
Vaibhav Khadilkar
Jyothsna Rachapalli
Dr. Bhavani Thuraisingham
The University of Texas at
Dallas

Motivation to opt for semantic web technology

Architecture of a semantic web application

Semantic web technologies overview

Strategy for creation of semantic web application

Performance metrics

National Vulnerability Database (NVD)
◦

Contains product and vulnerability management data
◦

Based on a relational model

Goal is to enable automation of
◦

Vulnerability management
◦

Security measurement and compliance

Relational model imposes limitations
◦

Product composition difficult to achieve.

Find all products containing a TCP/IP device?

Find all products within common codebase?

Advantage of semantic model - Reasoning!

Creation of products ontology for NVD-CPE

Creation of a corresponding view in relational DB

Migrate data from relational to semantic model

Create a web application using the new model

This application should enable user to
◦

Navigate
◦

Search
◦

Query the data

Converter
◦

Converts data form various sources(e.g.,tables,
spreadsheets, webpages) into RDF

RDF Parser and Serializer
◦

Facilitates reading and writing RDF in one of several
file formats (e.g., N3, N-TRIPLE, RDF/XML)

RDF Store (or triple store)
◦

Is a database that is optimized for the storage and
retrieval of many short statements called triples

Reasoner
◦

A program that performs inferences according to
specified inference rules

SPARQL
◦

The W3C standard query language for RDF

Application interface
◦

Uses the content of an RDF store in an interaction with
some user

Converters

D2RQ used during first approach

Jena API to read relational data into a Jena model

Parser/Serializer

Jena API to read and write the triples into any serialization
format

RDF Store

RDB, SDB and Allegrograph

Inferencing

Pellet Reasoner

SPARQL

ARQ is a query engine for Jena that supports SPARQL

The Jena Framework
provides
◦

A RDF API

◦

Reading and writing
RDF in RDF/XML, N3
and N-Triples

◦

An OWL API

◦

In-memory and
persistent storage

◦

SPARQL query engine

◦

Built in Reasoners

◦

Plug-in for external
reasoners

SPARQLSPARQL

Ontology API

Core RDF Model API

Inference API (Reasoners)

Ontology API

Core RDF Model API

Inference API (Reasoners)

RDF FILESRDF FILES

APPLICATIONAPPLICATION

Converters Parser

Serializer

DBDBDBDB

RDB SDB AllegroGraph

RDF/Triple Stores

Step 1 - Use Cases
◦

Describe initial, most difficult requirements in
conversational, informal English
◦

Work with domain experts to create use cases required
by a given domain
◦

Use case examples

Searching – “What are all the products that have a Vendor
of Microsoft and a product name of windows_nt?”

Equality – “Determine if two instances are equal”

Step 2 - Ontology creation and validation
◦

Use an ontology editor to create an ontology/schema
based on the use cases created in Step 1
◦

Ontology editor used: Protégé 4.0
◦

External reasoner plug-in: Pellet
◦

Creation of

Classes and corresponding subclasses

Properties: Object properties as well as data properties

Individuals of a class

◦

Run the reasoner to validate the correctness of model

Step 3 - Ontology migration to Jena
◦

Create Java classes using Ontology generated in Step 2
◦

Java classes are created using Schemangen

Input to Schemagen: Ontology.owl

Output from Schemagen: Ontology.java

Step 4 - Data migration
◦

Perform Data Migration – Two approaches
◦

First approach

Mapping relational data to RDF with a mapping tool

◦

Second approach

Mapping relational data to RDF using database view

Database to Relational Query (D2RQ) allows us to
view the relational database as an RDF triples

D2RQ mapping file
◦

Maps database columns to predicates in the ontology

Use the mapping file to convert the relational
database into triples

A triple is created as follows
◦

primary key of table ---> subject
◦

column name ---> predicate
◦

value of the cell ---> object

First approach limitations
◦

D2RQ is not required when a combined view of
different tables is used as is the case with the NVD-
CPE database
◦

D2RQ does not allow us to update database tables

Second approach
◦

Involves creating a new relational schema that is
closely related to the ontology
◦

This schema will serve as a stepping stone for the data
along the path to the semantic store

Create a view that combines required columns from
various tables

Read tuples from this view (table) to convert the
product information into triples

The triple is now created as
◦

primary key (cpe name) ---> subject
◦

predicate based on the ontology ---> predicate
◦

value of the cell ---> object

Step 5 - Reasoning
◦

The process by which new triples are systematically
added to a graph based on patterns in existing triples.
◦

Inference rules

Systematic patterns defining which of the triples should
be inferred.

◦

Steps involved

Choose a reasoner - Pellet (External reasoner)

Create inference rules as part of the ontology using OWL

Run the reasoner

Verify the correctness of the inference rules using inferred
triples

Step 6 - SPARQL queries
◦

SPARQL queries are very similar to SQL queries.
◦

Write SPARQL queries for each of the use cases from
Step 1

Step 7 - Application
◦

Integrate the newly implemented functionality with the
web application.
◦

Create user interface that enables

Navigation

Search

Querying

Step 8 - Performance with triple stores
◦

Performance metrics to test for

Load time - Load triples in to triple store

Query times - Running time of the sparql queries for various
use cases

◦

Perform testing on triple stores like RDB, SDB and
AllegroGraph and document corresponding performance
metrics

Step 9 - Cyclic process
◦

Write additional use case scenarios and repeat the process
until all use cases have been modeled
◦

Refine model until correct inferences are being drawn.

Strategy

RDB,SDB and Allegrograph triple stores are optimized
and indexed

Metrics measure performance on
◦

94216 products without reasoning

◦

5961 products with reasoning

Example Queries
◦

List all the vendors

◦

List all the products

◦

List products created in given range of time period

◦

List all products for a given vendor or given creation date

Example Queries with reasoning
◦

Products containing TCP/IP devices

◦

Products containing a given shared library

Metric Relational View RDB SDB AllegroGraph

Version SQL Server 05 Jena-2.5.6 SDB-1.1 AllegroGraph-3.2

Size(Rows/Triples) 96485 (R) 982403 (T) 982403 (T) 982403 (T)

Total Space (MB) 13.08 1044.00 302.63 387.00

Index Space (MB) 0.008 674.22 75.55 316.06

Log Space (MB) - 285.06 82.44 -

Load time - 231.6 s 284.6 s 164.8 s

Metric RDB SDB AllegroGraph

Version Jena-2.5.6 SDB-1.1 AllegroGraph-3.2

Size(Rows/Triples) 97814 (T) 97814 (T) 97814 (T)

Total Space (MB) 118.31 61.38 38

Index Space (MB) 66.98 9.65 31.46

Log Space (MB) 13.31 38.38 -

Load time 18.58 hrs 17.62 hrs 19.06 hrs

Query (Triples) RDBMS(ms) RDB(ms) SDB(ms) AllegroGraph(ms)

Vendors (9898) 53.2 737.4 711.2 945.6
Products (96216) 10.6 1013.2 723.4 5572.8

MS Products (2616) 12 26.4 30.0 141.4
‘win ce’ Agent (1) 27 74.8 8.4 11.0

All CPE names(96216) 11 1235.0 1274.6 7321.2

Given CPE name(1) 1 838.6 472.2 5425

All creation dates
(96216) 8.2 1183.8 1499.4 5464.4

Given creation date
(56811) 70.6 937.4 1427.4 5519

Type ‘a’ (82981) 34 749.6 1120.6 5325
Group by Type

h=4941,
o=8294,
a=82981

92.6 768.4 1243.8 5406.2

Reasoning Performed on 5961 products
Total Number of products - 96216

Choice of semantic model instead of relational model
enhances automation of Vulnerability management

Creating a comprehensive list of use cases at once is
challenging.
◦

Cyclical process makes incorporation of new use cases flexible

Efforts must be taken to optimize triple store
performance

Implementation of a system must carefully choose a
triple store/reasoner for their implementation
◦

Trade-off between speed and power

• http://jena.sourceforge.net/

• http://nvd.nist.gov/

• http://www.semanticsupport.org/

• http://www.w3.org/2007/03/RdfRDB/papers/d2rq-

positionpaper/

• http://www4.wiwiss.fu-berlin.de/bizer/D2RQ/spec/

• Dean Allemang, James Hendler: Semantic Web for the

Working Ontologist: Effective Modeling in RDFS and OWL

• John Hebeler , Matthew Fisher , Ryan Blace , Andrew Perez-

Lopez:Semantic Web Programming

• NIST
• Paul Cichonski

• Harold Booth

• Christopher S Johnson

• UTD
• Dr. Bhavani Thuraisingham

• Scott Streit

• Aniruddh Bajirao

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32

