
National Vulnerability
Database Product
Ontology

Paul Cichonski
Booz Allen Hamilton / NIST

Agenda

Overview of Ontology Goals

Overview of NVD Product Ontology

Overview of Inferencing Use Case for
Querying Across Product Ranges.

NVD Product Ontology Goals

Ontology must support NVD’s primary use case involving
making statements of applicability between IT concepts (e.g.
CVEs, Checklists) and IT products.

Ontology must support the ability to make statements of
applicability at various levels of abstraction and across ranges
of products (e.g. Microsoft Windows version 4.3 to 5.6).

Ontology must support the ability to capture granular product
identification data which may vary on a per product basis.

Ontology must support the Common Platform Enumeration
which is the standardized method for naming IT products.

High-level NVD Ontology Overview

= <owl:Class>
= <rdfs:subClassOf>

ABC = <rdf:Property>

Identification
concept hierarchy Product category

concept hierarchy

hasIdentification

Relationship connecting
the two structures

Structure of the Ontology

NVD Ontology models two separate concept structures as formal “is-a”
hierarchies.

Category concept hierarchy

Identification concept hierarchy

NVD Ontology also includes other types of semantic relationships.

Relationships between applications and codebases (“made up
of” relationships)

Explicit differences between sets of products created by defining
disjoint sets (e.g. hardware vs. software products)

High-level NVD Ontology Overview

= <owl:Class>
= <rdfs:subClassOf>

ABC = <rdf:Property>

Identification
concept hierarchy Product category

concept hierarchy

hasIdentification

Relationship connecting
the two structures

Product Category Hierarchy
Product

Software Hardware

Shared Library OSApplication

Firmware

Network Device Physical Device

Switch

= <owl:Class>

DLL JAR
Server

App Server

Lock Filing Cabinet

hasIdentification, domain of Product, range of IdentificationStrategy,
<owl:inverseFunctionalProperty>

hasReleaseDate, domain of Product

hasCpeName, domain of Product

usesSharedLibrary, domain of Application, range of SharedLibrary

contains, domain of Product, range of Product, inverseOf containedIn

hasOwner, domain of Product, range of Foaf:Agent, inverseOf ownedBy

hasAutomationTest, domain of Product

Many other possibilities exist, very granular predicates can be defined further down tree.

= <rdfs:subClassOf>

Possible Predicates

ABC = <rdf:Property>

Router

Driver

Identification Concept Hierarchy

IdentificationStrategy

= <owl:Class>

hasName, domain of IdentificationStrategy

hasModelNumber, domain of PhysicalDeviceIdentificationStrategy

hasCiscoTrainIdentifier, domain of CiscoIOS_Strategy

hasCiscoInterimBuildNumber, domain of CiscoIOS_Strategy

hasMicrosoftMajorVersion, domain of NTKernal_Strategy

hasVersion, domain of GenericIdentificationStrategy

hasUpdate, domain of GenericIdentificationStrategy= <rdfs:subClassOf>

Possible Predicates

ABC = <rdf:Property>

Product instance data related to an IdentificationStrategy
through the predicate hasIdentification

MicrosoftIdentificationStrategy

PhysicalDevice
Identification

Strategy

CiscoIOS_Strategy

NTKernal_Strategy

CiscoIdentificationStrategy
GenericIdentificationStrategy

Product Instance Data Instantiated from Model Classes

Model

Instance
Data product_0124

•rdf:type: OS

•hasCpeName:
cpe:/o:cisco:ios:12.4(1.7)E

•hasOwner:
Foaf_resource:Cisco

hasIdentification

blank_32320
•rdf:type: CiscoIOS_Strategy

•hasCiscoMajorVersion: 12

•hasCiscoMinorVersion: 4

•hasCiscoReleaseNumber: 1

•hasCiscoInterimBuildNumber:7

•hasCiscoTrainIdentifier: E

Blank Node

hasIdentification Property Uniquely Identifies a Product

product_0124hasIdentification

blank_32320
•rdf:type: CiscoIOS_Strategy

•hasCiscoMajorVersion: 12

•hasCiscoMinorVersion: 4

•hasCiscoReleaseNumber: 1

•hasCiscoInterimBuildNumber:7

•hasCiscoTrainIdentifier: E

product_5683 hasIdentification

Inferencing is
performed

product_5683 product_0124owl:sameAs

hasIdentification rdf:type owl:InverseFunctionalProperty .

Definition of InverseFunctionalProperty:
If a property, P, is tagged as InverseFunctional then for all x, y, z:
P(y, x) and P(z, x) implies y = z

P rdf:Type owl:InverseFunctionalProperty .
Y P X .
Z P X.
Infer that:
Y owl:sameAs Z .

OR

N3 Syntaxinferred triple

11 22

33

44

Ontology will provide backwards
compatibility with CPE 2.x

CPE names can be generated from product instance data in a
formalized way due to the granular way in which
IdentificationStrategies are modeled.

If modeled with SWRL rules, this backwards compatibility
logic will live in the model.

product_0124
•rdf:type: OS

•hasCpeName:
cpe:/o:cisco:ios:12.4(1.7)E

•hasOwner:
Foaf_resource:Cisco

hasIdentification

blank_32320
•rdf:type: CiscoIOS_Strategy

•hasCiscoMajorVersion: 12

•hasCiscoMinorVersion: 4

•hasCiscoReleaseNumber: 1

•hasCiscoInterimBuildNumber:7

•hasCiscoTrainIdentifier: E

This version was
generated from
identification strategy data

The Ontology Provides the Capability for Modeling
Ranges of Products

This is accomplished with four predicates

hasNextVersion, hasPreviousVersion

hasLaterVersion (transitive), hasEarlierVersion (transitive)

These four predicates are modeled using a predicate hierarchy such that
the non-transitive predicates are related to the transitive predicates through
rdfs:subPropertyOf.

hasPreviousVersion hasNextVersionowl:inverseOf

hasEarlierVersion hasLaterVersion

rdfs:subPropertyOfrdfs:subPropertyOf

owl:TransitiveProperty

rdf:type rdf:type

Inferencing for Product Range Data
x n2n0 n1 n3

= product instance data

hasPreviousVersionhasPreviousVersion hasNextVersion hasNextVersion

= asserted triple

= inferred triple

Inferencing is
performed

x

hasEarlierVersion

hasEarlierVersion

hasL
aterVersi

on

hasLaterVersion

• The reasoner creates inferred triples which allow an observer
to see all products in a version chain earlier and later than x.
Inferred triples are also captured for n0 , n1 , n2 , and n3 .

•The version chain DOES have to be captured by a human
since a version chain order is ambiguous

•In the future if IdentificationStrategies are modeled fully it
may be possible to encode version chain order into the
model and let the reasoner figure it out.

Infer:
X hasLaterVersion n2

n2 hasPreviousVersion X

n2 hasEarlierVersion X

Assert:
X hasNextVersion n2

Querying for Product Range Data

Analysts populate version chain using non-transitive
predicates (hasNextVersion and hasPerviousVersion)

A SPARQL query could then be written against the
transitive predicates which the reasoner has inferred.

Querying against the transitive predicates allow system
to determine all “earlier” and all “later” versions (i.e. a
product range).

SELECT ?product
WHERE {

?product a nvd:product
?product nvd:hasEarlierVersion 3.2
?product nvd:hasLaterVersion 5.4

}

• Keeps all application logic for
range relationships in model

• This DOES require instance
data to be fully populated

• Could potentially explode triples

Contact Information

Paul Cichonski
paul.cichonski@nist.gov

http://nvd.nist.gov

mailto:paul.cichonski@nist.gov
http://nvd.nist.gov/

Extra

Ontology Provides the Means to Make More
Granular Statements of Applicability

Shared Library (e.g. DLL, JAR) instance data can be captured and related
to typical product instance data.

Through predicates such as usesSharedLibary.

Analysts can then associate vulnerabilities with shared libraries and
simple queries can be used to determine all products which use the
shared library.

Classes can be added to the Model to capture codebases.

Relationships can then be asserted on instance data to relate products
to the codebase from which they originate (e.g. isBasedOnCodeFrom).

Analysts can assign vulnerability to a specific codebase, and the system
can generate the list of all applicable products.

These predicates could become the standard way for all product ontologies
to declare these relationships.

This would provide a shared understanding across a wide set of data.

Statements of Applicability can be Modeled
as First Class Individuals

Applicability statements are a way of relating a grouping of products
to a particular IT concept (e.g. CVE, CCE, Checklist).

If modeled as actual classes in an ontology applicability statements
will provide the ability to create groupings of products at various
levels of abstraction depending on the needs of a use case.

Possible to represent all products in a certain range

Possible to represent all products that use a certain shared
library

Predicates can be defined to capture relationships between
applicability statements

Possible to express that one applicability statement is a prerequisite for
another statement to be possible on a network

Possible to express that one applicability statement subsumes another
statement.

Applicability Statements Modeled as First
Class Individuals

ApplicabilityStatement= <owl:Class>
= <rdfs:subClassOf>

ABC = <rdf:Property>

Predicates capturing information relating to products encompassed by a applicability statement

includesProduct, domain of ApplicabilityStatement, range of Product, inverseOf memberOf

memberOf, domain of Product, range of ApplicabilityStatement, inverseOf includesProduct

minimumProduct, domain of ProductRangeStatement, range of Product

maximumProduct, domain of ProductRangeStatement, range of Product

sharedLibrary, domain of SharedLibraryStatement, range of SharedLibrary

Predicates capturing relationships between applicability statements and IT concepts (e.g. CVE, CCE,
Checklist)

hasApplicabilityStatement, domain of some IT concept, range of ApplicabilityStatement, inverseOf appliesTo

appliesTo, domain of ApplicabilityStatement, range of some IT concept, inverseOf hasApplicabilityStatement

Predicates capturing relationships between applicability statements and other applicability
statements

hasPrerequisite, domain of ApplicabilityStatement, range of ApplicabilityStatement, inverseOf prerequisiteFor

prerequisiteFor, domain of ApplicabilityStatement, range of ApplicabilityStatement, inverseOf hasPrerequisite

subsumes, domain of ApplicabilityStatement, range of ApplicabilityStatement, inverseOf subsumedBy

Possible Predicates

ProductRangeStatement SharedLibraryStatement

Defining Product Class Membership through
Applicability Statements

Model may want to include a class defining the set of all products for
which a certain CVE is applicable.

This can be done by defining a relationship between an applicability
statement and the class to which all products included in the
statement belong (e.g. hasMembershipClass).

statement_021

= <owl:Class>

= instance data

ApplicabilityStatement

appliesTo

CVE-2001-001Products

hasMemberShipClass

Set of all products for which
CVE-2001-0001 is applicable

Assert:
product_xyz memberOf statement_021
product_234 memberOf statement_021

Infer:
product_xyz rdf:type CVE-2001-0001Products
product_234 rdf:type CVE-2001-0001Products

CVE-2001-0001

rdf:type

Possible to Capture Relationships Where Statements of
Applicability Subsume Others

statement_0234

statement_579

orgA:FoundOnNetwork

Set of all applicability statements that match
conditions on a Organization A’s network

CVE-2001-0002

CVE-2001-0011

ha
sA

pp
lic

ab
ilit

yS
ta

te
m

en
t

subsumes

Assert:
statement_0234 rdf:type orgA:FoundOnNetwork

Infer:
statement_579 rdf:type orgA:FoundOnNetwork
CVE-2001-0002 rdf:type orgA:ExistingVulnerability
CVE-2001-0011 rdf:type orgA:ExistingVulnerability

orgA:FoundOnNetwork owl:subClassOf
[a owl:Restriction;

owl:onProperty subsumes;
owl:allValuesFrom orgA:FoundOnNetwork].

orgA:ExistingVulnerability

orgA:ExistingVulnerability owl:equivalentClass
[a owl:Restriction;

owl:onProperty hasApplicabilityStatement;
owl:someValuesFrom orgA:FoundOnNetwork].

hasApplicabilityStatem
ent

The Same Product Resource can be Described by
Heterogeneous Viewpoints using disparate Ontologies

http://nvd.nist.gov/products/product_0124
common, unique, persistent ID

NVD Product Ontology
describes

Marketing Ontology

de
sc

rib
es

Accounting
Ontology

describes

Security automation
community’s viewpoint of
product data

Product Behavior
Ontology

describes

A Formalized Model will Allow for a Shared Understanding
of How To Capture Normalized Product Data

The IdentificationStrategy hierarchy provides a method to
define vendor’s versioning strategies.

The granularity of the model is up to the community.

The model itself will show users the types of relationships
that must be captured to identify a product.

In the future it may even be possible to create a
complementary ontology which tells user’s HOW to find the
data

Ex) where to look, commands, API calls.

This will really allow us to put most of the logic in the
ontology itself and provide a high level of confidence for
users creating product instance data.

Inferencing for Broad Statements of Applicability

Possible to define classes to identify all individuals which meet a desired
criteria.

For example, a class could be defined to capture all CiscoIOS Products

<owl:Class rdf:ID="OperatingSystem_1">
<rdfs:subClassOf rdf:resource="#OperatingSystem"/>
<rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
>CiscoIOSProduct</rdfs:label>

<owl:equivalentClass>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasIdentification"/>
<owl:someValuesFrom rdf:resource="#CiscoIOS_Strategy"/>

</owl:Restriction>
</owl:equivalentClass>

</owl:Class>

	National Vulnerability Database Product Ontology
	Agenda
	NVD Product Ontology Goals
	High-level NVD Ontology Overview
	Structure of the Ontology
	High-level NVD Ontology Overview
	Product Category Hierarchy
	Identification Concept Hierarchy �
	Product Instance Data Instantiated from Model Classes
	hasIdentification Property Uniquely Identifies a Product
	Ontology will provide backwards compatibility with CPE 2.x
	The Ontology Provides the Capability for Modeling Ranges of Products
	Inferencing for Product Range Data
	Querying for Product Range Data
	Contact Information
	Extra
	Ontology Provides the Means to Make More Granular Statements of Applicability
	Statements of Applicability can be Modeled as First Class Individuals
	Applicability Statements Modeled as First Class Individuals
	Defining Product Class Membership through Applicability Statements
	Possible to Capture Relationships Where Statements of Applicability Subsume Others
	The Same Product Resource can be Described by Heterogeneous Viewpoints using disparate Ontologies
	A Formalized Model will Allow for a Shared Understanding of How To Capture Normalized Product Data
	Inferencing for Broad Statements of Applicability

