

Day 2: Session II

Presenter: Jeffrey Geppert, Battelle AHRQ QI User Meeting September 26-27, 2005

Methods for Creating Aggregate Performance Indices

AHRQ QI User Meeting September 27, 2005 Jeffrey Geppert Battelle Health and Life Sciences

- Project objectives
- Why composite measures?
- Who might use composite measures?
- Alternative approaches
- Desirable features of a composite
- Proposed approach for the AHRQ QI
- Questions & Answers

Project Objectives

- Composite measures for the AHRQ QI included in the National Healthcare Quality Report and Disparities Report
- Separate composites for overall quality and/or quality within certain domains (e.g., cardiac care, surgery, avoidable hospitalizations, diabetes, adverse events)
- A methodology that can be used at the national, state and provider/area level

Project Objectives

Feedback

- Does the proposed approach meet user needs for a composite?
- What analytic uses should the composite address?
- What are the important policy issues?
- How should the composite be incorporated into the AHRQ QI software?

Goals of National Healthcare Reports

National Level

- Provide assessment of quality and disparities
- Provide baselines to track progress
- Identify information gaps
- Emphasize interdependence of quality and disparities
- Promote awareness and change
- State / Local / Provider Level
 - Provide tools for self-assessment
 - Provide national benchmarks
 - Promote awareness and change

Unique challenges to quality reporting by states

States release comparative quality information in a political environment

- Either must adopt defensible scientific methodology or make conservative assumptions
- Examples of reporting decisions:
 - Small numbers issues
 - Interpretive issues (better/worse, higher/lower)
- Purchasers demanding outcomes and cost information from states

Why Composites?

- Summarize quality across multiple measures
- Improve ability to detect quality differences
- Identify important domains and drivers of quality
- Prioritize action
- Make current decisions about future (unknown) healthcare needs
- Avoids cognitive "short-cuts"

Why Not Composites?

- Mask important differences and relationships among components (e.g. mortality and re-admissions)
- Not "actionable"
- Difficult to identify which parts of the healthcare system contribute most to quality
- Detract from the impact and credibility of reports
- Independence of components
- Interpretation of components

Who Might Use Them?

- Consumers To select a hospital either before or after a health event
- Providers To identify the domains and drivers of quality
- Purchasers To select hospitals in order to improve the health of employees
- Policymakers To set policy in order to improve the health of a population

- "America's Best Hospitals" (U.S. News & World Report)
- Leapfrog Safe Practices Score (27 procedures to reduce preventable medical mistakes)
- NCQA, "America's Best Health Plans"
- QA Tools (RAND)
- Veteran Health Administration (Chronic Disease Care Index, Prevention Index, Palliative Care Index)
- Joint Commission (heart attack, heart failure, pneumonia, pregnancy)
- National Health Service (UK) Performance Ratings
- CMS Hospital Quality Incentive Demonstration Project

Alternative Approaches

Approach	Goal	Utility
Opportunity	Appropriate care	Volume of opportunities
Burden	Minimize excess death/costs	Measures with most excess
Expected quality	Better than reference	Lowest ratio
Variation	Better than reference	Outliers
Latent quality	Reduce variation	Measures with greatest variation

Desirable Features

- Valid Based on valid measures
- Reliable Improve ability to detect differences
- Minimum Bias Based on unbiased measures
- Actionable Interpretable metric
- Benchmarks or standards
- Transparent
- Predictive Should guide the decision-maker on likely future quality based on current information.
- Representative Should reflect expected outcomes for population

Proposed Approach

- A modeling-based approach
- Latent quality observed correlation in individual measures is induced by variability in latent quality
- Individual measures with highest degree of variation have larger contribution to composite
- Theoretical interpretation
- Consistent with goal of reducing overall variation in quality

Proposed Approach

Advantages

- Avoids contradictory results with individual measures or the creation of composites that may mislead
- Construction of the composite increases the power of quality appraisals
- Allows for both measure-specific estimates and composites
- Allows for validation with out-of-sample prediction

Advantages (Continued)

- Hierarchical for small numbers, the best estimate is the pooled average rate at similar hospitals
- Allows for incorporation of provider characteristics to explain betweenprovider variability (e.g., volume, technology, teaching status)
- Gives policymakers information on the important drivers of quality

Overview of AHRQ QIs

Prevention QualityIndicators Ambulatory care sensitive conditions

- Inpatient Quality Indicators
- Mortality following procedures
 Mortality for medical conditions
 Utilization of procedures
 Volume of procedures

Patient Safety Indicators Post-operative complications latrogenic conditions

IQI Surgical Mortality

IQI Medical Mortality

Prevention Quality Indicators

PSI Postoperative Complications

PSI Technical Adverse Events

PSI Technical Difficulty

Hierarchical Models

- Also referred to as smoothed rates or reliability-adjusted rates
- Endorsed by NQF for outcome measures
- Methods to separate the within and between provider level variation (random vs. systematic)
- Total variation = Within provider + Between provider (Between = Total – Within)
- Reliability (w) = Between / Total
 - Signal ratio = signal / (signal+noise)

Hierarchical Models

- Smoothed rate is the (theoretical) best predictor of future quality
 Drovides a framework for validation and forecasting
- Provides a framework for validation and forecasting
 Smoothed rate (single provider, single indicator) =
 - Hospital-type rate *(1 w) +
 - Hospital-specific rate * w
- Multivariate versions
 - Other Years (auto-regression, forecasting)
 - Other Measures (composites)
 - Non-persistent innovations (contemporaneous, nonsystematic shocks)

Outcomes and Process

Figure 3. "Quality" Characteristic Curves. Mean estimates of the probability of outcome k as a function of latent quality, $\tilde{P}_k(\vec{\sigma}) = \Phi(\tilde{\beta}_{0k} + \tilde{\beta}_{1k}\vec{\sigma})$. The posterior mean estimates and 95% credible intervals for the slope parameters (the β_{1k} 's) are also reported.

AHR

Hierarchical Models

Policy and Prediction

- The best predictor of future performance is often historical performance + structure
- The greater the reliability of the measure for a particular provider, the more weight on historical performance
- The less the reliability of the measure for a particular provider, the more weight on structure
- Volume often improves the ability to predict performance for low-volume providers
- Other provider characteristics (e.g. availability of technology) do as well
- Area characteristics (e.g., SES) do as well

Socio-Economic Status

- The Public Health Disparities Geo-coding Project -Harvard School of Public Health (PI: Nancy Krieger)
- Evaluated alternative indices of SES (e.g. Townsend and Carstairs)
- Occupational class, income, poverty, wealth, education level, crowding
- Gradations in mortality, disease incidence, LBW, injuries, TB, STD
- Percent of persons living below the U.S. poverty line
 - Most attuned to capturing economic depravation
 - Meaningful across regions and over time
 - Easily understood and readily interpretable

Socio-Economic Status

PQI #1 Diabetes Short-term Complication

Limitations

Measures and methods difficult
 Restrictive assumptions on correlation
 Correlations may vary by provider type
 Requires a large, centralized data source

Expansions

Flexibility in weighting the components Empirical – domains driven entirely by empirical relationships in the data A priori – domains determined by clinical or other considerations Combination – empirical when the relationships are strong and the measures precise, otherwise a priori

Welfare-driven Composites

Welfare-Driven Composites

Making current decisions about future needs – maximize expected outcomes, minimize expected costs Policymaker focus – for a population A provider focus – for their patients A employer focus – for their employees A consumer focus – based on individual characteristics

Acknowledgments

Funded by AHRQ

Support for Quality Indicators II (Contract No. 290-04-0020)

- Mamatha Pancholi, AHRQ Project Officer
- Marybeth Farquhar, AHRQ QI Senior Advisor
- Mark Gritz and Jeffrey Geppert, Project Directors, Battelle Health and Life Sciences

Data used for analyses:

Nationwide Inpatient Sample (NIS), 1995-2000. Healthcare Cost and Utilization Project (HCUP), Agency for Healthcare Research and Quality

State Inpatient Databases (SID), 1997-2002 (36 states). Healthcare Cost and Utilization Project (HCUP), Agency for Healthcare Research and Quality

Acknowledgements

We gratefully acknowledge the data organizations in participating states that contributed data to HCUP and that we used in this study: the Arizona Department of Health Services; California Office of Statewide Health Planning & Development; Colorado Health & Hospital Association; Connecticut - Chime, Inc.; Florida Agency for Health Care Administration; Georgia: An Association of Hospitals & Health Systems; Hawaii Health Information Corporation; Illinois Health Care Cost Containment Council; Iowa Hospital Association; Kansas Hospital Association; Kentucky Department for Public Health; Maine Health Data Organization; Maryland Health Services Cost Review; Massachusetts Division of Health Care Finance and Policy; Michigan Health & Hospital Association; Minnesota Hospital Association; Missouri Hospital Industry Data Institute; Nebraska Hospital Association; Nevada Department of Human Resources; New Jersey Department of Health & Senior Services; New York State Department of Health; North Carolina Department of Health and Human Services; Ohio Hospital Association; Oregon Association of Hospitals & Health Systems; Pennsylvania Health Care Cost Containment Council; Rhode Island Department of Health; South Carolina State Budget & Control Board; South Dakota Association of Healthcare Organizations; Tennessee Hospital Association; Texas Health Care Information Council; Utah Department of Health; Vermont Association of Hospitals and Health Systems; Virginia Health Information; Washington State Department of Health; West Virginia Health Care Authority; Wisconsin Department of Health & Family Services.

Questions & Answers

Questions And Answers

