·ı|ı.ı|ı. cısco

Automating Network Security Assessment

NW2010 BRKSEC-1065 (Edited for time)

What we will cover

- Traditional approach
- What's new: Automation
- Case study: Network modeling
 - Cisco's global infrastructure
- Case study: Zone defense
 - Scrub down of border PoP's
- Case study: Defending critical assets
 - Isolating PKI
- Case study: "Surprise!"
 - Handling new infrastructure
- Case study: Managing change day to day
 - The Carnac moment

Today's network security audits

- Typically, network and hosts treated separately
- Network:

Elbow grease and eye strain

Gather configs; print configs; read configs Similar to proof-reading the phone book

Hosts:

Level 1: Leave the admins to patch Problem: hope is not a strategy Level 2: Scan for unpatched systems Problem: more data than you can handle Level 3: Drive cleanup based on risk Problem: prioritization easier said than done

What needs to change

Typical teams:

Host exploit gurus

Working without network or business context

A few network specialists

Critical "how's & why's" in the heads of a few gurus

Audit treadmill

Like painting more bridges than you have crews

Need to:

Finish each audit in less time

Increase accuracy

Capture the rules for next time

Integrate across specialties – put issues in context

Why network assessment is different

You can't detect a route around the firewall by reading the firewall

Case study: "Project Atlas"

Objective:

Map the entire global Cisco environment Review major site interconnections Audit access to sensitive locations

Resources:

Installed RedSeal software

Two weeks

27,000 configuration files

Originally on ~\$5K server (quad core, 32G RAM) Now running on Cisco UCS – much faster!

Raw network (aka "The Bug Splat")

Lesson #1: You need a config repository

Complexity level is high

File Edit View Tools Help

2 2 🗖 🕅 62 σ

Organizing Cisco's worldwide network

Lesson #2: Naming conventions are your friend

Final "circumpolar" zoned view

Connectivity to six sensitive servers

Cisco Public

Automatic calculation of connectivity

Lesson #3: Pictures easily explain difficult concepts

Access specifics – "Is it just ping?"

Access Selected Lin	is			
Q,+ tcp	🗊 🝨 23 out	af 342 rows		😒 🛃 🗲 🕰
Protocol	Source IP	▲1 Source Port/	Destination IP	Destination Port/Code
tcp				
TCP .		any		any except 23
ICP III		any		any except 23
CP		any		any except 23
ICP		any		any except 23
CP		any		any except 23
CP		any		any except 23
CP		any		any except 23
CP		any		any except 23
ICP.		any		any except 23
CP		any		any except 23
1CP		any		1681
ICP		any		1681
ICP		any		1681
CP		any		1681
CP		any		1681
CP		any		any except 23
TCP		any		any except 23
TCP		any		any except 23
TCP		any		any except 23
TCP		any		any except 23
CP		any		any except 23
ICP		any		135, 15000
1CP		any		any except 23

- Detailed drill-down from one blue arrow
- Well, at least we blocked telnet (Specifics hidden, for obvious reasons)

Before vs. After

Before:

No way to visualize global infrastructure

After:

Map of record in an "Atlas"

Has become a working platform for further projects

Graphics to explain security issues to non-experts

Case Study: Zone defense

- Cisco has 15 major PoP's for external connections
- Typical manual assessment: 90 days per PoP
- Target:
 - 1. Build map
 - 2. Record major zones
 - Internet, DMZ, Inside, Labs, etc
 - 3. Analyze for Best Practice violations
 - 4. Add host vulnerabilities from scans
 - 5. Run penetration test

San Jose Campus Network Map

- Map of one PoP
- Zoning done "semi-automatically"

Internet

DMZ

San Jose Campus Network Map

Example of Best Practice Checks

- Automatic evaluation of 100+ rules
- Weak or missing passwords, redundant rules, etc

File Edit Yiew To	ools <u>H</u> elp				
9 🖸 🗶 8	2 🖬 🗃				
Home Maps	& Views Zones & Policy Best Practices	Reports			
Checks Suppre	essions	- 1000 St - 75			
Q- *password	💿 👰 6 out of 40 rows		Show All Checks		Q-) ኛ 🕎
Check ID	Title	Severity	Passed Devices	Failed Devices	Violation Instances
RS-16	Unencrypted Passwords	HIGH			~
RS-29	No Password for User	HIGH			
RS-38	Weakly Encrypted Password	HIGH			
RS-39	Missing or Weak Password on VTY	HIGH			
RS-41	Superfluous Enable Password	HIGH			
R5-55	No Password on Console	HIGH			
					_

Unlike rolling stones, changing networks gather moss …

Lesson #4: Networks gather 'cruft'

More sample maps

- 9 PoP maps built out & zoned in one morning
- Export to Visio and PDF

Lesson #5: 'Regular' people can do this.

Offline penetration testing

- Next level of analysis is penetration testing
- Combine network map with host scans
- Add access calculation
- Software automatically evaluates attack paths
- Identify high risk defensive weaknesses

Risk from Network-Based Attacks

High Risk

Low Risk

Low Risk

Sample attack chain – Before

Main Site

Step 1 – Vulnerabilities exposed in DMZ

Attackers can reach these Internet-facing servers

Step 2 – Some attack paths sneak in

Just a few pivot attacks are possible

Step 3 – Attack fans out

An attacker can get in if they find this before you fix it

Penetration test results

Sample result:

External attackers can reach red hosts Then pivot to attack yellow hosts But no attack combination reached green hosts

Results of recent PoP analysis

- Three PoP's out of nine analyzed
- These are very clean small attack surface

Before vs. After

Before:

Each PoP audit took 90 days Did not consider host vulnerability data

After:

Team recently executed 9 PoP audits in one day

Integrated assessment

Network configuration analysis

Zoned map

Host vulnerabilities

Attack path analysis

Bonus: map and results re-usable on next visit

Lesson #6: Network data + Vuln data + Attack path = GOLD

Case Study: Defending critical assets

PoP audits work outside in

Broad scope, hunting major gaps

Problem: lots and lots of access to review

Can't quickly capture all rules for all incoming access

Some assets deserve focused attention

For critical assets, work inside out

Start from known target Limit scope, increase focus Continuous re-assessment

Distributed public key infrastructure

Main site, plus disaster recovery site

Building the "crossbar" was easy – we sampled from Atlas

Lesson #7: A reference atlas is your friend

Distributed public key infrastructure

Access strictly controlled

Untrusted 3rd party manufacturers need to request certs Only cert admins should have general access

Capture high level rules

- Capture relationships of major zones
- Arrows show there is some unwanted access

Investigate unexpected access

- Note: no flow into primary
- Only DR site had unexpected Internet access

Even that was for limited sources, but still unexpected

Remove unwanted access

- Drill down to detailed path for unexpected access
- Identify exact cause

In this case, an out of date group definition on firewall

Flow through one hop

Specific rules

Before vs. After

Before:

Important details buried in large, complex network

After:

Focused rule-set to test defenses

Built out over 2 days

Daily re-evaluation as network changes come and go

Automatic mail summarizing status

Case Study: "Surprise!"

- Ad hoc network support
- Sudden addition of complete network to secure
- M&A, or in this case, short-lived Expo network
- Requires very rapid assessment
- Continuous tracking during high visibility phase

Until end of expo, or for M&A, integration into normal ops

China Expo Center Topology

Best Practice?

					_
614	snmp-server view novacm				
615	snmp-server community ***stripped*** vier	w novacm RO 90			
616	snmp-server community ***stripped*** vier	w novacm RVV 90			
617	snmp-server community ***stripped*** RO	95			
618	snmp-server community ***stripped*** RO	95			
619	snmp-server community ***stripped*** RO	93			
620	snmp-server community ***stripped*** RO	93			
621	snmp-server ifindex				
622	snmp-server trap-sc				
623	snmp-server system				
624	snmp-server enable				
625	snmp-server enable				
626	snmp-server enable				
627	snmp-server enable				
628	snmp-server enable				
629	snmp-server enable			1	J
630	snmp-server enable				
631	snmp-server enable				
632	snmp-server enable			5	5
633	enmn earvar anabla			C	2
Bes	Practice Violations Static Routes				
Q-] 🧕	20 rows		💽 🛃 🕑)
5	1 Hue	Summary	Violation at:	First Nol Trouble Ticket	٦
HIGH	Weak Community String	Weak community string in command ""	config:615	Mar 2	
			• -		
		 Weak Cor 	nmunit	v String	

(

Best Practice Checks

Examples of Best Practice Violations

Description: Identify which Best Practice rules are violated, and where.

Best Practice checks, sorted by name, are shown with itemizations of instances of violations of the check, sorted by frequency of violation.

User Name: uiadmin

Parameters: View = Primary Capability, Minimum selected severity = low, Max violations per folder to show = 10, Sort violation by = name, Sort checks by = frequency,

Sev	erity S	umma	ary								Summary Data	
_											Devices in this repo	ort
										High:11	Total Network Devices	6
		1	1	1	i	1	1	1			Avg. Violations / Device 22.	.2
		-								Medium:89	Unique Violations 1	13
										Low:33	Total Violation Instances 13	33
0	10	20	30	40	50	60	70	80	90			

Non-contiguous Wildcard

Severity: low Check ID: RS-21

Description: A wildcard in the configuration references a set of non-contiguous IP addresses. This is frequently done by mistake—0.0.0.240, which addresses 16 noncontiguous hosts, might easily get set instead of the intended 0.0.0.15 wildcard. (If the *redundant-security-rule* test has also failed for the same block of addresses, fix the non-contiguous problem first. It may be producing a false-positive *redundant-rule* warning.)

Remediation: If not intentional, the wildcard should be replaced with a contiguous wildcard.

Primary Capability	y > Router	1 of 5 network devices have at least 1 issue
Device v	Summary	Violation ID First Noticed Last Noticed
	Non-contiguous wildcard found	119 Mar 26 2010 Mar 26 2010
	Line 2673 permit tcp any 0.0.0.32 eq www	
	Non-contiguous wildcard found	124 Mar 26 2010 Mar 26 2010
	Line 2790 permit ip any 0.0.0.128	
	Non-contiguous wildcard found	126 Mar 26 2010 Mar 26 2010
	Line 2827 permit ip any 0.0.0.128	

Inverted Mask in Access List

Severity: medium Check ID: RS-92

books than you are. Get over it.

Description: An inverted subnet mask was found in an access list rule. An inverted mask can inflate a range of 255 addresses to as many as 16.7 million, causing severe performance degradation of the RedSeal analysis engine. RedSeal ignores rules containing inverted masks, since they are almost certainly configuration errors.

A common mistake when configuring access lists is to specify the mask using *do care* bits when the platform expects *don't care* bits. That is, for example, to match hosts of the form 172.16.1.*, the correct form for IOS and Foundry is 172.16.1.0.0.0.255. An operator may sometimes enter 172.16.1.0.255.255.255.0 by mistake. Since the mask uses *don't care* bits, this actually matches hosts of the form *.*.0. Also note that the router can remove any values covered by *don't care* bits, so the incorrect entry will show up as 0.0.0.255.255.255.0 instead of what the operator typed originally. Permitting every address that ends in zero is almost certainly not the intended filter, since *.*.0 specifies 16.7 million distinct permissible addresses.

Remediation: Verify the original intent of this line and replace with the correct host and mask.

ש בטבט כוזנט מווען טו ונז מוווומנכז. אוו ווקו

Lesson #9: Computers are better at reading phone

Mar 29, 2010, 11:34 PM (EDT)

Page 1 of 7

Before vs. After

Before:

Very hard to keep up with new projects Availability wins – move fast, bring it up, move on Security gaps don't cause phone calls, availability gaps do

After:

Assessments at the speed of business Automation is key Use rules with expiry dates to stop accumulation of cruft

Case Study: Managing daily change

- Business change requests come thick & fast
- Security teams are asked to approve
- No standard basis to approve
- Can't position security team as "Dr No" Need clear, unequivocal reasons when rejecting changes
- Causes "the Carnac moment"

RTP Campus Network Map

Internet

DMZ

Cisco Campus

Client Connection Request

- Create Network Model
- Input Vulnerability Data
- Business need: Open one Class C network :80
 - Connection exposes
 32 vulnerabilities

Downstream Effect? Exposes 7,549 Vulnerabilities

From: Outside To: Inside		Protocol: Destination Port:	[tcp [80
	5wap To/From	Assess Risk	
Path Status		100%	
- The path from	to	is currently	Show Path
Exposure			
is Untru	sted Show	In Map	
s Protect	ted Show	In Map	
Yulner available on the Dictinal	ie		
Permitting this access exposes	32 vulnerabilit	ies.	0000 11 17
Number of unique nosts: Number of unique vulnerabilities:	32	Collective impact:	2009-11-17 ACIS
Max CV5S base score:	10.0	Leapfroggable:	Yes
			Show Hosts
Downstream Impact			
here is at least one south reacher he number of hosts that can be re	vulnerability ir ached via	is 7549.	Show Paths

Client Connection Exposure

Acceptable Risk Assessment

Before vs. After

Before

The Carnac moment Could only enforce general best practices ("spell checking") Exceptions granted based on need, no real risk evaluation

After

Push-button assessment of impact Visuals to demonstrate nature of exposure Automatic pin-pointing of rules needing to change

Lesson #10: We can finally have a coherent discussion with the business

Automating network audit

Before:

Image: state of the state

After:

Lesson Summary

- Lesson 1 You need a config repository.
- Lesson 2 Naming conventions are your friend.
- Lesson 3 Pictures easily explain difficult concepts.
- Lesson 4 Networks gather 'cruft'.
- Lesson 5 'Regular' people can do this.
- Lesson 6 Network data + Vuln data + Attack path = GOLD.
- Lesson 7 A reference atlas is your friend.
- Lesson 8 Cruft is so important we mention it twice.
- Lesson 9 Computers are better at reading phone books than you are. Get over it.
- Lesson 10 We can finally have a coherent discussion with the business.

Thank you

- Questions?
- Contact:

ddexter@cisco.com