

E911 PHASE 2 ACCURACY DEFINITION MODIFICATION PROPOSAL

MEAN RADIAL ERROR (MRE)

Mark Birchler, Manager Wireless Access Technology Research Motorola Labs birchler@rsch.comm.mot.com

Accuracy Proposals

- RMS
 - Root Mean Square of all location attempt errors
 - Current FCC sanctioned accuracy definition
 - Assessment:
 - > Gives undue weight to outliers
 - Includes all location attempts in accuracy calculation
- 67%
 - Abscissa value at which the location error CDF crosses the 67% level
 - Assessment:
 - › Very insensitive to outliers
 - > Magnitude of largest 33% errors not counted in accuracy calculation
- 90% RMS
 - Root Mean Square of location attempt errors with largest 10% excluded
 - Assessment:
 - Insensitive to outliers
 - > Magnitude of largest 10% errors not counted in accuracy calculation
- New proposal: MRE (Mean Radial Error)

Mean Radial Error (MRE) Proposal

- Proposal development criteria
 - all location attempts should be counted as part of the accuracy definition
 - a small fraction of location failures or "outliers" should not unduly skew the results of an otherwise excellent ALI technology
 - the original accuracy goals of the Commission should not be relaxed

MRE proposal

- Calculate accuracy as the Mean of the Radial Error
- Comparison: RMS and MRE
 - RMS error equation (assumes actual location at origin)

$$A_{RMS} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i^2 + y_i^2)} \xrightarrow{\text{Errors accumulated as magnitude squared}} magnitude squared}$$

MRE error equation (same assumption)

$$A_{MRE} = \frac{1}{N} \sum_{i=1}^{N} \sqrt{x_i^2 + y_i^2}$$
 Errors accumulated as magnitude

- > Errors accumulated by magnitude for MRE and magnitude squared for RMS
- > MRE includes all errors, but does not unduly magnify "outliers"
- MRE provides for more equitable error weighting

ACCURACY EQUIVALENCE

- Probability theory
 - Gaussian probability density function (PDF)

- Transform this density by the function: $r = \sqrt{x^2 + y^2}$
 - Resulting random variable has a Rayleigh PDF

$$f_r(r) = \frac{r}{\sigma^2} e^{-r^2/2\sigma^2} U(r)$$

> The mean of this transformed Gaussian process is well known to be:

$$A_{MRE} = \sigma \sqrt{\pi/2}$$

- Accuracy equivalence
 - A_{RMS} = 125 m for σ = 88.39 m
 - For σ = 88.39 m, A_{MRE} = 110 m
 - Thus, setting a 110 meter MRE accuracy goal is equivalent to an RMS goal of 125 meters
- MRE accuracy goal of 110 meters is equivalent to 125 meter RMS goal

ACCURACY DEFINITION CASE STUDIES

- Case 1
 - 1000 2-D Gaussian draws
 - $-\sigma$ = 50 m (both dimensions)
 - Radial error σ = 71 m

- Case 2
 - 980 points identical to Case 1
 - 20 "outliers" created
 - › offset points by 1000 m
 - > 2% outlier probability

ACCURACY RESULTS

- Accuracy impact of 2% outlier as compared to Gaussian case
 - RMS accuracy degraded by 120%, non-compliant
 - RME accuracy degraded by 30%, compliant
 - 67% and RMS90% accuracies degraded by less than 2%, compliant

CONCLUSIONS

- The MRE definition:
 - Assures that all errors are counted in the accuracy calculation
 - Reduces sensitivity to outliers
 - Assures equivalent accuracy to the 125m/RMS goal (Gaussian assumption)
 - > By setting MRE accuracy goal to 110 meters
- Win/Win for the interested parties
 - Public safety assured that all location errors counted in accuracy calculation
 - Carriers and vendors assured relief from excessive outlier impact on accuracy calculation
- We now have at least four accuracy definition proposals
 - -RMS
 - 67%
 - 90% RMS
 - MRE
- Which one represents the best compromise between public safety requirements and wireless industry compliance difficulty?
- Let's work together to expeditiously decide