

 NIST Interagency Report xxxx

Policy Machine: Features,
Architecture, and Specification

DavidFerraiolo

Serban Gavrila

WayneJansen

NIST IR-xxxx	 Policy Machine: Features, Architecture,
and Specification
David Ferraiolo
Serban Gavrila
Wayne Jansen

C O M P U T E R S E C U R I T Y

Computer Security Division
Information Technology Laboratory
National Institute of Standards and Technology
Gaithersburg, MD 20899-8930

December 2012

U.S. Department of Commerce

Rebecca M. Blank, Acting Secretary

National Institute of Standards and Technology

Patrick D. Gallagher, Under Secretary of Commerce for
Standards and Technology and Director

ii

Reports on Computer Systems Technology

The Information Technology Laboratory (ITL) at the National Institute of Standards and

Technology (NIST) promotes the U.S. economy and public welfare by providing technical

leadership for the Nation’s measurement and standards infrastructure. ITL develops tests,
test methods, reference data, proof of concept implementations, and technical analysis to
advance the development and productive use of information technology. ITL’s
responsibilities include the development of technical, physical, administrative, and
management standards and guidelines for the cost-effective security and privacy of sensitive
unclassified information in Federal computer systems. This Interangency Report discusses
ITL’s research, guidance, and outreach efforts in computer security, and its collaborative
activities with industry, government, and academic organizations.

National Institute of Standards and Technology Interagency Report xxxx
105 pages (December 2012)

Certain commercial entities, equipment, or materials may be identified in this
document in order to describe an experimental procedure or concept adequately.
Such identification is not intended to imply recommendation or endorsement by the
National Institute of Standards and Technology, nor is it intended to imply that the
entities, materials, or equipment are necessarily the best available for the purpose.

iii

Abstract

The ability to control access to sensitive data in accordance with policy is perhaps the most
fundamental security requirement. Despite over four decades of security research, the limited
ability for existing access control mechanisms to enforce a comprehensive range of policy
persists. While researchers, practitioners and policy makers have specified a large variety of
access control policies to address real-world security issues, only a relatively small subset of
these policies can be enforced through off-the-shelf technology, and even a smaller subset can be
enforced by any one mechanism. This report describes an access control framework, referred to
as the Policy Machine (PM), which fundamentally changes the way policy is expressed and
enforced. The report gives an overview of the PM and the range of policies that can be specified
and enacted. The report also describes the architecture of the PM and the properties of the PM
model in detail.

Keywords: Access Control; Authorization; Privilege Management; Computer Security

Acknowledgements

The authors, David Ferraiolo and Serban Gavrila of the National Institute of Standards and
Technology, and Wayne Jansen of Booz Allen Hamilton, wish to thank colleagues at NIST and
elsewhere who reviewed drafts of this document and contributed to its technical content. Key
improvements to this document would not have been possible without the feedback and valuable
suggestions of those individuals.

iv

Table of Contents

1. Introduction... 1

1.1 Purpose and Scope .. 2

1.2 Document Structure.. 2

2. Background... 4

2.1 Access Control Models ... 5

2.2 Discretionary Access Control.. 6

2.3 Mandatory Access Control.. 7

2.4 Chinese Wall .. 8

2.5 Role Based Access Control .. 9

3. Policy Machine Framework...11

3.1 Core Policy Elements ..11

3.2 Assignments and Relations between Elements ...13

3.3 Associations and Privileges ...17

3.4 Prohibitions..22

3.5 Obligations ..26

4. Administrative Considerations ...29

4.1 Administrative Associations and Privileges ..29

4.2 Administrative Access Requests and Reference Mediation31

4.3 Administrative Prohibitions and Obligations ...33

4.4 Administrative Commands and Routines ...38

5. Policy Specification...42

5.1 Model Aspects and Use...42

5.2 Levels of Policy and Administration ...47

5.3 Authority Level Examples ..50

5.4 Generic Operations ...53

6. Multiple Policy Class Considerations ..58

6.1 Association Refinements ...58

6.2 Prohibition Refinements...59

6.3 Obligation Refinements ...60

6.4 Amalgamated Policy Examples ...60

7. Architecture ...68

7.1 Architectural Components ...68

7.2 Client Applications ...71

7.3 Security Considerations...72

8. References ...73

Appendix A—Acronyms ...75

Appendix B—Notation ..76

Appendix C—Semantics of Administrative Routines and Commands78

Appendix D—Defining Personas ...98

v

1. Introduction

Access control as it pertains to a computing environment is the ability to allow or prevent an
entity from using a computing resource in some specific manner. A common example of
resource use is reading a file. The access control has two distinct parts: policy definition where
access authorizations to resources are specified, and policy enforcement where attempts to access
resources are intercepted, and allowed or disallowed. An access control policy is a
comprehensive set of access authorizations that govern the use of computing resources system
wide. Controlling access to sensitive data in accordance with policy is perhaps the most
fundamental security requirement that exists. Yet, despite more than four decades of security
research, existing access control mechanisms have a limited ability to enforce a wide,
comprehensive range of policies, and instead enforce a specific type of policy.

Most, if not all, significant information systems employ some means of access control. The main
reason is that without sufficient access control, the service being provisioned would likely be
undermined. Many types of access control policies exist. An enforcement mechanism for a
specific type of access control policy is normally inherent in any computing platform.
Applications built upon a computing platform typically make use of the access control
capabilities available in some way to suit its needs. An application may also institute its own
distinct layer of access controls for the objects formed and manipulated at the level of abstraction
it provides. A common example of an application abstraction layer is a database application that
implements a role-based access control mechanism, while operating on a host computer that
implements a more elementary discretionary access control mechanism.

When composing different computing platforms to implement an information system, a policy
mismatch can occur. A policy mismatch arises when the narrow range of policies supported by
the various access control mechanisms involved have differences that make them incompatible
for meeting a specific need. In some cases, it is possible to working around limitations in the
ability for all platforms to express a consistent access control policy, by mapping equivalences
between the available access control constructs to effect the intended policy. For example, a
traditional multi-level access control system that supports information flow policies has been
demonstrated as capable of effecting role-based access control policies through carefully
designed and administered configuration options [Kuh98]. However, such mappings require that
the correct semantic context is used consistently when administering policy, which can be
mentally taxing and error inducing, and prevent the desired policy from being maintained
correctly in the information system.

NIST has devised a general-purpose access control mechanism, referred to as the Policy Machine
(PM), which can express and enforce arbitrary, organization-specific, attribute-based access
control policies through policy configuration settings. The PM is defined in terms of a fixed set
of configurable data relations and a fixed set of functions that are generic to the specification and
enforcement of combinations of a wide set of attribute-based access control policies. The PM
offers a new perspective on access control in terms of a fundamental and reusable set of data
abstractions and functions. The goal of the PM is to provide a unifying framework that supports
commonly known and implemented access control policies, as well as combinations of common
policies, and policies for which no access control mechanism presently exists.

1

Access control policies typically span numerous systems and applications used by an
organization. However, when users need to access resources that are protected under different
control mechanisms, the differences in the type and range of policies supported by each
mechanism can differ vastly, creating policy mismatches. If a PM mechanism were present in
every computing platform, obvious benefits would be not only the elimination of policy
mismatches, but also the ability to meet organizational security requirements readily, since a
wider range of arbitrary policies could be expressed uniformly throughout the platforms that
comprise an information system. The PM can arguably be viewed as a dramatic shift in the way
policy can be specified and enforced. But more importantly, it can also be viewed as a way to
develop applications more effectively by taking advantage of the underlying control mechanism
available and extending policy seamlessly to meet the access control needs for objects within the
layer of abstraction the application provides.

1.1 Purpose and Scope
The purpose of this Interagency Report is to provide an overview of the PM and guidelines for
its implementation. The report explains the basics of the PM framework and discusses the range
of policies that can be specified and enacted. It also describes the architecture of the PM and the
details of key functional components.

The intended audience for this document includes the following categories of individuals:

 Computer security researchers interested in access control and authorization frameworks

 Security professionals, including security officers, security administrators, auditors, and
others with responsibility for information technology security

 Executives and technology officers involved in decisions about information technology
security products

 Information technology program managers concerned with security measures for
computing environments.

This document, while technical in nature, provides background information to help readers
understand the topics that are covered. The material presumes that readers have a basic
understanding of computer security and possess fundamental operating system and networking
expertise.

1.2 Document Structure
The remainder of this document is organized into the following chapters:

 Chapter 2 provides background information on access control models, including several
examples of popular, well-known models.

2

 Chapter 3 explains the framework of the policy machine model, including key elements,
relationships, and abstractions of the model, the notation for expressing policies, and
some introductory examples of policy.

 Chapter 4 examines various aspects of the policy model regarding the administration of
policy.

 Chapter 5 reviews ways to apply the framework to specify various types of policies.

 Chapter 6 looks at issues that arise with the integration of multiple policies and ways to
apply the framework.

 Chapter 7 provides an overview of the key architectural components and interactions of
the PM.

 Chapter 8 contains a list of references.

Sidebars containing auxiliary material related to the main discussion appear in gray text boxes
throughout the main body of the document. At the end of the document, there are also
appendices that contain supporting material. Appendix A provides a list of acronyms used in the
report and Appendix B provides explanations about some of the mathematical notation used.
Appendix C provides a list of core functions and commands for the PM model and their semantic
description. Appendix D outlines two approaches for supporting personas within the PM model.

3

2. Background

Classical access control models and mechanisms are defined in terms of subjects (S), access
rights (A), and named objects (O). Users represent individuals who directly interact with a
system and have been authenticated and established their identities. A user identity is unique and
maps to only one individual. A subject represents a user and any system process or entity that
acts on behalf of a user. A user is unable to access objects directly, and instead must perform
accesses through a subject (e.g., a system process that operates on behalf of the user). Subjects
represent the active entities of a system that can cause a flow of information between objects or
change the security state of the system.

Objects are system entities that must be protected. Each object has a unique system-wide
identifier. The set of objects may pertain to processes, files, ports, and other system abstractions,
as well as system resources such as printers. Subjects may also be included in the set of objects.
In effect, this allows them to be governed by another subject. That is, the governing subject can
administer the access of such subjects to objects under its control. The selection of entities
included in the set of objects is a matter of choice determined by the protection requirements of
the system.

Subjects operate autonomously and may interact with other subjects. Subjects may be permitted
modes of access to objects that are different from those other subjects. When a subject attempts
to access an object, a reference mediation function determines whether the subject’s assigned
permissions adequately satisfy policy before allowing the access to take place. In addition to
carrying out user accesses, a subject may maliciously (e.g., through a Trojan horse) or
inadvertently (e.g., through a coding error) make requests that are unknown to and unwanted by
its user.

An access matrix provides a simple representation of the access modes to an object for which a
subject is authorized [Gra72, Har76]. Figure 1 provides a simple illustration of an access matrix.
Each row of the matrix represents a subject, Si, while each column represents an object, Oi. Each
entry, Ai,j, at the intersection of a row and column of the matrix, contains the set of access rights
for the subject to the object. The access matrix model, while simple, can express a broad range
of policies, because it is based on a general form of an access rule (i.e., subject, access mode,
object), and imposes little restriction on the rule itself.

Since, in most situations, subjects do not need access rights to most objects, the matrix is
typically sparse. Several, more space-efficient representations have been proposed as
alternatives. An authorization relation, for example, represents an access matrix as a list of
triples of the form (Si, Ai,j, Oj). Each triple represents the access rights of a subject to an object
and this representation is typically used in relational database systems [San94].

Access control and capability lists are two other forms of representation. An access control list
(ACL) is associated with each object in the matrix and corresponds to a column of the access
control matrix. Each access entry in the ACL contains the pair (Si, Ai,j), which specifies the
subjects that can access the object, along with each subject’s rights or modes of access to the

4

object. ACLs are widely used in present-day operating systems. Similarly, a capability list is
associated with each subject and corresponds to a row of the matrix. Each entry in a capability
list is the pair (Ai,j, Oj), which specifies the objects the subject can access, along with its access
rights to each object. A capability list can thus be thought of as the inverse of an access control
list. Capability lists, when bound with the identity of the subject, have use in distributed
systems.

Figure 1: Access Matrix

A key difference between the capability list and access control list is the subject’s ability to
identify objects. With an access control list, a subject can identify any object in the system and
attempt access; the access control mechanism can then mediate the access attempt using the
object’s access list to verify whether the subject is authorized the request mode of access. In a
capability system, a subject can identify only those objects for which it holds a capability.
Possessing a capability for the object is a requisite for the subject to attempt access to an object,
which is then mediated by the reference mediation function. Both the contents of access control
and capability lists, as well as the access control mechanism itself, must be protected from
compromise to prevent unauthorized subjects from gaining access to an object.

2.1 Access Control Models
An access matrix and its various representations are a type of discretionary access control model.
Discretionary in this context means that subjects, which represent users as opposed to
administrators, are allowed some freedom to manipulate the authorizations of other subjects to
access objects [Hu06]. Discretionary models form a broad class of access control models. Non-
discretionary models are the complement of discretionary models, insofar as they establish
controls that can be changed only through the actions of subjects representing administrators, and
not by those representing users [Hu06]. With non-discretionary models, subjects and objects are
typically classified into or labeled with distinct categories. Category-sensitive access rules that
are established through administration completely govern the access of a subject to an object and
are not modifiable at the discretion of the subject.

5

Many different access control models, both discretionary and non-discretionary, have been
developed to suit a variety of purposes. Models are often developed or influenced by well-
conceived organizational policies for controlling access to information. However, models
typically differ from organizational policy in several ways. For instance, models deal with
abstractions that involve a formal or semi-formal definition, from which the presence or lack of
certain properties may be demonstrated. Policy on the other hand is usually a more informally
stated set of high-level guidelines that provide a rationale for the way accesses are to be
controlled, and may also give decision rules about permitting or denying certain types of access.
Policies may be also incomplete, include statements at variable levels of discourse, and contain
self-contradictions, while models typically involve only essential conceptual artifacts, are
composed at a uniform level of discourse, and provide a consistent set of logical rules for access
control.

Organizational objectives and policy for access control may not align well with those of a
particular access control model. For example, some models enforce a strict policy that may too
restrictive for some organizations to carry out their mission, but essential for others. Even if
alignment between the two is strong, in general, the organizational access control policy may not
be satisfied fully by the model. For example, different federal agencies can have different
conformance directives regarding privacy that must be met, which affect the access control
policy. Nevertheless, access control models can provide a strong baseline from which
organizational policy can be satisfied.

Well-known models include Discretionary Access Control, Mandatory Access Control, Role
Based Access Control, One-directional Information Flow, Chinese Wall, Clark-Wilson, and N-
person Control. Several of these models are discussed below to give an idea of the scope and
variability between models. They are also used later in the report to demonstrate how seemingly
different models can be expressed using the PM model.

It is important to keep in mind that models are written at a high conceptual level, which
stipulates concisely the scope of policy and the desired behavior between defined entities, but not
the security mechanisms needed to reify the model for a specific computational environment,
such as an operating system or database management system. While certain implementation
aspects may be inferred from an access control model, such models are normally implementation
free, insofar as they do not dictate how an implementation and its security mechanisms should be
organized or constructed. These aspects of security are addressed through information assurance
processes.

2.2 Discretionary Access Control
The access matrix discussed in the previous section is a discretionary access control (DAC)
model. Many other DAC models have been derived from the access matrix and share common
characteristics. In addition to an administrator’s authorized control over access to objects, DAC
leaves a certain amount of control to the discretion of the object's owner. Ownership of an object
is typically conferred to the subject that created the object, along with the capabilities to read and
write the object. For example, it is the owner of the file who can control other subjects' accesses
to the file. Control then implies possession of administrative capabilities to create and modify

6

access control entries associated with a set of other subjects, which pertain to owned objects.
Control may also involve the transfer of ownership to other subjects. Only those subjects
specified by the owner may have some combination of permissions to the owner’s files.

DAC policy tends to be very flexible and is widely used in the commercial and government
sectors. However, DAC potentially has two inherent weaknesses [Hu06]. The first is the
inability for an owner to control access to an object, once permissions are passed on to another
subject. For example, when one user grants another user read access to a file, nothing stops the
recipient user from copying the contents of the file to an object under its exclusive control. The
recipient user may now grant any other user access to the copy of the original file without the
knowledge of the original file owner. Some DAC models have the ability to control the
propagation of permissions. The second weakness is vulnerability to Trojan horse attacks, which
is common weakness for all DAC models. In a Trojan horse attack, a process operating on
behalf a user may contain malware that surreptitiously performs other actions unbeknownst to
the user.

2.3 Mandatory Access Control
Mandatory Access Control (MAC) is a prime example of a non-discretionary access control
model. MAC requires that access control policy decisions are regulated by a central authority,
not by the individual owner of an object. MAC has its origins with military and civilian
government security policy, where individuals are assigned clearances and messages, reports,
and other forms of data are assigned classifications [San94]. The security level of user
clearances and of data classifications govern whether an individual can gain access to data. For
example, an individual can read a report, only if the security level of the report is classified at or
below his or her level of clearance.

Defining MAC for a computer system requires assignment of a security level to each subject and
each object. Security levels form a strict hierarchy such that security level x dominates security
level y, if and only if, x is greater than or equal to y within the hierarchy. The U.S. military
security levels of Top Secret, Secret, Confidential, and Unclassified are a good example of a
strict hierarchy. Access is determined based on assigned security levels to subjects and objects
and the dominance relation between the subject’s and object’s assigned security.

The security objective of MAC is to restrict the flow of information from an entity at one
security level to an entity at a lesser security level. Two properties accomplish this. The simple
security property specifies that a subject is permitted read access to an object only if the subject’s
security level dominates the object’s security level. The -property specifies that a subject is
permitted write access to an object only if the object’s security level dominates the subject’s
security level. Indirectly, the -property, also referred to as the confinement property, prevents
the transfer of data from an object of a higher level to an object of a lower classification and is
required to maintain system security in an automated environment.

These two properties are supplemented by the tranquility property, which can take either of two
forms: strong and weak. Under the strong tranquility property, the security level of a subject or
object does not change while the object is being referenced. The tranquility property serves two
purposes. First, it associates a subject with a security level. Second, it prevents, a subject from

7

reading data with a high security level, storing the data in memory, switching its level to a low
security level, and writing the contents of its memory to an object at that lower level.
Under the weak tranquility property labels are allowed to change, but never in a way that can
violate the defined security policy. It allows a session to begin in the lowest security level,
regardless of the user’s security level, and increased that level only if objects at higher security
levels are accessed. Once increased, the session security level can never be reduced, and all
objects created or modified take on the security level held by the session at the time when the
object was created or modified, regardless of its initial security level. This is known as the high
water mark principle.

Because of the constraints placed on the flow of information, MAC models prevent software
infected with Trojan horse from violating policy. Information can flow within the same security
level or higher, preventing leakage to a lower level. However, information can pass through a
covert channel in MAC, where information at a higher security level is deduced by inference,
such as assembling and intelligently combining information of a lower security level.

2.4 Chinese Wall
The Chinese Wall policy evolved to address conflict-of-interest issues related to consulting
activities within banking and other financial disciplines [Bre89]. The stated objective of the
Chinese Wall policy and its associated model is to prevent illicit flows of information that can
result in conflicts of interest.

The Chinese Wall policy is application-specific in that it applies to a narrow set of activities that
are tied to specific business transactions. Consultants or advisors are naturally given access to
proprietary information to provide a service for their clients. When a consultant gains access to
the competitive practices of two banks, for instance, the consultant essentially obtains insider
information that could be used to profit personally or to undermine the competitive advantage of
one or both of the institutions.

The Chinese Wall model establishes a set of access rules that comprises a firewall or barrier,
which prevents a subject from accessing objects on the wrong side of the barrier. It relies on the
consultant’s dataset to be organized such that each company dataset belongs to exactly one
conflict of interest class, and objects within the same company dataset also belong to the same
conflict of interest class. A subject can have access to at most one company dataset in each
conflict of interest class. However, the choice of dataset is at the subject’s discretion. Once a
subject accesses (i.e., reads or writes) an object in a company dataset, the only other objects
accessible by that subject lie within the same dataset or within the datasets of a different conflict
of interest class. In addition, a subject can write to a dataset only if it does not have read access
to an object that contains unsanitized information (i.e., information not treated to prevent
discovery of a corporation's identity) and is in a different company dataset to the one for which
write access is requested.

The following limitations in the formulation of the Chinese Wall model have been noted
[San92]: a subject that has read objects from two or more company datasets cannot write at all,
and a subject that has read objects from exactly one company dataset can write only to that
dataset. These limitations occur because subjects include both users and processes acting on

8

behalf of users, and can be resolved by interpreting the model differently to differentiate users
from subjects [San92].

2.5 Role Based Access Control
The Role Based Access Control (RBAC) model governs the access of a user to information
through roles for which the user is authorized to perform. RBAC is a more recent access control
model than those described above, which is based on several entities: users (U), roles (R),
permissions (P), sessions (S), and objects (O). A user represents an individual or an autonomous
entity of the system. A role represents a job function or job title that carries with it some
connotation of the authority held by a members of the role. Access authorizations on objects are
specified for roles, instead of users. A role is fundamentally a collection of permissions to use
resources appropriate to conduct a particular job function, while a permission represents a mode
of access to one or more objects of a system. Objects represent the protected resources of a
system.

Users are given authorization to operate in one or more roles, but must utilize a session to gain
access to a role. A user may invoke one or more sessions, and each session relates a user to one
or more roles. The concept of a session within the RBAC model is equivalent to the more
traditional notion of a subject discussed earlier. When a user operates within a role, it acquires
the capabilities assigned to the role. Through this function, the RBAC model supports the
principle of least privilege, which requires that a user be given no more privilege than necessary
to perform a job.

Another important feature RBAC is role hierarchies, whereby one role at a higher level can
acquire the capabilities of another role at a lower level, through an explicit inheritance relation.
A user assigned to a role at the top of a hierarchy, also is indirectly associated with the
capabilities of roles lower in the hierarchy and acquires those capabilities as well as those
assigned directly to the role. Standard RBAC also provides features to express policy constraints
involving Separation of Duty (SoD) and cardinality. SoD is a security principle used to
formulate multi-person control policies in which two or more roles are assigned responsibility
for the completion of a sensitive transaction, but a single user is allowed to serve only in some
distinct subset of those roles (e.g., not allowed to serve in more than one of two transaction-
sensitive roles). Cardinality limits a role’s capacity to a fixed number of users.

Two types of SoD relations exist: static separation of duty (SSD) and dynamic separation of duty
(DSD). SSD relations place constraints on the assignments of users to roles, whereby
membership in one role may prevent the user from being a member of another role, and thereby
presumably forcing the involvement of two or more users in performing a sensitive transaction
that would involve the capabilities of both roles. Dynamic separation of duty relations, like SSD
relations, limit the capabilities that are available to a user, while adding operational flexibility, by
placing constraints on roles that can be activated within a user’s sessions. As such, a user may
be a member of two roles in DSD, but unable to execute the capabilities that span both roles
within a single session. Similarly, static and dynamic forms of cardinality exist to prevent
respectively a limited number of users from being assigned to a role or from being active in a
role simultaneously.

9

Certain access control models may be simulated or represented by another. For example, MAC
can simulate RBAC if the role hierarchy graph is restricted to a tree structure rather than a
partially ordered set [Kuh98]. RBAC is also policy neutral, and sufficiently flexible and
powerful enough to simulate both DAC and MAC [Osb00]. Prior to the development of RBAC,
MAC and DAC were considered to be the only classes of models for access control; if a model
was not MAC, it was considered to be a DAC model, and vice versa.

10

3. Policy Machine Framework

The policy machine (PM) model is a redefinition of access control in terms of a standardized and
generic set of relations and functions that are reusable in the expression and enforcement of
policies. Its objective is to provide a unifying framework to support a wide range of attribute-
based policies or policy combinations through a single mechanism. The PM can be thought of as
a logical ‘‘machine” comprised of a fixed set of relations and functions between policy elements,
which are used to render access control decisions.

Policy elements not only represent the users and objects of a system, but also attributes of those
elements that have an effect on access control decisions. Several key relations provide a frame
of reference for defining and interpreting a system policy in terms of the policy elements
specified. These relations include assignments that link together policy elements into a
meaningful structure, associations that are used to define authorizations for classes of users,
prohibitions that are used to define what essentially are negative authorizations, and obligations
that are used to perform administrative actions automatically based on event triggers. Several
key functions also aid in making access control decisions and enforcing expressed policies. The
remaining sections of this chapter discuss in detail core policy elements, relations, and functions
that comprise the PM model.

An important characteristic of the PM is that it is inherently policy neutral. That is, no particular
security policy is embodied in the PM model. Instead, the model serves a vehicle for expressing
a wide range of security polices and enforcing them for a specific system through a precise
specification of policy elements and relationships. Policies are composed through administrative
operations that allow the expression and enforcement of both non-discretionary and discretionary
policies, and also the expression and simultaneous enforcement of multiple policies. The
structure of the PM is based on the concept that all enforcement can be fundamentally
characterized as either static, dynamic, or historical.

3.1 Core Policy Elements
The basic data elements of the PM include authorized users (U), processes (P), system operations
(SysOp), and objects (O). Users are individuals that have been authenticated by the system.
Objects are system entities that are subject to control under one or more defined policies. Both
users and objects have unique identifiers within the system. The set of objects reflect
environment-specific entities needing protection, such as files, ports, clipboards, email messages,
records and fields. The selection of entities included in this set is a matter of choice based on the
protection requirements of the system. Included in the set of objects are also policy elements and
relations needed by the PM to represent the authorization structure.

Operations are unique actions that can be performed on the contents of objects. Some of these
operations are specific to the environment for which the PM is implemented. Common operating

11

system operations on objects include read (r) and write (w), for example.1 Other operations that
pertain to administrative actions involving the creation and deletion of PM data elements and
relations are also part of the model. That is, the entire set of system operations, SysOp, is
naturally divided into a set of generic input/output operations on objects, Op, and a set of
administrative operations on the data elements that represent policy, AOp. Non-administrative
input/output operations are covered in the remainder of this chapter and administrative
operations are covered in the next chapter.

A process is a system entity, with memory, and operates on behalf of a user. Users submit
access requests through processes. Most other access control models treat users and processes
uniformly, under the concept of a subject, which is defined as an active entity. The PM is
different in this regard by treating users and processes as independent but related entities.

Processes can issue access requests, have exclusive access to their own memory, but none to any
other process. Processes communicate and exchange data with other processes through a
physical medium, such as the system clipboard or sockets. A user may be associated with one or
more processes, while a process is always associated with just one user. The function
process_user(p) returns the user u ∈ U associated with process p ∈ P. A user may create and run
various processes from within a session. The PM model permits only one session per user,
however.

Other additional important elements of the model include policy classes (PC) and user and object
attributes (UA and OA). A policy class is used to organize and distinguish between distinct
types of policy being expressed and enforced. A policy class can be thought of as a container for
policy elements and relationships that pertain to a specific policy. User and object attributes play
a similar role. User and object attributes are policy elements used to organize and distinguish
between distinct classes of users and objects respectively. They can also be thought of as
containers for users and objects respectively. Every object also serves as an object attribute
within the PM model; i.e., O is a subset of OA. The way in which policy elements can be
assembled and used to represent policy is covered in subsequent sections.

Notation for Basic Model Elements. The basic elements of the model discussed so far
can be defined more formally as shown below.

▪ U: A finite set U of authorized users; u or u1, u2, … denote a member of U, unless
otherwise specified.

▪ P: A finite set of system processes; p or p1, p2, … denote a member of P, unless
otherwise specified.

1 Besides read and write, other generic input/output operations on objects may exist, depending on the computing environment.
Examples include write-append, which allows an object to be expanded, but does not allow the previous contents to be changed,
and execute, which allows the content of an object to be run as an executable, but does not allow it to be read. For simplicity, the
more general and encompassing forms of input/output, read and write, are used exclusively throughout this report.

12

▪ Op: A finite set of generic input/output operations; op or op1, op2, … denote a member
of Op, unless otherwise specified.

▪ AOp: A finite set of administrative operations; aop or aop1, aop2, … denote a member of
AOp, unless otherwise specified.

▪	 SysOp: The finite set of administrative and non-administrative operations for a system.
SysOp = Op ⋃ AOp

▪	 O: A finite set of protected objects; o or o1, o2, … denote a member of O, unless
otherwise specified.

O ⊆ OA

▪ PC: A finite set of policy classes; pc or pc1, pc2, … denote a member of PC, unless
otherwise specified.

▪ UA: A finite set of user attributes; ua or ua1, ua2, … denote a member of U, unless
otherwise specified.

▪	 OA: A finite set of object attributes; oa or oa1, oa2, … denote a member of OA, unless
otherwise specified.

OA ⊇ O

▪	 Process-to-User Mapping: The function process_user from domain P to codomain U,
such that u = process_user(p), iff p ∈ P is a process operating on behalf of user u ∈ U.
∀p∈P, ∃u∈U: u = process_user(p)

3.2 Assignments and Relations between Elements
Assignments are the means used to express a relationship between users and user attributes,
objects and object attributes, user (object) attributes and user (object) attributes, and user (object)
attributes and policy classes. The assignment relationship is a binary relation on the set of policy
elements, PE = U ⋃ UA ⋃ OA ⋃ PC, where O ⊆ OA. The assignment relation is denoted by
the arrow symbol “→” and can be expressed as either (x, y)∈ → or x→y, on elements x, y of PE.
The relation is defined as follows:

→ ⊆ (U×UA) ⋃ (UA×UA) ⋃ (OA×OA) ⋃ (UA×PC) ⋃ (OA×PC)

The assignment relation must satisfy the following properties:

 It is irreflexive; i.e., for all x, y in PE, x → y x ≠ y.

 It is acyclic; i.e., there does not exist a finite sequence of distinct elements x1,x2,...,xn in
PE, such that n > 1 ⋀ xi→xi+1 for i = 1,2,...,n-1 ⋀ xn→x1.

 A sequence of assignments (i.e., a path) must exist from every element in U, UA, and OA
to some element in PC; i.e., for all elements w in U ⋃ UA ⋃ OA, there exists a sequence

13

of distinct elements x1,x2,...,xn in PE, such that n > 1 ⋀ x1 = w ⋀ xn∈ PC ⋀ xi→xi+1 for i =
1,2,...,n-1.

 An object attribute cannot be assigned to an object; i.e., there does not exist an
assignment x → y, such that x ∈ OA and y ∈ O.

The assignment relation can be represented as a directed graph or digraph G = (PE, →), where
PE are the vertices of the graph, and each tuple (x, y) of → represents a direct edge or arc that
originates at x and terminates at y. A digraph of policy elements and the assignment among
them is also referred to as a policy element diagram within this report and is a key concept
underlying the PM model. A policy graph is typically oriented in a top-down fashion with the
head of an arrow (i.e., its termination) pointing downward, as shown in the simplified policy
element diagram of Figure 2, which illustrates assignments between each type of policy element.

Figure 2: Simplified Policy Element Diagram

The transitive closure of the relation →, denoted as →+, provides a convenient way to determine
whether one element in PE is reachable from another through a series of one or more
assignments. The expression x→+y denotes that y is reachable from x. For all x and y in PE, (x,
y) is a member of →+, if and only if (iff) there exists a sequence of distinct elements x1,x2,...,xn in
PE, such that n > 1 ⋀ xi→xi+1 for i = 1,2,...,n-1 ⋀ x=x1 ⋀ y=xn . For example, in Figure 2, ua12
is reachable from u1, u2, ua1, ua2, which can be expressed as u1→+ua12, u2→+ua12, ua1→+ua12,
ua2→+ua12. Reachability is related to the concept of containment. For any x and y in PE, x is
said to be contained in y, or y is said to contain x, iff x→+y. In the previous example involving
ua12, ua12 can be said to contain u1, u2, ua1, ua2.

Occasionally, it is useful to express that one element in PE is reachable from another through a
series of zero or more assignments. The reflexive and transitive closure of the relation →,

14

denoted as →*, provides a convenient way to represent this situation. That is, for any x and y in
PE, x→*y is the equivalent of stating that y contains x or is itself the element x.

3.2.1 User, Object, and Attribute Relationships

A user may be assigned to one or more user attributes. The assignment u→ua means that the
user is assigned to or contained in the class represented by ua. It also denotes that user u takes
on or inherits the properties held or represented by the attribute ua. The properties of a user
attribute are capabilities for and prohibitions against accessing certain types of objects.

Similarly, an object may be assigned to one or more object attributes through one or more object-
to-attribute assignments, represented as a binary relation from O to OA. The assignment o→oa
means that that the object o is contained in the class represented by oa and takes on or inherits
the properties held by the attribute oa. The properties of an object attribute are capabilities and
prohibitions allotted to users, which govern access to contained objects (i.e., access modes
allowed and denied to specific users).

3.2.2 Relationships among Attributes

A user (object) attribute may be assigned to one or more other user (object) attributes. Because
the assignment relation is acyclic, a hierarchical ordering among attributes can be established
through a series of assignments. Assignments between attributes are by definition restricted to
attributes of the same type (i.e., either all user attributes or object attributes). Therefore, no
members of an object attribute hierarchy can be in common with those of a user attribute
hierarchy and vice versa—they are mutually exclusive.

The user attribute hierarchy UH is a subrelation of the relation → in UA×UA, which is defined
as (UA×UA)⋂→, such that every tuple of UH is also a tuple of →. That is, for all x and y in
UA, xUHy, iff x→y. The object attribute hierarchy OH can be defined similarly as
(OA×OA)⋂→, a subrelation of → in OA×OA, such that, for all x and y in OA, x→y, iff xOHy.
In general, a relation S is a subrelation of relation R, if every tuple of S is a tuple of R. Note that
several other subrelations of → also exist, including user to user attribute assignments, defined as
(U×UA)⋂→, user attribute to policy class assignments, defined as (UA×PC)⋂→, and object
attribute to policy class assignments, defined as (OA×PC)⋂→.

Containment is of key importance for an attribute hierarchy. Containment within an attribute
hierarchy allows each attribute to inherit the properties held by every attribute that contains it.
As mentioned earlier, an attribute or other policy element x is said to be contained in another
attribute or policy element y, iff x→+y. For example, focusing exclusively on the object
attributes in Figure 2, the following expressions are true: oa1→+oa20, oa2→+oa20, oa1→+oa21,
oa2→+oa21, and oa20→+oa21. That is, within the object attribute hierarchy, both oa1 and oa2 are
contained in oa20 and inherit the properties of oa20, and oa1, oa2, and oa20 are contained in oa21
and likewise inherit its properties.

Inheritance of properties within an attribute hierarchy also has an effect on the way users and
objects contained by those attributes are treated within the PM model. A user x that is contained
in user attribute y, can gain the properties that are both assigned to and inherited by attribute y.

15

Similarly, an object x that is contained in object attribute y, can gain the properties that are both
assigned to and inherited by attribute y.

3.2.3 Policy Class Relationships

A user attribute or an object attribute may be assigned to one or more policy classes (e.g., ua→pc
or oa→pc). Properties that are assigned to a policy class are inherited by the attributes assigned
to it. As mentioned earlier, a policy class can be thought of as a container for policy elements
and relationships that pertain to a specific policy; every element is contained in at least one
policy class. Unlike attributes, however, a policy class cannot be assigned to any other policy
class.

Elements of one policy class can be defined to be mutually exclusive from those of another
policy class. That is, if a policy element x is contained in pc1, it is precluded from being
contained in pc2. Policy elements can also be defined to be inclusive of more than one policy
class. An access control policy can be characterized through a single policy class, multiple
mutually exclusive policy classes, or multiple non-mutually exclusive policy classes.

Notation for Element Relationships. The relationships among elements of the PM
model discussed so far can be defined more formally as shown below.

▪ PE: A finite set of policy elements, where PE ≝ U ⋃ UA ⋃ OA ⋃ PC (i.e., {U, UA, OA,
PC} is a partition on the set PE); pe or pe1, pe2, … denote arbitrary members of PE,
unless otherwise specified.

▪	 Assignment: The binary relation → in the set PE, such that the following hold:
∙ → ⊆ (U×UA) ⋃ (UA×UA) ⋃ (OA×OA) ⋃ (UA×PC) ⋃ (OA×PC)
∙	 the relation is irreflexive; i.e., x,y ∈ PE: (x → y x ≠ y)
∙	 the relation is acyclic; i.e., a finite sequence of distinct elements

x1,x2,...,xn ∈ PE, such that n > 1 ⋀ xi→xi+1 for i = 1,2,...,n-1 ⋀ xn→x1

∙	 a path exists from every element in U, UA, and OA to some element in PC; i.e.,

w∈ (U ⋃ UA ⋃ OA), ∃ a finite sequence of distinct elements x1,x2,...,xn ∈ PE,

such that n > 1 ⋀ x1=w ⋀ xn∈PC ⋀ xi→xi+1 for i = 1,2,...,n-1

∙	 assignments to an object from an object attribute are precluded;

i.e., x ∈ OA: y ∈ O such that x → y

▪	 Policy Element Diagram: A policy element diagram is an ordered pair (→, PE) where
→ is an assignment relation in the set PE.

▪	 Containment: The binary relation →+; i.e., →+ is the transitive closure of the
assignment relation →.
∙ → ⊆ →+

∙	 x, y ∈ PE: (x, y) is a member of →+, if and only if (iff) ∃ a finite sequence of distinct
elements pe1,pe2,...,pen ∈ PE, such that n > 1 ⋀ pei→pei+1 for i = 1,2,...,n-1 ⋀
x=pe1 ⋀ y=pen

∙	 x is contained in y ≝ x,y ∈ PE ⋀ x →+ y
∙	 y contains x ≝ x,y∈ PE ⋀ x →+ y

16

The notation x →* y is a shorthand expression of the condition that y is reachable from x
through a series of zero or more applications of the assignment relation (i.e., the reflexive
and transitive closure of →).

User Oriented

▪ User-to-User Attribute Assignment: The binary relation UUA over the policy elements
(U×UA)⋂→ is a subrelation of the binary relation →.
∙ UUA = (U×UA)⋂→ ⊆ →
∙ x∈U, y∈UA: (x UUA y, iff x → y)

▪ User-Attribute-to-Attribute Assignment: The binary relation UH over the policy
elements (UA×UA)⋂→ is a subrelation of the binary relation →.
∙ UH = (UA×UA)⋂→ ⊆ →
∙ x∈UA, y∈UA: (x UH y, iff x → y)
∙ user attribute x inherits the properties of attribute y ≝ x ∈ UA ⋀ y∈ UA ⋀ x →+ y

▪ User-Attribute-to-Policy Class Assignment: The binary relation UAPC over the policy
elements (UA×PC)⋂→ is a subrelation of the binary relation →.
∙ UAPC = (UA×PC)⋂→ ⊆ →
∙ x∈UA, y∈PC: (x UAPC y, iff x → y)
∙ attribute x inherits the properties of policy class y ≝ x ∈ UA ⋀ y∈ PC ⋀ x →+ y

Object Oriented

▪ Object-Attribute-to-Attribute Assignment: The binary relation OH over the policy
elements (OA×OA)⋂→ is a subrelation of the binary relation→.
∙ OH = (OA×OA)⋂→ ⊆ →
∙ x∈OA, y∈OA: (x OH y, iff x → y)

∙ object attribute x inherits the properties of attribute y ≝ x ∈ OA ⋀ y∈ OA ⋀ x →+ y

▪ Object-Attribute-to-Policy Class Assignment: The binary relation OAPC over the
policy elements (OA×PC)⋂→ is a subrelation of the binary relation →.
∙ OAPC = (OA×PC)⋂→ ⊆ →
∙ x∈OA, y∈PC: (x OAPC y, iff x → y)
∙ attribute x inherits the properties of policy class y ≝ x ∈ OA ⋀ y∈ PC ⋀ x →+ y

3.3 Associations and Privileges
Associations and privileges are used to define and derive additional relationships that involve
authorized operations between policy elements. They are closely related to one another, and as
shown later in this section, shaped in part by attribute hierarchies that have also been defined to
express policy.

3.3.1 Associations

Associations are policy settings that govern which users are authorized to access which objects
and exercise which operations. More specifically, associations represent a ternary relation
between the policy elements UA, Ops, and OA, where Ops = 2Op – {∅} (i.e., the set of all subsets

17

of Op, except for the empty set). Associations are normally formed and rescinded through
administrative commands issued with an according interface of the PM.

The ternary relation ASSOC ⊆ UA × Ops × OA defines the set of possible associations within a
policy specification. An individual triple (ua, ops, oa) of ASSOC, where ops ∈ Ops represents a
set of operations, can be denoted as ua—ops—oa. Within one policy class, an association ua—
ops—oa specifies that all users contained in ua possess the authority to perform all operations in
ops on all objects contained in oa. Note that associations affecting a user’s mode of access to
objects can occur at multiple levels within an attribute hierarchy. Similarly, associations that
affect an object’s accessibility by users can also occur at multiple levels.

Associations can be formed within the PM and interpreted using either an access list or a
capability list orientation. That is, an individual association can be represented from the
perspective of a user or object attribute, using a pair of binary relations as illustrated in Figure 3.
The top of Figure 3(a) illustrates the ternary relation, while the bottom, left side of Figure 3(b)
illustrates the inherent access list-oriented representation (i.e., the implicit representation drawn
from an object attribute’s perspective), and the right side of Figure 3(b) illustrates the inherent
capability-oriented representation (i.e., the implicit representation drawn from a user attribute’s
perspective). The ability to form associations from either orientation allows flexibility when
adapting PM model abstractions to a specific system implementation environment. Care should
be taken, however, to maintain one orientation consistently throughout.

Figure 3: Associations and Alternative Representations

18

3.3.2 Inheritance and Attribute Properties

Attribute hierarchies play an important role in forming associations. The relationships formed
through associations between attributes are properties subject to inheritance. As mentioned
above, the properties of an attribute include not only those directly held by the attribute, but also
the properties inherited from every attribute in which it is contained. Stated slightly differently,
the properties of an attribute include not only those directly held by the attribute, but also the
properties inherited from every attribute that contains it.

Figure 4 gives a simple example of an authorization graph containing attribute hierarchies, with
policy elements U = {u1, u2, u3}, O = {o1, o2, o3}, UA = {Group1, Group2, Division}, OA =
{Project1, Project2, Projects}, and PC = {OU}. An authorization graph is simply a policy
element diagram annotated with associations and other relationships that exist between policy
elements. Associations are illustrated using dotted lines between the elements involved in each
association. The following three associations are shown in Figure 4: (Group1, {w}, Project1),
(Group2, {w}, Project2), and (Division, {r}, Projects). Looking at the properties of each user
attribute in the hierarchy that are assigned or inherited from the defined associations, the
following can be determined:

 Group1 is assigned the capability of ({w}, Project1) and inherits the capability of ({r},
Projects) from Division.

 Group2 is assigned the capability of ({w}, Project2) and inherits the capability of ({r},
Projects) from Division.

 Division is assigned the capability of ({r}, Projects), but inherits no capabilities, since it
is not contained in any another user attribute.

Figure 4: Simple Authorization Graph

For this same example, the properties of each object attribute in the hierarchy that are assigned or
inherited from the defined associations can also be determined. That is, rather than a list of
inherent capabilities, a list of inherent access entries can be determined for each object attribute.

19

 Project1 is assigned the access entry (Group1, {w}), and inherits the access entry
(Division, {r}) from Projects.

 Project2 is assigned the access entry (Group2, {w}), and inherits the access entry
(Division, {r}) from Projects.

 Projects is assigned the access entry (Division, {r}), but inherits no access entries from
another object attribute.

While it is relatively easy to determine the assigned and inherited properties of attributes for the
simple example given in Figure 4, it would be considerably more difficult to illustrate and
analyze a more realistic example. The interactions between vertical assignment relations and
horizontal association relations increase in complexity quickly as more elements and their
relationships with other elements are added to an authorization graph.

3.3.3 Derived Privileges

A privilege specifies a relationship between a user, an operation, and an object. Privileges are
derived from higher level abstractions that define policy, particularly the associations between
and assignments among elements of attribute hierarchies discussed in the previous section. That
is, every privilege originates from an association and the containment properties of the user and
object attributes of that association.

The ternary relation PRIV ⊆ U × Op × O defines the set of possible privileges within a policy
specification. A generic individual privilege of the form (u, op, o) denotes that user u has the
authority to perform operation op on object o. Within a policy consisting of a single policy class,
a triple (u, op, o) is a privilege, iff there exists a user attribute ua with an assigned or inherited
capability (ops, oa), such that u→ua, op ∈ ops, and o→*oa.

A privilege can also be derived from the object’s perspective. That is, a triple (u, op, o) is a
privilege, iff there exists an object attribute oa with an assigned or inherited access entry (ua,
ops), such that o→*oa, u→+ua, and op ∈ ops. Privileges can also be derived in a more
straightforward, perspective-independent fashion for policies consisting of a single policy class.
Specifically, the triple (u, op, o) is a privilege, iff there exists an association (ua, ops, oa), such
that user u→+ua, op ∈ ops, and o→*oa. Policies that involve multiple policy classes require a
small adjustment to privilege derivation, which is discussed later in Chapter 6.

Looking again at the example in Figure 4, the entire set of privileges for the authorization graph
can be enumerated from the user’s perspective and the capabilities of attributes directly assigned
to it, as follows:

 u1 is assigned to Group1, which has the inherent capabilities of ({w}, Project1) and ({r},
Projects). Since Project1 contains o1 and o2 and Projects contains o1, o2, and o3, the
derived privileges involving u1 are (u1, w, o1), (u1, w, o2), (u1, r, o1), (u1, r, o2), and (u1, r,
o3).

20

 u2 is assigned to Group2, which has the inherent capabilities of ({w}, Project2) and ({r},
Projects). Since Project2 contains o3 and Projects contains o1, o2, and o3, the derived
privileges involving u2 are (u2, w, o3), (u2, r, o1), (u2, r, o2), and (u2, r, o3).

 u3 is assigned to Division, which has the inherent capability of ({r}, Projects). Since
Projects contains o1, o2, and o3, the derived privileges involving u3 are (u3, r, o1), (u3, r,
o2), and (u3, r, o3).

As mentioned earlier, the same set of privileges enumerated above can be derived in a similar
fashion from the authorization graph, taking the object’s perspective and the properties of
attributes directly assigned to it. While it is possible to represent the derived privileges of any
authorization graph involving associations as an access matrix, the PM model allows groups of
users and objects to be organized collectively in a manner intended to facilitate administration.

Similar to inherent properties of associations, both access entry and capability orientations apply
also to privileges. A user u may access an object via its capability, (op, o), iff the privilege (u,
op, o) exists. Likewise, a user may access an object o via the object’s access entry, (u, op), iff a
privilege (u, op, o) exists.

Although privileges can be envisaged in terms of user capabilities or object access entries, the
reference mediation function controls access in terms of processes. That is, the reference
mediation function grants the process p the permission to execute an access request <op, o>p, iff
the privilege (u, op, o) exists, where u = process_user(p). It is important to note that the variable
op is used for two distinct purposes. In an access request, it designates a single abstract
input/output operation on the object, while in a privilege, it designates an access right that
authorizes an unlimited number of abstract input/output operations on an object.

Notation for Associations and Privileges. The relationships among elements of the
PM model formed through associations and privileges can be defined more formally as
shown below.

▪	 Ops: A finite set of all subsets of operations defined in Op, excluding the empty set; ops
or ops1, ops2, … denote a member of Ops, unless otherwise specified.

Ops = 2Op – {∅}

▪	 Associations: The ternary relation ASSOC from UA to Ops to OA.
ASSOC ⊆ UA×Ops×OA

▪	 Inherent Capabilities: The partial function ICap from UA to 2(OpsxOA).
∙	 ICap ⊆ UA x 2(Ops×OA)

∙	 ua∈UA, ops∈Ops, oa∈OA: ((ops, oa) ∈ ICap(ua), iff (ua, ops, oa) ∈ ASSOC)

▪	 Inherent Access Entries: The partial function IAE from OA to 2(UAxOps).
IAE ⊆ OA × 2(UA×Ops) ∙
∙	 ua∈UA, ops∈Ops, oa∈OA: ((ua, ops) ∈ IAE(oa), iff (ua, ops, oa) ∈ ASSOC)

▪	 Privileges: The ternary relation PRIV from U to Op to O.
∙	 PRIV ⊆ U×Op×O

21

∙	 u∈U, op∈Op, o∈O: ((u, op, o) ∈ PRIV, iff ∃ops∈Ops, ∃ua∈UA, ∃oa∈OA:

((ua, ops, oa) ∈ ASSOC ⋀ u →+ ua ⋀ op ∈ ops ⋀o →* oa))

▪	 Access Entries: The function AE from O to 2(U×Op).
AE ⊆ O × 2(U×Op)∙
∙	 u∈U, op∈Op, o∈O: ((u, op) ∈ AE(o), iff (u, op, o) ∈ PRIV)

▪	 Capabilities: The function Cap from U to 2(Op×O).
∙	 Cap ⊆ U × 2(Op×O)

∙	 u∈U, op∈Op, o∈O: ((op, o) ∈ Cap(u), iff (u, op, o) ∈ PRIV)

▪	 Process Capabilities: The function PCap from P to 2(Op×O).
∙	 PCap ⊆ P × 2(Op×O)

p∈P, op∈Op, o∈O: ((op, o) ∈ PCap(p), iff (process_user(p)., u, op, o) ∈ PRIV)

▪	 Access Request: A finite set of possible process access requests.
∙	 AReq ⊆ P × (Op×O)
∙	 (p, (op, o)) ∈ AReq ≝ <op, o>p

▪	 Reference Mediation: The function from domain AReq to codomain {grant, deny}.
p∈P, op∈Op, o∈O: (reference_mediation(<op, o>p) = grant, iff (op, o) ∈ PCap(p));
otherwise, reference_mediation(<op, o>p) = deny

3.4 Prohibitions
Two distinct, but related types of fundamental prohibitions exist: user deny and process deny.
User and process denies are generally referred to as prohibitions because they override privileges
that would otherwise allow access to an object occur. That is, prohibitions denote an effective
set of privileges that a specific user or process is precluded from exercising, regardless of
whether any of the privileges involved actually can or cannot be derived for the user or process
in question. Prohibitions can be formed and rescinded through administrative commands issued
with an according interface of the PM, similar to associations.

A couple of notational conventions help to facilitate the discussion of prohibitions. Let pe
denote the set of all objects contained by the policy element pe (i.e., pe = {x: x∈O and
x→+pe}). The complement of pe with respect to the set of all objects, O, is denoted by pe (i.e.,
pe = O – pe). The notation pe and pe are respectively called the object range and
complementary object range of a policy element. They are used below to define two classes of
prohibitions that involve disjunctive and conjunctive relationships, and the objects affected by
them.

The quaternary relation U_deny_disjunctive ⊆ U × Ops × OAs × OACs, where OAs = OACs =
2OA, defines the set of user-based disjunctive prohibitions for a policy specification. An
individual tuple (u, ops, oas, oacs) ∈ U_deny_disjunctive, where u ∈ U, ops ∈ Ops, oas ∈ OAs,
oacs ∈ OACs, and oas ⋃ oacs ≠ ∅, denotes that any process p executing on behalf of user u (i.e.,
u = process_user(p)) cannot perform the operations in ops on any object that is contained by at
least one of the object attributes in oas (i.e., inclusory object attributes), or not contained by at

22

least one of the object attributes in oacs (i.e., exclusory object attributes). More precisely, the set
of objects affected by a disjunctive user deny is the union of oai

, for all oai in oas, and oacj
, for

all oacj in oacs (i.e., the set (oa1
 ⋃ oa2 … ⋃ oan

) ⋃ (oac1
 ⋃ oac2 … ⋃ oacm

)).

A complementary relation to U_deny_disjunctive is also defined for the PM model. An
individual tuple (u, ops, oas, oacs) of the quaternary relation U_deny_conjunctive ⊆ U × Ops ×
OAs × OACs denotes that any process p executing on behalf of user u cannot perform the
operations in ops on any object that is contained by all of the attributes in oas, and is also not
contained by any of the object attributes in oacs. As specified above, oas ⋃ oacs ≠ ∅. Stated
more precisely, the set of objects affected by a conjunctive user deny is the intersection of oai

,
for all oai in oas, and oacj

, for all oacj in oacs (i.e., the set (oa1
 ⋂ oa2 … ⋂ oan

) ⋂ (oac1
 ⋂

oac2 … ⋂ oacm
)).

Process-based prohibitions are defined similarly to user-based prohibitions. The relation
P_deny_disjunctive ⊆ P × Ops × OAs × OACs defines the set of process-based disjunctive
prohibitions. A tuple (p, ops, oas, oacs) ∈ P_deny_disjunctive denotes that the process p cannot
perform the operations in ops on any object that is contained by at least one of the object
attributes in oas, or not contained by at least one of the object attributes in oacs.

The conjunctive form of a prohibition also exists for process-based prohibitions. The relation
P_deny_conjunctive ⊆ P × Ops × OAs × OACs defines the set of process-based conjunctive
prohibitions. A tuple (p, ops, oas, oacs) ∈ P_deny_conjunctive denotes that the process p cannot
perform the operations in ops on any object that is contained by all of the attributes in oas, and is
also not contained by any of the object attributes in oacs. Note that if all existing prohibitions for
a user are process-based prohibitions that apply to only a single user process, it may be possible
for the user to perform prohibited access operations through another of its processes, presuming
that the appropriate associations are defined that would allow such access. This situation can be
easily remedied through the use of a user-based prohibition, whose scope is broader than a single
process.

Besides user and process-based prohibitions, other types of useful prohibitions can be defined,
such as the following pair based on user attribute. The quaternary relation UA_deny_disjunctive
⊆ UA × Ops × OAs × OACs defines the set of user attribute-based disjunctive prohibitions, and
the quaternary relation UA_deny_conjunctive ⊆ UA × Ops × OAs × OACs defines the set of
user attribute-based conjunctive prohibitions. A tuple (ua, ops, oas, oacs) ∈
UA_deny_disjunctive denotes that any process p, executing on behalf of some user u that is
contained in ua, cannot perform the operations in ops on any object that is contained by at least
one of the object attributes in oas, or not contained by at least one of the object attributes in oacs.
Similarly, a tuple (ua, ops, oas, oacs) ∈ UA_deny_conjunctive denotes that any process p,
executing on behalf of some user u that is contained in ua, cannot perform the operations in ops
on any object that is contained by all of the attributes in oas, and is also not contained by any of
the object attributes in oacs.

The disjunctive and conjunctive forms of prohibitions allow complex expressions to be specified,
which delineate the objects targeted by a prohibition. In practice, most policies typically require
the use of only simple expressions in prohibitions. For example, the sets oas and oacs may each

23

be a singleton and contain only one member, or one of the sets may be the empty set and the
other a singleton. However, the capabilities that are defined are intended to meet the demands of
more complex policies that might arise. While the range of expressions is substantial, limitations
do exist, which may necessitate slight adjustments to the policy graph to be able to capture a
prohibition-related policy requirement adequately.

Prohibitions take precedence over any defined associations and derived privileges during
reference mediation. An access request to an object is granted a user or process acting on behalf
of the user, iff the appropriate associations are defined that allow such access, and there is not a
prohibition for that user or process on the requested object, which countermands the access
operation in question. If such a prohibition does exist, access is denied. That is, when
prohibitions apply, the reference mediation function grants the process p permission to execute a
request <op, o>p, iff for some u = process_user(p), the following conditions hold:

 The privilege (u, op, o) exists.

 There do not exist prohibitions (p, ops, oas, oacs) ∈ P_deny_disjunctive or (u, ops, oas,
oacs) ∈ U_deny_disjunctive, such that op ∈ ops and for some member x of oas, o ∈ x, or
for some member y of oacs, o ∈ y.

 There do not exist prohibitions (p, ops, oas, oacs) ∈ P_deny_conjunctive or (u, ops, oas,
oacs) ∈ U_deny_conjunctive, such that op ∈ ops and for all members x of oas, o ∈ x,
and for all members y of oacs, o ∈ y.

 There do not exist prohibitions (ua, ops, oas, oacs) ∈ UA_deny_disjunctive, such that op
∈ ops, u →+ ua, and for some member x of oas, o ∈ x, or for some member y of oacs, o
∈ y.

 There do not exist prohibitions (ua, ops, oas, oacs) ∈ UA_deny_conjunctive, such that op
∈ ops, u →+ ua, and for all members x of oas, o ∈ x, and for all members y of oacs, o ∈
y.

Otherwise, the requested access is denied.

A user-based prohibition is persistent and remains in existence until it is rescinded through an
administrative action. A user-based prohibition cannot be partially rescinded and must be
rescinded in its entirety. That is, even if a subset of a prohibition’s affected privileges needs to
be restored, the entire prohibition still must be rescinded and replaced with new prohibition for
the remaining subset that are still in effect. Process-based prohibitions are usually formed
through predefined rules known as obligations, which are executed automatically based on event
occurrence. A process-based prohibition is less enduring and handled differently than a user-
based prohibition; once the process terminates, the prohibition no longer has applicability and is
rescinded automatically by the PM.

24

Notation for Prohibitions. The relationships among elements of the PM model affected
by prohibitions can be defined more formally as shown below.

▪	 OAs: The finite set of all subsets of object attributes defined in OA; oas or oas1, oas2, …
denote a member of OAs, unless otherwise specified.

OAs = 2OA

▪	 OACs: The finite set of all subsets of object attributes defined in OA; oacs or oacs1,
oacs2, … denote a member of OAs, unless otherwise specified.

OACs = 2OA

▪	 Object Range of a Policy Element: The set of objects contained by a policy element.
pe∈PE: pe≝ {x: x∈O ⋀ x→+pe}.

▪	 Complementary Object Range of a Policy Element: The set of objects not contained
by a policy element.
pe∈PE: pe≝ O–pe.

▪ User Deny Disjunctive Prohibition: The quaternary relation U_deny_disjunctive from
U to Ops to OAs to OACs.

U_deny_disjunctive ⊆ U×Ops×OAs×OACs
p∈P, op∈Op, o∈O: ((op, o) ∈ PCap(p) ⋀ ∃ops∈OPs, ∃oas∈OAs,

∃oacs∈OACs: ((process_user(p), ops, oas, oacs)∈U_deny_disjunctive ⋀

op∈ops ⋀ (∃oa∈oas: o∈oa ⋁ ∃oa∈oacs: o∈oa))

 reference_mediation(<op, o>p) = deny)

▪ User Deny Conjunctive Prohibition: The quaternary relation U_deny_conjunctive
from U to Ops to OAs to OACs.

U_deny_conjunctive ⊆ U×Ops×OAs×OACs
p∈P, op∈Op, o∈O: ((op, o) ∈ PCap(p) ⋀ ∃ops∈OPs, ∃oas∈OAs,

∃oacs∈OACs: ((process_user(p), ops, oas, oacs)∈U_deny_conjunctive ⋀

op∈ops ⋀ (oa∈oas: o∈oa ⋀ oa∈oacs: o∈oa))

 reference_mediation(<op, o>p) = deny)

▪ Process Deny Disjunctive Prohibition: The quaternary relation P_deny_disjunctive
from P to Ops to OAs to OACs.

P_deny_disjunctive⊆ P×Ops×OAs×OACs
p∈P, op∈Op, o∈O: ((op, o) ∈ PCap(p) ⋀ ∃ops∈OPs, ∃oas∈OAs,

∃oacs∈OACs: ((p, ops, oas, oacs)∈P_deny_disjunctive ⋀

op∈ops ⋀ (∃oa∈oas: o∈oa ⋁ ∃oa∈oacs: o∈oa))

 reference_mediation(<op, o>p) = deny)

▪ Process Deny Conjunctive Prohibition: The quaternary relation P_deny_conjunctive
from P to Ops to OAs to OACs.

P_deny_conjunctive ⊆ P×Ops×OAs×OACs
p∈P, op∈Op, o∈O: ((op, o) ∈ PCap(p) ⋀ ∃ops∈OPs, ∃oas∈OAs,

∃oacs∈OACs: ((p, ops, oas, oacs)∈P_deny_conjunctive ⋀

op∈ops ⋀ (oa∈oas: o∈oa ⋀ oa∈oacs: o∈oa))

 reference_mediation(<op, o>p) = deny)

▪ User Attribute Deny Disjunctive Prohibition: The quaternary relation
UA_deny_disjunctive from UA to Ops to OAs to OACs.

UA_deny_disjunctive ⊆ UA×Ops×OAs×OACs

25

p∈P, op∈Op, o∈O: ((op, o) ∈ PCap(p) ⋀ ∃ua∈UA, ∃ops∈OPs, ∃oas∈OAs,

∃oacs∈OACs: ((ua, ops, oas, oacs)∈UA_deny_disjunctive ⋀

process_user(p)→+ua ⋀ op∈ops ⋀ (∃oa∈oas: o∈oa ⋁ ∃oa∈oacs: o∈oa))

 reference_mediation(<op, o>p) = deny)

▪ User Attribute Deny Conjunctive Prohibition: The quaternary relation
UA_deny_conjunctive from UA to Ops to OAs to OACs.

UA_deny_conjunctive ⊆ UA×Ops×OAs×OACs
p∈P, op∈Op, o∈O: ((op, o) ∈ PCap(p) ⋀ ∃ua∈UA, ∃ops∈OPs, ∃oas∈OAs,

∃oacs∈OACs: ((ua, ops, oas, oacs)∈UA_deny_conjunctive ⋀

process_user(p)→+ua ⋀ op∈ops ⋀ (oa∈oas: o∈oa ⋀ oa∈oacs: o∈oa))

 reference_mediation(<op, o>p) = deny)

▪	 Prohibition Determination: The relation NoDenys from P to Op to O; the tuple (p, op,
o) is a member of NoDenys iff no prohibitions exist that affect the authorization.
p∈P, op∈Op, o∈O: ((p, op, o) ∈ NoDenys, iff
ua∈UA, ops∈Ops, oas∈OAs, oacs∈OACs: ¬(op∈ops ⋀

(((ua, ops, oas, oacs) ∈ UA_deny_disjunctive ⋀ process_user(p)→+ua ⋀

(∃oa∈oas: o∈oa ⋁∃oa∈oacs: o∈oa)) ⋁

((ua, ops, oas, oacs) ∈ UA_deny_conjunctive ⋀ process_user(p)→+ua ⋀

(oa∈oas: o∈oa ⋀ oa∈oas: o∈oa)) ⋁

((p, ops, oas, oacs) ∈ P_deny_disjunctive ⋀

(∃oa∈oas: o∈oa ⋁ ∃oa∈oacs: o∈oa)) ⋁

((process_user(p), ops, oas, oacs) ∈ U_deny_disjunctive ⋀

(∃oa∈oas: o∈oa ⋁∃oa∈oacs: o∈oa)) ⋁

((p, ops, oas, oacs) ∈ P_deny_conjunctive ⋀

(oa∈oas: o∈oa ⋀ oa∈oas: o∈oa)) ⋁

((process_user(p), ops, oas, oacs) ∈ U_deny_conjunctive ⋀

(oa∈oas: o∈oa ⋀ oa∈oas: o∈oa)))))

▪	 Reference Mediation (with Prohibitions): The function from domain AReq to
codomain {grant, deny}.
p∈P, op∈Op, o∈O: (reference_mediation(<op, o>p) = grant,
iff (op, o) ∈ PCap(p) ⋀ (p, op, o) ∈ Nodenys)
otherwise, reference_mediation(<op, o>p) = deny

3.5 Obligations
Automatic changes to policy based on specific conditions related to modes and patterns of access
can be accomplished through obligations. Events are the means by which obligations are
triggered. An event occurs each time a requested access <op, o>p executes successfully.
Information related to the event is called the event context and is used by the PM to process
obligations. The process identifier, identifier of the associated user, access operation, and object
identifier of the triggering event are always returned as part of the event pattern. Other
information conveyed via the event context varies based on the type of event that occurred and
may include items such as the containers containing the targeted object.

Two components are required to define an obligation: an event pattern, ep, and a response, resp.
An obligation can be expressed in various ways; the following is used in this report:

26

When ep do resp

The event pattern specifies conditions that if matched with an event context, trigger the
execution of the response. The event pattern is a logical expression that can use the information
returned via the event context, as well as the policy elements and relations in existence when the
event occurs, to specify the triggering conditions. The invocation of an administrative command
constitutes the response. Arguments passed to administrative commands include items from the
event context or derived from evaluation of the event pattern. Administrative commands are
capable of adjusting policy through changes to the prevailing policy element relationships and to
individual policy elements. Administrative commands are discussed in detail in the next chapter.

The conditions for an event pattern can be extensive. For example, an event pattern may apply
to certain operations or any operation; the processes of a specific user or group of users, or any
user; one type of object or any object; or all defined policy classes or a specific set of policy
classes. EC.name denotes the name item of an event context. EC.p, EC.u, EC.o, and EC.op
refer respectively to the identifiers of the process, user, object accessed, and access operation,
which are conveyed in the event context of every event.2

The execution of an administrative routine can potentially create one or more events for which
other obligations might apply, and whose response in turn could create events that trigger further
obligations. The chain of obligation-triggering events could continue until a point at which all
obligations are satisfied, or continue indefinitely and result in a livelock situation. Livelocks
may also induce resource starvation and potentially create a deadlock situation. Therefore,
caution is required when specifying obligations to avoid creating conditions that lead to livelock
situations.

An obligation is typically created by an administrative command. The user that issues the
command, normally an administrator, must have sufficient authorization not only to create the
obligation, but also to perform the body of the response. When the event pattern of a defined
obligation is matched, the associated response is carried out automatically under the
authorization of the user that created it, regardless how or by whom the event was triggered. An
obligation’s response can conceivably be involved in a race condition with administrative actions
being taken manually, as well as the responses of other concurrently triggered obligations that
remain outstanding.

Obligations provide a powerful means to define within a policy specification, specific
circumstances associated with an event. An occurrence of those circumstances precipitates
automatic changes to policy without intervention from an administrator. While obligations are
not represented on an authorization graph, any changes to the policy specification that occur

2 It may seem redundant to include both the user and process identifiers in the event context, since the process_user function can
be used to obtain the user identifier from the process identifier. The rationale for including both is that at the time the event context
is being processed, the process that spawned the event may have already terminated, preventing derivation of the user identifier.

27

because of an obligation are reflected in the authorization graph, with the exception of any newly
created obligations.

The set of possible obligations within a policy specification is defined by the ternary relation
OBLIG ⊆ U × Pattern × Response. For a tuple of OBLIG, (u, pattern, response), u represents
the user responsible for establishing the obligation and under whose authorization the response is
carried out. The pattern and response elements each denote a sentence in a grammar that
respectively expresses the conditions of an event pattern and the administrative command
invocation of the response. That is, the pattern and response elements represent a sequence of
symbols whose syntax is well formed according to its respective grammar, and whose execution
occurs during the matching process, in the case of a pattern, or after a match occurs, in the case
of a response.

Notation for Obligations. The relationships among elements of the PM model involved
in obligations can be defined more formally as shown below.

▪ Event Context (EC): The event context of an event associated with a non-
administrative access request, which triggers an obligation. EC.name denotes the name
item for the event context of the spawning event.

▪	 String: A finite sequence of symbols over some alphabet Σ.

▪ Pattern: A finite set of strings over the alphabet ΣC, which represents the logical
expression of an event pattern’s conditions. Pattern denotes a formal language over the
alphabet in question. The alphabet and language grammar used to specify event patterns
are an implementation choice.

▪ Response: A finite set of strings over the alphabet ΣR, which represents the invocation
of an administrative command that constitutes an event response. Response denotes a
formal language over the alphabet in question. The alphabet and language grammar
used to specify responses are an implementation choice.

▪	 Obligations: The ternary relation OBLIG from U to Pattern to Response.
OBLIG ⊆ U×Pattern×Response

28

4. Administrative Considerations

The PM model distinguishes between administrative operations for the creation and maintenance
of policy elements and relations and generic input/output operations on resources represented by
objects (i.e., non-administrative operations). The previous chapters focused mainly on the
modeling of policies involving non-administrative operations. Specifically, the definition for
association and the rules for deriving privileges and mediating access apply strictly to
input/output operations on objects. The derivation of privileges from associations involving
administrative operations, although similar, is distinct and follows a different set of definitions
and rules.

Many operations categorized as administrative operations, such as creating a file and assigning it
to a folder, are arguably non-administrative from a usage standpoint, but nevertheless, from a
policy specification standpoint (i.e., creating an object and assigning an object to object attribute)
are considered administrative. The main difference is that non-administrative actions pertain to
input/output activities on protected resources, while administrative actions pertain to the
manipulation of a policy comprising the policy elements and relationships defined within and
maintained by the PM. This chapter explains the principles involved in specifying administrative
operations under the PM model. It also discusses the precepts to follow when conducting
administrative activities.

4.1 Administrative Associations and Privileges
The term administrative association refers to an association that involves administrative
operations exclusively to designate access authority. Administrative associations are distinct
from normal, non-administrative associations, as mentioned above. While administrative
associations appear on an authorization graph, as do non-administrative associations,
administrative associations can apply to any policy element, not just object attributes.
Administrative associations are defined by the ternary relation Admin_ASSOC from UA to
AOps to PE (i.e., Admin_ASSOC ⊆ UA×AOps×PE), where AOps = 2AOp – {∅}.

With administrative associations, any referenced policy element takes on special semantics. As
the third term of an association, the policy element serves as a referent or representative for the
section of the authorization graph rooted at the policy element. That is, a referent policy element
serves as a designator for not only itself, but also for policy elements and relationships contained
by the referent, which allows the elements of that subgraph to be treated as objects within the PM
framework and manipulated accordingly. The following classes of administrative operations
apply within the PM model:

 Authority to create or delete a policy element with respect to an existing element of a
policy graph

 Authority to create or delete assignments between policy elements

 Authority to form or rescind an association, prohibition, or obligation.

29

Figure 5 presents a simple example of an authorization graph involving both administrative and
non-administrative associations, which builds on the example presented earlier in Figure 4. The
left side of the policy graph has been expanded to accommodate a set of administrators for the
policy class, which is designated by the Administrators and OUadmin user attributes. A single
user, u4, is assigned as an administrator for the OU. Administrative associations that specify the
actions the administrator is able to carry out are illustrated in blue. Non-administrative
associations that apply to common users are illustrated in black, using a different type of
connector between the elements of these associations, than that used for the administrative
associations. This convention for depicting the two different types of associations with a
distinctive type of connector is followed throughout the remainder of this report.

Figure 5: Simple Example Involving Administrative Associations

The authorization graph in Figure 5 contains the following two administrative associations:
(OUadmin, aops1, Division) and (OUadmin, aops2, Projects), where aops1 and aops2 each
represent a set of administrative operations (i.e., each is a member of AOps). The first
association permits the user assigned to OUadmin to create new groups of users and individual
users for the OU, to delete existing groups and users, to form new associations for existing and
newly created user groups in the OU, and to rescind existing associations involving OU policy
elements. The second association permits new groups of projects and individual objects to be
created, existing projects and objects to be deleted, new associations to be formed for existing
and new projects, and existing associations to be rescinded.

Without administrative associations, a system policy would be very limited. For instance, in this
example, new users could not be created or old ones deleted without them, and new objects could
not be created; only existing objects could be viewed and modified.

The definition for derived privileges based on administrative associations is similar to that for
non-administrative associations. An administrative privilege specifies a relationship between a
user, an administrative operation, and a policy element. For a single policy class, the triple (u,
aop, pe) is an administrative privilege, iff there exists an administrative association (ua, aops,
pei), such that user u→+ua, aop ∈ aops, and pe→*pei.

30

As mentioned above, each referent, pek, represents a policy graph containing all policy elements
from which the referent is reachable through one or more assignments, and includes all
relationships bound to those elements. Although a referent potentially represents many policy
elements and relationships, an administrative operation may apply to only a subset of the policy
elements that are represented by the referent. For example, if the referent is a container, an
operation might apply to one or more of the policy elements it contains, or the operation might
apply only to the container itself—it depends entirely on the operation. In other words, as with
non-administrative associations, the properties of a policy element include not only those directly
held by the element, but also the properties inherited from every element of the subgraph in
which the policy element is contained.

4.2 Administrative Access Requests and Reference Mediation
The access requests and reference mediation are reflected in the PM model differently for
administrative actions than for non-administrative actions. Recall that in an access request, <op,
o>p, representing a non-administrative action, op designates a single abstract input/output
operation on the object, while in a privilege, (u, op, o), op designates an access right that
authorizes an unlimited number of abstract input/output operations on an object. For
administrative actions, abstract operations are not synonymous with the access rights needed to
carry out those operations, and the two aspects require greater delineation. In addition,
administrative actions typically involve not just a single object, but multiple policy elements, sets
of policy elements, and sets of system operations, which affects the formulation of administrative
access requests.

Let AAct represent the set of possible administrative actions and Argseq the set of all finite lists
of arguments for administrative actions. An administrative access request AAreq is defined as
<aact, argseq>p, where aact∈AAct and argseq∈Argseq. The argument sequence, argseq, is a list
of one or more arguments [argseq.1, argseq.2, …, argseq.k], which defines the scope and nature
of the action. Each argument can be one of the following items: a distinct policy element, a set
of policy elements, a set of non-administrative operations, or a set of administrative operations.
That is, an administrative access request comprises an administrative action and a list of
enumerated arguments that are dictated by the type of action.

The order of the arguments in an argument sequence for an administrative action is significant,
as is the number and type. For instance, the creation of an assignment between two object
attributes, <assign-OAtoOA, [oai, oaj]>p, is completely different from one where the order is
reversed, <assign-OAtoOA, [oaj, oai]>p. Exactly two policy elements are required for assign-
OAtoOA: the first corresponding to the tail of the assignment and the second to the head. In
contrast, an administrative action to create a read association between a user attribute and an
object attribute, <create-Assoc, [uai, {r}, oaj]>p, requires exactly three arguments: a user
attribute, a set of operations, and an object attribute.

For an administrative action to be granted, the user on whose behalf the process operates must
hold sufficient authority over the policy elements involved, in the form of at least one and
possibly more administrative privileges over each of the policy elements involved. Recall that
the authority associated with an administrative privilege of the form (u, aop, pe) may apply not
only to pe, but also as a referent, to any policy element contained by pe.

31

To determine the disposition of an access request, <aact, argseq>p, reference mediation requires
a mapping from the administrative action and enumerated arguments in question to the set of
capabilities that are required over the policy elements referenced in the arguments for the process
to carry out the request, barring any prohibitions to the contrary. The mapping Req_ACap(aact,
argseq) returns the set of administrative capabilities that are required to carry out the
administrative action with the specified arguments. The administrative reference mediation
function grants the process p the permission to execute a request <aact, argseq>p, iff process p
holds all the capabilities in Req_ACap(aact, argseq).

Notation for Administrative Associations and Privileges. The relationships among
elements of the PM model formed through administrative associations and privileges are
defined more formally below.

▪ AOps: A finite set of all subsets of administrative operations defined in AOp, excluding
the empty set; aops or aops1, aops2, … denote a member of AOps, unless otherwise
specified.

AOps = 2AOp – {∅}

▪ AAct: A finite set of administrative actions; aact or aact1, aact2, … denote a member of
AAct, unless otherwise specified.

▪ AActs: A finite set of all subsets of administrative actions defined in AAct, excluding the
empty set; aacts or aacts1, aacts2, … denote a member of AActs, unless otherwise
specified.

AActs = 2AAct – {∅}

▪ Argseq: A set of all finite lists of the form [arg1, arg2,…, argn], such that n ≥ 1 ⋀ for i=1
to n: (argi ∈ PE ⋁ argi ∈ PEs ⋁ argi ∈ OPs ⋁ argi ∈ AOPs); argseq denotes a
member of Argseq, and argseq.1, argseq.2, … denote the respective element in the list
argseq (e.g., argseq.2 is the second element in argseq), unless otherwise specified.

▪	 Administrative Associations: The ternary relation Admin_ASSOC from UA to AOps to
PE.

Admin_ASSOC ⊆ UA×AOps×PE

▪	 Inherent Administrative Capabilities: The partial function IACap from UA to 2(AOpsxPE).
∙	 IACap ⊆ UA x 2(AOps×PE)

∙	 ua∈UA, aops∈AOps, pe∈PE: ((aops, pe) ∈ IACap(ua),

iff (ua, aops, pe) ∈ Admin_ASSOC)

▪	 Inherent Administrative Access Entries: The partial function IAAE from PE to
2(UAxAOps).
∙	 IAAE ⊆ PE × 2(UA×AOps)

∙	 ua∈UA, aops∈AOps, pe∈PE: ((ua, aops) ∈ IAAE(pe),

Iff (ua, aops, pe) ∈ Admin_ASSOC)

▪	 Administrative Privileges: The ternary relation Admin_PRIV from U to AOp to PE.
∙	 Admin_PRIV ⊆ U×AOp×PE

32

∙	 u∈U, aop∈AOp, pe∈PE: ((u, aop, pe) ∈ Admin_PRIV, iff ∃ua∈UA, ∃aops∈AOps,
∃pei∈PE: ((ua, aops, pei) ∈ Admin_ASSOC ⋀ u →+ ua ⋀ aop ∈ aops ⋀ pe →* pei))

▪	 Administrative Access Entries: The function AAE from PE to 2(U×AOp).
AE ⊆ PE × 2(U×AOp) ∙
∙	 u∈U, aop∈AOp, pe∈PE: ((u, aop) ∈ AAE(pe), iff (u, aop, pe) ∈ Admin_PRIV)

▪	 Administrative Capabilities: The function ACap from U to 2(AOp×PE).
∙	 ACap ⊆ U × 2(AOp×PE)

∙	 u∈U, aop∈AOp, pe∈PE: ((aop, pe) ∈ ACap(u), iff (u, aop, pe) ∈ Admin_PRIV)

▪	 Administrative Process Capabilities: The function APCap from P to 2(AOp×PE).
APCap ⊆ P × 2(AOp×PE)

p∈P, aop∈AOp, pe∈PE: ((aop, pe) ∈ APCap(p),

iff (process_user(p), aop, pe) ∈ Admin_PRIV)

▪ Administrative Access Request: A finite set AAReq of possible process access
requests.
∙	 AAReq ⊆ P × (AAct×Argseq)
∙	 (p, (aact, argseq)) ∈ AAReq ≝ <aact, argseq>p

▪	 Required Administrative Capabilities: The partial binary function ReqACap from AAct
2(AOp×PE)× Argseq to , such that aact∈AAct, argseq∈Argseq: ((aop,pe) ∈

ReqACap(aact, argseq), iff (aop,pe) is a requisite authority needed to perform the action
aact on argseq).

ReqACap ⊆ (AAct×Argseq) × 2(AOp×PE)

▪	 Reference Mediation of Administrative Actions: The function from domain AAReq to
codomain {grant, deny}.
p∈P, aact∈AAct, argseq∈Argseq:
(Admin_reference_mediation(<aact, argseq>p) = grant,
iff aop∈AOp, pe∈PE: ((aop, pe)∈ReqACap(aact, argseq) ⋀ (aop, pe)∈APCap(p)));
otherwise, Admin_reference_mediation(<aact, argseq>p) = deny

4.3 Administrative Prohibitions and Obligations
Recall that prohibitions act antithetically to privileges, denoting an effective set of restrictions on
privileges for a specific user or process, regardless of whether any of the privileges designated
actually can or cannot be derived for the user or process in question. Because the set of
privileges for administrative operations is distinct from the set of privileges for non-
administrative privileges, administrative prohibitions (i.e., prohibitions on administrative
privileges) must be defined accordingly.

Notational conventions similar to those for the object range of a policy element, pe, and the
complementary object range, pe, can be defined for administrative prohibitions to accommodate
the treatment of policy elements as referents. Let pe denote the set of all policy elements that
can reach element pe (i.e., pe = {x: x∈PE and x→*pe}). The complement of pe with respect
to the set of all policy elements, PE, is denoted by pe (i.e., pe = PE – pe) and represents those

33

policy elements for which pe is not reachable. The notation pe and pe are respectively called
the element range and complementary element range of a policy element.

The quaternary relation U_Admin_deny_disjunctive ⊆ U × AOps × PEs × PECs, where PEs =
PECs = 2PE, defines the set of user deny prohibitions for a policy specification, which involve
administrative operations. The tuple, U_Admin_deny_disjunctive(u, aops, pes, pecs) ∈, where u
∈ U, aops ∈ AOps, pes ∈ PEs, pecs ∈ PECs, and pes ⋃ pecs ≠ ∅, denotes that any process p
executing on behalf of user u is withheld the authority in aops over any policy element that can
reach one of the elements in pes, or cannot reach one of the policy elements in pecs. Similarly,
an individual tuple (u, aops, pes, pecs) of the quaternary relation U_Admin_deny_conjunctive ⊆
U × AOps × PEs × PECs, denotes that a process p executing on behalf of user u is withheld the
authority in aops over any policy element that can reach all of the policy elements in pes and also
cannot reach any of the policy elements in pecs.

The definitions for process-based prohibitions that are needed to accommodate administrative
operations are similar to those for user-based prohibitions. The prohibition
P_Admin_deny_disjunctive ⊆ P × AOps × PEs × PECs represents a process-based
administrative deny relation, where p ∈ P, aops ∈ AOps, pes ∈ PEs, pecs ∈ PECs, and (p, aops,
pes) ∈ P_Admin_deny_disjunctive. The meaning of P_Admin_deny_disjunctive(p, aops, pes,
pecs) is that the process p is withheld the authority in aops over any policy element that can
reach one of the policy elements in pes, or cannot reach one of the policy elements in pecs. The
complementary relation for process-based administrative prohibitions also exists. The meaning
of P_Admin_deny_conjunctive(p, aops, pes, pecs) is that the process p is withheld the authority
in aops over any policy element that can reach all of the policy elements in pes and also cannot
reach any of the policy elements in pecs.

User attribute-based prohibitions also apply to administrative operations. The quaternary
relation UA_Admin_deny_disjunctive ⊆ UA × AOps × PEs × PECs, defines the set of user deny
prohibitions. The tuple UA_Admin_deny_disjunctive(ua, aops, pes, pecs) denotes that any
process p, executing on behalf of some user u that is contained in ua, is withheld the authority in
aops over any policy element that can reach one of the elements in pes, or cannot reach one of
the policy elements in pecs. Similarly, an individual tuple (ua, aops, pes, pecs) of the quaternary
relation UA_Admin_deny_conjunctive ⊆ UA × AOps × PEs × PECs, denotes that a process p,
executing on behalf of some user u that is contained in ua, is withheld the authority in aops over
any policy element that can reach all of the policy elements in pes and also cannot reach any of
the policy elements in pecs.

Administrative prohibitions take precedence over any existing administrative associations and
the privileges derived from those associations. An access request to a subgraph of an
authorization graph is granted a user or process acting on behalf of the user, iff the appropriate
administrative associations are defined that allow such access, and there is not an administrative
prohibition for that user or process on the requested object, which countermands the
administrative access operation in question. If such a prohibition does exist, access is denied.
That is, when administrative prohibitions apply, reference mediation grants the process p
permission to execute an access request <aact, argseq>p, iff for u = process_user(p), the
following conditions hold:

34

 The administrative privilege (u, aop, pe) exists, for all capabilities (aop, pe) in
Req_ACap(aact, argseq);

 There do not exist administrative prohibitions (p, aops, pes, pecs) ∈
P_Admin_deny_disjunctive or (u, aops, pes, pecs) ∈ U_Admin_deny_disjunctive, such
that aop ∈ aops, and for some member x of pes, pe ∈ x, or for some member x of pecs,
pe ∈ x;

 There do not exist administrative prohibitions (p, aops, pes, pecs) ∈
P_Admin_deny_conjunctive or (u, aops, pes, pecs) ∈ U_Admin_deny_conjunctive, such
that aop ∈ aops, and for all members x of pes, pe ∈ x, and for all members x of pecs, pe
∈ x.

 There do not exist administrative prohibitions (ua, aops, pes, pecs) ∈
UA_Admin_deny_disjunctive, such that aop ∈ aops, u →+ ua, and for some member x of
pes, pe ∈ x, or for some member x of pecs, pe ∈ x;

 There do not exist administrative prohibitions (ua, aops, pes, pecs) ∈
UA_Admin_deny_conjunctive, such that aop ∈ aops, u →+ ua, and for all members x of
pes, pe ∈ x, and for all members x of pecs, pe ∈ x.

Obligations for administrative access requests are distinct from, but similar to those for non-
administrative access requests. Like a non-administrative obligation, an administrative
obligation consists of an event pattern and a response, and the response is triggered by events
that match the event pattern. The invocation of an administrative command also constitutes the
response for an administrative obligation. However, administrative obligations are triggered
only by administrative events, which occur each time an administrative access request <aact,
argseq>p executes successfully.

The event context for administrative events, therefore, is distinct from that for non-administrative
events and accordingly must convey different items, namely AEC.p, AEC.u, AEC.aact, and
AEC.argseq, where AEC represents the administrative event context, and the suffixes p, u, aact,
and argseq represent respectively the process, user, administrative action, and argument sequence
elements of the event context. An event pattern and response elements of an administrative
obligation use items of the administrative event context to specify the conditions that trigger the
execution of the response and to serve as arguments for the response.

The set of possible administrative obligations within a policy specification is defined by the
ternary relation Admin_OBLIG ⊆ U × Pattern × Response. The tuple (u, pattern, response) ∈
Admin_OBLIG denotes that the user u is responsible for establishing the obligation consisting of
the event pattern and event response elements, pattern and response. It is under the authorization
of u that the response is carried out, when the pattern matches an event. The same grammars
used to express non-administrative obligations are also presumed to be used to express
administrative obligations.

35

Notation for Administrative Prohibitions and Obligations. The relationships among
elements of the PM model affected by administrative prohibitions are defined more
formally below.

▪	 PEs: A finite set of all subsets of policy elements defined in PE; pes or pes1, pes2, …
denote a member of PEs, unless otherwise specified.

PEs = 2PE

▪	 PECs: A finite set of all subsets of policy elements defined in PE; pecs or pecs1, pecs2,
… denote a member of PECs, unless otherwise specified.

PECs = 2PE

▪	 Element Range of a Policy Element: The set of policy elements that can reach a
given policy element through 0 or more assignments.
pe∈PE: pe≝ {x: x∈PE ⋀ x→*pe}.

▪	 Complementary Element Range of a Policy Element: The set of policy elements that
cannot reach a given policy element.
pe∈PE: pe≝ PE–pe.

▪ User Administrative Deny Disjunctive Prohibition: The quaternary relation
U_Admin_deny_disjunctive from U to AOps to PEs to PECs.

U_Admin_deny_disjunctive ⊆ U×AOps×PEs×PECs
p∈P, aact∈AAct, argseq∈Argseq:

(∃aop∈AOp, ∃pe∈PE: ((aop, pe)∈ReqACap(aact, argseq) ⋀

∃aops∈AOps, ∃pes∈PEs, ∃pecs∈PECs:

((process_user(p), aops, pes, pecs)∈U_Admin_deny_disjunctive ⋀

aop∈aops ⋀ (∃x∈pes: pe∈x ⋁ ∃y∈pecs: pe∈y)))

Admin_reference_mediation(<aact, argseq>p) = deny)

▪ User Administrative Deny Conjunctive Prohibition: The quaternary relation
U_Admin_deny_conjunctive from U to AOps to PEs to PECs.

U_Admin_deny_conjunctive ⊆ U×AOps×PEs×PECs
p∈P, aact∈AAct, argseq∈Argseq:

(∃aop∈AOp, ∃pe∈PE: ((aop, pe)∈ReqACap(aact, argseq) ⋀

∃aops∈AOps, ∃pes∈PEs, ∃pecs∈PECs:

((process_user(p), aops, pes, pecs)∈U_Admin_deny_conjunctive ⋀

aop∈aops ⋀ (x∈pes: pe∈x ⋀ y∈pecs: pe∈y)))

Admin_reference_mediation(<aact, argseq>p) = deny)

▪ User Attribute Administrative Deny Disjunctive Prohibition: The quaternary relation
UA_Admin_deny_disjunctive from UA to AOps to PEs to PECs.

UA_Admin_deny_disjunctive ⊆ UA×AOps×PEs×PECs
p∈P, aact∈AAct, argseq∈Argseq:

(∃aop∈AOp, ∃pe∈PE: ((aop, pe)∈ReqACap(aact, argseq) ⋀

∃ua∈UA, ∃aops∈AOps, ∃pes∈PEs, ∃pecs∈PECs:

((ua, aops, pes, pecs)∈UA_Admin_deny_disjunctive ⋀ process_user(p) →+ ua ⋀

aop∈aops ⋀ (∃x∈pes: pe∈x ⋁ ∃y∈pecs: pe∈y)))

Admin_reference_mediation(<aact, argseq>p) = deny)

▪ User Attribute Administrative Deny Conjunctive Prohibition: The quaternary
relation UA_Admin_deny_conjunctive from UA to AOps to PEs to PECs.

UA_Admin_deny_conjunctive ⊆ UA×AOps×PEs×PECs

36

p∈P, aact∈AAct, argseq∈Argseq:

(∃aop∈AOp, ∃pe∈PE: ((aop, pe)∈ReqACap(aact, argseq) ⋀

∃ua∈UA, ∃aops∈AOps, ∃pes∈PEs, ∃pecs∈PECs:

((ua, aops, pes, pecs)∈UA_Admin_deny_conjunctive ⋀ process_user(p) →+ ua ⋀

aop∈aops ⋀ (x∈pes: pe∈x ⋀ y∈pecs: pe∈y)))

Admin_reference_mediation(<aact, argseq>p) = deny)

▪ Process Administrative Deny Disjunctive Prohibition: The quaternary relation
P_Admin_deny_disjunctive from P to AOps to PEs to PECs.

P_Admin_deny_disjunctive ⊆ P×AOps×PEs×PECs
p∈P, aact∈AAct, argseq∈Argseq:

(∃aop∈AOp, ∃pe∈PE: ((aop, pe)∈ReqACap(aact, argseq) ⋀

∃aops∈AOps, ∃pes∈PEs, ∃pecs∈PECs:

((p, aops, pes, pecs)∈P_Admin_deny_disjunctive ⋀ aop∈aops ⋀

(∃x∈pes: pe∈x ⋁ ∃y∈pecs: pe∈y)))

Admin_reference_mediation(<aact, argseq>p) = deny)

▪ Process Administrative Deny Conjunctive Prohibition: The quaternary relation
P_Admin_deny_conjunctive from P to AOps to PEs to PECs.

P_Admin_deny_conjunctive ⊆ P×AOps×PEs×PECs
p∈P, aact∈AAct, argseq∈Argseq:

(∃aop∈AOp, ∃pe∈PE: ((aop, pe)∈ReqACap(aact, argseq) ⋀

∃aops∈AOps, ∃pes∈PEs, ∃pecs∈PECs:

((p, aops, pes, pecs)∈P_Admin_deny_conjunctive ⋀ aop∈aops ⋀

(x∈pes: pe∈x ⋀ y∈pecs: pe∈y)))

Admin_reference_mediation(<aact, argseq>p) = deny)

▪ Administrative Prohibition Determination: The relation NoDeny from P to AOp to PE.
The triple (p, aop, pe) is a member of NoDeny, iff no prohibitions exist that affect the
authorization aop on the policy element pe for the process p.
p∈P, aop∈AOp, pe∈PE: ((p, aop, pe)∈NoDeny, iff

ua∈UA, aops∈AOps, pes∈PEs, pecs∈PECs: ¬(aop∈aops ⋀

(((ua, aops, pes, pecs) ∈ UA_Admin_deny_disjunctive ⋀

process_user(p) →+ ua ⋀ (∃x∈pes: pe∈ x ⋁ ∃y∈pecs: pe∈y)) ⋁

((ua, aops, pes, pecs) ∈ UA_Admin_deny_conjunctive ⋀

process_user(p) →+ ua ⋀ (x∈pes: pe∈x ⋀ y∈pecs: pe∈y)) ⋁

((p, aops, pes, pecs) ∈ P_Admin_deny_disjunctive ⋀

(∃x∈pes: pe∈x ⋁ ∃y∈pecs: pe∈y)) ⋁

((process_user(p), aops, pes, pecs) ∈ U_Admin_deny_disjunctive ⋀

(∃x∈pes: pe∈ x ⋁ ∃y∈pecs: pe∈y)) ⋁

((p, aops, pes, pecs) ∈ P_Admin_deny_conjunctive ⋀

(x∈pes: pe∈x ⋀ y∈pecs: pe∈y)) ⋁

((process_user(p), aops, pes, pecs) ∈ U_Admin_deny_conjunctive ⋀

(x∈pes: pe∈x ⋀ y∈pecs: pe∈y)))))

▪	 Reference Mediation of Administrative Actions (with Prohibitions): The function
from domain AAReq to codomain {grant, deny}.
p∈P, aact∈AAct, argseq∈Argseq:
(Admin_reference_mediation(<aact, argseq>p) = grant,
iff aop∈AOp, pe∈PE: ((aop, pe)∈ReqACap(aact, argseq) ⋀ (aop, pe)∈APCap(p) ⋀
(p, aop, pe)∈NoDeny));
otherwise, Admin_reference_mediation(<aact, argseq>p) = deny

37

▪ Administrative Event Context (AEC): The event context for an event associated with
an administrative access request, which triggers an obligation. AEC.name denotes the
name item for the event context of the spawning administrative event.

▪ Administrative Obligations: The ternary relation Admin_OBLIG from U to Pattern to
Response.

Admin_OBLIG ⊆ U×Pattern×Response

4.4 Administrative Commands and Routines
Administrative commands and routines are the means by which policy specifications are formed.
Their structure and use are discussed in detail below. The core administrative commands and
routines for the PM, along with a description of their semantics, are presented in Appendix C.

4.4.1 Administrative Routines

Administrative routines describe rudimentary operations that can occur on the policy elements
and relationships of the PM model. An administrative routine is represented as a parameterized
procedure, whose body describes state changes to policy that occur when the routine is executed
(e.g., a policy element or relation Y changes state to Y′ when some function f is applied).
Administrative routines are specified using the following format:

Rtnname (x1, x2, …, xk)
preconditions: …

{

Y′= f (Y, x1, x2, …, xk)

}

postconditions:

The name of the administrative routine, Rtnname, precedes its formal parameters, x1, x2, …, xk
(k ≥ 0). A set of preconditions preface the body of the routine and a set of postconditions follow
the body. Preconditions and post conditions are logical expressions that must be respectively
satisfied when the routine is invoked and when the routine has completed. No state changes
described in the body occur unless the preconditions are satisfied. Preconditions for
administrative routines are used to ensure that the arguments supplied to the routine are valid and
that policy elements and relationships are maintained consistently with the properties of the
model. Postconditions identify alterations to policy that are expected to take place during the
execution of the routine.

Consider, as an example, the administrative routine CreateAssoc shown below, which specifies
the creation of an association. The preconditions bind x, y, and z parameters respectively to the
user attribute, operation set, and object attribute elements of the model. The body describes the
addition of the tuple (x, y, z) to the ASSOC relation, which changes the state of the relation to
ASSOC′. Finally, the postconditions assert that the tuple (x, y, z) is expected to be a member of
ASSOC′ after execution of CreateAssoc. If tuple (x, y, z) was a member of ASSOC to begin
with, the relation is unchanged (i.e., ASSOC′ = ASSOC).

38

CreateAssoc (x, y, z)
preconditions: x ∈ UA ⋀ y ∈ Ops ⋀ z ∈ OA

{
ASSOC′ = ASSOC ⋃ {(x, y, z)}
}

postconditions: (x, y, z) ∈ ASSOC′

Compared to administrative commands, which are discussed in the next section, administrative
routines are more primitive. That is, each administrative routine entails a modification to the
policy configuration that typically involves either the creation or deletion of a policy element, the
creation or deletion of an assignment between policy elements, or the creation or deletion of an
association, prohibition, or obligation. Administrative routines provide the foundation for the
PM framework and must perform their intended function correctly and without unwanted side
effects. Access to these security-critical routines must be restricted.

4.4.2 Administrative Commands

An administrative command consists mainly of a parameterized interface and a sequence of
administrative routine invocations. Administrative commands build upon administrative routines
to define the protection capabilities of the PM model. The body of an administrative command
is executed as an atomic transaction—an error or lack of capabilities that causes any of the
constituent routines to fail execution causes the entire command to fail, producing the same
effect as though none of the routines were ever executed. Administrative commands are
specified using the following format:

Cmdname (x1, x2, …, xk)
preconditions: …

{
rtn1
rtn2
. . .
rtnn
}

postconditions: …

The name of the administrative command, Cmdname, precedes the command’s formal
parameters, x1, x2, …, xk (k ≥ 0). Each formal parameter of an administrative command can
serve as an argument in any of the administrative routine invocations, rtn1, rtn2, …, rtnn (n ≥ 0),
which make up the body of the command. As with administrative routines, the body is bracketed
by pre- and postconditions. The preconditions ensure, in general, that the arguments supplied to
the command are valid, that the process requesting the execution of the command has sufficient
authorization to execute all constituent administrative routines, and that certain properties of the
model upon which the command relies prevail.

Administrative commands are used in a variety of ways. Figure 6 gives an overview of the types
of usage possible.

39

Figure 6: Administrative Commands and Routines

First and foremost, administrative commands are used to define the protection features and
services of the PM model. The semantic description of those commands is given in Appendix C.
Every administrative access request corresponds to an administrative command of the PM model
on a one-to-one basis.

Another common use of administrative commands is in the definition of obligations, as the
response to be taken whenever the corresponding event pattern is matched. It is important to
note that administrative commands used to define system policy through an obligation response
are distinct from those that define the protection features and services of the PM model and are
used to fulfill administrative access requests. Although commands defined for use in obligations
may carry out the same or similar functions to those of the PM model, they are invoked
differently and the authorization requirements for each are also different.3 Another way of
looking at the situation is that PM model commands are incompatible and not usable with
obligations. The most common types of administrative commands defined for use in setting
policy via obligations involve the creation of assignments or prohibitions. Examples of them are
given later in the report.

Administrative commands can also be used to facilitate the administration of system policies.
For example, when a new user is created, an administrator typically creates a number of
containers, links them together, and grants the authority for the user to access them as its work
space. Rather than manually performing each step of this sequence of administrative actions for
each new user, the entire sequence of repeated actions can be defined as a single administrative
command and executed in its entirety as an atomic action.

3 The preconditions of administrative commands defined for use in obligations require that the user who defined the obligation holds
sufficient authorization to execute all constituent administrative routines of the body, while the preconditions of administrative
commands for the PM model require that the process attempting the access holds sufficient authorization to execute all constituent
administrative routines of the body.

40

Taking this idea of bundling a step further, it is possible to combine a lengthy extended sequence
of administrative actions together into a single administrative command that is capable of
building an entire system policy. This type of bundling would allow an established policy to be
instantiated quickly elsewhere, and also allow command libraries containing various kinds of
vetted policies or policy enhancements to be assembled and shared on a broad scale.

4.4.3 Administrative Actions

Within the PM framework, several basic precepts govern the actions that a user with
administrative authority can take when using administrative commands and routines to specify
policy. They are as follows:

 Initial Conditions. In the initial state of the PM framework, certain users, designated as
administrators, may already hold authority over policy elements pre-established by the
framework, via one or more associations. Policy classes serve as the foundation of
subsequent policy specification activities.

 Element Additions. At the moment when a user A creates a policy element B, it obtains
a reference to the newly created B, which it can use in conjunction with other existing
policy elements to build up a specification. The ability to create certain policy elements
may be reserved exclusively for particular users or administrators.

 Relationship Changes. When user A successfully creates a policy element B, it may
then assign B to an existing compatible policy element for which it holds authority and
thereby gain additional authority over B through the inheritance of properties. The
authority that A holds over B and other policy elements may in turn allow A to define
additional relationships among them or to delete exist relationships.

 Element Deletions. Any user A that holds sufficient administrative authority over a
policy element B can delete the policy element. However, existing relationships
involving B must be taken into account and addressed before deleting B.

 Automation. A user with sufficient administrative authority may define obligations that
are used carry out a set of predefined activities on behalf of the user, based on the
occurrence of specific types of events.

As discussed in later chapters, administrative actions are usually conducted through a graphical
user interface that renders the authorization graph of a policy for an administrator to facilitate
modifications.

41

5. Policy Specification

This chapter provides comprehensive details about formulating policy specifications, including
levels of administrative authorities and policy, considerations for specifications involving
multiple policy classes, and the use of primitive and consolidated operations. Examples are
given to illustrate the key concepts outlined in the discussion.

5.1 Model Aspects and Use
From the material in previous chapters, it is evident that there are many facets to the PM model.
They include the policy elements and assignments that make up a policy element diagram, the
associations and prohibitions that apply to the policy element diagram to form the authorization
graph, and obligations that are carried out when access-related events occur. Note that to
compose a specific policy for the PM, each and every one of these items may not be required.
For example, a policy may involve at a minimum only a simple policy element diagram with
several associations. On the other hand, capturing a specific policy may require the use of all
facets of the PM model.

A couple of more detailed examples are provided below to illustrate how aspects of the model
can be brought together to define a specific access control policy. They involve a data service
for electronic mail and an operating system. The examples are purposely limited in the range of
functions provided to avoid extensive policy definitions. Nevertheless, the examples should
provide a good foundation for the material in the remainder of this report.

A specific policy can be correctly expressed in numerous ways, depending on the preferences of
the administrator specifying the policy and the conventions followed. The examples in this
section should be interpreted as a general guideline to follow when developing policy
specifications, and not as a mandatory approach to follow.

5.1.1 Electronic Mail

Electronic mail is a commonly used data service that needs little introduction. For the simple
electronic mail system in question, the objects involved are messages, and the object attributes
include an inbox, outbox, draft folder, and trash folder for each user. Each user of the system is
able to read and delete messages in its inbox and to create, read, write, and delete messages in its
outbox, draft folder, and trash folder. Each user can also write a copy of a message in its outbox
to the inbox of any other user.

The policy administrator first must create a policy class for the mail system. It then can create
the necessary containers and settings to organize the mail system and to manage users and
establish their containers for messages. As an organizing step, the policy administrator creates
the user attribute, Users, and the object attribute, Objects, and assigns them to the Mail System
policy class. It also creates the object attributes Inboxes and Outboxes as system-wide
containers to retain each user’s inbox and outbox respectively, and assigns both Inboxes and
Outboxes to Objects. Figure 7 illustrates the policy element diagram constructed so far.

42

Figure 7: Partial Policy Element Diagram for the Mail System

For each new user, ui, the administrator creates an associated user attribute, ID ui, which is
needed in forming associations that involve the user, and assigns it to Users. The following
object attributes are also created for each new user: In ui, Other ui, Out ui, Draft ui, and Trash ui.
ID ui is assigned to the Users container, In ui, is assigned to the Inboxes container, and Out ui and
Other ui are assigned to the Objects container. The remaining containers, Draft ui and Trash ui,
are assigned to Other ui.

Figure 8 below illustrates the policy element diagram constructed, along with the needed
associations and prohibitions (i.e., the authorization graph) for a typical user, u2, to conduct
generic input/output operations on mail objects (i.e., messages) in its containers. No mail objects
are shown in the figure. The user u2 can read objects in its inbox, In u2, and can read and write
objects within its outbox, Out ui, because of the associations between ID u2 and those containers.
The user can read and write objects within its own draft and trash folders (i.e., the Draft ui and
Trash ui containers), which are contained in Other u2, via the association between ID u2 and
Other u2. The user can also write to the objects in the inbox of any user, which are by design
assigned to Inboxes, but not to its own inbox, due to the write prohibition illustrated with a
different style and orientation of connector (i.e., the dotted, upward-arcing connector). No mail
objects can be created, however, without further authorizations, nor can any mail objects, if they
existed, be deleted.

Figure 8: Authorization Graph for the Mail System

43

The administrative associations and prohibitions specified for the user complement those shown
above and define the remaining actions for the user. The rationale behind the associations and
prohibitions that are illustrated in the authorization graph in Figure 9 is as follows:

 The association between ID u2 and Inboxes allows user u2 to create messages in any
user’s inbox, including its own. Since the inbox of every mail system user gets assigned
to Inboxes when the user is established, and the properties over Inboxes are inherited, the
association essentially grants a system-wide authority.

 The prohibition between u2 and In u2 serves as a counter to the system-wide authority
granted to every user through the previous association. Prohibitions are illustrated
similarly to associations, but with a different style and orientation of connector. This
prohibition denies the user from creating messages within its own inbox, slightly
overriding the system-wide authority to create messages in any inbox.

 The association between ID u2 and In u2 allows the user delete messages from its own
inbox.

 To create and delete messages within the containers Out ui, Draft ui, and Trash ui, an
association granting such authorization is needed between ID u2 and each of those
containers.

Figure 9: Authorization Graph with Administrative Associations and Prohibitions

A few improvements can be made to the current policy specification. For example, a user can
update a copy of a sent message residing in its outbox, which can bring about an unwanted
inconsistency from what was actually sent. To avoid this situation, the policy can be revised via
an obligation that prevents alterations to messages in the outbox, once they are written to it. The
obligation presumes that draft messages are composed in the sender’s drafts folder, and then,
when ready to be sent, copied over in their entirety to newly created message objects in the

44

sender’s outbox, before being deleted. The following obligation accomplishes the write-once
restriction through the creation of a user prohibition:

When EC.op = w ⋀ EC.o →+ Outboxes do

CreateDisjunctiveU-Prohibition (EC.u, {w}, {EC.o}, ∅)4,5

Similarly, the current policy allows a user to update messages that it has posted to another user’s
inbox or messages that other users have posted. The policy can be extended slightly with an
obligation to prevent any alterations to a message after it is initially written to an inbox. The
obligation presumes that when a message composed in the drafts folder is sent, a new message is
created in the receiver’s inbox and the contents of the draft message copied over in its entirety to
the new message. The following obligation created for each user u accomplishes the write-once
restriction through the creation of a user attribute prohibition:

When EC.op = w ⋀ EC.o →+ Inboxes do

CreateDisjunctiveUA-Prohibition (Users, {w}, {EC.o}, ∅)6

The policy defined for the users of the mail system is discretionary. While the policy grants no
authority for a user to create administrative associations for other users to access objects under
its control, it grants a user authority to perform certain mail system activities that allow that
information to be shared. For example, one user cannot allow another user to read messages
residing in its inbox, but it can create a copy of the message and send it to another user.

5.1.2 Operating System

As mentioned previously, most present-day operating systems use DAC as their primary access
control mechanism. For the simple DAC operating system in question, the objects involved are
files and folders. The latter also serves as an object attribute or container for files and other
folders. Each user of the system has a home container and is able to read, write, create, and
delete folders and files contained within its home container. Each user can also grant other users
the privileges to read and write any file contained within its home container.

The policy administrator first creates a policy class, DAC, for the DAC operating system. It then
creates the user attribute, Users, and the object attribute, Objects, and assigns them to the DAC
policy class. For each new user, ui, the administrator creates an associated user attribute, ID ui,
and assigns it to Users. The user’s home container, Home ui, is also created and assigned to the

4 Because the sets involved in the prohibition are a singleton and an empty set, a conjunctive deny involving these same sets would
have same effect as the disjunctive deny used.

5 The semantics of the administrative command used in this obligation is essentially the same as that for the command
CreateDisjunctiveUserProhibition given in Appendix C, with one exception—the preconditions for this command asserts that the
user who defined the obligation must hold sufficient authorization to execute the body of the command.

6 As with the administrative command in the previous obligation, the CreateDisjunctive UserAttributeProhibition command given in
Appendix C has essentially the same semantics, with the caveat of differences in preconditions.

45

Objects container. Figure 10 illustrates the policy element diagram constructed, along with the
appropriate associations, for two typical users, u2 and u3.

Figure 10: Authorization Graph for the DAC Operating System

No prohibitions are needed in this example. Two associations are needed for each user and are
summarized in terms of u1, as follows:

 The association between ID u1 and Home u1 allows the user to read, write, and execute
files that are contained within its home container. The administrative association
between those same attributes allows the user, u1, to create, and delete files and other
containers (i.e., folders) within its home container. It also allows the user to form or
rescind an association with other user policy elements, involving the read, write, create,
and delete privileges it holds over its home container, Home u1, and through inheritance,
to any objects that are contained by the home container.

 The administrative association between ID u1 and Users allows the user to involve any
user contained in Users (i.e., all users) in the formation of a new association. This
privilege combined with the previous administrative association mentioned enables a user
to grant the privileges it holds over objects in its home container selectively to any other
user, or to rescind them. That is, u1 has the discretion to grant the authority to read, write,
execute, create, and delete files and folders within its home container to other users and
subsequently, to take back that authority.

A slight expansion of this example can better illustrate the properties of the authorization graph
that allows users to form new associations that affect the contents of their home container. User
u1 has created two files, o11 and o12, in its home container, and would like u2 to be able to read
and update o11. Using its discretionary authority, u1 forms a new association between ID u2 and
o11, illustrated in Figure 11, which allows u2 the ability to read and write the contents of o11.
Although u2 gains the ability to read and write o11, it cannot pass that ability on to other users,
since u1 did not grant u2 the ability to form or rescind an association with o11.

46

Figure 11: DAC Authorization Graph with Objects

As plainly evident, the policy defined for the users of the operating system is discretionary. The
policy grants a user not only the authority to perform common operating system activities, such
as creating or deleting files and folders, but also authority for a user to form and rescind
associations that allow other users access to files and folders under its home container.

5.2 Levels of Policy and Administration
The PM model supports the definition of a single level or multiple levels of administrative
authority. Three main types of authorities exist. They are as follows:

 The Principal Authority (PA), also known as the super user, is a compulsory, predefined
entity of the PM. The PA is responsible for creating and controlling the policies of the
PM in their entirety and inherently holds full access privileges to carry out those
activities. The PA generally creates policy classes and first-level attributes that define an
authorization administrator and a domain for the authorization administrator to manage,
then allocates sufficient privileges to the authorization administrator to perform those
duties. Multiple domains and administrators can be created by the PM, at its discretion.
The PA can also forego the use of an authorization administrator and manage a domain
itself.

 The Domain Administrator (DA) can create users, objects, and attributes within its
domain and manage the entire domain itself. A DA can also define a sub-domain of its
domain and allocate sufficient privileges for a subdomain administrator to manage it.
The domain administered by a DA may be divided into more than one subdomain.
However, the DA must possess sufficient privileges allocated by the PA to be able to
define a subdomain and allocate the needed privileges to a subdomain administrator.

 The Subdomain Administrator (SA) can perform the activities of a domain administrator
within the sub-domain under its control. The pattern of subdividing the sub-domain for
Sub-SAs (S2A), Sub-S2As (S3A), and so forth to manage can continue as needed.

Various usage patterns of authority levels can be used when specifying policy. The two main
types of patterns discussed here are intra-policy class and inter-policy class patterns. It is
important when specifying policy to keep in mind the underlying principle that once the PA
creates the requisite domains and domain administrators and establishes the policy for a system,

47

the system should move safely from state to state in accordance with that policy. That is, for
given policy configuration and an initial starting state, it should not be possible to reach a state in
which a particular access authorization is acquired by policy entity for which it is not intended.

5.2.1 Intra-Policy Class Patterns

An intra-policy class pattern denotes an arrangement of authority levels in which each authority
and its according domain of control is contained within a single policy class. Figure 12 below
illustrates one such pattern. Consistent with existing conventions, the solid-line arrows represent
assignments between policy elements. The dotted-line connectors indicate administrative
associations that allow an authorization administrator, represented by a user attribute, to preside
over a domain, represented by user and object attributes.

Figure 12: Pattern of Authority Levels

The assignment and association connectors are colored to convey which authority established the
policy. PA’s control over the PM root is depicted in black and conveys its de facto authority
over all aspects of policy. The PA establishes a policy class for System X (SX), creates the user
attribute for the DA (DA SX), and the Users and Objects attributes of SX, and assigns them to
the policy class. The PA then creates the associations needed by a DA (i.e., a user assigned to
DA), such that a DA has sufficient privileges to administer the users and objects of that domain.
Finally, the PA creates a user, u1001, and assigns it to DA to preside over that domain. The
assignments and associations carried out by the PA are colored blue.

User u1001, in its capacity as a DA, can create subsets of its domain for SAs to manage. Figure
12 illustrates the user attribute for the first SA (SA1) of SX, and the user and object attributes
that comprise the subdomain, SA1 Users and SA1 Objects, along with the requisite assignments
and associations made by the DA. The DA’s assignments and association are colored green.
The assigned SA, u101, can then carry onward from this point populating the subdomain with any
users, objects, and attributes that apply.

48

5.2.2 Inter-Policy Class Patterns

An intra-policy class pattern denotes an arrangement of authority levels in which each authority
is contained within a policy class that is distinct from the policy class for its domain of control.
An example inter-policy class pattern of authority levels is shown in Figure 13 below. Instead of
maintaining DAs and SAs within the same policy class as the users and objects of their domain, a
distinct Admin policy class is established by the PA for those authorities and is assigned to the
PM root. This pattern requires the PA to create the user attribute, SX Admin, as a placeholder
for the SX authorities and assign the attribute to Admin. A benefit of this pattern is that it allows
the PA to create and manage authorities for other systems under the Admin policy class (e.g., by
adding the SY Admin attribute for System Y) and to establish their domain of control over the
applicable policy classes that represent those systems.

From this point the actions are similar to the previous pattern. The PA creates the user attribute
for the DA, DA SX, and assigns it to SX Admin. It also establishes a policy class for System X
(SX) and the users and objects attributes of SX (i.e., Users SX and Objects SX), and assigns
them to the SX policy class. The PA then creates the associations needed by a DA, such that the
DA has sufficient privileges to administer the users and objects of that domain, which entails
privileges that span the two policy classes (i.e., Admin and System X PC), as well as privileges
to manage itself via SX Admin. Finally, the PA creates a user, u1001, and assigns it to DA SX to
preside over that domain. As before, the assignments and associations carried out by the PA are
colored blue, while those of the DA are colored green.

Figure 13: An Alternative Pattern of Authority Levels

User u1001, in its capacity as a DA, can create subsets of its domain for SAs to manage. The main
difference from the previous pattern is that the user attribute for the first SA (SA1) of SX is
assigned to SX Admin. The DA creates the attributes for the users and objects that comprise the
subdomain, SA1 Users and SA1 Objects, and makes the requisite assignments and associations
for the SA1 administrator u101 to govern the subdomain. Note that if the DA wanted to grant
SA1 the authority to create administrative subdomains of SA1 following this pattern, it would
need to do the following: create an additional attribute (e.g., SA1 Admin), assign SA1 Admin to

49

SX Admin, assign SA1 SX to SA1 Admin instead of SX Admin, and allocate sufficient privilege
for SA1 SX to govern SA1 Admin and to create administrative attributes for the next level of
SAs.

One distinction between this pattern and the previous one is that as a side effect of this pattern,
the DA has the authority to assign other users as DAs. This specific authority could be removed
via a prohibition, if strict compliance with the policy of the previous pattern is needed. The
opposite is also possible. While the previous pattern prescribes that the PA makes all DA user
assignments, an association from DA SX to DA SX could be added to that specification to grant
the DA this authority, if such a capability is needed.

A simple change to the above inter-policy class pattern can make it into an intra-policy class
pattern. All that it takes is deleting the Admin policy class and assigning SX Admin directly to
System X PC. Note too that it is possible to mix intra and inter-policy class patterns. That is,
some authorities can be maintained in a distinct policy class external to the one being
administered, while other authorities are maintained within the policy class being administered.

5.2.3 Personas and Patterns

In many situations, an administrator of a system is also potentially a user of that same system.
Under the PM model, disregarding the principle of least privilege and assigning an individual the
capabilities of both a system user and a system administrator through the same policy element
can lead to security issues. One solution is to allow the individual to login under either of two
distinct user policy elements (e.g., ui and uj), each representing a different persona. Having
different personas to carry out different activities is a long-standing practice for attaining least
privilege (e.g., [Sal75]). However, the fact that one individual can operate as two different users
is retained outside of the policy specification and, because it is not expressed explicitly therein,
easy to overlook or ignore, leading to problems. For example, when such an individual leaves
the organization, only one of the two user elements may be deleted, allowing the individual
continued system access through the remaining user element.

It is possible to express explicitly within the PM model an individual’s ability to act in different
capacities selectively at different times. Accommodating personas within the model is an
advanced topic that builds upon the material covered in this chaper and Appendix C. Appendix
D provides a detailed discussion of two alternative approaches. For simplicity, the examples and
discussion in the main body of the report presume that individuals assigned as system
administrators are not also assigned as users of the system.

5.3 Authority Level Examples
To illustrate authority levels and policy better, the examples of section 3.6 are reexamined in
light of the above discussion.

5.3.1 Electronic Mail

To set up the initial authorization policy for a DA to administer the mail system described
earlier, the PA creates a framework using the intra-policy class pattern of Figure 12. Figure 14
below illustrates the policy element diagram and associations the PA establishes for the DA. The

50

DA, Users, and Objects attributes shown constitute the key attributes of the Mail System policy
class. The user, u1001, is assigned as the DA. In this example, no SA is required. Instead, the
DA is expected to manage the entire mail system. More than one user can be assigned as a DA,
and a DA has sufficient authority to carve out subdomains, if eventually needed.

Figure 14: Policy Assignments and Associations for the Mail System DA

The DA serves as the policy authority responsible for creating the necessary containers to
organize the mail system and for managing other users and establishing their containers for
messages. Figure 15 illustrates the authorization graph for the mail system, highlighting a
typical user, u2. The administrative assignments, associations and prohibitions made by the DA
are in blue to distinguish them from those made by the PA, which are in green.

Figure 15: Authorization Graph for the Mail System

51

The PA has full discretionary authority over the PM, and grants discretionary authority to the DA
over the policy domain it establishes for the mail system. This allows the DA to create the
necessary attributes, associations, and other relationships for each user to use the functionality of
the mail system. The DA also has the discretion to create subdomains and assign an SA to them.
The policy for this system with regard to users is also discretionary, since each user has the
freedom to use the established policy to share information with other users.

5.3.2 Operating System

The actions the PA takes to set up the initial authorization policy for a DA to administer the
DAC operating system described earlier mirror those given above for the mail system. Figure 16
below illustrates the policy element diagram and administrative associations the PA establishes
for the DA using the intra-policy class pattern. The DA, Users, and Objects attributes constitute
the key attributes of the DAC policy class. The user, u1011, is assigned as the DA. This example
again requires no SA and instead relies on the DA to manage the entire system.

Figure 16: Policy Elements and Associations for the DAC DA

Figure 17 illustrates the authorization graph for the DAC operating system, showing two typical
users, u1 and u2. The assignments, associations and prohibitions made by the DA are colored
blue. The defined policy is discretionary at the PA, DA, and user levels. The PA has full
discretionary authority over the PM. The PA in turn, grants discretionary authority to the DA
over the policy domain it establishes for the operating system, which allows the DA to create the
necessary attributes and associations between attributes for each user. The DA grants
administrative authority for any user to create associations that allow other users to selectively
access objects contained in its home container. The DA also has the discretion to create
subdomains and assign an SA to them, if it chooses.

52

Figure 17: Authorization Graph for the DAC Operating System

5.4 Generic Operations
Generic operations refer to the authority needed to carry out a related mode of access or action.
The examples given in this and the previous chapters allude to a variety of operations needed to
structure policy for a system and establish levels of administration for governing the policy over
its lifetime. These generic operations include authority to read and write objects, to create and
destroy various policy elements, and to form and rescind various types of relationships between
policy elements. This section discusses a core set of operations for the PM model in detail and
explains how such authority can be utilized to specify access control policy.

Two general classes of generic operations exist. They are non-administrative operations that
pertain to protected resources represented by objects, and administrative operations that pertain
to a policy specification comprising the policy elements and relationships defined within and
maintained by the PM. The first class of generic operations, as shown in Table 1, falls into one
type of access mode: input and output of data to and from protected resources represented by
objects, designated respectively as read and write operations. Protected resources may be logical
(e.g., files and folders) or physical (e.g., printers and networking components). As mentioned
previously, for non-administrative operations, abstract operations are synonymous with the
authority needed to carry out those operations: to output data or write to an object requires write
authority, and to input data or read from an object requires read authority.

Table 1: Generic Non-administrative Access Operations

Type Non-administrative Operation Applies to Affects

Input/Output
Resources

read

write

Object attribute

Object attribute

Protected resource represented by
the object attribute or an object
contained by the object attribute
Protected resource represented by
the object attribute or an object
contained by the object attribute

53

The second class of generic operations relate to one of four types of administrative actions: the
creation and deletion of policy elements, the creation and deletion of assignments between policy
elements that are contained within the same policy class, the creation and deletion of
assignments between policy elements that are each contained within a different policy class, and
the creation and deletion of associations, prohibitions, and obligations among policy elements.
Administrative operations convey the authority to manipulate policy elements and relations
maintained by the PM, and thereby institute or update the policy specification for a system.
However, unlike non-administrative operations, the authority associated with an administrative
operation is not necessarily synonymous with an administrative action. Instead, the authority
stemming from one or more administrative operations may be required for a single action to be
authorized.

Table 2 below lists the generic administrative operations for each type of access modality,
following the naming conventions for policy elements established in the previous chapters. In
both Tables 1 and 2, the “Applies to” column identifies the type of policy element to which the
mode of access relates, while the “Affects” column identifies the policy element or relation
affected.

Table 2: Generic Administrative Access Operations by Type

Type Administrative Operation Applies to Affects

Create/Delete
Policy
Elements

create-u, delete-u
create-ua, delete-ua

create-o, delete-o
create-oa, delete-oa

create-pc, delete-pc

User attribute
User attribute,
Policy class
Object attribute
Object attribute,
Policy class
The conceptual
root policy node

User policy element
User attribute policy element

Object policy element
Object attribute policy element

Policy class policy element

Create/Delete
Assignments
(Intra-Policy
Class)

create-uua, delete-uua

create-uaua, delete-uaua

create-uapc, delete-uapc

create-ooa, delete-ooa

create-oaoa, delete-oaoa

create-oapc, delete-oapc

User attribute

User attribute

Policy class

Object attribute

Object attribute

Policy class

Assignment from a user to the
user attribute
Assignment from a user attribute
to the user attribute
Assignment from a user attribute
to the policy class
Assignment from an object to the
object attribute
Assignment from an object
attribute to the object attribute
Assignment from an object
attribute to the policy class

54

Type Administrative Operation Applies to Affects

Create/Delete
Assignments
(Inter-Policy
Class)

create-uua-from, delete-uua-from

create-uua-to, delete-uua-to

create-uaua-from, delete-uaua-from

create-uaua-to, delete-uaua-to

create-uapc-from, delete-uapc-from

create-uapc-to, delete-uapc-to

create-ooa-from, delete-ooa-from

create-ooa-to, delete-ooa-to

create-oaoa-from, delete-oaoa-from

create-oaoa-to, delete-oaoa-to

create-oapc-from, delete-oapc-from

create-oapc-to, delete-oapc-to

User attribute

User attribute

User attribute

User attribute

User attribute

Policy class

Object attribute

Object attribute

Object attribute

Object attribute

Object attribute

Policy class

Assignment from a user element
in the referent’s subgraph to a
user attribute
Assignment from a user to a user
attribute element in the referent’s
subgraph
Assignment from a user attribute
element in the referent’s subgraph
to a user attribute
Assignment from a user attribute
to a user attribute element in the
referent’s subgraph
Assignment from a user attribute
element in the referent’s subgraph
to the policy class
Assignment from a user attribute
to the policy class
Assignment from an object
element in the referent’s subgraph
to an object attribute
Assignment from an object
attribute to an object attribute
element in the referent’s subgraph
Assignment from an object
attribute in the referent’s subgraph
to an object attribute element
Assignment from an object
attribute element to an object
attribute in the referent’s subgraph
Assignment from an object
attribute element in the referent’s
subgraph to a policy class
Assignment from an object
attribute to the policy class

55

Type Administrative Operation Applies to Affects

Create/Delete
Multi-way
Relationships

create-assoc-from, delete-assoc-from

create-assoc-to, delete-assoc-to

create-admin-assoc-from, delete-
admin-assoc-from

create-admin-assoc-to, delete-admin-
assoc-to

create-deny-from, delete-deny-from

create-deny-to, delete-deny-to

create-admin-deny-from, delete-
admin-deny-from

create-admin-deny-to, delete-admin-
deny-to

create-oblig, delete-oblig

create-admin-oblig, delete-admin-
oblig

User attribute

Object attribute

User attribute

Policy element

User, User attribute

Set of Object
attributes

User, User attribute

Set of Policy
elements

Policy element

Object attribute

Association involving a user
attribute element in the user
attribute’s subgraph and an object
attribute
Association involving a user
attribute and an object attribute
element in the object attribute’s
subgraph
Administrative association
involving a user attribute element
in the user attribute’s subgraph
and a policy element
Administrative association
involving a user attribute and a
policy element in the policy
element’s subgraph
Prohibition involving the user, a
process operating for the user, or
a user element in the referent user
attribute’s subgraph, and an object
Prohibition involving a user or
process, and an object element in
or outside the referent’s subgraph
Administrative prohibition involving
the user, a process operating for
the user, or a user element in the
referent user attribute’s subgraph,
and a policy element
Administrative prohibition involving
a user or process, and a policy
element in or outside the referent’s
subgraph
Obligation on an access request
involving the user or process
holding authorization
Obligation on an administrative
access request involving the user
or processing holding
authorization

The prefix “create-” denotes the reification of a policy element or a relationship between policy
elements, as designated by its stem. Unlike read and write operations, two or more
administrative operations are typically needed to carry out some overall meaningful action on the
policy representation. In addition administrative operations are typically allocated in conjunction
with other. For example, the authority to create a user (create-u) is not useful, if the authority to
assign it to a user attribute (create-uua) is not also held. Similarly, the authority to create a
policy element (create-u) is not useful, if the authority to delete a policy element (delete-u) is not
also held.

Some administrative operations are explicitly divided into two parts, as denoted by the “from”
and “to” suffixes. Both parts of the authority must be held to carry out the implied
administrative action. A case in point is the ability to form associations between policy elements
from different policy classes. A user must hold create-assoc-from authority over a user attribute
in one and create-assoc-to authority over an object attribute in the other to form an association
between them or other attributes that are in the subgraph of each. The correspondence between

56

administrative operations and administrative activities is evidenced in the preconditions given for
each of the administrative commands listed in Appendix C.

While the list of generic operations in Tables 1 and 2 is complete, it is not intended to be
absolute. The control objectives of a policy may differ from one system to another and need to
be realized using a different set of operations to capture and designate the appropriate authority.
For example, a requirement for higher level of assurance may dictate more granular operations,
or a requirement for compliance with some prevailing law, regulation, or policy may necessitate
additional operations. The modes of access allowed also depend on the types of resources
represented and on the functionality of the system

The computational environment may also influence the set of operations defined. Take, for
instance, the write operation. If compatible with the computational environment, this operation
could be refined or augmented with a write-append variant that allows a user to add additional
data to an object, but does not allow a user to change the previous contents of or view an object
[NCSC87]. Allowing data to be added only at the beginning or the end of an object would
provide more control for maintaining audit information. Similarly, the read operation, which
includes the ability to execute an object, could be revised and an explicit execute operation
defined for this purpose to allow more granular control, if compatible with the computational
environment.

One other consideration that can influence the set of operations is usability. While granular
operations allow a fine degree of control, the sheer number can create difficulties when assigning
authority within a significantly sized policy specification. One solution is to consolidate multiple
operations that are usually assigned together (e.g., create- and delete- operations) into distinct
sets and use those sets in lieu of individual operations to assign a broad range of authority
collectively when defining policy.

In summary, operations are abstractions of the levels of authorization possible within a
computational environment to support a given policy and, as abstractions, may be adjusted to fit
a unique situation. In practice, however, it is often the case that only some subset of the
authorizations listed is needed to specify the policy for a particular system. For example, the
policy specified for the DAC operating system did not require the use of prohibitions or
obligations, thus related authorizations, such as create-deny-to/from or create-oblig, were not
required.

57

6. Multiple Policy Class Considerations

Some policy specifications, such as the inter-policy class pattern for expressing levels of policy
and administration discussed in the previous chapter, can involve more than one policy class.
Multiple policy class situations may arise when two or more policies, each represented by a
single policy class, are merged together and overlap to the extent that objects fall under each
policy. They can also occur when an administrator chooses to express a single policy using
multiple policy classes, even though the policy could be easily expressed with a single policy
class.

The basic PM framework discussed so far largely ignores policy specifications that involve
multiple policy classes. In order to handle these situations correctly, some slight adjustments to
the PM framework are needed. These adjustments specifically involve refining the way
privileges are derived for objects that are contained in two or more policy classes and the way
prohibitions are applied when two or more policy classes contain objects involved in the
prohibition. This chapter looks at the necessary refinements to the PM framework and provides
examples of policy specifications that involve multiple policy classes.

6.1 Association Refinements

Non-administrative associations are defined as a relation of the form ASSOC ⊆ UA×Ops×OA.
ASSOC is a set of ordered triples. Deriving privileges from a triple (ua, ops, oa) ∈ ASSOC
involves identifying all users that are contained by the first element of the triple, ua, all members
of the set ops, the second element, and all objects that are contained by the last element, oa.
Each combination of the three resultant sets forms a valid privilege of the form (u, op, o).

A major difference when deriving privileges from associations in specifications that involve
multiple policy classes is that the policy classes containing the object attribute play a major role
in privilege derivation. In multiple policy class situations, the triple (u, op, o) is a PM privilege,
iff for each policy class pcl that contains o, there exists an association (uai, opsj, oak), such that
user u→+uai, op ∈ opsj, o→*oak, and oak→+pcl. That is, a privilege involving an object is valid,
iff it can be derived with respect to each of the policy classes that contain the object. This
method of derivation works equally well when only a single policy class prevails, since all
objects are contained by the sole policy class.

Privileges can also be derived from the user’s or object’s perspective, by involving inherent
capabilities and inherent access entries respectively. That is, a triple (u, op, o) is a privilege, iff,
for each policy class pcl that contains o, there exists a user attribute uai with an assigned or
inherited inherent capability (opsj, oak), such that o→*oak, oak→+pcl, u→uai, and op ∈ opsj.
Similarly, the triple (u, op, o) is a privilege, iff for each policy class pcl that contains o, there
exists an object attribute oak with an assigned or inherited inherent access entry (uai, opsj), such
that o→*oak, oak→+pcl, u→+uai, and op ∈ opsj.

Administrative privileges are derived similarly. Administrative associations are defined as a
relation of the form Admin_ASSOC ⊆ UA×AOps×PE. If multiple policy classes are involved,
the triple (u, aop, pe) is an administrative privilege, iff for each policy class pcl that contains pe,

58

there exists an administrative association (uai, aopsj, pek), such that user u→+uai, aop ∈ aopsj,
pe→*pek, and pek→+pcl.

6.2 Prohibition Refinements
As discussed earlier, non-administrative prohibitions are used to override access to objects based
on whether the objects are contained within or not contained within a set of object attributes.
Prohibitions in multiple policy class situations, like associations, also follow the precept that an
object and the policy classes containing the object have relevance when determining the scope of
a prohibition. The scope of a non-administrative prohibition can be defined as the set of object
attributes affected by the relation. Wherever the scope of a prohibition overlaps with that of a
policy class, the prohibition affects some, but not necessarily all of the same objects within the
policy class, which can potentially lead to difficulties in the specification and interpretation of
policies involving multiple policy classes.

Recall that the set of objects affected by a disjunctive user deny, (u, ops, oas, oacs) ∈
U_deny_disjunctive, where oas ⋃ oacs ≠ ∅, is the union of oai

 and oacj
, for all oai in oas and

all oacj in oacs (i.e., the set (oa1
 ⋃ oa2 … ⋃ oan

) ⋃ (oac1
 ⋃ oac2 … ⋃ oacm

)). Similarly,
for a conjunctive user deny, (u, ops, oas, oacs) ∈ U_deny_conjunctive, the set of objects affected

is the intersection of oai
 and oacj

, for all oai in oas and all oacj in oacs (i.e., the set (oa1
 ⋂ oa2

… ⋂ oan
) ⋂ (oac1 ⋂ oac2 … ⋂ oacm

)). The reasoning about the scope of user-based
prohibitions applies as well to disjunctive and conjunctive process-based prohibitions.

In both the conjunctive and disjunctive classes of user-based prohibitions, any member of the set
oas that is contained by a policy class does not present a problem when multiple policy classes
apply, since for each object attribute in oas, the scope of the prohibition is always a subset of the
scope of any policy class that contains the object attribute and affects the same set of objects.
Therefore, the existing definitions for prohibitions apply, without issue, in multiple policy class
situations where oacs is equal to the empty set and oas is not. However, when the reverse is true,
and oas is equal to the empty set and oacs is not, issues arise in the context of multiple policy
classes. The reason is that for each object attribute in oacs, although the scope of the prohibition
is a subset of the scope of any single policy class that contains the object attribute, the objects
affected are a vastly different set of objects that fall outside the policy class into one or more
other policy classes.

It is possible to redefine non-administrative prohibitions to restrict their scope solely to the scope
of the policy classes in which they appear. However, that same effect can be realized through
other means, such as constraining the prohibition to a specific policy class through the use of an
attribute contained by the policy class in the definition of the prohibition. Moreover, in some
cases, the broader unconstrained scope of a prohibition may match the target policy more closely
and produce the desired effect. For these reasons, no redefinition of non-administrative
prohibitions is considered necessary at this time. However, caution is advised when defining
prohibitions involving exclusory object attributes.

Because of the similarity in their structure, the same considerations apply to administrative
prohibitions as those discussed for non-administrative prohibitions. That is, the current

59

definition of administrative prohibitions is deemed sufficient at this time to express access
control policies accurately and no redefinition is necessary.

6.3 Obligation Refinements
The case of obligations is somewhat different from either that for associations or prohibitions.
Obligations are unaffected by multiple policy class considerations. The main reason policy
classes do not need special consideration is that the scope of control of an obligation is stipulated
by its event pattern, which is capable of defining explicitly whether one or more policy classes
pertain to the obligation. The PM reference mediation function plays no role in the processing of
an obligation’s event pattern. Therefore, the existing definition and treatment of obligations
remains valid and requires no adjustment.

Revised Notation for Multiple Policy Classes (MPC). Privilege derivation for multiple
policy class situations can be defined more formally as shown below.

▪	 Privileges (revised for MPC): The ternary relation PRIV from U to Op to O.
∙	 PRIV ⊆ U×Op×O
∙	 u∈U, op∈Op, o∈O: ((u, op, o) ∈ PRIV, iff pc∈PC: (o →+ pc

∃ops∈Ops, ∃ua∈UA, ∃oa∈OA: ((ua, ops, oa) ∈ ASSOC ⋀

u →+ ua ⋀op ∈ ops ⋀ o →* oa ⋀ oa →+ pc)))

▪ Administrative Privileges (revised for MPC): The ternary relation Admin_PRIV from
U to AOp to PE.
∙	 Admin_PRIV ⊆ U×AOp×PE
∙	 u∈U, aop∈AOp, pe∈PE: ((u, op, pe) ∈ Admin_PRIV, iff pc∈PC: (pe →* pc
∃aops∈AOps, ∃ua∈UA, ∃pei∈PE: ((ua, aops, pei) ∈ Admin_ASSOC ⋀
u →+ ua ⋀aop ∈ aops ⋀pe →* pei ⋀pei →* pc)))

6.4 Amalgamated Policy Examples
Combining the access control policies of two or more systems can be done in a number of ways.
The resulting policy should make sense from a security standpoint and maintain the intended
security objectives asserted originally by each system individually. Ideally, the resulting policy
should also gain efficiency in operation of the administrative levels. For example, rather than
having redundant user policy elements to represent a user separately under each system policy,
only one set of policy elements could be maintained and applied to both.

The amalgamation of two or more systems together under a unified policy requires making some
assumptions about and adjustments to policy coverage and also to administrative responsibilities.
For instance, the degree of interdependence among policy authorities is an important factor.
While some duties may be shared between the authorities of each system, other may be allocated
exclusively to certain authorities to effect the required policy. The examples given below
illustrate the types of considerations involved in the amalgamation of system policies and the
types of trade-off decisions that can occur. Other, less involved examples are also available
elsewhere [Fer05, Fer11].

60

6.4.1 DAC and Email

As an example of an amalgamated policy specification that involves multiple policy class,
consider the operating system and mail system examples described earlier in this report. Each
system policy is expressed using a single policy class that involves an intra-policy class pattern
for administration. The individual policies are somewhat independent, insofar as the scope of
objects covered by each policy is distinct and non-overlapping. However, the set of users is
potentially the same for each system and overlaps considerably.

The main adjustment needed in this example is to determine how administrative duties over users
should be treated. The approach taken is to treat the operating system as foundational and a
prerequisite for use of the mail system. Accordingly, the PA assigns the entire responsibility for
creating and deleting users to the DA of the operating system (DA-OS). The DA for the mail
system (DA-MS) no longer creates or deletes a user, and instead, relies on the DA-OS to perform
this function. Once a user has been established by the DA-OS, the DA-MS can assign or
unassign mail containers to and from the user, thereby enabling and disabling the user’s
capability to use the mail system.

Figure 18 gives an example of a partial authorization graph illustrating the DAC segment of the
integrated DAC-Mail System policy. As before, user u1101 is the DA-OS for the DAC policy
class, and u1 and u2 are typical users of the system. The domain authority is created by the PA
(not shown) and establishes the users, objects, and relationships for the system. Those
relationships are shown in blue and gray, whereby the blue denotes administrative relations and
the gray denotes non-administrative relations.

Figure 18: DAC Segment of the Integrated System Policy

Figure 19 gives an example of a partial authorization graph illustrating the Mail System segment
of the integrated DAC-Mail System policy. User u1001 is the domain authority for the policy
class, and u1 and u2 are DAC users over which the DA-MS has been assigned authority from the
PA to establish objects and relationships that pertain exclusively to the mail system. The
relationships established for u2 are shown in red and gray, whereby the red denotes
administrative relations and the gray denotes non-administrative relations.

61

Figure 19: Mail System Segment of the Integrated System Policy

An example of an entire authorization graph for the integrated system policy is shown in Figure
20. The DAC operating system objects and relations for user u2, which were shown in a Figure
18, are omitted to avoid an overly busy illustration.

Figure 20: Authorization Graph of the Integrated System Policy

Several inferences can be drawn from this example. The first is that policies grow very quickly
and become unwieldy to view in their entirety. The second is that administrative relationships,
particularly associations, exceed non-administrative ones with respect to the overall
authorization pattern. The third and final inference is that when amalgamating policies together,
establishing an approach that fits the needs of all policy stakeholders is an important prerequisite
to making any adjustments to existing policies.

62

6.4.2 DAC and MAC

The following MAC policy is defined as an extension to the DAC policy discussed previously to
form an integrated DAC-MAC policy. A MAC policy is by its very nature comprehensive;
therefore, all existing users and objects need to be placed under it for compliance. Three security
levels pertain to this multi-level security policy extension: high, medium, and low. Security
levels are assigned to users and objects, and are also applicatory to processes working on behalf
of users. Users are assigned levels that represent their trustworthiness, while objects are assigned
levels that represent their sensitivity. A security level x is said to dominate a security level y, if x
is greater than or equal to y. In this example, the security level high dominates medium and low,
while medium dominates low.

The PA establishes the clearance and classification levels for the multi-level policy illustrated in
Figure 21. Since this part of the policy specification is mandatory and remains constant, there is
no need to have a DA manage the policy once it is specified. All users are assigned to one of
three user attributes that represent a user clearance. Users cleared to the high, medium, and low
levels of trust are assigned to the HT, MT, and LT user attributes respectively. Similarly, all
objects are assigned to one of three object attributes that represent a classification. Objects
classified at the high, medium, and low sensitivity levels are assigned to the HS, MS, and LS
object attributes. In this example, read means that information flows from the object to the user
(or one of its processes), which implies execute, while write means that information flows from
the user to the object.

Figure 21: Authorization Graph for the MAC Policy Segment

These policy assignments allow users and associated processes that are cleared at the high
security level to perform read operations on objects classified at the high, medium, and low
security levels. Users (and their processes) that are cleared at the medium level are allowed to
perform read operations only on objects classified at the medium and low levels. Finally, users
(and their processes) that are cleared low are allowed to perform read operations only on objects
classified at the medium and low levels. That is, the simple security property is reflected in the
policy.

63

The approach typically used with the PM to prevent leakage of sensitive data to unauthorized
principals is to recognize when an authorized process reads sensitive information and then
constrain that process or its associated user from writing to objects accessible to any
unauthorized principals. This approach, which entails the use of obligations, is general enough
to support a large variety of policies that depend on the absence of leakage. Separation of duty
and other history-based policies can also be supported in a similar manner—recognizing when a
critical event occurs and taking action to constrain the process involved or its associated user
from taking an unwanted action or set of actions.

For this MAC example, to prevent a user’s process from writing to an object that is at a lower
security level than any object it has read, additional restrictions are needed. The obligations
specified for this policy to fulfill this objective are as follows:

When EC.op = r ⋀ EC.o →* HS do

CreateConjunctiveP-Prohibition (EC.p, {w}, ∅, {HS})7

When EC.op = r ⋀ EC.o →* MS do

CreateConjunctiveP-Prohibition (EC.p, {w}, ∅, {HS, MS})

The first obligation specifies that once a process successfully reads an object in the HS container,
a process prohibition is created to prevent the process from writing to objects that are outside the
HS container. Similarly, the second obligation specifies that once a process successfully reads an
object in the MS container, a process prohibition is created to prevent the process from writing to
objects outside MS or HS containers. The two obligations can also be written using the
disjunctive form of a process deny prohibition, as follows:

When EC.op = r ⋀ EC.o →* HS do

CreateDisjunctiveP-Prohibition (EC.p, {w}, {LS, MS}, ∅)

When EC.op = r ⋀ EC.o →* MS do

CreateDisjunctiveP-Prohibition (EC.p, {w}, {LS}, ∅)

The first obligation establishes that once a process successfully reads an object in the HS
container, the process cannot write to objects that are in the LS and MS containers. The second
establishes that once a process successfully reads an object in the MS container, the process
cannot write to objects that are in the LS container. These complimentary ways to state a process
deny prohibition for this policy are possible, since the LS, MS, and HS containers are mutually
exclusive and collectively exhaustive with respect to the objects of the DAC-MAC system.
Regardless of the form of the obligation pair used, the first successful read of an object by a

7 The semantics of the administrative command used in this obligation is essentially the same as that for the command
CreateDisjunctiveProcessProhibition given in Appendix C, with the exception thatthe preconditions for this command asserts that
the user who defined the obligation must hold sufficient authorization to execute the body of the command.

64

process constrains the process to write only at or above the sensitivity level of the object,
consistent with the -property.

Adding the DAC policy specification discussed in earlier examples to the MAC policy
specification, results in the authorization graph illustrated in Figure 22. Note that the policy
specified up to this point is done by the PA. Going forward, the DA established by the PA has
responsibility to govern the users and objects of the system. One subtle extension made to the
DAC policy is that the DA must have the authority to assign users a security clearance via the
HT, MT, and LT attributes. This authority is represented in the authorization graph by the
administrative association from the DA user attribute in the DAC policy class to the Clearance
user attribute in the MAC policy class.

Figure 22: Authorization Graph for MAC-DAC system

One additional consideration concerning object creation is required, however. When an object is
created under the DAC policy, it is assigned to the home container of the user. A newly created
object also needs to be assigned an appropriate classification level under the MAC policy.
Different policies regarding object creation can be supported by the PM model. For the
integrated DAC-MAC policy, the policy is that the assigned classification level of the object
defaults to that of the user’s clearance. Figure 23 illustrates the policy applied to the object o1 in
the home container of user u1. Such assignments can be accomplished in one of two ways. The
first is to have the create object routine make the assignment directly. The second way is more
indirect and carried out through an administrative obligation that makes the assignment when
triggered by a create-object-in-object-attribute (create-OinOA) event.

For the first approach, the existing create object in object attribute command, as part of the
trusted computing base would be retained, and a slightly modified version that allows a user to
make classification assignments for newly created objects would be created and added to the
trusted computing base. Users would also need to be granted sufficient authority to execute the
new command via an administrative association. The enhanced object creation command in

65

effect consitutes an extension to the PM model, which can support not only this MAC policy, but
also similar types of lattice-based policies.

Figure 23: DAC-MAC Authorization Graph with Populated User

For the second approach, additional authority needs to be granted to the DA via an administrative
association from DA to Classification. That authority, coupled with the authority the DA already
holds over Objects, allows a DA to create obligations that exercise the DA’s authority to assign a
newly created object in the DAC policy class to an appropriate classification level in the MAC
policy class. The following set of administrative obligations is needed for this approach:

When AEC.aact = create-OinOA ⋀ AEC.u →+ LT ⋀ ¬(AEC.u →+ MT) do
CreateOinOAAssignment (AEC.argseq.1, LS)8

When AEC.aact = create-OinOA ⋀ AEC.u →+ MT ⋀ ¬(AEC.u →+ HT) do
CreateOinOAAssignment (AEC.argseq.1, MS)

When AEC.aact = create-OinOA ⋀ AEC.u →+ HT do

CreateOinOAAssignment (AEC.argseq.1, HS)

The first obligation applies to users with LT clearance. For those users, it assigns objects newly
created within their home container to the LS classification container. The second and third
obligations carry out similar assignments of newly created objects to MS and HS containers for

8 The AEC.argseq of an administrative event context for an administrative access request involving the create-OinOA administrative
action is [o, oa], where AEC.argseq.1 contains o, the identifier of the object that was created, and AEC.argseq.2 contains oa, the
identifier of the object attribute to which the object was assigned.

66

users with MT and HT clearances respectively. The main drawback with this approach is that the
DA must be trusted to a greater degree than in the first approach, since the DA involvement is
needed to specify part of the MAC policy. However, given that the DA is already trusted to
assign newly created users to a clearance level, the additional responsibility is not unreasonable.

As with the original DAC system, other users have the discretion to grant user u1 the authority to
read or write objects they control, which are classified at the HS, MS, or LS sensitivity level.
However, because that authority must be held under both the DAC and MAC policy classes, the
multi-level restrictions defined in MAC prevail over any conflicting authority granted in DAC,
as would be expected. The reverse is also true. Even if a user has sufficient clearance to access
certain information under MAC, the user may not be given access to the information unless the
user has a specific need to know. That is, access to the information must be necessary to carry
out official duties and must be expressed via an explicit grant of authority.

One further improvement to the policy is possible. Note that under either approach, a user
currently can create an object only at the classification level equivalent to its clearance. If a user
is granted discretionary access by another use, it can write to an object at a lower level of
classification, provided that it has not read an object at a higher classification level. However, it
cannot create an object at a lower level of classification than its clearance equivalent and write to
it. With the first approach discussed above, this feature can be instituted easily by modifying the
enhanced create object in object attribute routine to create objects based on a classification level
argument supplied by the user. Existing prohibitions prevent writing to the object, if the user has
read an object at a higher classification level, as would be warranted. With the second approach,
however, this policy adjustment is not possible, because there is not a way for the user to convey
the intended security level to the prohibition making the assignment.

67

7. Architecture

The PM functional architecture is intended to accommodate a number of different situations
using a variety of approaches. The architectural components of the PM are amenable to
implementation in both centralized and distributed systems. For the former, interactions between
the architectural components take place entirely within a computer system and the interfaces
between components are defined in terms of programing interfaces. For the latter, interactions
take place across a network and the same information is conveyed through a network protocol.

Many types of hybrid designs in which some components reside within a single system, while
others are located in other systems, are also possible. A separate decision to use either a
programming interface or network protocol for each interface may be made as appropriate,
because the two variants are functionally equivalent.

7.1 Architectural Components
The PM functional architecture involves several components that work together to bring about
controlled access to protected resources. The components include a Policy Enforcement Point
(PEP), a Policy Decision Point (PDP), an Event Processing Point (EPP), a Policy Administration
Point (PAP), a Policy Information Point (PIP), and a Resource Access Point (RAP). Figure 24
illustrates these components and their interfaces.

Figure 24: Architectural Components of the PM

Further details for each of the architectural components are as follows:

 Policy Enforcement Point. PM-aware applications must rely on a PEP to gain access to
protected resources and to policy information via a programming interface that it
provides. More than one PEP may exist to service applications. The PEP ensures that

68

access requests are validated as meeting the specified policy before access to the
resources in question occurs. To accomplish this objective, the PEP works in tandem
with a PDP and must not be bypassable.

The PEP conveys access requests issued by the application to a PDP for a reference
mediation decision. An application’s access request includes the identity of the
requestor, the requested action, and the arguments of the action, including the targeted
resource(s) and optional data. Both non-administrative (i.e., input/output operations) and
administrative access requests are handled by the PEP.

For non-administrative input/output requests that are denied, the PEP notifies the
application of an authorization failure. For requests that are granted, the PEP receives the
Uniform Resource Identifier (URI) for the physical resource in question. This enables
the PEP to carry out the requested access using the URI to identify the RAP, issue the
appropriate command(s) against it, and return the results to the application. The PEP also
generates an event after each access request it successfully executes, which conveys the
event context to the EPP.

Decisions on access requests involving administrative actions are handled somewhat
differently. For administrative requests that are denied, the PEP notifies the application
of an authorization failure. For requests that are granted, the PEP receives the results of
the administrative action taken against the abstract resources in the PIP, which the PDP
carries out itself via the PAP. The PEP does not generate events for access requests
carried out by the PDP.

 Policy Decision Point. A PDP determines whether an access request made by a PEP
complies with policy and renders a grant, deny, or error decision accordingly. The PDP
performs the reference mediation function defined in the PM model. It also carries out all
access requests that involve administrative actions for which a grant decision has been
rendered. Multiple PDPs may exist in the PM environment.

The PDP obtains the information it needs to validate the access request from the PIP via
the PAP. If an access that involves input/output operations on a physical resource is
granted, the PDP supplies the necessary details to the requesting PEP for locating and
accessing the resource. If denied, only the decision is conveyed back to the PEP. If an
access that involves administrative actions on an abstract resource is granted, the PDP
performs the access and supplies the results to the requesting PEP along with the
decision. The PDP also generates an event describing the access, for eventual processing
by the EPP.

The PDP also performs reference mediation for the EPP on obligations that the EPP has
matched to an event it received. In this situation, accesses that involve multiple
administrative actions must be mediated collectively, and if granted, carried out by the
PDP. The PDP also generates events describing the accesses, for eventual processing by
the EPP.

69

 Policy Information Point. The PIP contains the data structures that define the policy
elements and the relationships between policy elements that collectively constitute the
access control policy enforced by the PM. All changes to the policy occur at the PIP, but
originate from the PAP. The PIP must ensure that transactions issued by the PAP are
processed reliably.

 Resource Access Point. A RAP allows one or more PEPs to gain access to protected
resources. The only method of accessing protected resources is via a RAP. Multiple
RAPs can exist, but each protected resource is accessible only through a single RAP.
The PEP issues a command containing its identifier, the location of the physical resource,
the operation, and any required data to the RAP. The RAP returns data and status
information to the PEP. The RAP does not allow access to resources to any entity other
than a PEP.

 Policy Administration Point. A single PAP manages all access to the contents of the PIP,
similar to the way a RAP serves as a managed access point to protected resources. A
PAP provides read, modify, and write access to the data contained within the PIP (i.e., the
policy configuration), and ensures that access is serialized. A PAP limits the EPP to read
access only, but allows a PDP both read and write access.

 Event Processing Point. A single EPP is responsible for comparing events against event
patterns that have been defined in obligations residing at the PIP. For each event that is
matched, the EPP uses a PDP to perform reference mediation on the associated event
response (i.e., the sequence of administrative actions defined for each obligation), to
carry out the response, if access is granted, and also to generate events describing each
access. The EPP can be viewed as a transaction processing monitor, whose performance
is crucial to the overall effectiveness of the architecture. To avoid contention for
accessing a PDP, one of them can be designated for exclusive use by the EPP and
collocated with it.

The PM model separates the policy expression, represented by the data elements and
relationships maintained in the PIP, from the mechanisms that enforce the policy, contained
mainly in the PEP and PDP, and supported by the PAP and RAP. The EPP can be regarded as an
automation facility for defining administrative actions that must be taken immediately after the
occurrence of certain, predefined, successfully executed access requests. While the EPP is not
needed to express all security policies, for some, such as those that involve separation of duty
constraints, it is essential.

The architecture of the PM lends itself to a range of implementation choices, as mentioned
earlier. One interesting aspect is that the more distributed a system implementation becomes, the
greater the propensity is for race conditions to arise. The main source of contention is that access
request decisions taken by one set of components are carried out by others, all of which are
acting concurrently against shared resources. To complicate matters further, event-driven
administrative actions taken automatically may occur, which also affect the state of shared
resources. Undesired, inconsistent results can ensue unless methods are in place to allow critical
sections of an execution stream to be executed atomically.

70

7.2 Client Applications
A user signs onto the PM from a client system typically through a Graphical User Interface
(GUI). A successful signon opens a user session with the PM environment.

A user can have only a single PM session open at any time. Within a session, a logical view can
be rendered for the user, which displays all of the user’s accessible resources, such as files, e-
mail messages, and work items. As an alternative, the user can be presented with a view of
available resource categories and prompted to select a specific set of accessible resources.
Within either approach, the user launches applications via resource selection and initiates
processes that request access to resources protected by the PM. Changes in policy can affect the
user’s view of accessible resources and must be reflected immediately.

PM-aware applications require the use of a PEP to access protected resources. The PEP provides
an Application Programming Interface (API) for developing PM-compliant applications. As
shown in Figure 25, the PEP API is the only means available for an application to interact with
the PM environment and gain access to protected resources. Alternatively, existing applications
developed without the PM in mind can be adapted for the PM by intercepting access requests at
key points in the code and converting them to calls on the PEP interface, for eventual mediation
by the PDP. The physical location of each object is unknown to the application, but is known to
the PM and is included with each access request that is granted by the PDP. The PEP enforces
the PDP’s decision, granting or rejecting the access to the object from the application’s
processes.

Figure 25: Application’s Perspective of the PM Environment

Applications that conduct administrative actions on policy structures work a bit differently.
Take, for example, a policy manager application developed to allow an administrator to render
part of the PM’s current policy configuration within its domain (e.g., in the form of an
authorization graph), to navigate the configuration, and to create and delete policy elements and
relations between policy elements (i.e., assignments, associations, prohibitions, and obligations).
While such an application would use a PEP as other PM-aware applications do, the requested
administrative actions do not involve protected physical resources and instead, pertain

71

exclusively to abstract resources—the policy structures maintained within the PM environment
at the PIP.

7.3 Security Considerations
The effectiveness of the PM architecture to control access depends on adequately protecting the
data elements and relationships that represent the security policy, and also the PM components
that contain the mechanisms for policy enforcement. It is also critical that the PM components
enforcing policy cannot be bypassed. Potential adversaries may involve more than one
legitimate user working in collaboration to defeat access control to PM protected resources, as
well as non-legitimate external parties. Adversaries may have access to the data paths between
components and be able to eavesdrop on exchanges.

PM entities are trusted parties that must work together closely to ensure reference mediation is
carried out correctly. Authentication protocols enable one entity to prove its claimed identity to
another entity, typically through some cryptographic means. In a distributed system where
several entities of the same type exist (e.g., multiple PDPs), it may be necessary to find an
available entity to use from amongst them. Since the potential for an attacker to masquerade as a
trusted entity exists (e.g., via a man-in-the-middle attack), authentication between PM
components is an important safeguard for verifying that an entity is what it claims to be. In
addition, authentication can prevent PM components from being bypassed by an attacker.
However, authentication protocols are complex, and because of the complexity involved,
implementations can be done incorrectly and result in vulnerabilities such as incorrect
interpretation of credentials.

Distributed entities rely on networks communications to interoperate. Without sufficient
safeguards in place, messages transmitted between PM entities are potentially susceptible to
attack by malicious third parties. Security protocols are complex, which often leads to
implementations containing errors that allow exploitation. Protocols may also contain design
flaws that lend themselves to exploitation. Protocol attacks may involve message replay, content
analysis, deletion, and modification attacks and result in unauthorized disclosure, policy
circumvention, state corruption, violation of privacy, or denial of service. Single-occurrence PM
components such as the PAP can be particularly attractive targets for denial of service attacks,
since they represent choke points in the access control mechanism.

The PEP, PDP, PAP, and other PM components may themselves contain vulnerabilities that
could be exploited to compromise the access control policy and its enforcement by the PM. For
example, race conditions between components, discussed earlier, may result in time-of-
check/time-of-use vulnerabilities. Other components of a distributed system on which the PM
components depend, such as a virtual machine monitor, operating system, or domain-name
system (DNS) resolver, may also be exploited and lead to a policy compromise. Similarly,
systems supporting client applications and also the client applications themselves may contain
vulnerabilities susceptible for exploitation. Even if the PM implementation functions perfectly,
transactions stemming from the application may be forged, or intercepted and modified on the
client system before the PM components are involved.

72

8. References

[Bre89] David F.C. Brewer and Michael J. Nash, The Chinese Wall Security Policy, IEEE
Symposium on Research in Security and Privacy, Oakland, California, pp. 206-214,
May 1-3, 1989.

[Fer05] David F. Ferraiolo, Serban I. Gavrila, Vincent C. Hu, and D. Richard Kuhn,
Composing and Combining Policies Under the Policy Machine, ACM Symposium on
Access Control Models and Technologies (SACMAT) 2005, pp. 11-20, <URL:
https://csrc.nist.gov/staff/Kuhn/sacmat05.pdf>.

[Fer11] David F. Ferraiolo, Vijayalakshmi Atluria, and Serban I. Gavrila, The Policy
Machine: A novel architecture and framework for access control policy specification
and enforcement, Journal of Systems Architecture, Volume 57, Issue 4, April 2011,
pp. 412-424.

[Gra72] G. Scott Graham and Peter J. Denning, Protection: Principles and Practice, AFIPS
Spring Joint Computer Conference, pp. 417-429, May 1972.

[Har76] Michael A. Harrison, Walter L. Ruzzo, and Jeffrey D. Ullman, Protection in
Operating Systems, Communications of the ACM, Volume 19, Number 8, August
1976.

[Hu06] Vincent C. Hu, David F. Ferraiolo, and D. Rick Kuhn, Assessment of Access Control
Systems, Interagency Report (IR) 7316, NIST, September 2006, <URL:
http://csrc.nist.gov/publications/nistir/7316/NISTIR-7316.pdf>.

[Kuh98] D. Rick Kuhn, Role Based Access Control on MLS Systems Without Kernel
Changes, ACM Workshop on Role Based Access Control, October 22, 1998, pp. 25-
32, <URL:
http://csrc.nist.gov/groups/SNS/rbac/documents/design_implementation/kuhn-
98.pdf>.

[NCSC87] A Guide to Understanding Discretionary Access Control in Trusted Systems,
National Computer Security Center, NCSC-TG-003, Version-1, September 30, 1987.

[Osb00]	 Sylvia Osborn, Ravi Sandhu, and Qamar Munawer, Configuring Role-Based Access
Control to Enforce Mandatory and Discretionary Access Control Policies, ACM
Transactions on Information and System Security (TISSEC), Volume 3, Number 2,
May 2000, pp. 85-106, <URL: http://profsandhu.com/journals/tissec/dac00(org).pdf>.

[San92]	 Ravi S. Sandhu, Lattice-Based Enforcement of Chinese Walls, Computers and
Security, Volume 11, Number 8, December 1992, pages 753-763, <URL:
http://profsandhu.com/journals/csec/csec92-cwall-org.pdf>.

73

https://csrc.nist.gov/staff/Kuhn/sacmat05.pdf
http://csrc.nist.gov/publications/nistir/7316/NISTIR-7316.pdf
http://csrc.nist.gov/groups/SNS/rbac/documents/design_implementation/kuhn-98.pdf
http://csrc.nist.gov/groups/SNS/rbac/documents/design_implementation/kuhn-98.pdf
http://profsandhu.com/journals/tissec/dac00(org).pdf
http://profsandhu.com/journals/csec/csec92-cwall-org.pdf

[San94] Ravi Sandhu and Pierangela Samarti, Access Control: Principles and Practice, IEEE
Communications Magazine, Volume 32, Number 9, pages 40-48, September 1994,
<URL: http://profsandhu.com/journals/commun/i94ac(org).pdf>.

[Sal75] Jerome H. Saltzer and Michael D. Schroeder, The Protection of Information in
Computer Systems, pp. 1278-1308, Proceedings of the IEEE, Vol. 63, No. 9,
September 1975.

74

http://profsandhu.com/journals/commun/i94ac(org).pdf

Appendix A—Acronyms

API Application Programming Interface

DA Domain Administrator
DAC Discretionary Access Control
DNS Domain Name System

EPP Event Processing Point

MAC Mandatory Access Control
MS Mail System

PA Principal Authority
PAP Policy Administration Point
PDP Policy Decision Point
PEP Policy Enforcement Point
PIP Policy Information Point
PM Policy Machine

RAP Resource Access Point

SA Sub-domain Administrator
S2A Sub-SA
S3A Sub-S2A

URI Uniform Resource Identifier

XACML eXtensible Access Control Markup Language
XML eXtensible Markup Language

75

Appendix B—Notation

The empty set is denoted by ∅.

The powerset of a set S is the set of all subsets of S, including the empty set, and is denoted by
2S .

A finite sequence in a set S is a function from {1, 2, ..., n} to S for some n > 0. The kth element
is denoted as sk, and the entire sequence as s1, s2, ..., sn.

A list is a linearly ordered, finite collection of items from one or more sets. The kth element is
denoted as lk, and the entire sequence as [l1, l2, ..., ln].

The cardinality of a set S is defined as the number of elements of the set and denoted by |S|.

The union between two sets, S1 and S2, is defined as {x | (x∈S1 or x∈S2) or (x∈S1 and S2)},

and is denoted by S1 ⋃ S2.

The intersection between two sets, S1 and S2, is defined as {x | x∈S1 and x∈S2}, and is denoted
by S1 ⋂ S2.

The Cartesian product or cross product of two sets, S1 and S2, is defined as {(x, y) | x∈S1 and
y∈S2}, and is denoted by S1 × S2.

The relative complement of the set S2 in the set S1, also known as the set theoretic difference
between S1 and S2, is defined as {x | x∈S1 and x∉S2}, and is denoted by S1 – S2.

The absolute complement of a set S, denoted by ̅ ̅S, is the set of elements not in S, but in the
universal set of all elements, U (i.e., S̅ ̅ = U – S). For the notation used in the PM model, U is
equal to PE, the set of all policy elements.

R is a binary relation on a set S, iff R ⊆ S × S.

R is a binary relation from the set S1 to the set S2, iff R ⊆ S1 × S2.

An ordered pair from the relation R is denoted by either (x, y) ∈ R or x R y.

List of Common Symbols:

= equality
≠ inequality
≝ definition

76

 material implication (i.e., implies)
⇔ material equivalence (i.e., iff)
¬ logical negation
∃ existential quantification
∃! uniqueness quantification
∄ existential quantification negation (i.e., ¬∃)
∀ universal quantification
⋀ logical conjunction
⋁ logical disjunction

Precedence among logical operators given in descending order is as follows: ¬, ∀ and ∃,
⋀, ⋁, , ⇔. All operators are right associative.

∅ empty set (i.e., { })
∈ set membership
∉ set membership negation
⊆ subset
⊂ proper subset
⊇ superset
⊃ proper superset
̅ ̅ ̅ absolute complement of a set
– set-theoretic difference
⋃ set-theoretic union
⋂ set-theoretic intersection
x Cartesian product
2S power set of set S
|S| cardinality of set S

→+ the transitive closure of the assignment relation→
→* the reflexive and transitive closure of the assignment relation →
x object range of a policy element x
x complementary object range of a policy element x
x element range of a policy element x
x complementary element range of a policy element x

77

Appendix C—Semantics of Administrative Routines and Commands

All administrative actions are conducted through the use of administrative commands and
routines Administrative routines constitute the range of primitive actions that can be taken
against the policy elements and relationships of the PM and are the means for specifying the
authorization state of a system. Administrative commands are a composition of administrative
routines, which are used to define more complex administrative actions. Administrative routines
are executed on behalf of a user via administrative commands and may also be executed in
response to a recognized event occurrence. This appendix contains a complete list of the core
administrative routines and commands of the PM and their semantic definition.

The semantic description of an administrative routine or command differs from a syntactic
description or programming language representation. The semantic descriptions define the
correct behavior expected of routines and commands, necessary to maintain the security
properties of the PM as it operates and transitions between states. The specifications should not
be interpreted as programming statements, and instead be interpreted as changes to model
structures that occur when a command or routine is correctly invoked. Behavioral aspects other
than security are outside the scope of these descriptions.

Pre- and postconditions are defined for each administrative routine and command. Preconditions
denote requirements. They are expressed as a logical expression that must be satisfied when the
routine or command is invoked. Postconditions denote expectations. They specify properties of
the model that change with the invocation of the routine or command and should be met when
the execution is completed. Postconditions are also expressed as a logical expression.

The preconditions for administrative routines ensure validation that the arguments supplied for
the formal parameters of the routine are of the correct type, and that the basic properties of the
model are observed. One small exception applies regarding the PC-reachability property (i.e.,
for all x in PE, there exists a policy class pc, such that x →* pc). The preconditions for
administrative commands are similar, but in addition, ensure validation that the process involved
in the access has sufficient authorization to carry out the command, and that the PC-reachability
property is maintained consistently.

The following conventions are observed in the semantic descriptions given below:

 Administrative routines and commands are atomic; their effects are indivisible and
uninterruptable.

 The main body of an administrative routine or command specifies state changes for those
model elements and relations that are affected by its execution—the state of any
unspecified element or relation is unaffected and remains unchanged.

 Model elements and relations, whose state changes with the execution of an
administrative routine or command, are indicated with the prime symbol.

78

 All specified preconditions must be satisfied for the change of state described in the body
of the routine or command to occur. More simply stated, no state changes occur unless
the preconditions are satisfied.

 Comments may appear in the semantic descriptions; single line comments begin with a
double backslash, and multiline comments begin with a backslash followed by an asterisk
and end with an asterisk followed by a backslash.

 The formal parameters of an administrative routine and command serve individually as
either an input or output to the routine or command, but never as both an input and an
output.

To simplify the specification of preconditions, liberities were taken with some of the notation
used; namely, the tuples of a relation are treated as members of a set when the predicate calculus
qualifiers ∃, ∄, and ∀ are applied. For example, a triple of the relation ASSOC has three
elements: a user attribute, a set of operations, and an object attribute. To specify that a triple (a,
b, c) of ASSOC with the property a=x does not exist would normally be done as follows:

∀a∈UA, ∀b∈Ops, ∀c∈OA: ¬((a, b, c) ∈ ASSOC ⋀ a = x)
Instead, this formula is expressed in the preconditions as follows:

∄(a, b, c) ∈ ASSOC: a = x
The qualifier in the latter shorthand expression more succinctly denotes both the set membership
of each element of the tuple and the tuple membership (or rather, the lack thereof) with the
relation. Full predicate calculus notational equivalencies of shorthand expressions involving an
existential or universal quantifier (i.e., ∄ in the above formula replaced by ∃ or ∀ respectively)
also exist.

C.1 Element Creation Routines
The routines below specify the semantics for the routines used to create the various policy
elements of the model. No preconditions apply, since variables supplied as arguments pertain
only to output parameters. The postconditions specified for these routines ensure that any
variable returned as a formal parameter of a routine is valid.

Instantiation(set), returns id
{
/* a semantic function that denotes the allocation of an instance of an entity
comparable to members of a specified set and returns a unique identifier for
the entity */ 9

}

9 Unique system-generated identifiers are essential for determining whether two references pertain to the same entity. This is
particularly in situations where the name of an entity can change or an entity can be referenced in multiple ways. To avoid covert
channels, the pattern of successive identifiers generated should not be predictable.

79

CreateU(x)
preconditions: none

{
x′ = Instantiation (U) // x′ is the unique identifier of the new policy element
U′ = U ⋃ {x′}
}

postconditions: x′ ∈ U′

CreateUA(x)
preconditions: none

{

x′ = Instantiation(UA)

UA′ = UA ⋃ {x′}

}

postconditions: x′ ∈ UA′

CreateO(x)
preconditions: none

{

x′ = Instantiation(O)

O′ = O ⋃ {x′}

OA′ = OA ⋃ {x′}

}

postconditions: x′ ∈ O′ ⋀ x′ ∈ OA′

CreateOA(x)
preconditions: none

{

x′ = Instantiation(OA)

OA′ = OA ⋃ {x′}

}

postconditions: x′ ∈ OA′

CreatePC(x)
preconditions: none

{

x′ = Instantiation(PC)

PC′ = PC ⋃ {x′}

}

postconditions: x′ ∈ PC′

CreateP(x)
preconditions: none

{

x′ = Instantiation(P)

P′ = P ⋃ {x′}

80

}

postconditions: x′ ∈ P′

C.2 Element Deletion Routines
The routines below specify the semantics for the routines used to delete the various policy
elements of the model. Besides ensuring that the arguments supplied for the formal parameters
of a routine are valid, the preconditions specified for these routines also ensure that certain model
properties are preserved. The policy element in question must not be involved in any defined
relation. For example, if a user attribute is involved in an assignment, association, or prohibition
relation, the attribute cannot be deleted until it is no longer involved in the relation.

Disinstantiation(x), returns nihil
{
/* a semantic function that denotes the deallocation of an instance of an entity
with the identifier x */
}

DeleteU(x)
preconditions: x ∈ U ⋀ ∄y ∈ UA: x →+ y ⋀

// ensure no processes that operate on behalf of x exist

∄p ∈ P: x = process_user(p) ⋀

// ensure no assignments stemming from the user exist

∄(a, b) ∈ →: x = a

// ensure no prohibitions exist that involve the user

∄(a, b, c, d) ∈ U_deny_disjunctive: a = x ⋀

∄(a, b, c, d) ∈ U_deny_conjunctive: a = x ⋀

∄(a, b, c, d) ∈ U_Admin_deny_disjunctive: a = x ⋀

∄(a, b, c, d) ∈ U_Admin_deny_conjunctive: a = x

{

U′ = U – {x}

x′ = Disinstantiation(x)

}

postconditions: x ∉ U′

DeleteUA(x)
preconditions: x ∈ UA ⋀

// ensure no assignments involving the user attribute exist

∄y ∈ UA: x →+ y ⋀ ∄y ∈ PC: x →+ y ⋀ ∄y ∈ UA: y →+ x ⋀

// an alternative expression for the above: ∄(a, b) ∈ →: (x = a ⋁ x = b) ⋀

// no associations or prohibitions must exist in which the ua involved

∄(a, b, c) ∈ ASSOC: x = a ⋀

∄(a, b, c) ∈ Admin_ASSOC: x = a ⋀

∄(a, b, c, d) ∈ UA_deny_disjunctive: x = a ⋀

∄(a, b, c, d) ∈ UA_deny_conjunctive: x = a ⋀

∄(a, b, c, d) ∈ UA_Admin_deny_disjunctive: x = a ⋀

∄(a, b, c, d) ∈ UA_Admin_deny_conjunctive: x = a

81

{

UA′ = UA – {x}

x′ = Disinstantiation(x)

}

postconditions: x ∉ UA′

DeleteO(x)
preconditions: x ∈ O ⋀ x ∈ OA ⋀
∄y ∈ OA: x →+ y ⋀ ∄y ∈ PC: x →+ y ⋀ ∄y ∈ OA: y →+ x
∄(a, b, c) ∈ ASSOC: x = c ⋀
∄(a, b, c) ∈ Admin_ASSOC: x = c ⋀
// ensure no prohibitions exist that involve the object attribute
∄(a, b, c, d) ∈ U_deny_disjunctive: (x ∈ c ⋁ x ∈ d) ⋀
∄(a, b, c, d) ∈ P_deny_disjunctive: (x ∈ c ⋁ x ∈ d) ⋀
∄(a, b, c, d) ∈ U_deny_conjunctive: (x ∈ c ⋀ x ∈ d) ⋀
∄(a, b, c, d) ∈ P_deny_conjunctive: (x ∈ c ⋀ x ∈ d) ⋀
∄(a, b, c, d) ∈ U_Admin_deny_disjunctive: (x ∈ c ⋁ x ∈ d) ⋀
∄(a, b, c, d) ∈ P_Admin_deny_disjunctive: (x ∈ c ⋁ x ∈ d) ⋀
∄(a, b, c, d) ∈ U_Admin_deny_conjunctive: (x ∈ c ⋀ x ∈ d) ⋀
∄(a, b, c, d) ∈ P_Admin_deny_conjunctive: (x ∈ c ⋀ x ∈ d) ⋀
∄(a, b, c, d) ∈ UA_deny_disjunctive: (x ∈ c ⋁ x ∈ d) ⋀
∄(a, b, c, d) ∈ UA_deny_conjunctive: (x ∈ c ⋀ x ∈ d) ⋀
∄(a, b, c, d) ∈ UA_Admin_deny_disjunctive: (x ∈ c ⋁ x ∈ d) ⋀
∄(a, b, c, d) ∈ UA_Admin_deny_conjunctive: (x ∈ c ⋀ x ∈ d)

{

O′ = O – {x}

OA′ = OA – {x}

x′ = Disinstantiation(x)

}

postconditions: x ∉ O′ ⋀ x ∉ OA′

DeleteOA(x)
preconditions: x ∈ OA ⋀ x ∉ O ⋀
∄y ∈ OA: x →+ y ⋀ ∄y ∈ PC: x →+ y ⋀ ∄y ∈ OA: y →+ x ⋀
∄(a, b, c) ∈ ASSOC: x = c ⋀
∄(a, b, c) ∈ Admin_ASSOC: x = c ⋀
// ensure no prohibitions exist that involve the object attribute
∄(a, b, c, d) ∈ U_deny_disjunctive: (x ∈ c ⋁ x ∈ d) ⋀
∄(a, b, c, d) ∈ P_deny_disjunctive: (x ∈ c ⋁ x ∈ d) ⋀
∄(a, b, c, d) ∈ U_deny_conjunctive: (x ∈ c ⋀ x ∈ d) ⋀
∄(a, b, c, d) ∈ P_deny_conjunctive: (x ∈ c ⋀ x ∈ d) ⋀
∄(a, b, c, d) ∈ U_Admin_deny_disjunctive: (x ∈ c ⋁ x ∈ d) ⋀
∄(a, b, c, d) ∈ P_Admin_deny_disjunctive: (x ∈ c ⋁ x ∈ d) ⋀
∄(a, b, c, d) ∈ U_Admin_deny_conjunctive: (x ∈ c ⋀ x ∈ d) ⋀
∄(a, b, c, d) ∈ P_Admin_deny_conjunctive: (x ∈ c ⋀ x ∈ d) ⋀
∄(a, b, c, d) ∈ UA_deny_disjunctive: (x ∈ c ⋁ x ∈ d) ⋀

82

∄(a, b, c, d) ∈ UA_deny_conjunctive: (x ∈ c ⋀ x ∈ d) ⋀

∄(a, b, c, d) ∈ UA_Admin_deny_disjunctive: (x ∈ c ⋁ x ∈ d) ⋀

∄(a, b, c, d) ∈ UA_Admin_deny_conjunctive: (x ∈ c ⋀ x ∈ d)

{

OA′ = OA – {x}

x′ = Disinstantiation(x)

}

postconditions: x ∉ OA′

DeletePC(x)
preconditions: x ∈ PC ⋀ ∄y ∈ PE: y →+ x

{

PC′ = PC – {x}

x′ = Disinstantiation(x)

}

postconditions: x ∉ PC′

DeleteP(x)
preconditions: x ∈ P ⋀ ∄u ∈ U: u = process_user(x) ⋀

// ensure no prohibitions exist that involve the process ⋀

∄(a, b, c, d) ∈ P_deny_disjunctive: a = x ⋀

∄(a, b, c, d) ∈ P_deny_conjunctive: a = x ⋀

∄(a, b, c, d) ∈ P_Admin_deny_disjunctive: a = x ⋀

∄(a, b, c, d) ∈ P_Admin_deny_conjunctive: a = x

{

P′ = P – {x}

x′ = Disinstantiation(x)

}

postconditions: x ∉ P′

C.3 Relation Formation Routines
Besides ensuring that the arguments supplied for the formal parameters of a routine are valid, the
preconditions specified below must also maintain certain model properties. An attempt to add
tuple that already exists to a relation presents no problem, due to the set operation involved.

CreateAssign(x, y)
preconditions: ((x ∈ U ⋀ y ∈ UA) ⋁ (x ∈ UA ⋀ y ∈ UA) ⋁ (x ∈ UA ⋀ y ∈ PC) ⋁
(x ∈ O ⋀ y ∈ OA) ⋁ (x ∈ OA ⋀ y ∈ OA) ⋁ (x ∈ OA ⋀ y ∈ PC)) ⋀ x ≠ y ⋀

∄a sequence s1,s2,...,sn in PE: (n > 1 ⋀ sn→s1 ⋀ (si→si+1 for i = 1,2,...,n-1))

{

→′ = → ⋃ {(x, y)} // union op precludes use of duplicate assignment precondition
}

postconditions: (x, y) ∈ →′

83

CreatePUmapping(x, y)
preconditions: x ∈ P ⋀ y ∈ U

{

process_user′ = process_user ⋃ {(x, y)}

}

postconditions: (x, y) ∈ process_user′

CreateAssoc(x, y, z)
preconditions: x ∈ UA ⋀ y ∈ Ops ⋀ z ∈ OA

{

ASSOC′ = ASSOC ⋃ {(x, y, z)}

}

postconditions: (x, y, z) ∈ ASSOC′

CreateAdminAssoc(x, y, z)
preconditions: x ∈ UA ⋀ y ∈ AOps ⋀ z ∈ PE

{

Admin_ASSOC′ = Admin_ASSOC ⋃ {(x, y, z)}

}

postconditions: (x, y, z) ∈ Admin_ASSOC′

CreateU_deny_disjunctive(w, x, y, z)
preconditions: w ∈ U ⋀ x ∈ Ops ⋀ y ∈ OAs ⋀ z ∈ OACs

{

U_deny_disjunctive′ = U_deny_disjunctive ⋃ {(w, x, y, z)}

}

postconditions: (w, x, y, z) ∈ U_deny_disjunctive′

CreateP_deny_disjunctive(w, x, y, z)
preconditions: w ∈ P ⋀ x ∈ Ops ⋀ y ∈ OAs ⋀ z ∈ OACs

{

P_deny_disjunctive′ = P_deny_disjunctive ⋃ {(w, x, y, z)}

}

postconditions: (w, x, y, z) ∈ P_deny_disjunctive′

CreateUA_deny_disjunctive(w, x, y, z)
preconditions: w ∈ UA ⋀ x ∈ Ops ⋀ y ∈ OAs ⋀ z ∈ OACs

{

UA_deny_disjunctive′ = UA_deny_disjunctive ⋃ {(w, x, y, z)}

}

postconditions: (w, x, y, z) ∈ UA_deny_disjunctive′

CreateU_Admin_deny_disjunctive(w, x, y, z)
preconditions: w ∈ U ⋀ x ∈ Ops ⋀ y ∈ OAs ⋀ z ∈ OACs

{
U_Admin_deny_disjunctive′ = U_Admin_deny_disjunctive ⋃ {(w, x, y, z)}

84

}

postconditions: (w, x, y, z) ∈ U_Admin_deny_disjunctive′

CreateP_Admin_deny_disjunctive(w, x, y, z)
preconditions: w ∈ P ⋀ x ∈ Ops ⋀ y ∈ OAs ⋀ z ∈ OACs

{

P_Admin_deny_disjunctive′ = P_Admin_deny_disjunctive ⋃ {(w, x, y, z)}

}

postconditions: (w, x, y, z) ∈ P_Admin_deny_disjunctive′

CreateUA_Admin_deny_disjunctive(w, x, y, z)
preconditions: w ∈ UA ⋀ x ∈ Ops ⋀ y ∈ OAs ⋀ z ∈ OACs

{

UA_Admin_deny_disjunctive′ = UA_Admin_deny_disjunctive ⋃ {(w, x, y, z)}

}

postconditions: (w, x, y, z) ∈ UA_Admin_deny_disjunctive′

The conjunctive forms of user, user attribute, and process-based prohibition formation are
defined similarly to their disjunctive counterparts above.

CreateOblig(x, y, z)
preconditions: x ∈ U ⋀ y ∈ Pattern ⋀ z ∈ Response

{

Oblig′ = Oblig ⋃ {(x, y, z)}

}

postconditions: (x, y, z) ∈ Oblig′

CreateAdminOblig(x, y, z)
preconditions: x ∈ U ⋀ y ∈ Pattern ⋀ z ∈ Response

{

AdminOblig′ = AdminOblig ⋃ {(x, y, z)}

}

postconditions: (x, y, z) ∈ AdminOblig′

C.4 Relation Rescindment Routines
Besides ensuring that the arguments supplied for the formal parameters of a routine are valid, the
preconditions must also maintain certain model properties. An attempt to delete a tuple that does
not exist from a relation presents no problem, due to the set operation involved.

DeleteAssign(x, y)
preconditions: ((x ∈ U ⋀ y ∈ UA) ⋁ (x ∈ UA ⋀ y ∈ UA) ⋁ (x ∈ UA ⋀ y ∈ PC) ⋁

(x ∈ O ⋀ y ∈ OA) ⋁ (x ∈ OA ⋀ y ∈ OA) ⋁ (x ∈ OA ⋀ y ∈ PC))

{

→′ = → – {(x, y)}
}

postconditions: (x, y) ∉ →′

85

DeletePUmapping(x, y)
preconditions: x ∈ P ⋀ y ∈ U

{

process_user′ = process_user – {(x, y)}

}

postconditions: (x, y) ∉ process_user ′

DeleteAssoc(x, y, z)
preconditions: x ∈ UA ⋀ y ∈ Ops ⋀ z ∈ OA

{

ASSOC ′ = ASSOC – {(x, y, z)}

}

postconditions: (x, y, z) ∉ ASSOC ′

DeleteAdminAssoc(x, y, z)
preconditions: x ∈ UA ⋀ y ∈ AOps ⋀ z ∈ PE

{

Admin_ASSOC′ = Admin_ASSOC – {(x, y, z)}

}

postconditions: (x, y, z) ∉ Admin_ASSOC′

DeleteU_deny_disjunctive(w, x, y, z)
preconditions: w ∈ U ⋀ x ∈ Ops ⋀ y ∈ OAs ⋀ z ∈ OACs

{
U_deny_disjunctive′ = U_deny_disjunctive – {(w, x, y, z)}
}

postconditions: (w, x, y, z) ∉ U_deny_disjunctive′

DeleteP_deny_disjunctive(w, x, y, z)
preconditions: w ∈ P ⋀ x ∈ Ops ⋀ y ∈ OAs ⋀ z ∈ OACs

{
P_deny_disjunctive′ = P_deny_disjunctive – {(w, x, y, z)}
}

postconditions: (w, x, y, z) ∉ P_deny_disjunctive′

DeleteUA_deny_disjunctive(w, x, y, z)
preconditions: w ∈ UA ⋀ x ∈ Ops ⋀ y ∈ OAs ⋀ z ∈ OACs

{
UA_deny_disjunctive′ = UA_deny_disjunctive – {(w, x, y, z)}
}

postconditions: (w, x, y, z) ∉ UA_deny_disjunctive′

DeleteU_Admin_deny_disjunctive(w, x, y, z)
preconditions: w ∈ U ⋀ x ∈ Ops ⋀ y ∈ OAs ⋀ z ∈ OACs

{

86

U_Admin_deny_disjunctive′ = U_Admin_deny_disjunctive – {(w, x, y, z)}

}

postconditions: (w, x, y, z) ∉ U_Admin_deny_disjunctive′

DeleteP_Admin_deny_disjunctive(w, x, y, z)
preconditions: w ∈ P ⋀ x ∈ Ops ⋀ y ∈ OAs ⋀ z ∈ OACs

{

P_Admin_deny_disjunctive′ = P_Admin_deny_disjunctive – {(w, x, y, z)}

}

postconditions: (w, x, y, z) ∉ P_Admin_deny_disjunctive′

DeleteUA_Admin_deny_disjunctive(w, x, y, z)
preconditions: w ∈ UA ⋀ x ∈ Ops ⋀ y ∈ OAs ⋀ z ∈ OACs

{

UA_Admin_deny_disjunctive′ = UA_Admin_deny_disjunctive – {(w, x, y, z)}

}

postconditions: (w, x, y, z) ∉ UA_Admin_deny_disjunctive′

The conjunctive forms of user, user attribute, and process-based prohibition rescindment are
defined similarly to their disjunctive counterparts above.

DeleteOblig(x, y, z)
preconditions: x ∈ U ⋀ y ∈ Conditions ⋀ z ∈ Response

{

OBLIG′ = OBLIG – {(x, y, z)}

}

postconditions: (x, y, z) ∉ OBLIG′

DeleteAdminOblig(x, y, z)
preconditions: x ∈ U ⋀ y ∈ Pattern ⋀ z ∈ Response

{

Admin_OBLIG′ = Admin_OBLIG – {(x, y, z)}

}

postconditions: (x, y, z) ∉ Admin_OBLIG′

C.5 Relation Formation Commands
Besides ensuring that the arguments supplied for the formal parameters of a command are valid,
the preconditions ensure that sufficient authority is held by the process attempting the access,
including the absence of any prohibitions.10 That is, reference mediation must be successfully
carried out as a prerequisite to executing the body of an administrative command. Note that

10 In modeling administrative commands, the process attempting access is represented as the first parameter of the command. It
could have been modeled instead by eliminating the parameter and using in its place a semantic function (e.g., getProcessID()) that
denotes the retrieval of the identifier of the process in question.

87

http:prohibitions.10

individual access rights beginning with the prefixes create- and delete- are represented by
constants in the precondition formulas. That is, access rights are specified as text strings
associated with the preconditions of administrative commands.

CreateUserAttributeInPolicyClass(p, x, pc)
preconditions: p ∈ P ⋀ pc ∈ PC ⋀
(create-ua, pc) ∈ APCap(p) ⋀ (create-uapc, pc) ∈ APCap(p) ⋀ // holds basic authorization
(p, create-ua, pc) ∈ NoDeny ⋀ (p, create-uapc, pc) ∈ NoDeny) // no prohibitions apply

{

CreateUA(x) // routine returns x; UA′ = UA ⋃ {x}

CreateAssign(x, pc) // →′ = → ⋃ {(x, pc)}

}

postconditions: x ∈ UA′ ⋀ (x, pc) ∈ →′

AssignUserAttributeToPolicyClass(p, ua, pc)
preconditions: p ∈ P ⋀ pc ∈ PC ⋀ ua ∈ UA ⋀ (ua, pc) ∉ → ⋀

(((create-uapc, pc) ∈ APCap(p) ⋀ ua →+ pc ⋀ (p, create-uapc, pc) ∈ NoDeny) ⋁

((create-uapc-from, ua), (create-uapc-to, pc) ∈ APCap(p) ⋀

(p, create-uapc-from, ua), (p, create-uapc-to, pc) ∈ NoDeny))

{

CreateAssign(ua, pc)

}

postconditions: (ua, pc) ∈ →′

CreateUserAttributeInUserAttribute(p, x, ua)
preconditions: p ∈ P ⋀ ua ∈ UA ⋀

(create-ua, ua), (create-uaua, ua) ∈ APCap(p) ⋀

(p, create-ua, ua), (p, create-uaua, ua) ∈ NoDeny

{

CreateUA(x)

CreateAssign(x, ua)

}

postconditions: x ∈ UA′ ⋀ (x, ua) ∈ →′

AssignUserAttributeToUserAttribute(p, uafrom, uato)
preconditions: p ∈ P ⋀ uafrom, uato ∈ UA ⋀ (uafrom, uato) ∉ → ⋀

(((create-uaua, uato) ∈ APCap(p) ⋀ (p, create-uaua, uato) ∈ NoDeny ⋀

∃x ∈ PC: (uafrom →+ x ⋀ uato →+ x)) ⋁

((create-uaua-from, uafrom), (create-uaua-to, uato) ∈ APCap(p) ⋀

(p, create-uaua-from, uafrom), (p, create-uaua-to, uato) ∈ NoDeny))

{

CreateAssign(uafrom, uato)

}

postconditions: (uafrom, uato) ∈ →′

88

CreateUserInUserAttribute(p, x, ua)
preconditions: p ∈ P ⋀ ua ∈ UA ⋀

(create-u, ua), (create-uua, ua) ∈ APCap(p) ⋀

(p, create-u, ua), (p, create-uua, ua) ∈ NoDeny

{

CreateU(x)

CreateAssign(x, ua)

}

postconditions: x ∈ U′ ⋀ (x, ua) ∈ →′

AssignUserToUserAttribute(p, u, ua)
preconditions: p ∈ P ⋀ u ∈ U ⋀ ua ∈ UA ⋀ (u, ua) ∉ → ⋀

(((create-uua, ua) ∈ APCap(p) ⋀ ∃x ∈ PC: (u →+ x ⋀ ua →+ x)) ⋁

(create-uua-from, u), (create-uua-to, ua) ∈ APCap(p)) ⋀

(p, create-uua-from, x), (p, create-uua-to, z) ∈ NoDeny

{

CreateAssign(u, ua)

}

postconditions: (u, ua) ∈ →′

Relation formation commands for object and object attribute assignments are defined similarly to
those given above for user and user attributes.

CreateAssociation(p, x, y, z)
preconditions: p ∈ P ⋀ x ∈ UA ⋀ y ∈ Ops ⋀ z ∈ OA ⋀ (x, y, z) ∉ ASSOC ⋀

(create-assoc-from, x), (create-assoc-to, z) ∈ APCap(p) ⋀ // holds basic authorization

(p, create-assoc-from, x), (p, create-assoc-to, z) ∈ NoDeny // no prohibitions apply

{

CreateAssoc(x, y, z)

}

postconditions: (x, y, z) ∈ ASSOCʹ′

CreateAdministrativeAssociation(p, x, y, z)
preconditions: p ∈ P ⋀ x ∈ UA ⋀ y ∈ AOps ⋀ z ∈ OA ⋀ (x, y, z) ∉ Admin_ASSOC ⋀
(create-admin-assoc-from, x), (create-admin-assoc-to, z) ∈ APCap(p) ⋀
(p, create-admin-assoc-from, x), (p, create-admin-assoc-to, z) ∈ NoDeny

{

CreateAdminAssoc(x, y, z)

}

postconditions: (x, y, z) ∈ Admin_ASSOCʹ′

CreateDisjunctiveUserProhibition(p, w, x, y, z)
preconditions: p ∈ P ⋀ w ∈ U ⋀ x ∈ Ops ⋀ y ∈ OAs ⋀ z ∈ OACs ⋀

(w, x, y, z) ∉ U_deny_disjunctive ⋀ (create-deny-from, w) ∈ APCap(p) ⋀

(p, create-deny-from, w) ∈ NoDeny ⋀

∀oa ∈ OAs:((create-deny-to, oa) ∈ APCap(p) ⋀ (p, create-deny-to, oa) ∈ NoDeny) ⋀

89

∀oac ∈ OACs:((create-deny-to, oac) ∈ APCap(p) ⋀ (p, create-deny-to, oac) ∈ NoDeny)
{
CreateU_deny_disjunctive(w, x, y, z)
}

postconditions: (w, x, y, z) ∈ U_deny_disjunctive′

CreateDisjunctiveProcessProhibition(p, w, x, y, z)
preconditions: p, w ∈ P ⋀ x ∈ Ops ⋀ y ∈ OAs ⋀ z ∈ OACs ⋀
(w, x, y, z) ∉ P_deny_disjunctive ⋀ (create-deny-from, w) ∈ APCap(p) ⋀
(p, create-deny-from, w) ∈ NoDeny ⋀
∀oa ∈ OAs:((create-deny-to, oa) ∈ APCap(p) ⋀ (p, create-deny-to, oa) ∈ NoDeny) ⋀
∀oac ∈ OACs:((create-deny-to, oac) ∈ APCap(p) ⋀ (p, create-deny-to, oac) ∈ NoDeny)

{

CreateP_deny_disjunctive(w, x, y, z)

}

postconditions: (w, x, y, z) ∈ P_deny_disjunctive′

CreateDisjunctiveUserAttributeProhibition(p, w, x, y, z)
preconditions: p ∈ P ⋀ w ∈ UA ⋀ x ∈ Ops ⋀ y ∈ OAs ⋀ z ∈ OACs ⋀
(w, x, y, z) ∉ UA_deny_disjunctive ⋀ (create-deny-from, w) ∈ APCap(p) ⋀
(p, create-deny-from, w) ∈ NoDeny ⋀
∀oa ∈ OAs:((create-deny-to, oa) ∈ APCap(p) ⋀ (p, create-deny-to, oa) ∈ NoDeny) ⋀
∀oac ∈ OACs:((create-deny-to, oac) ∈ APCap(p) ⋀ (p, create-deny-to, oac) ∈ NoDeny)

{

CreateUA_deny_disjunctive(w, x, y, z)

}

postconditions: (w, x, y, z) ∈ UA_deny_disjunctive′

CreateAdministrativeDisjunctiveUserProhibition(p, w, x, y, z)
preconditions: p ∈ P ⋀ w ∈ U ⋀ x ∈ AOps ⋀ y ∈ OAs ⋀ z ∈ OACs ⋀
(w, x, y, z) ∉ U_Admin_deny_disjunctive ⋀ (create-admin-deny-from, w) ∈ APCap(p) ⋀
(p, create-admin-deny-from, w) ∈ NoDeny ⋀
∀oa ∈ OAs:((create-admin-deny-to, oa) ∈ APCap(p) ⋀
(p, create-admin-deny-to, oa) ∈ NoDeny) ⋀
∀oac ∈ OACs:((create-admin-deny-to, oac) ∈ APCap(p) ⋀
(p, create-admin-deny-to, oac) ∈ NoDeny)

{

CreateU_Admin_deny_disjunctive(w, x, y, z)

}

postconditions: (w, x, y, z) ∈ U_Admin_deny_disjunctive′

CreateAdministrativeDisjunctiveProcessProhibition(p, w, x, y, z)
preconditions: p, w ∈ P ⋀ x ∈ Ops ⋀ y ∈ OAs ⋀ z ∈ OACs ⋀
(w, x, y, z) ∉ P_Admin_deny_disjunctive ⋀ (create-admin-deny-from, w) ∈ APCap(p) ⋀
(p, create-admin-deny-from, w) ∈ NoDeny ⋀
∀oa ∈ OAs:((create-admin-deny-to, oa) ∈ APCap(p) ⋀

90

(p, create-admin-deny-to, oa) ∈ NoDeny) ⋀

∀oac ∈ OACs:((create-admin-deny-to, oac) ∈ APCap(p) ⋀

(p, create-admin-deny-to, oac) ∈ NoDeny)

{

CreateP_Admin_deny_disjunctive(w, x, y, z)

}

postconditions: (w, x, y, z) ∈ P_Admin_deny_disjunctive′

CreateAdministrativeDisjunctiveUserAttributeProhibition(p, w, x, y, z)
preconditions: p ∈ P ⋀ w ∈ UA ⋀ x ∈ AOps ⋀ y ∈ OAs ⋀ z ∈ OACs ⋀
(w, x, y, z) ∉ UA_Admin_deny_disjunctive ⋀ (create-admin-deny-from, w) ∈ APCap(p) ⋀
(p, create-admin-deny-from, w) ∈ NoDeny ⋀
∀oa ∈ OAs:((create-admin-deny-to, oa) ∈ APCap(p) ⋀
(p, create-admin-deny-to, oa) ∈ NoDeny) ⋀
∀oac ∈ OACs:((create-admin-deny-to, oac) ∈ APCap(p) ⋀
(p, create-admin-deny-to, oac) ∈ NoDeny)

{

CreateUA_Admin_deny_disjunctive(w, x, y, z)

}

postconditions: (w, x, y, z) ∈ UA_Admin_deny_disjunctive′

The conjunctive forms of user, user attribute, and process-based prohibition formation are
defined similarly to their disjunctive counterparts above.

EvalPattern(eventpattern), returns Boolean
{
/* A semantic function that designates the result of an evaluation of the correctness
of a logical expression that describes an event pattern involving the policy elements
and relations of the PM (provided as an input string). The syntax of the logical
expression and the details of the evaluation algorithm are not prescribed by the PM,
but ideally should be capable of expressing and checking first-order predicate calculus
formulas. */
}

EvalResponse(response), returns Boolean
{
/* A semantic function that designates the result of an evaluation of the correctness
of the syntax of an obligation’s response (provided as an input string). The syntax
of the response and its constituent administrative routine invocations and the details
of the evaluation algorithm are not prescribed by the PM. */
}

Note Concerning Obligations:

Obligations have unique characteristics that distinguish them from other relations. The
logical expression of the event pattern cannot be fully evaluated at creation time, since

91

variables used in the expression may refer to the value of items in the event context or to
policy elements and relations that may or may not exist at match time. However, some
syntax checks can be made to filter out incorrect expressions and verify that a string
supplied as an event pattern is well-formed with respect to its respective grammar. A
similar situation applies to the expression of the obligation response and to the arguments
and invocation of the administrative routines that make up the response.

The creation of obligations is modeled with two administrative commands:
CreateObligation and CreateAdministrativeObligation. The preconditions for each require
that the event pattern supplied meets the formal grammar rules for the language used to
specify logical expressions (i.e., the EvalPattern function returns True). Similarly, the
preconditions for each also require that the response meets the formal grammar rules for
the language used to specify administrative routine invocations (i.e., the EvalResponse
function returns True). The semantics for these routines describe the preservation of the
partially checked event pattern and response statements, for later use in event context
matching and response initiation. The user for which the obligation is created is also
preserved to allow, at the time a match to the obligation occurs, verification that the user
has sufficient authorization to execute the response.

Because obligation event patterns and responses fall largely outside the model
specification, it is not possible to place restrictions on model elements that affect the
authorization needed to define an obligation. The authorization to create obligations is
essentially an all or none proposition, since the scope of user’s authorization cannot be
limited to specific elements of policy. An association that grants authority to form
obligations with respect to a specific policy element, also grants authority to form
obligations with any other policy element.

CreateObligation(x, y, z)
/* The pattern of an obligation created with this command will be matched only when an
event for a read or write operation occurs. */
preconditions: x ∈ P ⋀ y ∈ Pattern ⋀ z ∈ Response ⋀
(process_user(x), y, z) ∉ OBLIG ⋀ EvalPattern(y) ⋀ EvalResponse(z) ⋀
// ensure that the process has authorization to create the obligation
∃pe ∈ PEs: ((create-deny, pe) ∈ PCap(p) ⋀ (p, create-deny, pe) ∈ NoDeny)

{

CreateOblig(process_user(x), y, z)

}

postconditions: (process_user(x), y, z) ∈ OBLIG′

CreateAdministrativeObligation(x, y, z)
/* The pattern of an administrative obligation created with this command will be matched
only when an event for an administrative action occurs. */
preconditions: x ∈ P ⋀ y ∈ Pattern ⋀ z ∈ Response ⋀
(process_user(x), y, z) ∉ Admin_OBLIG ⋀ EvalPattern(y) ⋀ EvalResponse(z) ⋀
// ensure that the process has authorization to create the obligation
∃pe ∈ PEs: ((create-admin-deny, pe) ∈ PCap(p) ⋀ (p, create-admin-deny, pe) ∈ NoDeny)

{

CreateAdminOblig(process_user(x), y, z)

}

postconditions: (process_user(x), y, z) ∈ Admin_OBLIG′

92

C.6 Relation Rescindment Commands
Besides ensuring that the arguments supplied for the formal parameters of a command are valid,
the preconditions ensure that sufficient authority is held by the process attempting the access,
including the absence of prohibitions. As in the previous section, individual access rights
beginning with the prefixes create- and delete- are represented by constants in the precondition
formulas.

For commands that delete assignment between policy elements, the preconditions also ensure
that the contained policy element is not left isolated. Note that for rescindment of relations to
proceed correctly, the following rule must be observed: before attempting deletion of a policy
element along with an associated assignment, any outstanding associations or prohibitions must
first be deleted.

DeleteUserInUserAttribute(p, u, ua)
/* check type of supplied variables, that an assignment exists, and that sufficient authority is
held to delete both the assignment and the contained u */
preconditions: p ∈ P ⋀ u ∈ U ⋀ ua ∈ UA ⋀ (u, ua) ∈ → ⋀ // verify input variables
(delete-u, ua) ∈ APCap(p) ⋀ (p, delete-u, ua) ∈ NoDeny ⋀ // verify authority exists
(((delete-uua, ua) ∈ APCap(p) ⋀ (p, delete-uua, ua) ∈ NoDeny)) ⋁
((delete-uua-from, u), (delete-uua-to, ua) ∈ APCap(p) ⋀
(p, delete-uua-from, u), (p, delete-uua-to, ua) ∈ NoDeny))

{

DeleteAssign(u, ua)

DeleteU(u) // routine fails if any relations exist that involve u

}

postconditions: u ∉ UA′ ⋀ (u, ua) ∉ →′

DisassignUserToUserAttribute(p, u, ua)
/* check the type of supplied variables, that an assignment exists between the uas, that
sufficient authority is held to delete the assignment, and that PC reachability is maintained */
preconditions: p ∈ P ⋀ u ∈ U ⋀ ua ∈ UA ⋀ (u, ua) ∈ → ⋀
∃x ∈ UA: (x ≠ ua ⋀ u →+ x) ⋀ // ensures that u is assigned to some other PE
(((delete-uua, ua) ∈ APCap(p) ⋀ (p, delete-uua, ua) ∈ NoDeny) ⋁
((delete-uua-from, u), (delete-uua-to, ua) ∈ APCap(p) ⋀
(p, delete-uua-from, u), (p, delete-uua-to, ua) ∈ NoDeny))

{

DeleteAssign(u, ua)

}

postconditions: (u, ua) ∉ →′ ⋀ ∃x ∈ PC: u →+ x

DeleteUserAttributeInUserAttribute(p, uafrom, uato)
/* check type of supplied variables, check that an assignment exists between the uas, and
check that sufficient authority is held to delete both the assignment and the contained ua */
preconditions: p ∈ P ⋀ uafrom, uato ∈ UA ⋀ (uafrom, uato) ∈ → ⋀
(delete-ua, uato) ∈ APCap(p) ⋀ (p, delete-ua, uato) ∈ NoDeny ⋀
(((delete-uaua, ua) ∈ APCap(p) ⋀ (p, delete-uaua, uato) ∈ NoDeny) ⋁

93

((delete-uaua-from, uafrom), (delete-uaua-to, uato) ∈ APCap(p) ⋀
(p, delete-uaua-from, uafrom), (p, delete-uaua-to, uato) ∈ NoDeny))

{
DeleteAssign(uafrom, uato)
DeleteUA(uafrom) // routine fails if any relations exist that involve uafrom
}

postconditions: uafrom ∉ UA′ ⋀ (uafrom, uato) ∉ →′

DisassignUserAttributeToUserAttribute(p, uafrom, uato)
/* check the type of supplied variables, that an assignment exists between the uas, that
sufficient authority is held to delete the assignment, and that PC reachability is maintained */
preconditions: p ∈ P ⋀ uafrom, uato ∈ UA ⋀ (uafrom, uato) ∈ → ⋀
∃x ∈ PE: (x ≠ uato ⋀ uafrom → x) ⋀ // ensures that uafrom is assigned to some other PE
(((delete-uaua, uato) ∈ APCap(p) ⋀ (p, delete-uaua, uato) ∈ NoDeny) ⋁
((delete-uaua-from, uafrom), (delete-uaua-to, uato) ∈ APCap(p) ⋀
(p, delete-uaua-from, uafrom), (p, delete-uaua-to, uato) ∈ NoDeny))

{

DeleteAssign(uafrom, uato)

}

postconditions: (uafrom, uato) ∉ →′ ⋀ ∃x ∈ PC: uafrom →+ x

DeleteUserAttributeInPolicyClass(p, ua, pc)
/* check type of supplied variables, check that an assignment exists between the ua and pc,
and that sufficient authority is held to delete both the assignment and the contained ua */
preconditions: p ∈ P ⋀ ua ∈ UA ⋀ pc ∈ PC ⋀ (ua, pc) ∈ → ⋀
(delete-ua, pc) ∈ APCap(p) ⋀ (p, delete-ua, pc) ∈ NoDeny ⋀
(((delete-uapc, pc) ∈ APCap(p) ⋀ (p, delete-uapc, pc) ∈ NoDeny) ⋁
((delete-uapc-from, ua), (delete-uapc-to, pc) ∈ APCap(p) ⋀
(p, delete-uapc-from, ua), (p, delete-uapc-to, pc) ∈ NoDeny))

{
DeleteAssign(ua, pc)
DeleteUA(ua) // routine fails if any relations exist that involve ua
}

postconditions: ua ∉ UA′ ⋀ (ua, pc) ∉ →′

DisassignUserAttributeToPolicyClass(p, ua, pc)
/* check the type of supplied variables, that an assignment exists, that sufficient authority is
held to delete the assignment, and that PC-reachability is maintained*/
preconditions: p ∈ P ⋀ ua ∈ UA ⋀ pc ∈ PC ⋀ (ua, pc) ∈ → ⋀
∃x ∈ PC: (x ≠ pc ⋀ ua →+ x) ⋀ // ensures that the ua can reach some other PC
(((delete-uapc, pc) ∈ APCap(p) ⋀ (p, delete-uapc, pc) ∈ NoDeny) ⋁
((delete-uapc-from, ua), (delete-uapc-to, pc) ∈ APCap(p) ⋀
(p, delete-uapc-from, ua), (p, delete-uapc-to, pc) ∈ NoDeny))

{

DeleteAssign(ua, pc)

94

}

postconditions: (ua, pc) ∉ →′ ⋀ ∃x ∈ PC: ua →+ x
"

Relation recindment commands for object and object attribute assignments are defined similarly
to those given above for user and user attributes.

DeleteAssociation(p, x, y, z)
preconditions: p ∈ P ⋀ x ∈ UA ⋀ y ∈ Ops ⋀ z ∈ OA ⋀ (x, y, z) ∈ ASSOC ⋀

(delete-assoc-from, x), (delete-assoc-to, z) ∈ APCap(p) ⋀

(p, delete-assoc-from, x), (p, delete-assoc-to, z) ∈ NoDeny

{

DeleteAssoc(x, y, z)

}

postconditions: (x, y, z) ∉ ASSOCʹ′

DeleteAdministrativeAssociation(p, x, y, z)
preconditions: p ∈ P ⋀ x ∈ UA ⋀ y ∈ AOps ⋀ z ∈ OA ⋀ (x, y, z) ∈ Admin_ASSOC ⋀
(delete-admin-assoc-from, x), (delete-admin-assoc-to, z) ∈ APCap(p) ⋀
(p, delete-admin-assoc-from, x), (p, delete-admin-assoc-to, z) ∈ NoDeny

{

DeleteAdminAssoc(x, y, z)

}

postconditions: (x, y, z) ∉ Admin_ASSOCʹ′

DeleteDisjunctiveUserProhibition(p, w, x, y, z)
preconditions: p ∈ P ⋀ w ∈ U ⋀ x ∈ Ops ⋀ y ∈ OAs ⋀ z ∈ OACs ⋀
(w, x, y, z) ∈ U_deny_disjunctive ⋀ (delete-deny-from, w) ∈ APCap(p) ⋀
(p, delete-deny-from, w) ∈ NoDeny ⋀
∀oa ∈ OAs:((delete-deny-to, oa) ∈ APCap(p) ⋀ (p, delete-deny-to, oa) ∈ NoDeny) ⋀
∀oac ∈ OACs:((delete-deny-to, oac) ∈ APCap(p) ⋀ (p, delete-deny-to, oac) ∈ NoDeny)

{

DeleteU_deny_disjunctive(w, x, y, z)

}

postconditions: (w, x, y, z) ∉ U_deny_disjunctive′

DeleteDisjunctiveProcessProhibition(p, w, x, y, z)
preconditions: p, w ∈ P ⋀ x ∈ Ops ⋀ y ∈ OAs ⋀ z ∈ OACs ⋀
(w, x, y, z) ∈ P_deny_disjunctive ⋀ (delete-deny-from, w) ∈ APCap(p) ⋀
(p, delete-deny-from, w) ∈ NoDeny ⋀
∀oa ∈ OAs:((delete-deny-to, oa) ∈ APCap(p) ⋀ (p, delete-deny-to, oa) ∈ NoDeny) ⋀
∀oac ∈ OACs:((delete-deny-to, oac) ∈ APCap(p) ⋀ (p, delete-deny-to, oac) ∈ NoDeny)

{

DeleteP_deny_disjunctive(w, x, y, z)

}

postconditions: (w, x, y, z) ∉ P_deny_disjunctive′

95

DeleteDisjunctiveUserAttributeProhibition(p, w, x, y, z)
preconditions: p ∈ P ⋀ w ∈ UA ⋀ x ∈ Ops ⋀ y ∈ OAs ⋀ z ∈ OACs ⋀
(w, x, y, z) ∈ UA_deny_disjunctive ⋀ (delete-deny-from, w) ∈ APCap(p) ⋀
(p, delete-deny-from, w) ∈ NoDeny ⋀
∀oa ∈ OAs:((delete-deny-to, oa) ∈ APCap(p) ⋀ (p, delete-deny-to, oa) ∈ NoDeny) ⋀
∀oac ∈ OACs:((delete-deny-to, oac) ∈ APCap(p) ⋀ (p, delete-deny-to, oac) ∈ NoDeny)

{
DeleteUA_deny_disjunctive(w, x, y, z)
}

postconditions: (w, x, y, z) ∉ UA_deny_disjunctive′

DeleteAdministrativeDisjunctiveUserProhibition(p, w, x, y, z)
preconditions: p ∈ P ⋀ w ∈ U ⋀ x ∈ AOps ⋀ y ∈ OAs ⋀ z ∈ OACs ⋀
(w, x, y, z) ∈ U_Admin_deny_disjunctive ⋀ (delete-admin-deny-from, w) ∈ APCap(p) ⋀
(p, delete-admin-deny-from, w) ∈ NoDeny ⋀
∀oa ∈ OAs:((delete-admin-deny-to, oa) ∈ APCap(p) ⋀
(p, delete-admin-deny-to, oa) ∈ NoDeny) ⋀
∀oac ∈ OACs:((delete-admin-deny-to, oac) ∈ APCap(p) ⋀
(p, delete-deny-to, oac) ∈ NoDeny)

{
DeleteU_Admin_deny_disjunctive(w, x, y, z)
}

postconditions: (w, x, y, z) ∉ U_Admin_deny_disjunctive′

DeleteAdministrativeDisjunctiveProcessProhibition(p, w, x, y, z)
preconditions: p, w ∈ P ⋀ x ∈ Ops ⋀ y ∈ OAs ⋀ z ∈ OACs ⋀
(w, x, y, z) ∈ P_Admin_deny_disjunctive ⋀ (delete-admin-deny-from, w) ∈ APCap(p) ⋀
(p, delete-admin-deny-from, w) ∈ NoDeny ⋀
∀oa ∈ OAs:((delete-admin-deny-to, oa) ∈ APCap(p) ⋀
(p, delete-admin-deny-to, oa) ∈ NoDeny) ⋀
∀oac ∈ OACs:((delete-admin-deny-to, oac) ∈ APCap(p) ⋀
(p, delete-deny-to, oac) ∈ NoDeny)

{
DeleteP_Admin_deny_disjunctive(w, x, y, z)
}

postconditions: (w, x, y, z) ∉ P_Admin_deny_disjunctive′

DeleteAdministrativeDisjunctiveUserAttributeProhibition(p, w, x, y, z)
preconditions: p ∈ P ⋀ w ∈ UA ⋀ x ∈ AOps ⋀ y ∈ OAs ⋀ z ∈ OACs ⋀
(w, x, y, z) ∈ UA_Admin_deny_disjunctive ⋀ (delete-admin-deny-from, w) ∈ APCap(p) ⋀
(p, delete-admin-deny-from, w) ∈ NoDeny ⋀
∀oa ∈ OAs:((delete-admin-deny-to, oa) ∈ APCap(p) ⋀
(p, delete-admin-deny-to, oa) ∈ NoDeny) ⋀
∀oac ∈ OACs:((delete-admin-deny-to, oac) ∈ APCap(p) ⋀
(p, delete-deny-to, oac) ∈ NoDeny)

{

96

DeleteUA_Admin_deny_disjunctive(w, x, y, z)

}

postconditions: (w, x, y, z) ∉ UA_Admin_deny_disjunctive′

The conjunctive forms of user, user attribute, and process-based prohibition rescindment are
defined similarly to their disjunctive counterparts above.

DeleteObligation(x, y, z)
preconditions: x ∈ P ⋀ y ∈ Pattern ⋀ z ∈ Response ⋀
(process_user(x), y, z) ∈ OBLIG ⋀
// ensure that the process has authorization to delete the obligation
∃pe ∈ PEs:((delete-deny, pe) ∈ PCap(p) ⋀ (p, delete-deny, pe) ∈ NoDeny)

{
DeleteOblig(process_user(x), y, z)
}

postconditions: (process_user(x), y, z) ∉ OBLIG′

DeleteAdministrativeObligation(x, y, z)
preconditions: x ∈ P ⋀ y ∈ Pattern ⋀ z ∈ Response ⋀
(process_user(x), y, z) ∈ Admin_OBLIG ⋀
// ensure that the process has authorization to delete the obligation
∃pe ∈ PEs:((delete-admin-deny, pe) ∈ PCap(p) ⋀ (p, delete-admin-deny, pe) ∈ NoDeny)

{
CreateAdminOblig(process_user(x), y, z)
}

postconditions: (process_user(x), y, z) ∉ Admin_OBLIG′

97

Appendix D—Defining Personas

The idea behind personas is that in many circumstances, it is desirable to have certain individuals
act in two different, mutually exclusive modes of operation: that of an administrator and that of a
user. However, assigning an individual two distinct user identities, one for each mode of
operation, takes an important aspect of policy management outside of the policy specification,
which eventually could lead to problems as policy evolves and personnel changes occur. It
would be preferable to accommodate this type of functionality explicitly within the policy
specification. Two general approaches are possible, which are discussed below.

The first approach is to incorporate the functionality of personas into the PM model. This can be
done by defining an extension to the model, which would allow a user with sufficient
authorization to change its assignment to a user attribute representing one mode of operation, to a
different user attribute that represents the other mode of operation. The extension described here
provides a straightforward example of this approach. It entails defining a new access right,
reassign-user, for the administrative action, together with an administrative command that carries
out the indicated action. To grant the requisite authority, the system administrator has only to
establish administrative associations that allow the user in question to switch between each user
attribute that serves as one of its personas. With that authority in place, the user can initiate the
administrative command via an administrative access request to cause its assignment to change.

The administrative command below, SwitchAssignmentBetweenUAs, specifies the creation of
an assignment from the user u to the new user attribute uanew and the deletion of the assignment
from the user u to the current user attribute uacurrent. The syntax and notation for the command
follows that described in Appendix C.

SwitchAssignmentBetweenUAs (p, u, uacurrent, uanew)
Preconditions: p ∈ P ⋀ u ∈ U ⋀ uacurrent, uanew ∈ UA ⋀
// u is assigned only to uacurrent and the process is requesting access for u
(u, uacurrent) ∈ → ⋀ (u, uanew) ∉ → ⋀ u = process_user(p) ⋀
// u must hold reassign-user authorization over uacurrent and uanew
(reassign-user, uacurrent), (reassign-user, uanew) ∈ APCap(p)

{
CreateAssign(u, uanew)
DeleteAssign (u, uacurrent)
}

Postconditions: (u, uacurrent) ∉ → ⋀ (u, uanew) ∈ →

The solution is general purpose. Persona attributes are not restricted to switching a user between
non-administrative and administrative modes of operation, although that is a common use. They
can also apply to switching a user solely between either administrative modes or non-
administrative modes of operation. Moreover, the approach works with not only two user
persona attributes, each representing an alternative mode of operation for the user, but also any
number of such attributes.

98

A simple example based on Figure 5 illustrates usage of the extension more concretely. For the
policy specified, u2 and u4 are presumed to represent two personas for a single individual.
Applying the above solution requires the following steps:

 Create the association (OUadmin, reassign-user, Group2) ∈ Admin_ASSOC, which
grants users assigned to OUadmin the authorization to change that assignment to Group2.

 Create the association (OUadmin, reassign-user, OUadmin) ∈ Admin_ASSOC, which
grants users assigned to OUadmin the authorization to change that assignment away from
OUadmin.

 Create the association (Group2, reassign-user, OUadmin) ∈ Admin_ASSOC, which
grants users assigned to Group2 the authority to change that assignment to OUadmin.

 Create the association (Group2, reassign-user, Group2) ∈ Admin_ASSOC, which grants
users assigned to Group2 the authorization to change that assignment away from Group2.

 Delete the user policy element u4 and its assignment to OUadmin, since they are no
longer needed.

An individual logging in as u2 for the first time defaults to the persona attribute for which u2 is
assigned (i.e., Group2). The user can switch to the other persona attribute by issuing the
administrative access request <switch-assignment, [Group2, OrgUnitAdmin]>p, which in turn
results in the execution of the administrative command SwitchAssignmentBetweenUAs(p, u2,
Group2, OrgUnitAdmin) to carry out the action. The individual can switch back to the Group2
persona attribute by issuing a similar access request with the order of the arguments reversed.

Note that if multiple users are expected to be assigned to a user attribute designated as a persona,
but not all of them require the ability to switch among personas, a slight adjustment can be made
to the authorization graph to accommodate the situation. Adding a container, such as persona-
ua, and assigning it to the user attribute ua allows the container to be substituted in lieu of ua as
the basis for reassign-user associations and persona reassignment requests for the user in
question and any other users that operate via the same set of personas. In the Figure 5 example,
for instance, if users that do not perform administrative functions are expected to be assigned to
Group2, a new user attribute persona-Group2 can be created and assigned to the Group2 user
attribute, and the two administrative associations can be redefined with persona-Group2 used in
place of Group2.

The second way to accommodate personas is through obligations. This approach would involve
defining a command very similar to SwitchAssignmentBetweenUAs, but with different
preconditions appropriate for use in an obligation. It would also require assigning the
appropriate authorization to a user to enable the triggering of the obligation and execution of the
command. In this case, however, no new authorization like reassign-user would apply; instead,
an existing core access right would apply, such as reading from or writing to some file created
for this purpose. Exercising the assigned authority to perform input or output to a file would
correspond to a specific switch in user assignments.

99

Using the Figure 5 policy as an example again, files called switch-to-OUadmin and switch-to-
Group2 could be defined and assigned to the Projects container. An obligation could be defined
such that a user in Group2 reading the switch-to-OUadmin file would trigger an obligation that
causes the user to be resigned to OUadmin. Likewise, another obligation could be defined such
that a user in OUadmin reading the switch-to-Group2 file would trigger an obligation that causes
the user to be reassigned to Group2.

With this approach, issuing an access request to read one of the designated files has a similar
effect to issuing an administrative access requested to switch assignments in the other—they
both cause the administrative command to be executed to carry out the change in assignments.
As with the earlier approach, if it is intended to assign multiple users to a user attribute
designated as a persona, but only some of them require the ability to switch among personas, the
same adjustment to the authorization graph can be applied to accommodate the situation when
obligations are used.

While personas can be instituted employing obligations, the approach is less direct and more
cumbersome than incorporating personas into the model. For example, two or more persona
attributes can be supported for a user or class or users, but each persona attribute would require
the definition of an obligation and a special-purpose file to trigger its respective obligation.
Nevertheless, for policies where only one or two classes of administrators are needed,
obligations can provide a useful means to support personas.

100

