THE CRYPTOGRAPHIC ALGORITHM VALIDATION PROGRAM

5th Annual NIST IT Security Automation Conference

Sharon Keller Director, NIST CAVP October 27, 2009

CRYPTOGRAPHIC ALGORITHM VALIDATION PROGRAM (CAVP)

- Purpose: Provide assurance that cryptographic algorithm implementations adhere to the specifications detailed in the associated cryptographic algorithm standards.
- Established by NIST and the Communications Security Establishment Canada (CSEC) in 2003
 - + Originally part of CMVP algorithm validation tests were not standardized
 - With increased number of approved Federal Information Processing Standards (FIPS-Approved) and NISTrecommended cryptographic algorithms, formed as separate program

CAVP'S RELATIONSHIP WITH THE CMVP

- The validation of cryptographic algorithm implementations is a prerequisite to the validation of cryptographic module
- * With the passage of the <u>Federal Information Security</u> <u>Management Act of 2002</u>, there is no longer a statutory provision to allow for agencies to waive mandatory Federal Information Processing Standards.
- U.S. Federal organizations must use validated cryptographic modules which in turn means that the cryptographic algorithms implemented in the module must be validated.

CAVP FUNCTIONS

- A suite of validation tests is designed for each Approved* cryptographic algorithm (called the Algorithm's Validation System) to thoroughly test the algorithm's
 - + specifications,
 - + components,
 - + features, and
 - + functionality

*FIPS-Approved and NIST-Recommended

ALGORITHM COMPLEXITY EXAMPLE

SPECIAL PUBLICATION 800-56A

Discrete Logarithm Cryptography(DLC)			Key Agreement Sche	emes (KAS)	Key Agreement Roles				
Finite Field Cryptog	iranhy (EEC)		FFC	ECC	Initiator				
	Tests ever	y combinati	on of key	Full Unified Model	Responder				
Elliptic Curve Crypto	^{ogi} agreemen	t scheme –	key agreement	Full MQV					
role-, (key confirm			n role-key (C). Within each	Ephemeral Unified Model	Provider				
	combinatio	on, there is	a section for	One-Pass Unified Model	Recipient				
Parameter Size Se (determines	each para	meter set a	na Sha algonunm	One-Pass MQV	Key Confirmation Types				
bit length of field of bit length of subgr minimum bit lengt function output, minimum MAC key minimum MacLen	orc rou th y size (for KC), ı (for KC))	SHA algorith	ims supported	Tests key pair generation, assurance of validity of keys, FFC and ECC Diffie-Hellman Primitive (Z) MQV Primitives (Z)					
FFC E	ECC	SHA224		ASN.1 Key Derivation Fund	stion				
FA E	EA	SHA256 SHA384							
FB E	B	SHA512							
FC E	C MACs supported		C) with						
E	ED CMAC	CMAC							
EE HMAC CCM									

CRYPTOGRAPHIC ALGORITHM VALIDATION PROCESS

	VENDOR	1	CST Lab	CAVP	User
	Designs and Produces	1	Tests for Conformance	Validates Test Results	Specifies and Purchases
	Cryptographic Algorithm Implementations	//	Cryptographic Algorithm Implementations	Signs Validation Letter	Security and Assurance
\prod	//////	ļ	→	→	

Vendor

Designs and Produces

Cryptographic Algorithm Implementations

- Implements cryptographic algorithms that comply with the requirements specified in the applicable FIPS Publication or NIST Special Publications.
- Validation of this implementation is mandatory for it to be used by the United States Federal Government.
 - + FIPS 140 a mandatory standard for the protection of sensitive data
 - + Federal Information Security Management Act of 2002

Vendor

Designs and Produces

Cryptographic Algorithm Implementations

- Vendor contacts a NVLAP* Accredited Cryptographic and Security Testing (CST) Laboratory requesting validation of their implementation.
 - + 18 accredited testing laboratories
 - *National Voluntary Laboratory Accreditation Program

CST Laboratories

Tests for Conformance

Cryptographic Algorithm Implementations

- Independently tests cryptographic algorithm implementations
- Laboratory collects the necessary information from the vendor pertaining to the algorithm implementation.
 - + Example: If vendor implements AES, laboratory needs to know
 - * the modes of operation implemented (ECB, CBC, CFB, OFB, CCM, CMAC, GCM, GMAC)
 - × the states implemented (Encrypt, Decrypt)
 - × the key sizes implemented (128, 192, 256)

CST Laboratories

Tests for Conformance

Cryptographic Algorithm Implementations

 Laboratory generates input vectors for each test in the suite of validation tests described in the algorithm's Validation System

 Laboratory sends these input vectors to the tester of the algorithm implementation (tester can be vendor or lab)

Tester (Vendor or Lab)

Implements the Algorithm Validation System

Generates Results

 Tester implements the test suite for the algorithm. The test suite is described in the algorithm validation system document located on the web.

- For example: For AES, the algorithm validation test suite is described in the AESAVS (AES Algorithm Validation System) document.
- The input vectors are input into the tests and the resulting answers are sent to the laboratory to determine their correctness.

CST Laboratories

Tests for Conformance

Cryptographic Algorithm Implementations

× CST Laboratory checks the results for accuracy.

- If the results are not correct, lab informs the vendor that the implementation does not meet the requirements of the standard
- If the results are correct, the testing laboratory requests that the CAVP validate the algorithm implementation
 - Lab sends results of tests with the validation request to NIST CAVP

CAVP

Validates Test Results

Officially Validates Cryptographic Algorithm Implementation

× CAVP checks the results for accuracy

 Determines if the implementation is compliant with the specifications in the cryptographic algorithm standard.

CAVP

Validates Test Results

Officially Validates the Cryptographic Algorithm Implementation

Posts the official validation on the website

- Validated cryptographic algorithm implementations are located at csrc.nist.gov/groups/STM/cavp/validation.html
- This implementation may now be used in cryptographic modules used by the U.S. Government.

Validation No.	Vendor	Implementation	Operational Environment	Val. Date	Modes/States/Key sizes/ Description/Notes
1201	Comtech Mobile Datacom Corporation	Transceiver Cryptographic Module (TCM)	ARM STR911FA-M42X6	10/14/2009	CBC(e/d; 128,192,256); CFB128(e/d; 128,192,256)
	20130 Century Boulevard Germantown, MD 20874 USA - <u>Sebastian Morana</u> TEL: 240-686-3353 FAX: 240-686-3301	Version 0.1.J (Firmware)			"The Transceiver Cryptographic Module is a compact hardware module with firmware implementation for cryptographic algorithms."
1200	SonicWALL, Inc. 2001 Logic Drive San Jose, CA 95124 USA - <u>Usha Sanagala</u> TEL: 408-962-6248 FAX: 408-745-9300	SonicOS 5.5.1 for TZ Series Version 5.5.1	Cavium Octeon 5010 w/ SonicOS 5.5.1	10/14/2009	CBC(e/d; 128,192,256) "SonicWALL TZ Series is a high performance security platform that combines anti-virus, anti-spyware, intrusion prevention, content filtering, 3G connectivity and redundancy with 802.11 b/g/n wireless for an ultimate SMB security package. These solutions allow to easily implement complete network protection from a wide spectrum of emerging threats."

Advanced Encryption Standard (AES) Algorithm Validated Implementations

User

Specifies and Purchases

Security and Assurance

 Verifies that the cryptographic algorithm implementations have been validated inside a cryptographic module or a product considered for purchase and use by Federal Government.

CAVP Validation Status By FYs

Updated As Wednesday, September 30, 2009

FiscalYear	AES	DES	DSA	DRBG	ECDSA	HMAC	KAS	RNG	RSA	SHA	SJ	TDES	Total
FY1996	0	2	0	0	0	0	0	0	0	0	0	0	2
FY1997	0	11	6	0	0	0	0	0	0	7	2	0	26
FY1998	0	27	9	0	0	0	0	0	0	6	0	0	42
FY1999	0	30	14	0	0	0	0	0	0	12	1	0	57
FY2000	0	29	7	0	0	0	0	0	0	12	1	28	77
FY2001	0	41	15	0	0	0	0	0	0	28	0	51	135
FY2002	30	44	21	0	0	0	0	0	0	59	6	58	218
FY2003	66	49	24	0	0	0	0	0	0	63	3	73	278
FY2004	82	41	17	0	0	0	0	28	22	77	0	70	337
FY2005	145	54	31	0	14	115	0	108	80	122	2	102	773
FY2006	131	3	33	0	19	87	0	91	63	120	1	83	631
FY2007	240	0	63	0	35	127	0	137	130	171	1	136	1040
FY2008	269	0	77	4	41	158	0	137	129	191	0	122	1128
FY2009	374	0	71	23	33	193	3	142	143	224	1	138	1345
Total	1337	331	388	27	142	680	3	643	567	1092	18	861	6089

Thank You