
© 2009 MITRE

Robert A. Martin, MITRE
781-271-3001

ramartin@mitre.org

Software Assurance (SwA)
Automation…

© 2009 MITRE

“Network-layer security mechanisms dominate
current deployments but are proving inadequate in
the face of more frequent application-layer attacks.
This condition requires that vendors and users alike
increase their focus on application-oriented security
controls.“ - Mark Bouchard, META Group

“75 % of hacks occur at
the application level…”

Dec 2005

Percent of Reported Air Force
CAT I / II Intrusions
that Targeted Applications

DataApps
S/WNetwork

Unauthorized

or Authorized

access

Traditional Focus

Needed Focus

Application Security Wake-up Call

© 2009 MITRE

Catastrophic Failures Can Be Due To
Software Weaknesses

... declare
vertical_veloc_sensor: float;
horizontal_veloc_sensor: float;
vertical_veloc_bias: integer;
horizontal_veloc_bias: integer;

... begin
declare

pragma suppress(numeric_error,
horizontal_veloc_bias);

begin sensor_get(vertical_veloc_sensor);
sensor_get(horizontal_veloc_sensor);
vertical_veloc_bias :=
integer(vertical_veloc_sensor);
horizontal_veloc_bias :=
integer(horizontal_veloc_sensor);

... exception when numeric_error =>
calculate_vertical_veloc();
when others => use_irs1();
end;

end irs2;

A 64 floating point to 16
bit signed integer overflow
condition?

Poor exception handling?

A faulty design
assumption?

Incomplete Testing
process?

A Software Reuse Error?

Malicious Flaw Insertion?

© 2009 MITRE

Software Flaws
Can Have Major Mission Impacts

- Ariane 5 Flight 501 -

© 2009 MITRE

Buffer Overflow
Exploit
Buffer Overflow
Exploit

SQL Injection
Exploit
SQL Injection
Exploit

Security
Feature
Security
Feature

Defects

Intentional
Vulnerabilities

Unintentional
Vulnerabilities

Note: Chart is not to scale – notional representation -- for discussions

EXPLOITABLE SOFTWARE

Vulnerabilities can be the outcome of non-secure practices and/or
malicious intent of someone in the development/support lifecycle.
The exploitation potential of a vulnerability is independent of the
“intent” behind how it was introduced.

Intentional vulnerabilities are spyware & malicious logic deliberately imbedded (and
might not be considered defects but they can make use of the same weakness patterns
as unintentional mistakes)

Exploitable Software Weaknesses (a.k.a. Vulnerabilities)

© 2009 MITRE

What is wrong with this picture?

© 2009 MITRE

Software Vulnerabilities

Serve as a primary point of entry that Attackers use to
gain access to systems and/or data

Expose business/mission systems to compromise

Allow Attackers to circumvent security controls:
– Pose as other entities
– Execute commands as other users
– Conduct information gathering activities
– Contrary to specified access restrictions

• Access and Manipulate data
– Hide activities
– Conduct a denial of service
– Embed malicious logic for future exploitation

© 2009 MITRE

Status
(as of Oct 14, 2009)
• 38,839 unique CVE names

Publicly Known Vulnerabilities in
“Packaged Software” (CVE) Growth

Unique CVE Names

© 2009 MITRE

Vulnerability Type Trends:
A Look at the CVE List (2001 - 2007)

© 2009 MITRE

Removing and Preventing the Vulnerabilities
Requires More Specific Definitions…CWEs

Failure to Sanitize Directives in a Web Page (aka 'Cross-site scripting' (XSS)) (79)
• Failure to Sanitize Script-Related HTML Tags in a Web Page (Basic XSS) (80)
• Failure to Sanitize Directives in an Error Message Web Page (81)
• Failure to Sanitize Script in Attributes of IMG Tags in a Web Page (82)
• Failure to Sanitize Script in Attributes in a Web Page (83)
• Failure to Resolve Encoded URI Schemes in a Web Page (84)
• Doubled Character XSS Manipulations (85)
• Invalid Characters in Identifiers (86)
• Alternate XSS syntax (87)

Failure to Sanitize Directives in a Web Page (aka 'Cross-site scripting' (XSS)) (79)
• Failure to Sanitize Script-Related HTML Tags in a Web Page (Basic XSS) (80)
• Failure to Sanitize Directives in an Error Message Web Page (81)
• Failure to Sanitize Script in Attributes of IMG Tags in a Web Page (82)
• Failure to Sanitize Script in Attributes in a Web Page (83)
• Failure to Resolve Encoded URI Schemes in a Web Page (84)
• Doubled Character XSS Manipulations (85)
• Invalid Characters in Identifiers (86)
• Alternate XSS syntax (87)

Failure to Constrain Operations within the Bounds of an Allocated Memory Buffer (119)
• Unbounded Transfer (‘Classic Buffer Overflow’) (120)
• Write-what-where Condition (123)
• Boundary Beginning Violation (’Buffer Underwrite') (124)
• Out-of-bounds Read (125)
• Wrap-around Error (128)
• Unchecked Array Indexing (129)
• Incorrect Calculation of Buffer Size (131)
• Miscalculated Null Termination (132)
• Return of Pointer Value Outside of Expected Range (466)

Failure to Constrain Operations within the Bounds of an Allocated Memory Buffer (119)
• Unbounded Transfer (‘Classic Buffer Overflow’) (120)
• Write-what-where Condition (123)
• Boundary Beginning Violation (’Buffer Underwrite') (124)
• Out-of-bounds Read (125)
• Wrap-around Error (128)
• Unchecked Array Indexing (129)
• Incorrect Calculation of Buffer Size (131)
• Miscalculated Null Termination (132)
• Return of Pointer Value Outside of Expected Range (466)

Path Traversal (22)
• Relative Path Traversal (23)

• Path Traversal: '\..\filename' (29)
• Path Traversal: '\dir\..\filename' (30)
• Path Traversal: 'dir\..\filename' (31)
• Path Traversal: '...' (Triple Dot) (32)
• Path Traversal: '....' (Multiple Dot) (33)
• Path Traversal: '....//' (34)
• Path Traversal: '.../...//' (35)

• Absolute Path Traversal (36)
• Path Traversal: '/absolute/pathname/here’ (37)
• Path Traversal: '\absolute\pathname\here’ (38)
• Path Traversal: 'C:dirname’ (39)
• Path Traversal: '\\UNC\share\name\' (Windows UNC Share) (40)

Path Traversal (22)
• Relative Path Traversal (23)

• Path Traversal: '\..\filename' (29)
• Path Traversal: '\dir\..\filename' (30)
• Path Traversal: 'dir\..\filename' (31)
• Path Traversal: '...' (Triple Dot) (32)
• Path Traversal: '....' (Multiple Dot) (33)
• Path Traversal: '....//' (34)
• Path Traversal: '.../...//' (35)

• Absolute Path Traversal (36)
• Path Traversal: '/absolute/pathname/here’ (37)
• Path Traversal: '\absolute\pathname\here’ (38)
• Path Traversal: 'C:dirname’ (39)
• Path Traversal: '\\UNC\share\name\' (Windows UNC Share) (40)

© 2009 MITRE

AppSIC

Apple

Aspect Security

Booz Allen Hamilton Inc.

Cenzic

CERIAS/Purdue University

CERT/CC

Cigital

Codenomicon

Core Security

Coverity

DHS

Fortify

Gramma Tech

IPA/JPCERT

IBM

Interoperability Clearing House

JHU/APL

JMU

Kestrel Technology

KDM Analytics

Klocwork

McAfee

Microsoft

MIT Lincoln Labs

MITRE

North Carolina State University

NIST

NSA

OMG

Oracle

Ounce Labs

OSD

OWASP

Palamida

Parasoft

PolySpace Technologies

proServices Corporation

SANS Institute

SecurityInnovation

Security University

Semantic Designs

SofCheck

SPI Dynamics

SureLogic, Inc.

Symantec

UNISYS

VERACODE

Watchfire

WASC

Whitehat Security, Inc.

Current Community Contributing to the
Common Weakness Enumeration

To join send e-mail to cwe@mitre.org

© 2009 MITRE

2005
300 nodes

PLOVER
(CWE draft 1)

2006

CWE
draft 5

599 nodes
2007

CWE
draft 7

634 nodes
2008

CWE
Vers 1.0

673 nodes
Jul 2009

CWE
Vers 1.5

776nodes

© 2009 MITRE

2009 SANS/CWE Top 25 Programming Errors
(released 12 Jan 2009)
2009 SANS/CWE Top 25 Programming Errors
(released 12 Jan 2009)

Some Participants:
Purdue
DHS
NSA
UC-Davis
KRvW Associates
Cigital
Symantec
McAfee
MITRE
Aspect Security
Secunia
Mandiant
Red Hat
Apple
Microsoft
Oracle
Fortify
Grammatech
Hatha Systems/KDM Analytics
Veracode
Breach Security

http://www.sans.org/top25errors/

© 2009 MITRE

© 2009 MITRE

People are Starved for Simplicity

Oct 1, 2008 – Oct 1, 2009

100-300/day100-300/day

172,151/day172,151/day

800-3,000/day800-3,000/day

© 2009 MITRE

Printable PDFs of Entire CWE Now Available

© 2009 MITRE

CWE Outreach: A Team Sport
May/June Issue of IEEE Security & Privacy…

© 2009 MITRE

CWE
CAPEC

© 2009 MITRE

© 2009 MITRE

© 2009 MITRE

© 2009 MITRE

Today Everything’s Connected

When this Other System gets subverted
through an un-patched vulnerability, a
mis-configuration, or an application
weakness…

Your System is
attackable…

© 2009 MITRE

Cyberspace & physical space are increasingly
intertwined and software controlled/enabled

Energy

Banking and Finance

Agriculture and Food

Water Public Health

Chemical Industry

Telecommunications Key Assets

Transportation Postal and Shipping

Farms
Food Processing Plants

Reservoirs
Treatment Plants Hospitals

Chemical Plants

Cable
Fiber

Power Plants
Production Sites

Railroad Tracks
Highway Bridges
Pipelines
Ports

Delivery Sites

Nuclear Power Plants
Government facilities
DamsFDIC institutions

Control Systems
• SCADA
• PCS
• DCS

Software
• Financial System
• Human Resources

Services
• Managed Security
• Information Services

Internet
• Domain Name System
• Web Hosting

Hardware
• Database Servers
• Networking Equipment

Critical Infrastructure / Key Resources

Sectors

Physical A
ssets

Cyber A
ssets

Cyber Infrastructure

Physical Infrastructure

Need for secure software applications
“In an era riddled with asymmetric cyber attacks, claims about system reliability, integrity and
safety must also include provisions for built-in security of the enabling software.”

© 2009 MITRE

Program
Office

Prime
Contractor

?

?
?

?

?
?

?

?

?

?

?

Program
Office
Program
Office

Prime
Contractor
Prime
Contractor

Foreign
Developers
Foreign
Developers

ContractorContractor

ContractorContractor

SupplierSupplier

SupplierSupplier

SupplierSupplier

ReuseReuse

OutsourceOutsource

AcquireAcquire Develop
In-house
Develop
In-house

Foreign
Location
Foreign
Location

Other
Programs
Other
Programs

Legacy
Software
Legacy
Software

USUS

GlobalGlobal

ForeignForeign

Off-shoreOff-shore

USUS

SoftwareSoftware

COTSCOTS

ReuseReuse
AcquireAcquire

Develop
In-house
Develop
In-house

OutsourceOutsource

“Scope of Supplier Expansion and Foreign Involvement” graphic in DACS www.softwaretechnews.com Secure Software
Engineering, July 2005 article “Software Development Security: A Risk Management Perspective” synopsis of May 2004
GAO-04-678 report “Defense Acquisition: Knowledge of Software Suppliers Needed to Manage Risks”

*

*

The Software Supply Chain

http://www.cnss.gov/instructions.html

© 2009 MITRE

Our Systems are Composed of Elements
from Many Languages and Environments

C++

COBOL
FORTRAN

PL/1

…
2GLs 3GLs 4GLs

Python

VisualBasic

Java/J2EE

Natural

SQL
BAL

UYK20

SNX360

C

BASIC

Pascal

…
…

© 2009 MITRE

Systems Are Complicated…

© 2009 MITRE

And Software Is Complex Too...

© 2009 MITRE

Some Static Analysis Tools Focus on Pulling
Structure Out of the Complexity …

© 2009 MITRE

Static Analysis is about collecting information and
capturing knowledge

User input

Validation

Buffer

Buffer

Input procesing

Feature code

© 2009 MITRE

© 2009 MITRE

© 2009 MITRE

© 2009 MITRE

Plus Some Other
Important Players…

Cenzic
proServices
Polyspace
Security Innovation
AppSIC Initiative
KDManalytics
SureLogic
Programming Research Inc
Armorize
Compuware
SofCheck
GrammaTech
CORE Security

(Watchfire)
(SPI Dynamics)

(IBM)

Gartner Magic Quadrant
for

Static Application
Security Testing

Tools

© 2009 MITRE

CWE Compatibility & Effectiveness Program

28
47

cwe.mitre.org/compatible/cwe.mitre.org/compatible/

(launched Feb 2007)

© 2009 MITREP

Fortify Main User Interface
“Eclipse” Look & Feel

Source Code Pane
Flaw List
w/menus to
“slice and dice”
the data

Stack trace
variables,
values, call
trace.

Analysis mitigation suggestions, explanation
of the flaw, mapping to CWE and some
mappings to DISA Severity Codes

File &
Directory
Pane

© 2009 MITRE

© 2009 MITRE

© 2009 MITRE

© 2009 MITRE

© 2009 MITRE

© 2009 MITRE

Example Buffer Overflow
Package:

File(Line): ExternalIoModel/ExternalIoPkg/…/EioJreapDecoder.cpp:2203

Function: memcpy(m_CrcBuffer, inputDB->getBufferWithOffset(), bytesNeeded);

The memcpy() call copies bytesNeeded amount of data into m_CrcBuffer
• m_CrcBuffer is MAX_CRC_BUFFER_SIZE, which is 9207 bytes

• bytesNeeded = (numJreapWords * NUM_BYTES_IN_JREAP_WORD) + NUM_BYTES_IN_HIGH
• These are: (1024 * (72/8)) + 9

9216 bytes of input data is written into a buffer that can hold 9207 bytes (overflow)

© 2009 MITRE

Example Buffer Overflow: Off-by-One

a. “Magic numbers” declared locally & buffer declared on the stack as 5 * 4 (= 20) char bytes

b. Buffer is filled with values via convertToBinary call (overflow potential?)
c. Performance expensive code duplicates sprintf() call poorly

1. Duplicates the buffer into a temp buffer

2. Overwrites the original buffer with an expensive strcpy() call duplicates simple assignments

3. Repeatedly recalculates the length of the buffer, strlen() expensive
while appending a ‘0’ character

4. Blindly appends the original content to the end (overflow) appends original content

aa

bb

cc 11

22

33
44

Package: CrbsModel->CrbsPkg->ConfigurationPkg->DataReductionRulesPkg

File:line: src\CrbsModel\CrbsPkg\ConfigurationPkg\DataReductionRulesPkg:204

Function: few, including the obvious strcat(buffer, temp)

© 2009 MITRE

Example Buffer Overflow: Signed
Package: ExternalIOPkg->EioJreapPkg

File(Line): ExternalIoModel/…/EioJreapPkg/EioJreapController.cpp:1358

Function: memcpy(m_OwnUnitIcmBufferData, getMbufP().getMbufPtr(), m_OwnUnitIcmSize);

a. The m_OwnUnitIcmSize value is looked up via getMbufP().getCtiteria(EIO_CRITERIA_ICM_SIZE)

b. If the (unsigned integer) m_OwnUnitIcmSize is less than, or equal to (integer), EIO_JREAP_PPLI_DATA_SIZE

c. Then copy that m_OwnUnitIcmSize number of bytes from the pointer returned by the getMbufP().getMbufPtr() call into the
m_OwnUnitIcmBufferData memory location.

d. Large, positive integer values will flip the highest bit. A signed comparison would consider that value to be negative.

e. Extremely large values to slip past the protective “if” statement and on to memcpy() (overflow)

aa

cc

bb

© 2009 MITRE

© 2009 MITRE

© 2009 MITRE

© 2009 MITRE

© 2009 MITRE

Complete CAPEC Entry Information
Stub’s Information

© 2009 MITRE

CAPEC Current Content (12 Major Categories)

1000 - Mechanism of Attack
Data Leakage Attacks - (118)
Resource Depletion - (119)
Injection (Injecting Control Plane content through the Data Plane) -

(152)
Spoofing - (156)
Time and State Attacks - (172)
Abuse of Functionality - (210)
Probabilistic Techniques - (223)
Exploitation of Authentication - (225)
Exploitation of Privilege/Trust - (232)
Data Structure Attacks - (255)
Resource Manipulation - (262)
Network Reconnaissance - (286)

© 2009 MITRE

CAPEC Current Content (Which Expand to…)
1000 - Mechanism of Attack

Data Leakage Attacks - (118)
Data Excavation Attacks - (116)
Data Interception Attacks - (117)

Resource Depletion - (119)
Violating Implicit Assumptions Regarding XML Content (aka XML Denial
of Service (XDoS)) - (82)
Resource Depletion through Flooding - (125)
Resource Depletion through Allocation - (130)
Resource Depletion through Leak - (131)
Denial of Service through Resource Depletion - (227)

Injection (Injecting Control Plane content through the Data Plane) - (152)
Remote Code Inclusion - (253)
Analog In-band Switching Signals (aka Blue Boxing) - (5)
SQL Injection - (66)
Email Injection - (134)
Format String Injection - (135)
LDAP Injection - (136)
Parameter Injection - (137)
Reflection Injection - (138)
Code Inclusion - (175)
Resource Injection - (240)
Script Injection - (242)
Command Injection - (248)
Character Injection - (249)
XML Injection - (250)
DTD Injection in a SOAP Message - (254)

Spoofing - (156)
Content Spoofing - (148)
Identity Spoofing (Impersonation) - (151)
Action Spoofing - (173)

Time and State Attacks - (172)
Forced Deadlock - (25)
Leveraging Race Conditions - (26)
Leveraging Time-of-Check and Time-of-Use (TOCTOU) Race Conditions -
(29)
Manipulating User State - (74)

Abuse of Functionality - (210)
Functionality Misuse - (212)
Abuse of Communication Channels - (216)
Forceful Browsing - (87)
Passing Local Filenames to Functions That Expect a URL - (48)
Probing an Application Through Targeting its Error Reporting - (54)
WSDL Scanning - (95)
API Abuse/Misuse - (113)
Try All Common Application Switches and Options - (133)
Cache Poisoning - (141)
Software Integrity Attacks - (184)
Directory Traversal - (213)
Analytic Attacks - (281)

Probabilistic Techniques - (223)
Fuzzing - (28)
Manipulating Opaque Client-based Data Tokens - (39)
Brute Force - (112)
Screen Temporary Files for Sensitive Information - (155)

Exploitation of Authentication - (225)
Exploitation of Session Variables, Resource IDs and other Trusted
Credentials - (21)
Authentication Abuse - (114)
Authentication Bypass - (115)

Exploitation of Privilege/Trust - (232)
Privilege Escalation - (233)
Exploiting Trust in Client (aka Make the Client Invisible) - (22)
Hijacking a Privileged Thread of Execution - (30)
Subvert Code-signing Facilities - (68)
Target Programs with Elevated Privileges - (69)
Exploitation of Authorization - (122)
Hijacking a privileged process - (234)

Data Structure Attacks - (255)
Accessing/Intercepting/Modifying HTTP Cookies - (31)
Buffer Attacks - (123)
Attack through Shared Data - (124)
Integer Attacks - (128)
Pointer Attack - (129)

Resource Manipulation - (262)
Accessing/Intercepting/Modifying HTTP Cookies - (31)
Input Data Manipulation - (153)
Resource Location Attacks - (154)
Infrastructure Manipulation - (161)
File Manipulation - (165)
Variable Manipulation - (171)
Configuration/Environment manipulation - (176)
Abuse of transaction data strutcture - (257)
Registry Manipulation - (269)
Schema Poisoning - (271)
Protocol Manipulation - (272)

Network Reconnaissance - (286)
ICMP Echo Request Ping - (285)
TCP SYN Scan - (287)
ICMP Echo Request Ping - (288)
Infrastructure-based footprinting - (289)
Enumerate Mail Exchange (MX) Records - (290)
DNS Zone Transfers - (291)
Host Discovery - (292)
Traceroute Route Enumeration - (293)
ICMP Address Mask Request - (294)
ICMP Timestamp Request - (295)
ICMP Information Request - (296)
TCP ACK Ping - (297)
UDP Ping - (298)
TCP SYN Ping - (299)
Port Scanning - (300)
TCP Connect Scan - (301)
TCP FIN scan - (302)
TCP Xmas Scan - (303)
TCP Null Scan - (304)
TCP ACK Scan - (305)
TCP Window Scan - (306)
TCP RPC Scan - (307)
UDP Scan - (308)

© 2009 MITRE

CAPEC Current Content (305 Attacks…)

© 2009 MITRE1980’s 1990’s 2000’s

automated
probes/scans

disabling audits

exploiting known
vulnerabilitiespassword

guessing

back doors

sniffers

network mgmt. diagnostics

www attacks

binary encryption

techniques to analyze code for
vulnerabilities without source
code

executable code attacks (against browsers)

automated widespread
attacksGUI intruder tools

hijacking sessions

Internet social
engineering attacks

burglaries

packet spoofing automated
probes/scans

widespread attacks on DNS
infrastructure

widespread attacks using NNTP to distribute attack
“stealth”/advanced scanning techniques

email propagation of malicious code DDoS attacks

increase in tailored
wormssophisticated

command & control

anti-forensic techniques
home users targeted

distributed attack
toolsincrease in wide-scale Trojan horse

distributionWindows-based remote
controllable Trojans (Back
Orifice)

widespread
denial-of-
service attacks

password
cracking

2010’s

Attack
Sophistication

diffuse
spyware

Cyber Threats Emerged Over Time 54

© 2009 MITRE

Cyber Threats

But the threat to
DoD systems is

from here

But the threat to
DoD systems is

from here

• “All” software “can” have vulnerabilities

• Critical software can have “un-vetted” creators

• Many places to “attack” the IT supply chain

IA in the DoD
weapons system

acquisition process
(until recently) was focused

on this threat

IA in the DoD
weapons system

acquisition process
(until recently) was focused

on this threat

55

© 2009 MITRE

What is Software Assurance (SwA)?

Software Assurance is not a separate new discipline
but rather it is an extension to each of the disciplines
involved in a System’s Development

Safety &
Security

Project Mgt

Software
Acquisition

Software
Engineering

Software
Assurance

Systems
Engineering

Information
Assurance

Info Systems
Security Eng

Test &
Evaluation

© 2009 MITRE

“Software Assurance”
(from http://en.wikipedia.org/wiki/Software_Assurance)

Software Assurance (SwA) is: “the level of confidence that software is
free from vulnerabilities, either intentionally designed into the software or
accidentally inserted at anytime during its lifecycle, and that the software
functions in the intended manner”

— Source: Committee on National Security Systems (CNSS) Instruction No. 4009, “National Information
Assurance Glossary”, Revised 2006 — http://www.cnss.gov/instructions.html

Alternate definitions:
[1] Software Assurance (SwA) addresses:

– Trustworthiness - No exploitable vulnerabilities exist, either maliciously or unintentionally inserted;
– Predictable Execution - Justifiable confidence that software, when executed, functions as intended;
– Conformance - Planned and systematic set of multi-disciplinary activities that ensure software processes and

products conform to requirements, standards/ procedures.
- Source: Department of Homeland Security “Build Security In” web portal – https://buildsecurityin.us-

cert.gov/portal
[2] Software Assurance (SwA) relates to "the level of confidence that software functions as intended and is free of vulnerabilities,

either intentionally or unintentionally designed or inserted as part of the software."
- Source: DoD Software Assurance Initiative, 13 September 2005 -
https://acc.dau.mil/CommunityBrowser.aspx?id=25749

[3] Software Assurance (SwA) – is “the planned and systematic set of activities that ensures that software processes and
products conform to requirements, standards, and procedures to help achieve:

– Trustworthiness - No exploitable vulnerabilities exist, either malicious or unintentionally origin, and
– Predictable Execution - Justifiable confidence that software, when executed, functions as intended.

- Source: National Institute for Standards and Technology (NIST) - http://samate.nist.gov
[4] Software Assurance - "Planned and systematic set of activities that ensures that software processes and products conform to

requirements, standards, and procedures. It includes the disciplines of Quality Assurance, Quality Engineering, Verification
and Validation, Nonconformance Reporting and Corrective Action, Safety Assurance, and Security Assurance and their
application during a software life cycle.“

- Source: NASA-STD-2201-93 "Software Assurance Standard", 10 November 1992 -
http://satc.gsfc.nasa.gov/assure/astd.txt

[5] Software Assurance (SwA) is “justifiable trustworthiness in meeting established business and security objectives.”
- Source: Object Management Group (OMG) – http://adm.org/SoftwareAssurance.pdf and
htt // /d / ft 3 df

http://en.wikipedia.org/wiki/Software_Assurance
http://www.cnss.gov/instructions.html
https://buildsecurityin.us-cert.gov/portal
https://buildsecurityin.us-cert.gov/portal
https://acc.dau.mil/CommunityBrowser.aspx?id=25749
http://samate.nist.gov
http://satc.gsfc.nasa.gov/assure/astd.txt
http://adm.org/SoftwareAssurance.pdf
http://swa.omg.org/docs/softwareassurance.v3.pdf

© 2009 MITRE

Software vulnerabilities jeopardize infrastructure operations, business
operations & services, intellectual property, and consumer trust

Adversaries have capabilities to subvert the software supply chain:

Lifecycle processes offer opportunities to insert malicious code and to
poorly design and build software which enables future exploitation

Government and businesses rely on COTS products and commercial
developers using foreign and non-vetted domestic suppliers to meet
majority of system requirements

Off-shoring magnifies risks and creates new threats to security,
business property and processes, and individuals’ privacy – requires
domestic strategies to mitigate those risks

Growing concern about inadequacies of suppliers’ capabilities to
build/deliver secure software – too few practitioners with requisite
knowledge and skills

Current education & training provides too few practitioners with
requisite competencies in secure software engineering – enrollment
down in critical software-related degree programs

Competition in higher-end skills is increasing – implications for
individuals, companies, & countries

Concern about suppliers and practitioners not exercising “minimum
level of responsible practice”

Processes and technologies are required to build trust into software

DHS - Challenges in Software Assurance

Strengthen operational resiliency

© 2009 MITRE

DoD Perspective on the
Software Assurance (SwA) Problem

Software is critical to the Global Information Grid, most weapons,
business and support systems

DoD Perspective
– Targeted attacks

• Attacks from Nation-state, terrorist, criminal, rogue developers
– Unique Assets - NSS/Weapons
– Types of Attacks

• Intentionally implanted logic (e.g., back doors, logic bombs,
spyware)

• Unintentional vulnerabilities maliciously exploited (e.g., poor
quality or fragile code)

– Ability to exploit vulnerabilities remotely

Through software, the enemy may
– Steal or alter mission critical data
– Corrupt or deny the function of mission critical platforms

Source: NSA presentation at ACM SCC 06, Dr. L. Wagoner, 31 Oct 2006

© 2009 MITRE

DoD OASD - Software Assurance is Critical*

Software is the core constituent of modern products and services – it
enables functionality and business operations

Dramatic increase in mission risk due to increasing:
– Software dependence and system interdependence (weakest

link syndrome)
– Software Size & Complexity (obscures intent and precludes

exhaustive test)
– Outsourcing and use of un-vetted software supply chain (COTS

& custom)
– Attack sophistication (easing exploitation)
– Reuse (unintended consequences increasing number of

vulnerable targets)
– Number of vulnerabilities & incidents with threats targeting

software
– Risk of Asymmetric Attack and Threats

Increasing awareness and concern

Software and the processes for acquiring and developing software
represent a material weakness

[Source: Interim Report on “Software Assurance: Mitigating Software Risks in the DoD IT and National Security
Systems,” DoD OASD(NII) forwarded to Committee on National Security Systems (CNSS)), Oct 2004]*

© 2009 MITRE

Summary of the SwA Problem

Systems are at risk due to software content & threat
environment

Software assurance is a significant part of Mission
Assurance

Significant risks come from

– Human coding mistakes and design flaws leading
to security flaws

– Supply Chain compromises

It is best to identify/avoid software flaws earlier

– But projects need the target list of weaknesses in
code and activities as well as assurance
methodologies for confirming that risks were
adequately addressed

© 2009 MITRE

Software Assurance’s Challenges

• Software Assurance

Advanced capabilities to test and evaluate IT products

Identify IA standards and best practices
• Supply Chain Assurance

Develop “defense-in-breadth” policies and capabilities

Create national clearinghouse to collect, share threat
information about IT suppliers Find weaknesses in:

• software architecture,
• software design, and
• software implementation

that can lead to exploitable
vulnerabilities in operations

Need to address software:
• developed under contract
• purchased, and/or
• integrated libraries/modules

Find weaknesses in:
• software architecture,
• software design, and
• software implementation

that can lead to exploitable
vulnerabilities in operations

Need to address software:
• developed under contract
• purchased, and/or
• integrated libraries/modules

Understand all of the places software is injected into a
system’s supply chain and all of the technologies and
organizations that can influence those software elements

The supply chain of interest is that which impacts software
elements that end up in the final system and the system’s
sustainment capabilities

Understand all of the places software is injected into a
system’s supply chain and all of the technologies and
organizations that can influence those software elements

The supply chain of interest is that which impacts software
elements that end up in the final system and the system’s
sustainment capabilities

62

© 2009 MITRE

SwA’s Relationship to Traditional
System/Software Engineering Disciplines

*Adopted from Jim Moore, IEEE CS S2ESC Liaison to ISO SC7
Predictable Execution = requisite enabling characteristic

For a safety/security analysis
to be valid …

The execution of the system
must be predictable.

This requires …
• Correct implementation

of requirements,
expectations and
regulations.

• Exclusion of unwanted
function even in the face
of attempted exploitation.

Traditional
concern

Growing
concern

System and SW
Engineering and

Information Systems
Security Engineering

Information
Assurance

System
Safety

Predictable
Execution

Cyber
Security

© 2009 MITRE

“Software Assurance” Comes From:

Building and/or acquiring what we want

Threat modeling and analysis

Requirements engineering

Failsafe design and defect-free code

Supply Chain Management

Understanding what we built / acquired
Production assurance evidence
Comprehensive testing and diagnostics
Formal methods & static analysis

Using what we understand
Policy/practices for use & acquisition
Composition of trust
Hardware support

*Multiple Sources:
DHS/NCSD, OASD(NII)IA,
NSA, NASA, JHU/APL

Knowing what it takes to “get” what we want
Development/acquisition practices/process capabilities
Criteria for assuring integrity & mitigating risks

© 2009 MITRE

SwA and Systems Development (example)

Cyber
Threat
Analysis

Abuse Case
Development

Supply Chain Analysis &
Application Architecture
Security Review Application Security Code

Review, Penetration Testing &
Abuse Case Driven Testing of
Maintenance Updates

Application Security Code
Review (developed and
purchased), Penetration
Testing & Abuse Case
Driven Testing

and Systems Design

* Ideally Insert SwA before RFP release

Application Design
Security Review

Gather All of the
Evidence for the
Assurance Case
and Get It Approved

© 2009 MITRE66

Integrating SwA into the
Systems Engineering Lifecycle

Verify &
Validate

O&M

Planning &
Requirements

Design, Develop, Integrate

Understand
Problem

Understand
Problem

Determine
Needs

Determine
Needs

Develop/
Design

Develop/
Design

BuildBuild Test &
Integrate
Solution

Test &
Integrate
Solution

Field
Incremental
Capability

Field
Incremental
Capability

Operation &
Maintenance

Assess
Operational

Security

Operation &
Maintenance

Assess
Operational

Security

Phase 2 Phase 2

Phase 1Phase 1

Phase 4 Phase 4

Phase 3Phase 3

C&A* Lifecycle

* Systems Security
Certification and

Accredited
Operational
Capability

Certifiable
Fieldable System

Security
Components

Security Architecture
& Design

Security CONOP
Security

Assessment
& Feedback

Source Code Review

Security
Requirements

Threat
Modeling

Application Server
Hardening/Config

Management
Software Updates

& Patch
Management

Systems Lifecycle

Security Lifecycle

© 2009 MITRE

Software Assurance Lifecycle
Considerations

Define Lifecycle Threats/Hazards, Vulnerabilities & Risks

Identify Risks attributable to software

Determine Threats (and Hazards)

Understand key aspects of Vulnerabilities

Consider Implications in Lifecycle Phases:

– Threats to: System, Production process, Using system

– Vulnerabilities attributable to: Ineptness (undisciplined practices),
Malicious intent, Incorrect or incomplete artifacts, Inflexibility

– Risks in Current Efforts: Polices & Practices, Constraints

© 2009 MITRE

The Assurance Case/Argument –
Requires Measurement

Set of structured assurance claims, supported by evidence and
reasoning, that demonstrates how assurance needs have been satisfied.

– Shows compliance with assurance objectives
– Provides an argument for the safety and security of the product

or service.
– Built, collected, and maintained throughout the life cycle
– Derived from multiple sources

Sub-parts
– A high level summary
– Justification that product or service is acceptably safe, secure,

or dependable
– Rationale for claiming a specified level of safety and security
– Conformance with relevant standards and regulatory

requirements
– The configuration baseline
– Identified hazards and threats and residual risk of each hazard

and threat
– Operational and support assumptions

*Adopted from Paul Croll, ISO SC7 WG9 Editor for Systems and Software Assurance

© 2009 MITRE

© 2009 MITRE

ISO/IEC 15026: Systems & Software Assurance
15026 Part 2: The Assurance Case (Claims-Evidence-Argument)

© 2009 MITRE

ISO/IEC 15026: A Four-Part Standard

Planned parts:
15026-1: Concepts and vocabulary (initially a TR2

and then revised to be an IS)
15026-2: Assurance case (including planning for the

assurance case itself)
15026-3: System integrity levels (a revision of the

1998 standard)
15026-4: Assurance in the life cycle (including

project planning for assurance
considerations)

Possible additional parts as demand requires
and resources permit, e.g.
Assurance analyses and techniques
Guidance documents

© 2009 MITRE

ISO/IEC 15026: Examples of relationships among parts

Life cycle
processes,
e.g
• Requirements

analysis

• Architectural
design

• Risk
management

• Measurement
• Verification
• Validation

Assurance
caseSystem

integrity
levels

Claims

Uncertainty
bounds

Evidence

2

3

4

© 2009 MITRE

Safety Cases Based on Assurance Cases –
Claims-Evidence-Argument in Use for <10 Years

© 2009 MITRE

The Assurance Case/Argument:
OMG Evidence and Claims/Arguments Standards

SAEM: Evidence

ARM:Arguments

NarrativeArgument

ModelElement
identifier : String
description : String

biggest contention is
around the term
'Argument'

there is an issue of the
ownership of the Argument (flat
space in the AssuranceCase)

premise should have
a constraint

there may be one or more
conclusions; but there is a 'tooling
penalty' for supporting multiple
choice in the GUI

NarrativeElement

Claim

ArgumentationElement

0..1

+narrativeElement

0..1

describedBy

StructuredArgument

1
+conclusion

1

supports

1..*
+premise

1..*

decomposedInto
1..*

+support
1..*

supportedBy

1..*

+context

1..*

inContextOf

NarrativeElement
(description) should
be owned by
ArgumentationElemen
t

ARM:Claims
A r g u m e n t a t i o n E l e m e n t

C l a i m

A s s u m p t i o n

C o n t e x t

ArgumentationElement

EvidenceItemEvidenceReference
1

+evidenceItem

1

ModelElement
identifier : String
description : String

duplication between
EvidenceReference and
EvidenceItem

© 2009 MITRE

DHS’s Build Security In and SwA Websites
75

www.us-cert.gov/swa/

buildsecurityin.us-cert.gov/swa/

© 2009 MITRE

[makingsecuritymeasurable.mitre.org]

Questions?
Questions?

	Software Assurance (SwA) Automation…
	Slide Number 2
	Catastrophic Failures Can Be Due To Software Weaknesses
	Software Flaws �Can Have Major Mission Impacts�- Ariane 5 Flight 501 -
	Slide Number 5
		Exploitable Software Weaknesses (a.k.a. Vulnerabilities)�
	What is wrong with this picture?
	Software Vulnerabilities
	Publicly Known Vulnerabilities in “Packaged Software” (CVE) Growth
	Vulnerability Type Trends:�A Look at the CVE List (2001 - 2007)
	Removing and Preventing the Vulnerabilities Requires More Specific Definitions…CWEs
	Current Community Contributing to the Common Weakness Enumeration
	Slide Number 13
	Slide Number 14
	Slide Number 15
	People are Starved for Simplicity
	Printable PDFs of Entire CWE Now Available
	Slide Number 18
	CWE Outreach: A Team Sport�May/June Issue of IEEE Security & Privacy…
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Today Everything’s Connected
	Cyberspace & physical space are increasingly intertwined and software controlled/enabled
	Slide Number 26
	Our Systems are Composed of Elements from Many Languages and Environments
	Systems Are Complicated…
	And Software Is Complex Too...
	Some Static Analysis Tools Focus on Pulling Structure Out of the Complexity …
	Static Analysis is about collecting information and capturing knowledge
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Gartner Magic Quadrant�for�Static Application Security Testing�Tools
	CWE Compatibility & Effectiveness Program
	Fortify Main User Interface
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Example Buffer Overflow
	Example Buffer Overflow: Off-by-One
	Example Buffer Overflow: Signed
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Complete CAPEC Entry Information
	CAPEC Current Content (12 Major Categories)
	CAPEC Current Content (Which Expand to…)
	CAPEC Current Content (305 Attacks…)
	Cyber Threats Emerged Over Time
	Cyber Threats
	What is Software Assurance (SwA)?
	“Software Assurance” �(from http://en.wikipedia.org/wiki/Software_Assurance)
	DHS - Challenges in Software Assurance
	DoD Perspective on the�Software Assurance (SwA) Problem
	DoD OASD - Software Assurance is Critical*
	Summary of the SwA Problem
	Software Assurance’s Challenges
	SwA’s Relationship to Traditional �System/Software Engineering Disciplines
	“Software Assurance” Comes From:
	SwA and Systems Development (example)
	Integrating SwA into the�Systems Engineering Lifecycle
	Software Assurance Lifecycle Considerations
	The Assurance Case/Argument – � Requires Measurement
	Slide Number 69
	ISO/IEC 15026: Systems & Software Assurance �15026 Part 2: The Assurance Case (Claims-Evidence-Argument)
	ISO/IEC 15026: A Four-Part Standard
	ISO/IEC 15026: Examples of relationships among parts
	Safety Cases Based on Assurance Cases –Claims-Evidence-Argument in Use for <10 Years
	The Assurance Case/Argument:�OMG Evidence and Claims/Arguments Standards
	DHS’s Build Security In and SwA Websites
	[makingsecuritymeasurable.mitre.org]
	Questions?

