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Secstate Overview

• Tool for security management on Linux / Unix
• Written in Python
• Automates three primary security tasks

– Audit & Report: rapid, automated security state assessment
– Remediate:  modify (lockdown) system to put it in a compliant state
– Maintain: maintain the system in a compliant state

• Basic operation: manages a repository of content
– Content consists of SCAP and Puppet
– Aligns Puppet and SCAP to automate remediation

• Primary advantages
– Standards-based: uses NIST SCAP standards including OVAL and XCCDF
– Model driven: users describe secure state not actions
– System configuration management compatible

• Uses Puppet internally – a widely used system management tool

– User extensible: import new requirements and tweak existing
– Open source and widely available
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Secstate Usage

Secstate is currently a command line tool for flexibility 

– graphical versions are planned. This screenshot is 

showing the available commands and usage.
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Listing All Groups and Rules

Adding the “-a” command causes all groups and rules 

to be displayed. Here is a partial list of the Unix STIG 

to demonstrate (this example is abbreviated to make 

the display more manageable).

7



Auditing System State

The audit command inspects the current system state 

according to the active benchmarks and rules. It 

outputs a summary and saves the results in a 

standardized XML format and easy to read HTML 

format.

Here the minimum password length configuration 

check is failing.
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HTML Audit Output

This is the HTML output showing the same 

failure and some additional system 

information.
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Remediation

The remediate command takes a set of failures (from 

a results XML file) and changes the system 

configuration so that compliance is achieved.

In addition to automated remediation (using Puppet), 

the XCCDF content can list manual remediation 

steps.
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Verification of Remediation

After verification, audit can be run again to verify 

success. Here the password GEN is shown passing.
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Core Use Cases and Features

• Remediation
– Manual, administrator driven

– Automated based upon scans

– Full configuration management (Puppet master)

• Customization of security requirements
– Importing security benchmarks

– Disabling individual rules

– Setting key variables

• All with integration of SCAP and Puppet
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System Configuration Management

• Security and management tools often conflict
– Both sets of tools change configuration
– Lack of integration results in conflicts
– System state described in multiple places

• System configuration management increasing
– Data centers are increasingly automated
– Higher quality with fewer administrators
– Virtualization / cloud driving adoption
– Need for integration with security lockdown is increasing

• Secstate aims to unify management and lockdown
– Security and general configuration treated identically
– Uses mature system management tool internally (Puppet)
– Can integrate with enterprise Puppet systems
– Other configuration management tools can be integrated
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Notes on SCAP

• SCAP has many advantages
– Viable cross-platform security auditing
– Increased automation for many tasks

• Unfortunately SCAP is not perfect
– Complex, layered set of standards

• CCE, CPE, CVE, OVAL, XCCDF, . . .
• Difficult to push customization through all the layers

– Languages tend to be challenging
• Seems to emphasize machine readable
• Verbose, obfuscated syntax

– OVAL probes are very limiting
• Lack of language features for abstractions
• Too much becomes textfilecontent54 (especially on Linux)
• But probes offer safety and predictability

– Central management of content
• Need for private namespaces
• Large body of high-quality content has yet to emerge
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XCCDF Example – Password Length

<Rule id="pass-min-length" selected="1">
<title>GEN0000580 - Password Minimum Length</title>

<description> A password minimum length must be 
specified.</description>

<fix system="urn:xccdf:fix:script:puppet">
class : passreqs
parameter : login_defs_min_len : <sub idref="pass-min-length-var" />

</fix>
<check
system="http://oval.mitre.org/XMLSchema/oval-definitions-5">

<check-export value-id="pass-min-length-var“
export-name="oval:com.tresys.oval.rhel:var:1017"/>

<check-content-ref href="passreqs.oval.xml“
name="oval:com.tresys.oval.rhel:def:1014"/>

</check>
</Rule>
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XCCDF Values

<Value id="pass-min-length-var" type="number“

operator="greater than or equal">

<title>Password Minimum Length</title>

<description>

Contains the specified minimum length of passwords for the 

system.

</description>

<value>8</value>

</Value>
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OVAL Example

<definition class="compliance" id="oval:com.tresys.oval.rhel:def:1014" 
version="1">

<metadata>
<title>(PAM) Password Complexity - Minimum Length</title>
<affected family="unix">

<platform>Red Hat Enterprise Linux 5</platform>
</affected>
<reference ref_id="GEN000580" source="UNIX STIG" />
<description>Password Complexity</description>

</metadata>
<criteria>

<criterion test_ref="oval:com.tresys.oval.rhel:tst:1015" />
</criteria>

</definition>
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Eventually . . . Object

<textfilecontent54_object id="oval:com.tresys.oval.rhel:obj:1022" 
version="1" xmlns="http://oval.mitre.org/XMLSchema/oval-definitions-
5#independent">

<path>/etc</path>

<filename>login.defs</filename>

<pattern operation="pattern match">

^[^#]*PASS_MIN_LEN[[:space:]]+([[:digit:]]+)

</pattern>

<instance datatype="int" operation="greater than or equal">

1

</instance>

</textfilecontent54_object>
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Addressing OVAL Language Woes

• Developed SCC to generate OVAL
– New language with simpler syntax
– Maps directly to OVAL semantics

• Tools approach for simplifications
– Focus on UI – seldom address real issues
– Often force a particular workflow

• Language approach flexibly addresses challenges
– Focuses on core issues without forcing a particular workflow
– Surprisingly easier to maintain compiler than tools
– Appropriate for likely OVAL authors

• Key OVAL challenges solved by SCC
– Verbosity – SCC is compact and expressive
– IDs – SCC provides human readable IDS w/ stable mappings
– Locality – related statements grouped together
– Mapping – simple, predictable mapping to OVAL

22



SCC Example

test ind:variable pam-pass-min-len {
@check="all"
@comment="(PAM) Verify the password minimum length meets or exceeds the specified length"
object { variable<=pam-pass-minlen-var }
state { value { @datatype="int" @operation="greater than or equal" variable<=extern-pass-minlen-var } }

}
object ind:textfilecontent54 cracklib-pass-minlen {

@comment="Cracklib library for PAM"
path="/etc/pam.d"
filename="system-auth"
pattern="^[^#]*password.*(?:required|requisite).*pam_cracklib\.so.*minlen=-?(\d+).*" {

@operation="pattern match"}
instance="1" { @operation="greater than or equal" @datatype="int" }     

}
variable int:external extern-pass-minlen-var {

@comment="Obtains the minimum length specified externally"
}
variable int:local pam-pass-minlen-var {

@comment="Contains the pam password minlen"
object_component { object<=cracklib-pass-minlen @item_field="subexpression" }

}
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Puppet / SCAP Integration Challenges

• Remediation only performs partial configuration
– Only failed configuration is performed
– Requires aligning scan rules and Puppet

• Puppet and the unknown
– Puppet designed to fully specify state

• e.g., set complete file mode on a list of files
• Easier to work with templated configuration files

– Security requirements often broad
• All filesystems mounted nosuid
• Ensure man pages have perms set to 644

– Requires custom Puppet providers

• Customization in a single place
– Desire to custom requirements once (e.g., min passwd length)
– Have that impact both Puppet and SCAP
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Key Integration Points

• XCCDF Fix tag
– Specifies Puppet classes and variables
– Each rule contains a fix element
– Fine-grained mapping of XCCDF to Puppet

• External nodes tool
– Synchronization mechanism for customization
– Transfers XCCDF variables to Puppet

• Puppet driver
– Instantiates needed Puppet classes
– Runs Puppet commandline tool

• Requires tailored SCAP and Puppet
– For best results – other content still usable
– Content still standard – no language extensions required
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XCCDF Example – Password Length

<Rule id="pass-min-length" selected="1">
<title>GEN0000580 - Password Minimum Length</title>

<description>
A password minimum length must be specified.

</description>
<fix system="urn:xccdf:fix:script:puppet">

class : passreqs
parameter : login_defs_min_len : <sub idref="pass-min-length-var" />

</fix>
<check
system="http://oval.mitre.org/XMLSchema/oval-definitions-5">

<check-export value-id="pass-min-length-var“
export-name="oval:com.tresys.oval.rhel:var:1017"/>

<check-content-ref href="passreqs.oval.xml“
name="oval:com.tresys.oval.rhel:def:1014"/>

</check>
</Rule>
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Puppet Example

if $shadow_max_days != '' {
exec { "for shadowname in `awk -F: '{ print \$1 }' /etc/shadow`; 

do passwd -x $shadow_max_days \$shadowname; done" : 
path => "/bin:/usr/bin"

}
} 
if $login_defs_min_len != '' {

exec { "sed -i -e '/PASS_MIN_LEN/d' -e '$ 
a\\PASS_MIN_LEN=$login_defs_min_len' /etc/login.defs" : 

onlyif => "test -f /etc/login.defs",
path => "/bin:/usr/bin"

} 
}
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Future Plans

• Port to additional systems
– Current target is Fedora

– Port to RHEL 5 is needed (and straightforward)

– FY11 official support for RHEL4,5,6 and port to Solaris 10 with TX

– FY11 remote reporting

– FY12 port to STOP 7 and Solaris 11 with TX

– FY12 remote policy update and execution

• Additional requirement sets
– Current target is the Unix STIGS

– Desired requirements: other STIGS, CNSS 1253, NIST SP 800-53 
rev3, DCID 6/3

• Usability and documentation
– User and developer documentation expansion

– Graphical configuration tools (FY11)
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Questions?

https://fedorahosted.org/secstate/

http://www.tresys.com
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BACKUP
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