
ISO, OMG, Common Criteria and
the Content Automation Efforts…

Robert A. Martin

DHS’s Build Security In and SwA Websites

www.us-cert.gov/swa/

buildsecurityin.us-cert.gov/swa/

Overview

• ISO/IEC JTC 1/SC 22/WG 23, ISO 24772
Programming Language Vulnerabilities

• ISO/IEC JTC 1/SC 27/WG 3, NWP
Common Criteria TOE “update”

• SC 27 WG 1, ISO 15026
• OMG Systems Assurance Task Force

ISO/IEC JTC 1/SC 22/WG 23, ISO 24772
Programming Language Vulnerabilities

• Any programming language has constructs that
are imperfectly defined, implementation
dependent or difficult to use correctly.

• As a result, software programs sometimes
execute differently than intended by the writer.

• In some cases, these weaknesses can be
exploited by hostile parties, or can lead to failure
in anticipated environments.
– Can compromise safety, security, privacy,

dependability or other critical properties.
– A vulnerability in any program can be used

as a springboard to make additional attacks
on other programs.

The Problem:

ISO/IEC JTC 1/SC 22/WG 23, ISO 24772
Programming Language Vulnerabilities

• The major portion of Technical Report describes
vulnerabilities in a generic manner, including:
– Brief description of application vulnerability
– Cross-reference to enumerations and other

classifications, e.g. CWE
– Description of failure mechanism, i.e. how

coding problem relates to application
vulnerability

– Applicable language characteristics
– Avoiding or mitigating the vulnerability
– Implications for standardization

• Annexes will provide language-specific treatments
of each vulnerability.

Vulnerability Template:

Example Description
6.17 Boundary Beginning Violation [XYX]
6.17.1 Description of application vulnerability
A buffer underwrite condition occurs when an array is

indexed outside its lower bounds, or pointer arithmetic
results in an access to storage that occurs before the
beginning of the intended object.

6.17.2 Cross reference
[Cross references to CWE, JSF, MISRA, CERT, etc.]

Continued…
6.17.3 Mechanism of failure
There are several kinds of failures (in some cases an

exception may be raised if the accessed location is
outside of some permitted range):

A read access will return a value that has no
relationship to the intended value, e.g., the value of
another variable or uninitialized storage.

An out-of-bounds read access may be used to obtain
information that is intended to be confidential.

A write access will not result in the intended value
being updated and may result in the value of an
unrelated object (that happens to exist at the given
storage location) being modified.

When the array has been allocated storage on the
stack an out-of-bounds write access may modify
internal runtime housekeeping information (e.g., a
functions return address) which might change a
programs control flow.

Continued…
6.17.4 Applicable language characteristics
This vulnerability description is intended to be applicable to
languages with the following characteristics:

Languages that do not detect and prevent an array
being accessed outside of its declared bounds.

Languages that do not automatically allocate storage
when accessing an array element for which storage
has not already been allocated.

Continued…
6.17.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the
following ways:.

– Use of implementation provided functionality to automatically check
array element accesses and prevent out-of-bounds accesses.

– Use of static analysis to verify that all array accesses are within the
permitted bounds. Such analysis may require that source code contain
certain kinds of information, e.g., that the bounds of all declared arrays
be explicitly specified, or that pre- and post-conditions be specified.

– Sanity checks should be performed on all calculated expressions used
as an array index or for pointer arithmetic.

Some guideline documents recommend only using variables having an
unsigned type when indexing an array, on the basis that an unsigned type can
never be negative. This recommendation simply converts an indexing
underflow to an indexing overflow because the value of the variable will wrap
to a large positive value rather than a negative one. Also some language
support arrays whose lower bound is greater than zero, so an index can be
positive and be less than the lower bound.
In the past the implementation of array bound checking has sometimes
incurred what has been considered to be a high runtime overhead (often
because unnecessary checks were performed). It is now practical for
translators to perform sophisticated analysis that significantly reduces the
runtime overhead (because runtime checks are only made when it cannot be
shown statically that no bound violations can occur).

Continued…
6.17.6 Implications for standardization

• Languages that use pointer types should consider
specifying a standard for a pointer type that would
enable array bounds checking, if such a pointer is not
already in the standard.

6.17.7 Bibliography
[None]

WG 23 Participants
•

National Bodies
–

Canada

–

Germany
–

Italy

–

Japan
–

France

–

United Kingdom
–

USA

•

Other Groups
–

RT/SC Java

–

MISRA C/C++
–

CERT

•

Language Standards
 Groups

–

SC 22/WG 9
–

SC 22/WG14

–

SC 22/WG 5, INCITS
 J3 (Fortran)

–

SC 22/WG 4, INCITS
 J4 (Cobol)

–

MDC (Mumps)
–

ECMA (C#, C++CLI)

Overview

• ISO/IEC JTC 1/SC 22/WG 23, ISO 24772
Programming Language Vulnerabilities

• ISO/IEC JTC 1/SC 27/WG 3, NWP
Common Criteria TOE “update”

• SC 27 WG 1, ISO 15026
• OMG Systems Assurance Task Force

ISO/IEC JTC 1/SC 27/WG 3, NWP
“Secure software development and evaluation under
ISO/IEC 15408 and ISO/IEC 18405”

Overview

• ISO/IEC JTC 1/SC 22/WG 23, ISO 24772
Programming Language Vulnerabilities

• ISO/IEC JTC 1/SC 27/WG 3, NWP
Common Criteria TOE “update”

• SC 27 WG 1, ISO 15026
• OMG Systems Assurance Task Force

ISO/IEC 15026: A Four-Part Standard
• Planned parts:

15026-1: Concepts and vocabulary (initially a TR2
and then revised to be an IS)

15026-2: Assurance case (including planning for the
assurance case itself)

15026-3: System integrity levels (a revision of the
1998 standard)

15026-4: Assurance in the life cycle (including
project planning for assurance
considerations)

• Possible additional parts as demand requires
and resources permit, e.g.
Assurance analyses and techniques
Guidance documents

ISO/IEC 15026: Examples of relationships among parts

Life cycle
processes, e.g

• Requirements
analysis

• Architectural
design

• Risk
management

• Measurement
• Verification
• Validation

Assurance
caseSystem integrity

levels

Claims

Uncertainty
bounds

Evidence

2

3

4

ISO/IEC 15026: Systems & Software Assurance
15026 Part 2: The Assurance Case (Claims-Evidence-Argument)

ISO/IEC 15026: Systems & Software Assurance
15026 Part 2: The Assurance Case (Claims-Evidence-Argument)

Overview

• ISO/IEC JTC 1/SC 22/WG 23, ISO 24772
Programming Language Vulnerabilities

• ISO/IEC JTC 1/SC 27/WG 3, NWP
Common Criteria TOE “update”

• SC 27 WG 1, ISO 15026
• OMG Systems Assurance Task Force

OMG Systems Assurance Task Force
Claims-Evidence-Arguments Overview

Assurance Case

Claims (propositions)

Support of claims Precise expression of propositions

Inferential support Evidence

Ontology
(vocabulary)

A
R

M
 A

rg
um

en
ta

tio
n

M
et

am
od

el

SBVR
Semantic
Business
Vocabulary
& Rules

KDM Knowledge Discovery Metamodel

Collection of evidence

Observable Facts

SAEM Software Assurance Evidence Metamodel

KDM Analytics

Support by ‘Substantial’ Reasoning

Stephen Toulmin, 1958

(probably)

• Claims are assertions put forward
for general acceptance

• The justification for claim
is based on some grounds, the “specific facts about a
precise situation that clarify and make good for a claim”

• The basis of the reasoning from the grounds (the facts) to
the claim is articulated. Toulmin coined the term “warrant”
for “substantial argument”. These are statements indicating
the general ways of argument being applied in a particular
case and implicitly relied on and whose trustworthiness is
well established”.

• The basis of the warrant might be questioned, so “backing”
for the warrant may be introduced. Backing might be the
validation of the scientific and engineering laws used

Strategy

Solution or sub-goals Goal

CAE
GSN

Justification

GSN: Safety Case for a Railroad Signalling Scheme

Source: UK Yellow Book

Safety Cases Based on Assurance Cases –
Claims-Evidence-Argument in Use for <10 Years

CAE

Structured Safety Assurance tools
are commercially available

What is Evidence ?
• Evidence is data that supports certain claim

– Not assumptions, clarification or subclaims
• Evidence can be diverse (various things may be produced as

evidence)
– Documents as evidence
– Test results as evidence (someone has to make the verdict)
– Measurement results as evidence
– Process, product

• Evidence has provenance
– Source
– Evidence acquisition involves certain processes (reviews, testing,

analysis, etc.)
• Evidence has “quality”
• Evidence is stored in evidence repositories
• Argument structure determines what evidence is acquired

– Also argument criticality determines evidence “quality”
• Evidence can help partition arguments

– Evidence may provide context

The Assurance Case/Argument:
OMG Evidence and Claims/Arguments Standards

SAEM: Evidence

ARM:Arguments

NarrativeArgument

ModelElement
identifier : String
description : String

biggest contention is
around the term
'Argument'

there is an issue of the
ownership of the Argument (flat
space in the AssuranceCase)

premise should have
a constraint

there may be one or more
conclusions; but there is a 'tooling
penalty' for supporting multiple
choice in the GUI

NarrativeElement

Claim

ArgumentationElement

0..1

+narrativeElement

0..1

describedBy

StructuredArgument

1
+conclusion

1

supports

1..*
+premise

1..*

decomposedInto
1..*

+support
1..*

supportedBy

1..*

+context

1..*

inContextOf

NarrativeElement
(description) should
be owned by
ArgumentationElemen
t

ARM:Claims
A r g u m e n t a t i o n E l e m e n t

C l a i m

A s s u m p t i o n

C o n t e x t

ArgumentationElement

EvidenceItemEvidenceReference
1

+evidenceItem

1

ModelElement
identifier : String
description : String

duplication between
EvidenceReference and
EvidenceItem

Software Assurance Community:
Opportunities, and Items to leverage

Next SwA Forum:
2-6 Nov 09 – Crystal City Marriott

Questions?

	ISO, OMG, Common Criteria and the Content Automation Efforts…
	DHS’s Build Security In and SwA Websites
	Slide Number 3
	Overview
	ISO/IEC JTC 1/SC 22/WG 23, ISO 24772 �Programming Language Vulnerabilities
	ISO/IEC JTC 1/SC 22/WG 23, ISO 24772 �Programming Language Vulnerabilities
	Example Description
	Continued…
	Continued…
	Continued…
	Continued…
	WG 23 Participants
	Overview
	ISO/IEC JTC 1/SC 27/WG 3, NWP �“Secure software development and evaluation under ISO/IEC 15408 and ISO/IEC 18405”�
	Slide Number 15
	Overview
	ISO/IEC 15026: A Four-Part Standard
	ISO/IEC 15026: Examples of relationships among parts
	ISO/IEC 15026: Systems & Software Assurance �15026 Part 2: The Assurance Case (Claims-Evidence-Argument)
	ISO/IEC 15026: Systems & Software Assurance �15026 Part 2: The Assurance Case (Claims-Evidence-Argument)
	Overview
	OMG Systems Assurance Task Force �Claims-Evidence-Arguments Overview
	Support by ‘Substantial’ Reasoning
	GSN: Safety Case for a Railroad Signalling Scheme
	Safety Cases Based on Assurance Cases –�Claims-Evidence-Argument in Use for <10 Years
	Structured Safety Assurance tools �are commercially available
	What is Evidence ?
	The Assurance Case/Argument:�OMG Evidence and Claims/Arguments Standards
	Software Assurance Community:�Opportunities, and Items to leverage
	Slide Number 30

