
Semantic Web Methodology

Semantic Web Methodolgy

Steps for a Semantic Web Methodology

Step 1: Describe your initial, most difficult
requirements in conversational, informal English.
Leverage any existing diagrams or formalisms.

Step 2: Decompose the problem into domain
components. Pick the most difficult domain as a
starting point. Add easily understood domains to
the solution.

Step 3: Look for opportunities of abstraction to
lessen the number of components.

Semantic Web Methodology

Steps for a Semantic Web Methodology

Step 4: Research existing vocabularies and
ontologies in similar domains to use in
composition.

Step 5: If a preexisting vocabulary does not exist,
model it yourself creating TBox entries.

Step 6: Take an instantiation of the data and
prove it can work on paper.

Semantic Web Technology

Steps for a Semantic Web Methodology

Step 7: Use a Semantic Web implementation, like
Jena, to build a TBox vocabulary.

Step 8: In a Semantic Web implementation,
instantiate the vocabulary by creating instances
and output the instances as RDF/XML.

Step 9: Iterations – repeat steps 1 through 8 until
complete.

Semantic Web Methodology

National Institute of Standards Technology
(NIST) Case Study

NIST agreed to be the domain holder for
PRODUCT,CONFIGURATION,VULNERABILITY,
TOPIC, PRODUCT-INSTANCE

They will provide web server setup that provides
documentation for the namespace and URI

NIST will also manage versions and releases of
the domain vocabularies

Semantic Web Methodology

Step 1: Describe your initial, most difficult requirements in
conversational, informal English

For IT platforms subject to vulnerability and configuration guidance,
patching and remediation, asset management, and other security
related tasks, there are three distinct parts of a platform that need to be
addressed:

Hardware: Hardware is the physical platform supporting the IT system. The
type and model of hardware can be relevant for some guidance and
vulnerabilities.

Operating System: The operating system controls and manages the IT
hardware and supports applications. The operating system type, version,
edition, and upgrade status are almost always relevant for vulnerability
descriptions and guidance.

Application Environment: Software systems, servers, and packages installed
on the system are often relevant for vulnerability and guidance. The diversity
of applications that may be installed on a modern IT platform is very great,
but typically a specific piece of guidance or a specific vulnerability description
depends on only one or two applications.

Semantic Web Methodology

Step 1: Describe your initial, most difficult requirements in
conversational, informal English

Additional Requirements

The system MUST be able to express each type of platform part described
above.

The system MUST be able to express platform information across a wide
range of specificity.

The system specification SHALL focus on enumerating platform types.

The system MUST be able to include the language a particular platform
supports.

The system MUST define some means to specify concrete platform
identification.

The system MUST exhibit the prefix property.

The system MUST enforce the creation of unique terms for a given name.

Evaluation

Teams

members

Software

Evaluation

Teams
Operations

Policy

Organizations Credentials

Networks Users

Hosts

Files

Data

Vulnerabilities

Configurations

Tools

Scanners

Techniques

Patches

analyze

contain fix

exploit

store has

has

evaluate

evaluate

Performed by Made of

use

employemploy

masquerade ashave
Performed
by

have

Composed of

transmit

own

access
have

run

evaluate employ

Figure 1 – Description and Relations of business entities

Evaluation

Teams

members

Software

Evaluation

Teams
Operations

Policy

Organizations Credentials

Networks Users

Hosts

Files

Data

Vulnerabilities

Configurations

Tools

Scanners

Techniques

Patches

analyze

contain fix

exploit

store has

has

evaluate

evaluate

Performed by Made of

use

employemploy

masquerade ashave
Performed
by

have

Composed of

transmit

own

access
have

run

evaluate employ

Figure 2 – Areas of Focus (Text in Red)

Initially the focus is on Users,
Evaluation Teams, Evaluation Team
Members, Credentials, Organizations,
Configurations, Software, Tools and
Patches

Semantic Web Methodology

Step 2: Decompose the problem into domain components. Pick the
most difficult domain as a starting point

Clearly, the software/tools domain is the most complex. We add in
Users, Evaluation Teams, Evaluation Team Members and Credentials
since we know there are predefined Tbox for this domain and it gives us
some proximity.

Because it is imperative to aim to describe the task at a high level of
generality, it is not necessary to capture all nouns at the beginning. The
group brainstormed and determined the highest level nouns, identifying
Product Entity as an ‘exploding’ noun because products consist of products
and products depend on other products.

Semantic Web Methodology

Step 3: Look for opportunities of abstraction to lessen the number of
components

This Step is the “special sauce.” We see that Configurations, Software, Tools and
Patches are really groupings of Products and Topics. If we use composition and
inheritance we get an abstraction and a simplification.

Object composition (black-box reuse) is an alternative to class inheritance (white-
box reuse). New functionality is obtained by assembling or composing objects to
get more complex functionality. Object composition is defined dynamically at run-
time through objects acquiring references to other objects. Any object can be
replaced at run-time by another as long as it has the same type.

Favoring object composition over class inheritance helps keep each class
encapsulated and focused on one task. The rationale is as follows:

Classes and class hierarchies remain small and manageable.

A design based on object composition has more objects (instances) and less classes
(Tbox) and the system behavior depends on their interrelationships instead of being
defined in one class.

As stated by Erich Gamma, “Favor object composition over class inheritance. In our
experience is that designers overuse inheritance.”

Topics

Products Organization

Users

Composed
with Consists

of

Used by

Developed by

Belong toHave many

Figure 3 – An abstraction over the aforementioned red labeled notes

Semantic Web Methodology

Step 3: Look for opportunities of abstraction to lessen the number of
components

While it is important, to know the cardinality and composition of products up front,
i.e., what a template may look like, it is impossible to know the specifics and the
measure to which the consistencies and dependencies may change

Product: Hardware, Software or System Component

Has name

Products may be known by more than one name (e.g., marketing name = “Vista”, codename =
“Longhorn”, abbreviation = jre, alternative branding)

Identify a preferred name

Has vendor

vendor can be commercial entity, educational institution, open source, government agency,
individual

Consists of other products

e.g., Microsoft Office consists of Word, Excel, PowerPoint

Has sub-products

e.g., SQL Server has Reporting Services

Has version

ability to serialize versions

Depends on products

Semantic Web Methodology

Step 3: Look for opportunities of abstraction to lessen the number of
components

Organization

Has name

Organization may be known by more than one name (e.g., formal, informal, acquisitions, mergers)

Releases products

Person

Has name

Person may be known by more than one name

Belongs to organization

Topics/Classifications (architecture, operating system, web server, app server)

We may come up with topics that can be, Windows (Home Professional), Host
environment, Target environment or the release of a language such as Java 1.5 or Java
1.6.

Semantic Web Methodology

Step 4 - Research existing vocabularies and ontologies in similar
domains to use in composition

Friend Of A Friend (FOAF) and Virtual Card (VC) are considerations for
Users and Organizations. We choose VC for better support of
Organizations and the relationship to Users. No suitable domain
vocabularies exist for the remainder of the problem so we need a custom
vocabulary for Product and Topic.

Semantic Web Methodology

Step 5 - If preexisting vocabulary does not exist, model it yourself,
creating Tbox entries

Tbox can be described as a schema or definitions of concepts, while Abox
consists of records or definitions of individuals/objects. In Computer Science an
Abox is an “assertion component” or a fact associated with a terminological
vocabulary within a knowledge base.

The terms Abox and Tbox are used to describe two different types of statements
in ontologies. Tbox statements describe a system in terms of controlled
vocabularies, for example, a set of classes and properties. Abox are Tbox-
compliant statements about that vocabulary.

Tbox statements are sometimes associated with object-oriented classes and Abox
statements associated with instances of those classes. Together Abox and Tbox
statements make up a knowledge base.

First, we create a Topic Tbox and a Product Tbox; then we compose these
vocabularies in the same way VC is constructed. Current vocabularies violate
Gamma's approach to composition using a “kitchen sink” type of approach.
Vocabularies compose with other vocabularies and should be agile.

Topics allow grouping of items with information about a particular grouping. Any
reference to an individual is thorough VC. Any reference to a product is through
the Product vocabulary.

Semantic Web Methodology

Step 6: Take an instantiation and prove it can work on paper

We track Linux as a product with a dependency on a Linux Kernel as
well as xwindows. We place a JBoss application server on the stack and
prove to ourselves that this paradigm will work.

We convince ourselves that we may compose products in a variety of
different ways. This could mean anything from an embedded system
using a Linux Kernel to a data processing system using JBoss. All may
be modeled using our compositional product structure.

Kernel

JBoss

xwindows

Fedora
Linux

Ubuntu
Linux

Semantic Web Methodology

Step 7: Use a Semantic Web implementation, like Jena, to build a
Tbox vocabulary

public class NVD {
/** <p>The ontology model that holds the vocabulary terms</p> */
private static OntModel m_model = ModelFactory.createOntologyModel(OntModelSpec.OWL_MEM, null);

/** <p>The namespace of the vocabulary as a string</p> */
public static final String NS = "http://nvd.nist.gov/ontology.owl#";

/** <p>The namespace of the vocabulary as a string</p>
* @see #NS */
public static String getURI() {return NS;}

/** <p>The namespace of the vocabulary as a resource</p> */
public static final Resource NAMESPACE = m_model.createResource(NS);

/** <p>Signifies this product is contained in the specified Product</p> */
public static final ObjectProperty containedIn = m_model.createObjectProperty(

"http://nvd.nist.gov/ontology.owl#containedIn");

/** <p>A product can contain more products.</p> */
public static final ObjectProperty contains = m_model.createObjectProperty(

"http://nvd.nist.gov/ontology.owl#contains");

Semantic Web Methodology

Step 8 - In a semantic web implementation, instantiate the vocabulary by
creating instances and output the instances as RDF/XML

public static void main(String args[]) throws Exception {

Model model = ModelFactory.createDefaultModel();

model.setNsPrefix("NVD", NVD.getURI());

Resource redHat = model.createResource("http://www.redhat.com/");

redHat.addProperty(VCARD.NAME, "Red Hat");

Resource appServer = model.createResource(NVD.Topic.getURI() + "1");

appServer.addProperty(RDFS.label, "Application Server");

Resource kernel = model.createResource(NVD.Topic.getURI() + "2");

kernel.addProperty(RDFS.label, "Kernel");

Resource os = model.createResource(NVD.Topic.getURI() + "3");

os.addProperty(RDFS.label, "OS");

Semantic Web Methodology

Step 8 - In a semantic web implementation, instantiate
the vocabulary by creating instances and output the
instances as RDF/XML

Resulting RDF/XML output
<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:NVD="http://nvd.nist.gov/ontology.owl#"

xmlns:vcard="http://www.w3.org/2001/vcard-rdf/3.0#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" >

<rdf:Description rdf:about="http://nvd.nist.gov/ontology.owl#Action1">

<NVD:performedOn rdf:resource="http://nvd.nist.gov/ontology.owl#Vulnerability1"/>

<NVD:performedBy rdf:resource="http://www.sometestOrg.com"/>

</rdf:Description>

<rdf:Description rdf:about="http://nvd.nist.gov/ontology.owl#Product3">

<NVD:contains rdf:resource="http://nvd.nist.gov/ontology.owl#Product2"/>

Semantic Web Methodology

Step 9 - Another iteration is necessary to complete our requirements

Second Iteration:

Step 1 - Describe your initial, most difficult requirements in conversational,
informal English. Leverage any existing diagrams or formalisms

We must track instances of products. An instance of a product is based on the
definition of a product in conjunction with specific settings. Settings have domains
and ranges for a set of values. These settings further describe products.

Policy refers to the process of making important organizational decisions, including
the identification of different alternatives such as programs or spending priorities,
and choosing among them on the basis of the impact they will have. Policies can
be understood as political, management, financial, and administrative mechanisms
arranged to reach explicit goals.

A security risk is classified as a vulnerability if it is recognized as a possible means
of attack. A security risk with one or more known instances of working and fully-
implemented attacks is classified as an exploit.

Vulnerabilities exist for products as a whole or with products instantiated with
certain settings.

In computer systems a configuration is an arrangement of functional units
according to their nature, number, and chief characteristics. Often, configuration
pertains to the choice of hardware, software, firmware, and documentation. The
configuration affects system function and performance.

Semantic Web Methodology

Step 2 - Decompose the problem into domain components. Pick the
most difficult domain as a starting point

The problem is now manageable. This is our final iteration. We will track
Vulnerabilities, Configurations and Product Instances. At the conclusion of this
domain analysis, the analysis is complete.

Evaluation

Teams

members

Software

Evaluation

Teams
Operations

Policy

Organizations Credentials

Networks Users

Hosts

Files

Data

Vulnerabilities

Configurations

Tools

Scanners

Techniques

Patches

analyze

contain fix

exploit

store has

has

evaluate

evaluate

Performed by Made of

use

employemploy

masquerade ashave
Performed
by

have

Composed of

transmit

own

access
have

run

evaluate employ

Figure – Areas of Focus (Text in Red)

Semantic Web Methodology

Step 3 - Look for opportunities of abstraction to lessen the number of
components

Topics

Products Organization

Users

Composed
with Consists

of

Used by
Developed by

Belong toHave many

Figure 3 – An abstraction over the aforementioned red labeled notes

Vulnerability

Score

Product

Instance
Setting

Setting
Instance

Instantiate
Have

Instantiate Values
Are

Semantic Web Methodology

Step 4 - Research existing vocabularies and ontologies in similar
domains to use in composition

In the case of NIST, we use Dublin Core to represent Policy. It is a
predefined vocabulary and a standard for representing publications. We
may list or track policy using Dublin Core.

Step 5 - If a preexisting vocabulary does not exist, model it yourself
creating Tbox entries

We create Tbox entries for Vulnerability, Configuration, Setting, Score,
and Product Instance.

Semantic Web Methodology

Step 6 - Take an instantiation of the data and prove it can work on
paper

Kernel

JBoss

XWindows

Fedora LinuxUbuntu Linux

Small MemoryBuffer
Overflow

My Web Site

MyJBoss
32G RAM

Gnome 2.24

Ubuntu 8.1

Kernel 2.6.29

Semantic Web Methodology

Step 7: Use a semantic web implementation, like Jena, to build a
Tbox vocabulary

accessVector.addProperty(NVD.score, "Network");
accessVector.addProperty(NVD.scoreVector, "AccessVector");
vuln.addProperty(NVD.score, baseScore);
vuln.addProperty(NVD.score, accessVector);

// a setting present on a PRODUCT_INSTANCE or PRODUCT_FINDING
Resource setting = model.createResource(NVD.Setting + "1");
setting.addProperty(NVD.domain, "javascript_enabled");
setting.addProperty(NVD.range, "on");
setting.addProperty(NVD.range, "off");

// capture the value for the setting
Resource captureValue = model createResource(NVD SettingInstance

Semantic Web Methodology

Step 8 - In a semantic web implementation, instantiate the vocabulary by
creating instances and output the instances as RDF/XML

<rdf:Description rdf:about="http://nvd.nist.gov/ontology/data/SCORE/NetworkAccessVector">

<NVD:scoreVector>AccessVector</NVD:scoreVector>

<NVD:score>Network</NVD:score>

</rdf:Description>

<rdf:Description rdf:about="http://nvd.nist.gov/ontology.owl#Product5">

<NVD:version>6.92</NVD:version>

<NVD:title xml:lang="EN">Microsoft IE 6</NVD:title>

<NVD:owner rdf:resource="http://www.microsoft.com/"/>

<NVD:alternateName>cpe:/a:microsoft:ie:6.92</NVD:alternateName>

</rdf:Description>

<rdf:Description rdf:about="http://www.sometestOrg.com">

<vcard:NAME>ACME Testing Organizatoin</vcard:NAME>

</rdf:Description>

<rdf:Description rdf:about="http://nvd.nist.gov/ontology.owl#Setting1">

<NVD:range>off</NVD:range>

<NVD:range>on</NVD:range>

<NVD:domain>javascript_enabled</NVD:domain>

	Semantic Web Methodology
	Semantic Web Methodolgy
	Semantic Web Methodology
	Semantic Web Technology
	Semantic Web Methodology
	Semantic Web Methodology
	Semantic Web Methodology
	Slide Number 8
	Slide Number 9
	Semantic Web Methodology
	Semantic Web Methodology
	Slide Number 12
	Semantic Web Methodology
	Semantic Web Methodology
	Semantic Web Methodology
	Semantic Web Methodology
	Semantic Web Methodology
	Semantic Web Methodology
	Semantic Web Methodology
	Semantic Web Methodology
	Semantic Web Methodology
	Semantic Web Methodology
	Slide Number 23
	Semantic Web Methodology
	Semantic Web Methodology
	Semantic Web Methodology
	Semantic Web Methodology
	Semantic Web Methodology

