a specified time period 
(usually 1 year)

FFQ is known to contain substantial measurement 
error, both random and systematic
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This is a big problem in nutritional epidemiology because the true usual intakes are 
unknown and could not be measured precisely in free-living populations. And all 
measured intake is measured with error.  

In nutritional epidemiology, especially in large cohort studies, assessment of diet is 
commonly done by a food frequency questionnaire, or FFQ, which queries diet over a 
specified time period. It’s usually one year. FFQs are known to contain substantial 
measurement error, both random and systematic.   
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

–

–

–



 

 

 

 

 

Measurement error

Dietary measurement error (2)

Generally, fitting risk models to error-prone 
measured dietary exposures Q

 
leads to:

Bias (often attenuation) of estimated exposure 
effect

Reduced power to detect exposure effect

In theory, invalid significance test for the main 
exposure (multiple error-prone covariates)

Most popular method for correcting for dietary 
measurement error: regression calibration
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And, generally, if we fit the risk model to error-prone dietary exposures, which I denote 
here by Q, it leads to three unpleasant things: first, bias (often attenuation) of estimated 
exposure effect—attenuation means that the relative risk is biased towards 1; reduced 
power to detect exposure effect, which means that to maintain the power, one has to 
increase substantially the sample size of the study; and, in theory, if the risk model 
contains multiple error-prone covariates, the significance test for the main exposure 
may become invalid.     

The most popular method for correcting for dietary measurement error is regression 
calibration.  
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REGRESSION CALIBRATION
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You’ve heard about regression calibration before. I will just review it and introduce it in 
a slightly more general way. And we will need this later on.   
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Regression calibration

Regression calibration (1)





 

 

Main assumption: measurement error is 
nondifferential with respect to health outcome, i.e., 
provides no additional information about the 
outcome beyond that in true diet

This assumption may be justified in cohort studies 
where diet is usually assessed before outcome is 
known, but not necessarily in case-control studies 
due to possible recall bias when cases report their 
past diet differently from non-cases
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But before I do so, the regression calibration could be applied under the main 
assumption that the measurement error is nondifferential with respect to the health 
outcome. And what it means is that the measured exposure provides no additional 
information about the outcome beyond the information that is contained in true diet. 

This assumption may be justified in cohort studies where diet is assessed at the 
baseline, before outcome is known, but not necessarily in case-control studies. And the 
reason for this is that in case-control studies, cases and controls could recall their past 
diet differently, which will lead to differential measurement error.   
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 *
0

1
( | )

k

p
P

T k Z l
k

r Y T Z  


   X X
1

l

q

l

*





 

 

Regression calibration

Regression calibration (2)

* *( ) ( | ),  1,..., ,P
k kT T k p X XE

Regression calibration (RC): each mismeasured 
covariate in a risk model is replaced with its best 
predictor 

given vector X that includes all observed error-prone 
covariates Q and error-free covariates Z
RC leads to (approximately) true regression slopes, 
i.e., true covariate effects
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So, assuming that measurement error is nondifferential, what is the regression 
calibration? What the regression calibration does is it replaces each mismeasured 
covariate, the true value of which is unknown, with its best predictor given everything 
that was observed, which in this case includes error-prone measurements Q and error-
free covariates, which I denote by Z.  

What it means, again, is that for each given set of components of vector X, there are a 
bunch of true usual intakes, here on the transformed scale, that represents the whole 
distribution. And we would like to take one characteristic of this distribution—in this 
case, it’s conditional mean—and if we do so, this would be the best, in the mean 
squared error sense, predictor of the unknown true intake. 

I would like to emphasize that when we calculate this conditional mean, it should be 
done on the transformed scale. The result of taking it on the original scale and then 
transforming might be very different, depending on the transformation. So the order 
here is very, very important.  

And if we do so, we will retain the true regression slopes exactly for the linear 
regression or approximately for the nonlinear regressions and, therefore, will be able to 
estimate true covariate effects.  
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





Regression calibration

Regression calibration (3)

In absence of true intakes, each predicto T * P
ir       is 

 estimated in a substudy (called calibration study) 
using (often repeat) reference measurements Rij

 
Requirement: reference measurements may contain 
error but should be unbiased for true individual 
usual intake, i.e., for person i, repeat j

     * |P
i T i i T ij iT g T g R i      XE E E | |X

( | )ij kiR i E T

Regression calibration predictor is given by 

and its estimation requires a model for Rij
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Now, the main question becomes: How do you estimate this best predictor or this 
conditional mean? The best way to do it would be to have a substudy where the truth is 
observed. Unfortunately, it’s not the case with dietary data. So in the absence of true 
intakes, each such predictor is estimated in a substudy, which is usually called a 
calibration substudy, using reference measurements, often repeat measurements. I will 
call them R.  

And there is a requirement for a correct reference. The reference measurements may 
contain error of their own, but they should be unbiased for true individual usual intake. 
In other words, for each person, i, given all personal characteristics, the mean of the 
repeated reference measurements should be equal to true usual intake. And if this 
requirement is met, then the predicted value of true intake is given by this formula. 
Remember, this is the conditional mean of the transformed true intake given the values 
of observed covariates. This unknown true intake could be replaced by the conditional 
mean of the reference measurements.  

Basically, this conditional mean means that we have to take many, many, many, many 
repeats for each person, i, and average them over. Of course, in real life we don’t have 
those many, many, many repeats so we will need to use a statistical model for reference 
measurements, and then we can calculate this conditional mean by averaging, or doing 
weighted averaging—averaging with weights—the available repeats over the 
distribution of those repeats. And in mathematics this weighted average is an integral 
and it could be calculated numerically if it doesn’t exist in closed forms.   
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Regression calibration

Regression calibration (4)


 – 


 – 

Ideal reference measurements of dietary intakes:

Short-term recovery biomarkers (unfortunately, 
only few are known: DLW for energy, UN for 
protein, UK for potassium)

Reference measures in practice:

More detailed short-term self-reports such as 
multiple-day food records or repeat 24-hour 
dietary recalls (24HRs)
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So the bottom line is that to apply this formula, one needs to model reference 
measurements. Before I go to modeling, I would like to say something about the 
reference measurements themselves.   

The ideal reference measurements of dietary intake are short-term recovery 
biomarkers. Unfortunately, at the moment, only a few are known: doubly labeled water 
for energy intake, urinary nitrogen for protein intake, and urinary potassium for 
potassium intake.  

What do we use in practice? Well, we use, usually, more detailed short-term self-
reports, such as multiple-day food records or repeat 24 hour dietary recalls.  
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



–



–

 

 

 

 

 

Regression calibration

Regression calibration (5)

Methodology below is developed for any correct 
reference measurement

This methodology is demonstrated using 24HR 
(reference instrument in many important dietary 
cohorts)

Short-term reference period is 1 day

Working assumption: 24HR is unbiased in 
reporting individual’s true usual dietary intake

Implications of possible biases in 24HR are 
discussed at the end
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The methodology that I’m going to present today is developed for any correct or valid 
reference measurement. I will demonstrate this methodology using the 24 hour recall, 
which is the reference instrument in many important dietary cohorts, including the NIH- 
AARP cohort or EPIC cohort in Europe. The short-term reference period for a 24 hour 
dietary recall is one day. And I will consider what I call a working assumption, and that is 
that the 24 hour recall is unbiased in reporting individuals’ true usual intake and 
therefore is a valid reference instrument.  

I will address the implications of possible biases in the 24 hour recall at the end of this 
lecture.  
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





Regression calibration

Regression calibration (6)

 
Given a measurement error model for reference 
measurements, regression calibration predictor is a 
function of covariates Xi and model parameters θ

  * | | ( ; )P
i T ij i iT g R i   X X θE E T

Parameters are estimated in a calibration substudy 
as θ̂

 
Regression calibration predictor is then estimated 
for all subjects in the main study as 

* ˆˆ ( ; ),  1,...,P
i iT i N X θT
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If we have a measurement error model for the reference measurements, then the 
regression calibration predictor given by this formula depends on observed covariates, 
which are components of vector Xi, and, of course, the parameters of the model.  

I denote this function by a special form of letter T; it’s a fancy T, which denotes a 
function that depends on X and the covariates of the model.  

When I fit this model in a calibration substudy, I can estimate the model parameters by 
θ ^ [can’t make symbol with “hat” on top]. And then I can calculate the regression 
calibration predictor for each person in the main study by using these estimated 
parameters and fit the risk model to those variables.   
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



 

Regression calibration (7)

Regularly-consumed dietary components

Ideal world: the classical measurement error model 
2~ij i ij ij ,  0;R T N    

where the regression of Ti on Xi is linear, i.e.,

2~ ,i 0;i 0i X iT u  β Xt  u uN

The measurement error model for reference 
 measurements is thus specified as 

0
t

ij X iR   β X i iju

Regression calibration
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I would like to introduce measurement error models for short-term reference 
instruments, starting with the ideal situation when the references are true usual intake 
plus error. This error is normally distributed and has mean zero and a constant variance. 
Statisticians usually call this the classical measurement error model. Moreover, in this 
ideal world the true usual intake has a linear regression on the vector of covariates with 
a residual, u, which has a normal distribution with mean zero and a constant variance. 
Putting those two expressions together, the measurement error for the reference 
measurements in this ideal world is given by this formula.   
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

– 

– 

– 

Regression calibration

Regression calibration (8)

 
Measurement error model 

0
t

ij X i i ijR     β X u

is a mixed effects linear model which includes
fixed (in this case linear) effect of covariates 
defined by the population-level parameters (0 , X )
random effect ui representing part of within- 
person mean not explained by covariates; it is 
person-specific but randomly varies across people

within-person random error ij representing 
short-term variation
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Here is this formula again. This model is a mixed effects linear model, which includes 
fixed (in this case, linear) effect of covariates, and this linear effect is defined by the 
population-level parameters, intercept β0 and slope βX. It also includes a random effect, 

u which represents a part of the within-person mean of R that is not explained by the 
covariates. It’s person-specific, i.e., it is constant for each person but it randomly varies 
across people. And, of course, like in most statistical models, there is a within-person 
random error, ε, representing short-term variation in the reference measurement.  
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i

 i





Regression calibration

Regression calibration (9)

t 

 
Regression calibration predictor on a transformed 
scale is given by

 
For the risk model with predictor on original scale, 
conditional expectation above exists in closed forms, 
so that the regression calibration predictor is a linear 
function of covariates

0
P t

i XT  β X
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The regression calibration predictor, generally on the transformed scale, is given by this 
formula. Remember I said that we could replace unknown true values by the conditional 
means of the reference measurements. And under this ideal model, there is a finite 
form for expressing this conditional mean given over here by this expression, and then 
one has to calculate the transformation of this and after that to calculate the conditional 
mean of the transformed value for given values of covariates, X. In a general case, this 
conditional mean doesn’t exist in closed forms but could be calculated numerically, as I 
mentioned before.  

There is one case when it does exist in closed forms, and this case is the one when the 
transformation is the identity function; in other words, when we consider the risk model 
on the original scale and then the regression calibration predictor is given by a linear 
function of covariates, the simplest predictor possible.  
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


 


 



Regression calibration

Regression calibration (10)

2~  

Real world: often within-person random error in Rij 
depends on individual mean and has a skewed 
distribution, violating classical model assumptions

Usual remedy: transformation to a scale where 
classical model is a good approximation, i.e.,

     2
0 ~,  0; ,  0;t

R ij X i i ij i u ijg R u u N N       β X

Regression calibration predictor is then given by
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Well, that was an ideal world. Unfortunately, the real world sometimes is very different. 
Often, within-person random error in reference measurements depends on the 
individual mean and has a very skewed distribution, therefore violating classical model 
assumptions. The common remedy in this case is to transform the reference values to a 
scale where the classical model is a good approximation. So what we do is perform the 
transformation, gR, such that the mixed effects linear model still holds on the 
transformed scale.  

And then the regression calibration predictor is given by this formula, so we have first to 
transform back to the original scale, then calculate the conditional mean—again, it 
could be done numerically—then transform it to a scale where we fit the risk model, 
and again calculate the conditional mean of this expression given the covariates that are 
observed.  
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


 – 

– E Rij | *
ii T





 

 

 

 

Regression calibration

Linear regression calibration

Linear regression calibration approximation (LRC): 
commonly used in nutritional epidemiology

Working assumptions:
R*

ijThere is a scale where      is well approximated by
the linear mixed effects model and the risk 
model’s predictor, is linear i.e., gT (.) = gR (.) = g (.)

On this scale, approximately

Then

We will see later that LRC may fail to provide a good 
approximation for nonlinear models
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You have heard before and probably know from your experience that the most 
commonly used form of the regression calibration is the linear regression calibration. 
And I just showed you all those complicated formulas and said that it should be done by 
numerical integration. Why? Why bother?  

Well, actually, the linear regression calibration in many cases works just fine, but not 
always. The reason is that it’s based on two important working assumptions. The first 
assumption is that there is a scale where the transformed reference measurements are 
well approximated by the linear mixed effects model and where the risk model 
predictor is linear. In other words, the gT and gR are the same function; I call it g. 
Moreover, on this transformed scale, approximately, the transformed reference is 
unbiased for transformed usual intake. And, remember, we assumed that the reference 
instrument is unbiased on the original scale. It cannot be unbiased on both original and 
transformed scales. The quality of this approximate assumption depends on the 
transformation. If these two assumptions are met, more or less, even approximately, 
then the calibrated predictor of the transformed scale, again, is given by this simple 
linear function of the covariates.  

As I mentioned, it may work pretty well in many cases, but not always, and we will see 
later that linear regression calibration may fail to provide a good approximation for 
nonlinear models.   
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EPISODIC DIETARY 
COMPONENTS
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Now, let me consider episodic dietary components, the main focus of today’s webinar.   
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


 – 

– 

Episodic dietary components

 

Episodic dietary components (1)

Our focus: episodically-consumed dietary 
components i.e., those that are not consumed daily 
by nearly everyone (but are eventually consumed in 
the long run)

Examples: 

Many foods (fish, red meat, whole grains, dark 
green or orange vegetables, etc.)

Some nutrients (vitamin A or B12)
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The episodically consumed dietary components are the components that are not 
consumed daily by nearly everyone, but we assume that they are eventually consumed 
in the long run. The examples are many foods, such as fish, red meat, whole grains, dark 
green or orange vegetables, etc., and some nutrients, such as vitamin A or B12.  
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
 

Episodic dietary components

Episodic dietary components (2)

Example: typical short-term report

Spike at 
Zero

Skewed 
Distribution

Whole Grains

Males, day 1

24 hr recall: whole grains (total)

P
er

ce
nt

0 11.410.29.07.86.65.44.23.01.80.6
0

10

20

30

40
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This is a typical example. This is a histogram from the Eating at America’s Table Study of 
a short-term report on the 24 hour recall, one day of the 24 hour recall, of whole grains 
by men. And what you can see is that, first of all, you have about 36 or 37% of 
individuals reporting zero intake of whole grains on this particular day. And then the 
distribution of positive values is skewed to the right with a very ugly, long right-hand 
tail.  
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

– 

– 

Episodic dietary components

Episodic dietary components (3)

 
Short-term reference measurements for 
episodically-consumed dietary components 

Are semicontinuous variables with excess 
zeros and often skewed to the right positive 
values

Even if otherwise precise, contain substantial 
within-person measurement error due to short- 
term variation in intake 
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So it’s a typical situation when short-term reference measurements for episodically 
consumed dietary components are what statisticians call semicontinuous variables with 
excess numbers of zeros and often skewed to the right positive values. And even if 
otherwise precise, they contain substantial within-person measurement error due to 
short-term variation in reported intake.  
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TWO-PART MODEL
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So how would one model such data?  
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Two-part model

Two-part model (1)





– 

– 

 
Goal: specifying a measurement error model for 
semicontinuous reference measurements

 
Main idea: modeling a semicontinuous variable as 
the result of two distinct, although generally 
correlated processes:

One determines whether the variable takes 
positive or zero value

Other specifies its positive value
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The goal is to specify a measurement error model for semicontinuous reference 
measurements. The main idea is to model a semicontinuous variable as the result of two 
distinct, although generally correlated, processes. One determines whether the variable 
takes positive or zero value, and the other one specifies its positive value.  
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Two-part model

Two-part model (2)



– 

– 

 
Two-part model – first proposed by Cragg (1971) 
and intensively studied in econometrics and (later) in 
biostatistics

Part I – logit/probit regression specifying the 
probability of positive values

Part II – linear regression specifying log- 
transformed positive values
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This leads to a two-part model, which was first proposed in econometrics literature by 
Cragg in 1971, and it was intensively studied first in econometrics literature and then 
later on in biostatistical literature. The part I of this two-part model is usually the logit or 
probit regression specifying the probability of positive values. And the part II models the 
positive values through the linear regression of their log transformation.  
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

– 

– 

– 

Two-part model

Two-part model (3)

 
Extended to longitudinal data by Olsen & Schafer 
(2001) and Tooze et al. (2002) by introducing mixed 
effects two-part model with:

Fixed effects that are defined by a function of 
covariates with population-level parameters

Random effects that represent part of within- 
subject mean not explained by covariates; it is 
subject-specific but randomly varies across 
subjects

Within-subject random errors in positive values 
representing longitudinal variation 
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This model was relatively recently extended to longitudinal data in 2001 by Olsen and 
Schafer and in 2002 independently by Tooze et al. by introducing a mixed effects two-
part model. We are already familiar with the mixed effects linear model. In this case, the 
model may be nonlinear but still it has fixed effects that are defined by a function of 
covariates with population-level parameters; random effects that represent part of the 
within-subject mean which is not explained by the covariates, which is subject-
specific but randomly varies across subjects; and within-subject random errors in 
positive values representing longitudinal variation.  
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

– 

– 

– 



 

Two-part model

Two-part model (4)

Longitudinal two-part mixed effects model:

Part I – mixed effects logistic regression 
specifying the probability of positive values

Part II – mixed effects linear regression for log- 
transformed positive values

Both parts are linked by allowing correlated 
person-specific random effects and overlapping 
covariates

 
For model identifiability, need at least 2 repeat 
observations on at least a subsample of subjects
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In the case of the longitudinal two-part model considered in those two papers, the part I 
was the mixed effects logistic regression specifying the probability of positive values. 
Part II was the mixed effects linear regression for log-transformed positive values. Both 
parts were linked by allowing correlated person-specific random effects in the two parts 
and overlapping covariates. And for model identifiability—in other words, to be able to 
uniquely estimate all model parameters—one would need at least two repeat 
observations on at least a subsample of the subjects.   
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

– 

– 

Two-part model

Two-part model (5)

 
New methodology (NCI method) further extended the 
longitudinal two-part mixed effects model for short- 
term reference measurements of episodically- 
consumed dietary components by:

Including Box-Cox family of transformations of 
positive values (to allow flexibility in addressing 
skewedness)

( 1) / if   0
( ; )

log( ) if   0

v
v v

v
v

v
g v

v

  



  

 


Allowing for within-subject random measurement 
error
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And then this longitudinal two-part model was further extended by the new 
methodology known as the NCI method to the case of modeling short-term reference 
measurements of episodically consumed dietary components. The extension was 
twofold. First of all, the log transformation was replaced by a much more flexible Box-
Cox family of transformations given by this formula. Basically, it’s a power 
transformation for all parameter values which are not zero, and for the zero parameter 
value the transformation is a log. And the second extension was allowing for within-
subject random measurement error.  



Assessing diet-health relationships with FFQ: focus on episodically-consumed dietary components42

 

Two-part model

Two-part model (6)





Two-part NCI model: 





where: 

 1 2

2
1 1, 2

2
1, 2 2

( , ) ~ ; ,  t

i i i

u u u

u u u

u u N
 
 




 


u uu 0 Σ Σ

 
Part I specifies the probability of consumption & part 
II specifies the consumption amount; both parts are 
linked by allowing correlated person-specific random 
effects and overlapping covariates
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Here is the formula for the two-part NCI model. It was already introduced in the third 
webinar by Dr. Tooze. And what’s important is that the first part specifies the probability 
of consumption; in this case, using the logistic regression. And the second part specifies 
the consumption amount. And on the transformed scale, the amount is given by the 
mixed effects linear model. The random effects have a normal distribution and are 
correlated, as is depicted here. And also, covariates in the two parts of the model could 
overlap.  
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

– 

– 

Two-part model

Two-part model (7)

 
For a single episodically consumed dietary 
component, using two repeat 24HRs in US 
NHANES Survey as the main dietary-assessment 
instrument, NCI method was applied to:

Estimating the distribution of usual intake and its 
characteristics (Tooze et al, JADA, 2006)

Estimating relationships of usual intake with 
health outcome (Kipnis et al, Biometrics, 2009)
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For a single episodically consumed dietary component, using two repeat 24 hour recalls 
in the U.S. survey, which is called NHANES for National Health and Nutrition 
Examination Survey, as the main dietary assessment instrument, the NCI method was 
applied to estimating the distribution of usual intake and its characteristics in a paper in 
JADA in 2006, and estimating the relationships of usual intake with health outcomes in a 
Biometrics paper in 2009.  
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

– 

– 

Two-part model

Two-part model (8)

 
Goal: extending NCI methodology for adjusting diet- 
health relationships for FFQ measurement error 
when the risk model includes several dietary 
components

In many cases, regression calibration can be 
applied to error-prone covariates in a risk model 
one by one

But there is a problem with dietary risk models 
due to energy adjustment
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Our goal today is to extend this NCI methodology for adjusting diet-health relationships 
for FFQ measurement error when the risk model includes several dietary components. 
Now, in many cases, regression calibration can be applied to error-prone covariates in a 
risk model one at a time, i.e., one by one. But in the case of diet-health relationships, 
there is a complication, and this complication is related to energy adjustment, which is 
often used with dietary exposures.  
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BIVARIATE MODEL



Slide 45 

[No notes.]  
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

– 

– 





Bivariate model

Bivariate model (1)

 
To understand effects of dietary composition, 
epidemiologists usually consider risk models with 
energy-adjusted dietary covariates such as: 

Density, i.e., ratio of usual intake of interest to 
usual energy intake (focus here)
Residual from regressing usual intake of interest 
on usual energy intake

 
Energy-adjusted risk models also include energy

 
Since many dietary intakes are correlated with 
energy intake, estimation of RC predictor requires 
modeling episodic component and energy together
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To understand the effect of dietary composition, epidemiologists usually consider risk 
models with energy-adjusted dietary covariates such as  the density, or the ratio of 
usual intake of interest to usual energy intake, or the residual from regressing usual 
intake of interest on usual energy intake. And energy itself is usually a covariate in the 
risk model as well.  

What is achieved by this is we are looking at the effect of main exposure given that total 
energy intake is the same; in other words, when the change in the exposure is achieved 
by substituting the exposure value for some other dietary components. And since many 

dietary intakes are correlated with energy intake, estimation of the regression 

calibration predictor, in this case of density or residual, requires modeling episodic 

components and energy simultaneously.   
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

– 

– 

– 

Bivariate model

Bivariate model (2)

 
Observed data in calibration sub-study: for person 
i, time period j

RFij , REij  - short-term reference measurements of 
episodic dietary component  F and energy E

Xi  - vector of observed covariates, including FFQ- 
reported intakes Qi and error-free covariates Zi

Indicator variable of reference consumption in 
period j for episodic component

1 if R 0
( 0) Fij 

Fij FijI I R   
0 i Rf Fij   0
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Before I go to this bivariate model, I would like to go over what is observed and what is 
not. The observed data consist in the calibration substudy of short-term reference 
measurements for dietary components of interest—in our case, episodic dietary 
components—and for energy. They also consist of vector X of observed covariates, 
which include FFQ reported intakes, denoted by Q, and error-free confounders, denoted 
by Z. And, also, one observes the indicator variable of reference consumption in any 
short-term period, j. In other words, we do observe whether the reported episodic 
component is consumed or not consumed during a specified time period.  
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



 –

–

–

–

Bivariate model

Bivariate model (3)

Latent (unobserved) variables:

 Fij , EijT T - true intakes of interest in period j

 TFi - true usual intake of component of interest 

 TEi - true usual energy intake

 D  /T Ti Fi - tTEi rue density intake of interest

 
Additional latent variables: person-specific random 
effects and within-person random errors
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What are unobserved are the variables which, first of all, are true intakes of components 
of interest or energy, and I will consider density in this presentation, so the density is 
given by the ratio of true usual intake of the component of interest to true usual intake 
of energy. And there are also additional latent variables in the model which consist of 
person-specific random effects and within-person random errors, as we saw previously.  
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





Bivariate model

Bivariate model (4)

 
Energy intake is naturally specified as part II of the 
NCI model since energy is always consumed

 
Allowing correlations between person-specific 
random effects in energy and episodic component 
models induces correlation between usual energy 
and episodic component intakes

 
Allowing correlation between within-person errors in 
energy and part II of episodic component models 
induces correlation between energy and episodic 
component during short-term consumption period
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As to energy intake, it’s natural to specify it as part II of the NCI model since energy is 
always consumed. Part I, which is the probability of consumption, is always 1, so it 
doesn’t have to be specified.  

Now, allowing correlations between person-specific random effects in the energy model 
and in the model of the episodic components induces correlation between usual energy 
and episodic component intakes.  Allowing correlation between within-person errors in 
energy and part II of episodic component models induces correlation between energy 
and episodic components during short-term consumption periods.  

Is this enough to come up with a good model?   
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
 – 





Bivariate model

Bivariate model (5)

Additional model requirement:

During any short-term period, energy intake 
(continuous variable) should be allowed to be 
correlated with the indicator of consumption of 
dietary component of interest (binary variable)

 
Original part I of the NCI model specifies a model for 
the probability to consume an episodic component 
but not for the indicator of short-term consumption

 
To satisfy the above requirement, need to modify 
part I of the two-part NCI model
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Well, there is an additional model requirement. During any short-term period, energy 
intake, which is a continuous variable, should be allowed to be correlated with the 
indicator of consumption of the dietary component of interest, which is a binary 
variable for episodically consumed components.  

This has an intuitive sense because, for example, on a day when one consumes, say, red 
meat, his or her energy intake could go up. And if one doesn’t and consumes only, say, 
vegetables, the energy intake on that particular day or during this particular short-term 
period could go down. So one feels that this correlation might be important. 

Now, the original part I of the NCI model specifies a model for the probability of 
consumption but not for the indicator or the fact of short-term consumption. And so to 
satisfy the mentioned requirement, one needs to modify part I of the two-part NCI 
model.   
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
 – 

– 

– 

Bivariate model

Bivariate model (6)

Modified part I: to allow IFij & REij to be correlated

Consider continuous latent variable in period j 

where 0, 2
F iu N

1
,1 ~

Fu  F ij  (0,1)N1 ~

Let        underlie binary indicator of episodic 
component’s reference consumption

 1F ijAllow       and within-person error in the model for 
reference energy intake REij  to be correlated 
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And to do this modification to allow the indicator of consumption, I, and the reference 
energy amount during a particular short-term period, j, to be correlated, let’s consider a 
latent variable. It’s an additional latent variable. I call it RF tilde, which is represented by 
the linear mixed effects model, which we’re familiar with already. The only difference 
here is that the variance of epsilon, or within-person variation, is supposed to be 1. One 
needs to make this assumption to be able to identify or uniquely estimate the model 
parameters.  

And let us relate this latent variable to the indicator of episodic components reference 
consumption. In other words, we will say that consumption takes place if and only if this 
latent variable is positive. 

And now, because we have a model for the fact of consumption, not just the probability 
to consume, and we have this within-person variation, ε1, we could allow it to be 
correlated with its counterpart, within-person variation, in the model for energy.   
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



Bivariate model

Bivariate model (7)

The use of additional latent variable       leads to the 
 probability of consumption specified as the mixed 

effects probit model 

where
 

denotes the distribution function of the 
standard normal random variable 

 
Note: in part I of the original NCI model the 
probability of consumption is specified as the logit 
model without underlying continuous latent variable 
in period j
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By the way, if one introduces this latent variable in the form I did, it means that the 
probability of consumption now is given not by the logit but by the probit mixed effects 
model. Usually, the two models are in close agreement so it’s not a big deal. I just want 
to emphasize that it’s a little change from the original NCI model, where it was logit.  
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
 

Bivariate model (8)



2

2~
F

Part II: the same as in the original NCI model, i.e., 
transformed consumption amount during period j is 
specified as linear mixed effects model: 

where: 

Part I and II are linked by using the same 
covariates and allowing person-specific random 
effects to be correlated

   2

2
2 2~ 0, ,  0,

FF i u F iju N N   


 

20 2 2 2( ; | 0)
F

t
Fij R Fij F i F i F ijg R R u     β X

Bivariate model



Slide 53 

Okay, part II is unchanged. It’s the same as in the original NCI model. It says that on the 
transformed scale, the positive reported values of episodic components are represented 
by the linear mixed effects model. And part I and part II are linked by using the same 
covariates, X, and by allowing person-specific random effects, u, to be correlated.  
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
 


 

– 
– 

Bivariate model

Bivariate model (9)

Model for Energy: transformed energy amount for 
period j is specified as linear mixed effects model: 

where:

Model for energy is linked to both parts I and II for 
episodic component by using the same covariates 
and allowing: 

person-specific random effects to be correlated 
within-person errors Eij to be correlated with 
F1ij and F2ij

0( ; )
E

t
Eij R E E i Ei Eijg R u     β X

   2 2~ ~0, ,  0,
E EEi u Eiju N N   
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The model for energy is, as I said, represented the same way as in part II of the NCI 
model; on the transformed scale, it’s the linear mixed effects model. And this model is 
linked to both part I and part II of the episodic component model by using the same 
covariates, X’s, and by allowing person-specific random effects to be pair-wise 
correlated and within-person error in the model for energy, εE, to be correlated with 
both ε1 and ε2 in the two-part model for the episodic components.   



Assessing diet-health relationships with FFQ: focus on episodically-consumed dietary components55


 

Bivariate model

Bivariate model (10)

Bivariate model is formally specified as: 

where:
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This bivariate or three-part model is formally specified on the slide. This is provided for 
those who would like to see this formal model specification, but I just want to 
emphasize one thing. The variance covariates matrix for within-person random variation 
has a structured form; namely, it has 1 as the first element of the main diagonal, and it 
has two zeros, here and here, and so when fitting the model, one should take care and 
not forget that this is not just a three-by three variance covariate matrix with 
parameters free to vary; it has a very specific and structured form.  



Assessing diet-health relationships with FFQ: focus on episodically-consumed dietary components56


 


 

Bivariate model

Bivariate model (11)

,F Eθ θDenoting by model parameters for episodic 
component and energy, respectively, we have:

True usual intakes of episodic component and 
energy are expectations of those functions, i.e.,
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Now, once we have specified the model, then the reference measurement for the 
episodic component is a function, denoted by this fancy R, of observed covariates; of a 
latent variable, which is the person-specific random effect; of another latent variable, 
which represents the within-person variation; and of model parameters. The same is 
true for the model for energy intake.  
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Bivariate model

Bivariate model (12)

*
DiT

*
EiT

True episodic component density is given by:

Regression calibration predictor for      is given by:

Regression calibration predictor for      is given by:
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Now, to calculate the true usual intake of the episodic component, or energy, one needs 
to take the conditional expectation of this function, which is, as I said, the weighted 
average over the distribution of epsilons. And so it could be done numerically because 
this weighted average is just an integral.  

And then, once we’ve calculated this weighted average, this becomes a function of 
observed covariates, person-specific random effects, and the model parameters. The 
same is true for energy intake. 

And once we have those two, we can calculate their ratio and, again, it’s a function of 
covariates, person-specific random effects, and model parameters. And, remember, 
what one needs to do is one needs to predict this on the transformed scale, generally 
speaking, given the observed covariates.  

So to calculate this conditional mean, we need, again, to calculate the weighted average 
of this function over the distributions of u, because X is fixed. Again, it could be done by 
numerical integration. The same is true for the model for energy.  
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Bivariate model

Bivariate model (13)

Model parameters  θF , θE in the bivariate model are 
estimated by fitting the model in the calibration sub- 
study by MLE using NLMIXED SAS procedure

For any given set of covariate transformations, by 
 using estimated model parameters F ,ˆ ˆ

Eθ θ         , regression 
calibration predictors for transformed density and 
energy are calculated for each person in the main 
study

 
The final set of covariate transformations is chosen 
to maximize the overall likelihood when fitting the 
risk model
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In terms of model parameters, θF and θE in this bivariate model are estimated by fitting 
this model in the calibration substudy using the maximum likelihood estimation 
procedure, which is part of the NLMIXED procedure in SAS. For any given set of 
covariate transformations, by using these estimated model parameters from the 
calibration substudy, the regression calibration predictor for transformed density and 
energy could be calculated for each person in the main study. Then, the risk model 
could be fit for the given transformations of predicted covariates, and the final set of 
covariate transformations could be chosen by maximizing the overall likelihood when 
fitting the risk model.   
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NIH-AARP STUDY
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Now, let us consider how this methodology could be applied in the real situation in the 
NIH-AARP Diet & Health Study.  
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NIH-AARP study

NIH-AARP diet and health study (1)

Prospective cohort of 567,169 men & women aged 
50-71 in 1995-96 with FFQ administered at baseline

Calibration substudy of ~1000 men and 1000 
women with 2 non-consecutive 24HRs

Analysis: relationships in men between 
red meat density & lung cancer 
orange vegetables density & lung cancer 

adjusting for age, smoking, and energy intake

Risk model: Cox regression on original and Box-Cox 
transformed scales with standard errors estimated 
by bootstrap to account for estimated RC predictors
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This is a prospective cohort of more than half a million men and women who were aged 
50-71 in 1995-96 when the study began, with an FFQ administered at the baseline. This 
study has a calibration substudy of approximately 1,000 men and 1,000 women with an 
additional FFQ and two nonconsecutive 24 hour dietary recalls.  

The analysis that I want to consider is the relationships in men between red meat 
density and lung cancer, and also orange vegetable density and lung cancer, adjusting 
for age, smoking, and energy intake.  

The risk model was the Cox regression. It’s a survival analysis—Cox regression on either 
original or Box-Cox transformed scales The standard errors were estimated by the 
bootstrap method. One needs to do so because one cannot use SAS-produced standard 
errors from fitting the Cox regression. The assumption behind SAS-estimated standard 
errors is that all the covariates in the model are known. In our case, we predict some of 
the covariates using the regression calibration prediction and because it’s done in the 
calibration substudy, there are certain uncertainties in the estimated parameters. And 
to take them into account, one has to use the bootstrap or any such method.   
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NIH-AARP study

NIH-AARP diet and health study (2)

Due to zeros, for linear regression calibration (LRC), 
used Box-Cox transformation with a shift parameter:

To assess covariate transformations, risk model fit 
was tested using cumulative martingales technique 
implemented in SAS (p <0.05 indicates poor fit)

Compared FFQ-based analysis (no correction for 
measurement error) with corrections using linear 
regression calibration and regression calibration 
based on the bivariate model
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I would like to compare the methodology that I just presented with the commonly used 
linear regression calibration. And in the case of the linear regression calibration, 
because it basically consists of linearly regressing reference measurements on the FFQ 
and other covariates in the model, and the reference measurements contain lots of 
zeros, we have to use a different form of the Box-Cox transformation, a more general 
form which involves a shift parameter. I call it delta here. That allows you to, for 
example, take a log when the true values are zeros.  

To assess whether after the transformation the risk model, Cox regression in our case, 
fits the data well, we apply the test using the cumulative martingale technique, which is 
implemented in SAS. And what it produces is the p value. If this p value is less than the 
conventional 5 percent, the fit may not be so good. If it’s greater than 5 percent, it’s an 
indication that the fit is okay.  

In our examples we compare the FFQ-based analysis with no correction for 
measurement error with two types of corrections, first using the linear regression 
calibration and, second, using regression calibration based on the bivariate model that I 
just presented.  
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NIH-AARP study

NIH-AARP diet and health study (3)

24HR reported consumption of orange vegetables and red meat

Red Meat 
(g/day)

Orange 
Vegetables 
(cups/day)

Mean reported intake (s.e.) 82.8 (2.3) 0.14 (0.01)

Mean amount on consumption days (s.e.) 117.7 (2.6) 0.32 (0.01)

Mean probability to consume (s.e.) 0.70 (0.01) 0.44 (0.01)

% of subjects who consumed food:
0 out of 2 days 14.7 33.5
1 out of 2 days 29.9 44.9
2 out of 2 days 55.4 21.6
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Before I go to the results, I would like to show you this table, which contains mean 
reported intake, the standard errors, mean amount on the consumption days, mean 
probability to consume, and also the percentage of people in the study who consumed 
either red meat or orange vegetables on two days out of two, on one day out of two, or 
on zero days out of two. 

You can see that about 33.5 percent of people in the calibration substudy reported no 
consumption of orange vegetables on any of the two days when the 24 hour recall was 
administered. Thus it’s pretty episodically consumed, the mean probability of 
consumption was only about 40 percent.  

With red meat the picture is slightly different. About 15 percent of the subjects didn’t 
consume red meat, and we’re talking about males, on any of the two days, which is 
interesting. But remember, this is the U.S. population and although they are middle-
aged men, they still do eat red meat. So it’s somewhat episodically consumed but not 
too episodically.  
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NIH-AARP study

NIH-AARP diet and health study (4)

NIH-AARP Diet and Health study: Red meat intake and lung cancer risk in men; 
hazard ratios for red meat density between 10 & 60 g/1000 kcal

Risk Model: 
Measurement Error 
Correction Method

Estimated 
Log Hazard 
Ratio (s.e.)

Estimated 
Hazard Ratio 

(95% CI)

Risk model fit 
test 

p-value

Untransformed Intake:

No correction for ME 1 0.225(0.040) 1.252(1.158,1.354) 0.041
RC (Bivariate model) 1 0.409(0.075) 1.505(1.300,1.744) 0.130
LRC 1 0.441(0.097) 1.554(1.285,1.880) 0.041

Transformed Intake:
No correction for ME 0.4 0.248(0.046) 1.281(1.171,1.402) 0.082
RC (Bivariate model) 1 0.409(0.077) 1.505(1.294,1.751) 0.130
LRC (chosen scale) 0.4 0.001 0.321(0.155) 1.379(1.017,1.868) 0.076
LRC (fixed log scale) 0 0.001 0.113(0.096) 1.120(0.928,1.351) 0.564

 
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Okay, here the table represents the results of the analysis for the red meat intake versus 
lung cancer in men. We have the estimated log hazard ratios in this column, and hazard 
ratios and 95 percent confidence intervals in this column. This column is, then, the value 
of the Box-Cox transformation parameter. And remember, in the case of the linear 
regression calibration, we also use the shift, which is represented in this column. 

Now, we’ll first consider the case when we fit the Cox regression on the original scale. If 
one uses the FFQ on the original scale, and the value of the Box-Cox transformation 
parameter for the original scale is always 1, the estimated log hazard ratio is .225; the 
estimated hazard ratio is 1.2. It’s statistically significantly different from 1, so it’s a risk 
factor. But when one calculates the model fit, or whether the scale is an appropriate 
scale, the p value is slightly less than .05.  

Strictly speaking, it means that the model may not fit very well, although keep in mind 
it’s a very large study with a quarter million men, and so when you are dealing with a 
large sample, any statistical test sooner or later will show deviations from the null 
hypothesis. And in this case, the null hypothesis is that the model fits on this scale. So 
when the value is close to 5 percent, the fit, although strictly speaking is not great, could 
be rather appropriate. 

Now, if one uses the regression calibration based on the bivariate model, the results 
change. The hazard ratio becomes 1.5, so the effect is much larger, actually, as 
compared to the one estimated by using FFQ without correction. And, interestingly, the 
model fits rather well.  

What about linear regression calibration? In this particular case, the results are very, 
very similar. Again, we estimate the de-attenuated hazard ratio and, again, the fit, 
strictly speaking, is not that great but may be rather appropriate.  

Yet, because of those two p-values that indicate a not so great fit, let’s see what 
happens if one does transform the main exposure variable. If one uses the FFQ, the 
transformation parameter is .4, so strictly it’s close to—well, not strictly, but 
approximately—it’s close to the square root. The estimated hazard ratio is very similar 
to the one estimated on the original scale: 1.25-1.28. And the model fits okay.   

If one uses the regression calibration based on the bivariate model, the chosen 
transformed scale happens to be the original scale; in other words, it’s an identity 
transformation. And of course, we already saw this result up here.  

Now, with the linear regression calibration, one could apply two different 
transformations. In the literature, epidemiologists often use linear regression calibration 
on the log scale, always on the log scale. In other words, they don’t choose this 
parameter in the Box-Cox family; it’s fixed at zero, which represents log. But because 



we’re using shift, shift is still being chosen by maximizing the fit of the risk model, and in 
this case we add just a very, very little amount to the red meat. 

Now, the results of those two different transformations are also very different. If one 
uses a log scale instead of deattenuating the hazard ratio estimated with FFQ, one 
attenuates it a little bit further and it becomes null. If one chooses the scale with the 
linear regression calibration, again one chooses something close to the square root, and 
again the shift has a very, very small value. And the result of this is still deattenuation. 
The effect is not as large as using the bivariate model, somewhat different, and the fit of 
the model is okay.  

So basically, from this slide one can conclude that with or without transformation, the 
results for the bivariate model and linear regression calibration are not that different 
unless one uses a log scale with the linear regression calibration. Then, of course, the 
results differ very much. 
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NIH-AARP study

NIH-AARP diet and health study (5)

NIH-AARP Diet and Health study: Orange vegetable intake and lung cancer risk in 
men; hazard ratios for orange vegetable density from 0.02 to 0.10 cups/1000 kcal

Risk Model: 
Measurement Error 
Correction Method

Estimated 
Log Hazard 
Ratio (s.e.)

Estimated 
Hazard Ratio 

(95% CI)

Risk model fit 
test  

p-value

Untransformed Intake:

No correction for ME 1 -0.076(0.021) 0.927(0.889,0.966) <0.0001
RC (Bivariate model) 1 -0.265(0.078) 0.767(0.658,0.894) 0.002
LRC 1 -0.223(0.086) 0.800(0.676,0.947) <0.0001

Transformed Intake

No correction for ME -0.3 -0.182(0.030) 0.834(0.786,0.884) 0.256
RC (Bivariate model) 0.1 -0.380(0.089) 0.684(0.574,0.814) 0.060
LRC (chosen scale) -20 1 -0.593(0.146) 0.553(0.415,0.736) 0.202
LRC (log scale) 0 0.005 -0.387(0.107) 0.679(0.551,0.838) 0.022

 
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What about orange vegetables? Well, here we estimated the hazard ratio for increasing 
the orange vegetable density from .02 to .10 cups/1,000 kilocalories. Orange vegetables 
are presumably a factor which helps to lower the hazard ratio for the lung cancer, which 
means that the estimated log hazard ratio would have a negative sign, as we see here in 
this table. So on the untransformed scale, the situation now is quite different. In what 
sense? Well, the model doesn’t fit on this scale. And we can still look at the results and 
we can still say that with the FFQ the results are very close to—the hazard ratio is very 
close to 1. This is being deattenuated using the bivariate model, very similar to 
deattenuating using the linear regression calibration. But if the model doesn’t fit, do 
those numbers represent true hazard ratios? Probably not. 

So let’s consider some transformations. With the FFQ without any correction, the 
estimated hazard ratio is .83, so it’s different from .92, the effect on the original scale, 
and the model fits okay. And the chosen scale is very close to the log scale; it’s tenth 
root. With LRC, if one chooses the log scale, one gets the results very similar to those 
with the bivariate model. Unfortunately, the model doesn’t fit. If one chooses both the 
scale and the shift parameter, the results of the FFQ are deattenuated even further than 
those based on the bivariate model, and the model fits. The results are rather different.  

And if you remember with the previous analyses, the log scale produced results very 
similar to those with the bivariate model. In this particular case, the log scale produces 
the results similar—sorry—in the previous case it was not similar; it was very different. 
Let’s go back and see. Yes, it was very different. But on the chosen scale it was 
somewhat closer. Here, it’s closer on the log scale. On the chosen scale, it’s not.  

Of course, in the real example, we don’t know what truth is. We don’t know which of 
the two approaches—one which is based on the bivariate model, or linear regression 
calibration—works better.   
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SIMULATION STUDY
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So to examine it, we did a simulation study where the truth is known.  
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Simulation study

Simulation study (1)

Main study: for 100 000 subjects generated FFQ 
and 1000 24HRs with distributions similar to those of 
orange vegetables and energy in NIH-AARP study

Calibration substudy: for 1000 subjects used first 2 
24HRs as reference measures

True usual intakes: calculated as averages of 1000 
24HRs; density intakes were calculated as ratios of 
true usual component to usual energy intakes

Binary outcome: generated using logistic regression 
with Box-Cox transformed exposure
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And so we conducted such a study. We generated the FFQ for the 100,000 individuals. 
We also generated 1,000 24 hour recalls, and in both cases the distributions of the 
simulated data were similar to those of orange vegetables and energy in the NIH-AARP 
Diet & Health Study. 

The calibration substudy consisted of 1,000 subjects using the first two 24 hour recalls 
as reference measurements. Now, why did we simulate 1,000? Because we wanted to 
estimate true usual intake and, as I said, we assume that true usual intake is the mean 
of many, many repeats. So with 1,000 repeats, we just calculated this mean, and then 
we calculated the density by dividing the true usual intake for orange vegetables, 
pseudo-orange vegetables, over the true usual intake of energy.  

We also generated the binary outcome using the logistic regression on Box-Cox 
transformed exposure.  
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Simulation study

Simulation study (2)

Goal: estimating log RR for increasing main 
exposure between 0.02 & 0.10 cups/1000 kcal

Risk model: logistic regression on original and Box- 
Cox transformed scales with standard errors 
estimated by bootstrap

Compared FFQ-based analysis (no correction for 
measurement error) with corrections using linear 
regression calibration and regression calibration 
based on the bivariate model



Slide 67 

Our goal was to estimate the log relative risk for increasing main exposure between .02 
and .10 cups/1,000 kilocalories, like in the earlier example. The risk model here was a 
logistic regression on the original and Box-Cox transformed scales. Standard errors were 
estimated by bootstrap. And we compared the FFQ-based analysis with no correction 
for measurement error with corrections using linear regression calibration and 
regression calibration based on the presented methodology.  
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Simulation study

Simulation study: results (1)

Results of the simulation study: mean, standard deviation and root mean 
squared error of estimated log odds ratio in logistic regression of disease on 
orange vegetable intake and energy
Sim Measurement Error 

Correction Method
Mean 

(M ean   )
Mean Log 
OR (s.e.)

Standard 
Deviation

RMSE

1 True parameters 1 -0.4
No correction for ME 0.42 -0.242 (0.002) 0.025 0.160
RC (Bivariate model) 0.85 -0.417(0.005) 0.078 0.080
LRC (original scale) 1 -0.436(0.008) 0.118 0.123
LRC (log scale) 0 (0.08) -0.557(0.008) 0.108 0.191
LRC (chosen scale) -0.61 (0.18) -0.543(0.007) 0.104 0.177

2 True parameters 0.1 -0.4
No correction for ME 0.02 -0.207(0.002) 0.024 0.194
RC (Bivariate model) 0.10 -0.416(0.007) 0.093 0.094
LRC (original scale) 1 -0.285(0.006) 0.088 0.145
LRC (log scale) 0 (0.006) -0.342(0.006) 0.083 0.101
LRC (chosen scale) -2.18 (0.14) -0.375(0.009) 0.121 0.124
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Here are the results. I present here two scenarios: one when the true logistic regression 
was fit using the original scale, and one when it was fit using the transformed (almost 
log) scale. Again, negative log odds ratio means that the exposure has a protective 
effect.  

Let’s look at this panel first. So when there is no correction for measurement error and 
one chooses the scale, the chosen scale is close to the square root, as we saw in the real 
example. The mean estimated log odds ratio is minus .24. This is the standard deviation. 
It’s quite small, which is usually the case with using the FFQ without correction.  

And in this column, I present what is called the root mean squared error. The root mean 
squared error somehow balances the bias in the estimated parameter and its standard 
deviation on its variance. For example, in using FFQ without correction, the estimated 
log odds ratio is very biased. It’s almost half of the true value. But its variation, as 
depicted by the standard deviation, is rather low. Yet, because of the high bias, the root 
mean squared error is relatively large.  

What happens if one uses the presented methodology, or bivariate model? The mean 
estimated transformation parameter is close to 1—not exactly, but close. The estimated 
mean log odds ratio is slightly biased, but very slightly. It’s very close to minus .4. The 
standard deviation is larger than in the case of FFQ but not bad. As a result, the root 
mean squared error is only half of the root mean squared error of no correction when 
using FFQ, which is a very good reduction.  

What about the linear regression calibration? Now, we have three choices. One is to 
consider always the original scale. The other one is to consider always the log scale but 
chose the shift parameter. And the third one is when both the scale and shift 
parameters are being chosen. 

When one does the analysis on the original scale, the results are slightly more biased 
than with the bivariate model, but not by much. The standard deviation increases and, 
as a result, the root mean squared error is 50% higher compared to the bivariate model. 
If one uses the log scale to fit the risk model,  one over adjusts the log odds ratio. So 
instead of minus .4, one gets minus .56. The variation is slightly less but not by much. 
Because of the bias, the root mean squared error is larger in this case. It’s even larger 
than for the FFQ without any correction.  

If one applies a linear regression calibration with both choice of the scale and the shift 
parameter, the estimated log odds ratio is still biased, a little bit less so than in the 
previous case. The root mean squared error is still large.  

Okay, so based on this panel, it seems that the best strategy is to use linear regression 
calibration on the original scale; in other words, to do the right thing, although we don’t 



know it in advance, but we could always use the original scale. Why not? Well, the 
second panel shows why not. Because if the true scale is actually close to the log, with 
no correction we basically choose, on average, the right scale, yet with no correction for 
measurement error while using the FFQ, the results are very biased, half of the true 
value, and the root mean squared error, as a result of this, is pretty large.  

With the bivariate model, on average, we choose the right scale. Look at this. The mean 
log odds ratio is very close to the true value. This variation of the estimate increases 
somewhat compared to the previous case but not by much. As a result, the root mean 
squared error again is half of the previous case.  

Now, what about the linear regression calibration? Remember on the previous panel, if 
you fit with the original scale, you get results close to true ones. Here, if you fit in the 
original scale, you have huge bias. Basically, you don’t deattenuate the FFQ-based result 
by much. As a result, the root mean squared error is pretty large.  

If you do it on the log scale, there is still bias but less so. The root mean squared error 
improves. If you choose both the scale and the shift parameter, you get the results with 
a slight bias but rather close to the true value. Unfortunately, the variation of estimated 
log odds ratio is quite large. As a result, the root mean squared error is pretty large. 

The main point here is that with the linear regression calibration, it seems that there is 
no consistent strategy of how it should be applied. On this panel, the original scale 
produces good results; the other two scales, not so much so. In the other case, the 
original scale failed very miserably. Using the log scale improved the result. Choosing 
the scales improved it even further, although the variation may not be so good in this 
particular case.  
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Simulation study

Simulation study: results (2)

In theory, for risk models on original scale, LRC is 
approximately consistent, BUT leads to finite 
sample biases due to unaccounted excess zeros 

For risk models on a transformed scale, LRC may 
not perform well because

Trying to find a scale where both calibration and 
risk models have linear predictors and reference 
measurements are unbiased often leads to poor 
approximations

Applying LRC on the original scale by definition 
leads to a misspecified risk model
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Well, in theory, for the risk model on the original scale, linear regression calibration is 
approximately consistent. Unfortunately, this consistency doesn’t kick in for the finite 
samples, even as large as in the simulated study. And so for the finite samples, it still 
involves biases due to unaccounted excess zeros.  

For the risk models on the transformed scale, when one applies the linear regression 
calibration, we also may have a problem. Why? Because trying to find a scale where 
both calibration and risk models have linear predictors and the reference measurements 
are unbiased—those two conditions that are important—often leads to poor 
approximations. If one does it without choosing the scale but on the original scale, by 
definition, one misspecifies the true scale of the risk model.   
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[No notes.] 
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Summary

Summary (1)

Developed methodology addresses major 
challenges for bivariate modeling of short-term 
reference intakes of an episodic component & 
energy by allowing during any short-term period:

Energy intake to be correlated with the indicator 
of episodic component consumption

Energy intake to be correlated with consumption 
amount
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The developed methodology addresses major challenges for bivariate modeling of 
short-term reference intake of an episodic component and energy by allowing during 
any short-term period energy intake to be correlated with the indicator of episodic 
component consumption and by allowing energy intake to be correlated with non-zero 
episodic component consumed.   
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Summary

Summary (2)

Developed methodology allows for rigorous 
regression calibration to correct for nondifferential 
covariate measurement error in rather flexible risk 
models with multiple dietary exposures that:

Include energy-adjusted dietary components

Include covariates on transformed scales

Simulations indicate that the developed method 
performs substantially better than conventional 
linear regression calibration
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The developed methodology also allows for the rigorous regression calibration to 
correct for nondifferential covariate measurement error in rather flexible risk models 

which a) include multiple dietary exposures that could be energy adjusted, and b) the 

risk models could include covariates on the transformed scales.   
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Discussion

Discussion (1)

Focus here: episodically-consumed dietary 
components that are eventually consumed in the 
long run

What about never consumers?

Model could be extended to include never 
consumers

Depending on dietary component and a reference 
instrument, it may require more than 2 repeat 
reference measurements (e.g., 4-6 with 24HR- 
reported fish intake, Kipnis et al, Biometrics 2009)
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Our focus was on episodically consumed dietary components and we assumed that 
although they are episodically consumed during any short-term period, eventually they 
are consumed by nearly everyone in the long run.  

What about never consumers? Those probably exist in some cases; for example, alcohol 
intake, [and] maybe even intake of dark green vegetables or orange vegetables or red 
meat. The model could be relatively easily extended to include never consumers, but 
depending on the dietary component and the reference instrument, it may require 
more than two repeats of the reference. Never consumers required four to six 24 hour 
recalls. With two 24 hour recalls in some cases in our simulation study, the model did 
not converge.   
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Discussion

Discussion (2)

Developed methodology is based on the important 
assumption that a short-term reference instrument is 
unbiased for true usual dietary intake on individual 
level

In considered applications, such instrument was 
24HR

Studies with recovery biomarkers (DLW for energy, 
UN for protein, UK for potassium) demonstrate 
some bias in 24HR, suggesting possible biases in 
reporting other dietary components
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Now, the methodology is based on the important assumption that the short-term 
reference instrument is unbiased for true usual dietary intake at the individual level, 
which means that it’s a valid reference instrument. In the application that I considered, 
such an instrument was a 24 hour recall.  

Now, studies with recovery biomarkers such as doubly labeled water for energy and 
urinary nitrogen and urinary potassium for protein and potassium intakes, respectively, 
have demonstrated that 24 hour recall involves some biases.   
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Discussion

Discussion (3)

Recent publication (Freedman et al, JNCI 2011) 
based on OPEN biomarker study suggests that, in 
spite of biases, using 24HR as a reference to correct 
for FFQ measurement error on average leads to 
better results than FFQ-based analysis with no 
correction for measurement error

Using more precise short-term reference 
instruments, such as 24HR, for correcting for FFQ 
measurement error is a step forward toward better 
understanding of diet-health outcome relationships
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 [A paper] in the JNCI this year by Freedman and colleagues, which was based on the 
OPEN biomarker study, suggests that in spite of those biases, if one uses 24 hour recall 
as a reference to correct for the FFQ measurement error, this on average leads to better 
results than relying on FFQ without correction. And this study was conducted 
considering different scenarios that involved risk models with multiple dietary 
exposures. So it seems, based on this study, that using  24HR to correct for FFQ 
measurement error leads to better understanding of diet-health outcome relationships. 
It’s still, at least on average, better than not adjusting at all.   
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Discussion

Discussion (4)

Using reference measurements to calibrate FFQ 
(approximately) removes bias but does not fully 
restore the power to detect a relationship, which is 
lost due to measurement error

Even bias correction may not be reliable if the 
attenuated effect is too small (weak signal problem)

One can do better by using more precise short-term 
instruments (e.g., web-based ASA24) as the main 
dietary-assessment method and/or combine 
different instruments

The corresponding methodologies will be presented 
in webinars 10-12 
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Now, using reference instruments to calibrate the FFQ approximately removes bias due 
to measurement error, but it never fully restores the power to detect a relationship, the 
power which is lost due to measurement error in the FFQ. Even bias correction may not 
be very reliable if the attenuated effect is too small because of some unmeasured 
confounders that could be involved in the risk modeling. This is a well-known weak 
signal problem.  

So those two considerations mean that one could do better—why not using the short-
term instruments in the main study, especially now when there are several Web-based 
24 hour recalls, such as the, for example, ASA24 developed at the National Cancer 
Institute? Another possibility is to combine different instruments—for example, Web-
based 24 hour recall and FFQ—to achieve the same purpose. 

And the methodologies that are involved will be presented in webinars 10 to 12.   
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QUESTIONS & ANSWERS
Moderator: Kevin Dodd

Please submit questions 
using the Chat function
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Thank you Victor. We’ll now move on to the question and answer period of the webinar.  



Measurement Error Webinar 8 Q&A 

Question: What is the best way to determine if a dietary variable is episodically 

consumed? When is it the case that you need to use these multipart 

models? Is there a rule of thumb that you use for that? 

 Basically, assuming that one has a reference instrument which is 24 HR, 

let’s say—and if you have repeats, you look at those numbers, and if the 

percentage of people who report zero intakes on, say, two days, is maybe 

1 or 2 or 3 percent, the nutrient or food may not be too episodically 

consumed and the usual methodology could be applied. On the other 

hand, we saw in our examples with red meat it was about 15 percent. 

With orange vegetables, it was more than 30 percent. Those foods are 

really episodically consumed. So is it a rule of thumb? To some degree, but 

looking at the reference measurements, one can make a judgment which 

usually is pretty good.  (V. Kipnis) 

You showed the linear regression calibration doesn’t have necessarily a 

consistent message. How do you think that’s going to perform if the 

main exposure was one of these regularly consumed dietary 

components, rather than an episodic one? 

That’s a good question. Actually, cases of nonlinearity—the first one was 

because the risk model could be fitted on the transformed scale. The 

second one is that, in our case, the model for the predictor or regression 

calibration model could be very nonlinear because of the nature of 

episodic consumption. Of course, for the regularly consumed dietary 

components, this second consideration may go away, although one could 

still use transformations of the reported values. The first one, though, 

remains. So, all in all, if one fits a model on the original scale, linear 

regression calibration, in theory, provides consistent estimates. In 

practice, it depends on the size of the study. For very large studies with 

very large calibration substudies, I think the results are going to be pretty 

good. In other words, the approximation would be very good. If one fits a 

risk model on the transformed scale, then it depends on the 

transformation, although I think that in many cases the results could be 

rather good. But in combination, if you use both nonlinearities as in the 



case of episodically consumed dietary components, as we saw, linear 

regression calibration may fail. (V. Kipnis) 

How do you set up a calibration study for these big cohorts with FFQ as 

the main instrument? In the example you gave with the AARP study, you 

had two 24 hour recalls in the calibration substudy in that situation. 

That’s a very important question because of EPIC. EPIC has a very large 

calibration substudy, [with] more than 35,000 people, I think, in it. But as 

you said, it was one 24 hour recall. Now, with one 24 hour recall used as a 

reference, one doesn’t have a longitudinal study. One is one. So one could 

go and fit the original two-part model that was suggested for non-

longitudinal data; in other words, that doesn’t have person-specific 

random effects. Those random effects are very important. Not only they 

model unexplained by covariate variation in true usual intake, but also, 

because they are allowed to be correlated, they therefore link together 

the probability to consume and the consumption amount. And as you, 

Kevin, explained in your webinar, those two are often correlated. So when 

one uses the two-part model without person-specific random effects, the 

only way to do this correlation would be through the same covariates in 

the model. And I think it would be interesting to try it and apply it and see 

how much you would lose by applying such modeling. But as I said, in 

principle, it could be done. In EPIC it is the only way it could be done.  (V. 

Kipnis) 

I think that may have been Janet Tooze’s webinar, not mine, that talked 

about the correlation. That’s all right; I don’t want to have you give me 

credit for something I haven’t done. (K. Dodd) 

Just to follow up on that, then, so, with one 24HR, you could do an EPIC 

if you change things around a little bit, and obviously you can do it with 

two 24HRs, because you just did. But is there some sort of a rule as to 

how many 24HRs would be optimal to use? 

What would be better—to increase the number of repeats of the 

reference instrument, or to increase the size of the calibration substudy? 

Because, remember, the parameters of the measurements in our model 



are being estimated, and so the larger the calibration substudy, the better 

you estimate them. And the results seem to be indicating that it’s better to 

use a larger study rather than to increase the number of repeats. Actually, 

the EPIC study was designed based on this consideration. Now, with 

episodically consumed dietary components, one needs at least two 

repeats. To model never-consumers, one might have to increase the 

number of 24 hour recalls to, say, four. But what I would like to emphasize 

is that as far as I know there have not been any studies that have looked at 

this theoretically, and it probably needs to be done. (V. Kipnis) 

There have been some questions asked about sort of the complication 

effect of this model. And there’s one question based on why couldn’t 

one use a univariate model that doesn’t actually have all of these 

additional complications to it, instead of the bivariate model? 

In the case of energy adjustment, let’s consider density, for example. We 

define this density as the ratio of usual intake of a dietary component of 

interest to the usual energy intake, instead of the usual ratio. Depending 

on the dietary component and depending on the transformation involved, 

those two values could be very close together or could be rather far apart. 

So the answer to your question is, in some cases, if you do it univariately 

you may not see too much of a difference, but there will inevitably be 

cases where the difference would be sizeable, so I would suggest applying 

this more advanced methodology. (V. Kipnis) 

And is it possible that after doing all of this best selection of 

transformation for the disease model, you do the best you can, but can 

you still get a situation where that model fit isn’t very good? And if so, 

what do you do then? 

Yes, you could. With all those transformations, I presume that it’s a 

curvilinear relationship. It could be made linear if one does the 

transformation. It’s conceivable that there are some other ways, of course, 

of considering more complex models. One can use nonparametric 

modeling with, e.g.,splines. One can use a Bayesian approach, which is 

more flexible. But in my experience, in many cases, finding a 



transformation can lead to not too much complication and yet to a 

reasonable fit. (V. Kipnis) 

As a corollary to that, what about doing some categorization? 

Well, that’s another very good question because in most epidemiologic 

studies, if you look at the analyses, people do use categorized exposure. 

And of course, the main reason, as I understand it, is to avoid the problem 

of specifying a form of a relationship or a form of the risk model predictor. 

Nothing comes free, though. There is no free lunch. When you categorize, 

you lose a lot of power unless your study is very, very, very large. And that 

is not such a good thing. Another thing is, then, that when you categorize, 

the induced misclassification is going to be differential. And so regression 

calibration, which we consider here, could not be applied. There are other 

methods for measurement error correction which could be applied in the 

differential case, in the case of differential misclassification; for example, 

multiple imputations. They are more involved, so you win by considering a 

simple risk model; you lose by the necessity to consider a much more 

involved method for measurement error correction. So, all in all, it may 

not be such a good idea, if not always. (V. Kipnis) 

What happens if, after measurement error correction, your relationship 

is no longer statistically significant? What does that mean? 

It could mean two things. It could mean that your calibration substudy was 

too small. As a result, when you take into account uncertainty in 

estimating measurement error model parameters,  this uncertainty is so 

large that the resulting confidence interval in the risk model becomes too 

large and so you don’t have enough power to see the relationship. It could 

also mean a wrong procedure. When I applied the linear regression 

calibration on the log scale, the relationship between—I believe it was 

orange vegetables versus lung cancer—became statistically nonsignificant. 

And it was simply because the linear regression calibration was not the 

right approach. (V. Kipnis) 
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Thank you, Victor, and thanks to our audience for joining today’s webinar. Please join us 
next week for webinar 9, the first session in the Advanced Methods section of our 
series, in which Dr. Raymond Carroll will discuss the estimation of usual intake 
distributions for multivariate dietary variables. Thank you.   
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