Common Event Rule Expression

Engineering Session

CERE

- Vision for the specification
- General Requirements
- Rule Types
- Data Exchange
- Example Rules
- Flexibility
- Content
- Content Production
- Content Protection

CERE Vision

- Provide vendors and consumers a way to express and share rules for pattern matching, correlation, and filtering of logs
 - Support distributed multi-vendor enterprises
 - Aid in acquisition
 - Simplify sharing detection rules to public
 - Achieve this with minimal impact to vendors and consumers

General Requirements

- Match based on Boolean combinations
 - AND, OR, NOT, XOR
- Temporal constraints
 - Ordering
 - Ordered sequences of events, or sets of events
 - Unordered sets of events
 - Time window
 - Fixed time window
 - Gradient time window

General Requirements

- State
 - Match based on previous events or current state
- Additionally query triggers
 - Ability to gather data from repositories
 - Ability to direct agents to gather additional data

Rules Types

- Filters (Common Event Filtering Expression)
 - Just another rule
 - Priority based filtering filtering by criticality
 - Compression/Normalization Combine identical events into a single event
 - Discarding remove those events that aren't relevant
 - Time out for time window correlation, remove those things that have aged out of consideration

Rule Types

Rule based reasoning

- Single event a single event matches a criteria and events are processed in the stream on their own
- Multi-event a criteria is met when multiple events occur events are still treated independently, but correlated to other streams
- Fixed threshold a criteria is met when an event rate threshold is met or exceeded

Rule Types

 Ordered multi-stage chaining – a criteria is met when x condition follows y condition is met within z time period. Order is a factor

Data Exchange

- Modern SIEM products already have a native rules expression and processing capability
 - A rule interchange should not impact how products internally represent or process rules
 - Investigating the W3C Rule Interchange Format (RIF)
 - Designed for the purpose of exchanging rules
 - Reasonable momentum as a standard (accepted as a recommendation by W3C)
 - Is highly expressive and extensible

Data Exchange

- Doesn't require creating a new expression from scratch
- There are also some drawbacks to RIF
 - Very early in development
 - Not much adoption yet
 - Very complex
 - Very generic
- Mitigations
 - Create a purpose-built dialect for the security event use case
 - Monitor adoption and continue research

Data Exchange

- There are other rule languages (RuleML, Drools)
- It may prove necessary or efficient to construct a new expression
 - would rather adopt a usable existing standard

Example Rules

Examples from Open Source SIEM tool (OSSIM)

Single Event

directive id="3015" name="SQL injection attempt against DST_IP"priority="3"> <rule type="detector" name="Sql injection attacker request" reliability="3" occurrence="1" from="ANY" to="ANY" port_from="ANY" port_to="ANY" plugin_id="SNORTRULES" plugin_sid="snort: "ET WEB_SERVER Possible SQL Injection Attempt DELETE FROM"', 'snort: "ET WEB_SERVER Possible SQL Injection Attempt INSERT INTO"' 'snort: "ET WEB_SERVER Possible SQL Injection Attempt SELECT FROM"' 'snort: "ET WEB_SERVER Possible SQL Injection Attempt UNION SELECT"', 'snort: "ET WEB_SERVER Possible SQL Injection Attempt UPDATE SET"'' protocol="ANY"> <rules> </rules> </rules> </rules> <rule type="detector" name="Sql error server response" reliability="+7" time_out="10" occurrence="1" from="1:DST_IP" to="1:SRC_IP" port_from="ANY" port_to="ANY" plugin_id="SNORTRULES" plugin_sid="5000006,5000007,5000008" protocol="ANY"/>

</rules>

</rule>

Example Rules

Examples from Open Source SIEM tool (OSSIM)

Multi Event

<directive id="24000" name="Doly Trojan" priority="5"> <rule type="detector" name="Intrusion rule matched" reliability="2" occurrence="1" from="ANY" to="ANY" port_from="ANY" port_to="ANY" plugin_id="SNORTRULES" plugin_sid="'BACKDOOR Doly 2.0 access','BACKDOOR Doly 1.5 server response'"> <rules> </rules> </rule> <rule type="detector" name="Rare but open dest port used" reliability="+4" occurrence="1" from="1:SRC_IP" to="1:DST_IP" port_from="1:SRC_PORT" port_to="1:DST_PORT" plugin_id="SPADE" plugin sid="Spade: Rare but open dest port used"> <rules> </rules> drulos

Example Rules

Fixed Threshold

<directive id="3011" name="POP3 Bruteforce against SRC IP" priority="3"> <rule type="detector" name="Bruteforce against " reliability="3" occurrence="1" from="ANY" to="ANY" port_from="ANY" port to="ANY" plugin id="SNORTRULES" plugin sid="5000004" protocol="ANY"> <rules> <rule type="detector" name="POP3 Bruteforce against SRC IP" reliability="+5" time out="100" occurrence="5" from="1:SRC IP" to="1:DST IP" port from="ANY" port to="ANY" plugin id="SNORTRULES" plugin sid="1:PLUGIN SID" sticky="true" protocol="ANY"> <rules> <rule type="detector" name="POP3 Bruteforce against SRC_IP" reliability="+7" time_out="300" occurrence="20" from="1:SRC IP" to="1:DST IP" port from="ANY" port to="ANY" plugin id="SNORTRULES" plugin sid="1:PLUGIN SID" sticky="true" protocol="ANY"> <rules> <rule type="detector" name="POP3 Bruteforce" against SRC_IP" reliability="+10" time_out="500" occurrence="50" from="1:SRC_IP" to="1:DST_IP" port from="ANY" port to="ANY" plugin id="SNORTRULES" plugin sid="1:PLUGIN SID" sticky="true" protocol="ANY"> </rule>

Flexibility

- For a specification to be effective it needs be flexible enough to express all (or almost all) rules for patterns matching, correlation, and filtering
 - Feasibility still being studied
 - Many cases to be considered
 - Will being this generic prove impractical?
 - Need to identify MUST have cases and those that are less critical

Content

• What about the content?

- Content is always a battle
- In this case, content should be a distributed effort
 - Rules come from consumers, vendors, and organizations that produce guidance
 - Many organizations have such rules, but have no format in which to express them
 - Many products have "default" rules but no means to express them
 - The good news, compatibility with the specification means as you write a rule, you can share the content

Content Reduction

- What about lossiness (lost in translation)?
 - How do we ensure content reduction does not occur?
 - Who is responsible for ensuring content reduction does not occur?

Content Protection

- What if I DON'T want to share?
 - Content is proprietary
 - Content is classified
 - Content exposes vulnerability
 - Should the specification allow for encrypted content (does this even help)?
 - Variables appear necessary in general, do they help here?
 - What other cases of "protecting" content can we envision?

Summary

- A generic rules expression would assist in standardizing the event management space
- There are many existing efforts, and and vendor implementations
- To minimize impact and maximize information exchange a language suited to expression vs. execution is desirable
- There is still research and experimentation required