Validating the Patient Safety Indicators (PSIs) in the VA: a Multi-Faceted Approach

Funding: VA Health Services Research and Development (HSR&D) Service SDR 07-002 : 10/01/07- 9/30/11

Amy Rosen, Ph.D., Principal Investigator

Project Team

- Collaboration among
 - □ VA's HSR&D Service
 - □ National Center for Patient Safety (NCPS) and
 - □ AHRQ (QI team and individual investigators)
- VA and non-VA clinicians, surgical experts, nurse abstractors

National steering committee:

- Representatives from VA Office of Quality Performance, NCPS
- □ Nursing Services, Surgery, Patient Care Services
- Selected members of the AHRQ QI team
- Selected Patient Safety/QI Managers and other potential end-users

Overall Project Goal

Develop a validated and reliable set of patient safety measures that broadly reflect the interests of key VA stakeholders, but that are generalizable beyond the VA.

Specific Objectives:

- Develop collaborations with key stakeholders to guide in PSI selection and validation
- Investigate the criterion validity of the PSIs by review of the VA's EMR
- 3. Identify processes and structures of care associated with individual PSIs
- 4. Revise and improve the PSIs using multiple data sources and settings of care
- 5. Assess the utility validity of the PSIs for QI and performance measurement

Goal 1: Develop Stakeholder Collaboration

- Stakeholders' meeting (Dec, 2007):
 - Approved selection of PSIs
 - □ Approved plan to validate AHRQ's Phase I/Phase II PSIs
 - Reviewed field consultation interview questions
 - Recommended focus on general questions on patient safety
 - Suggested less attention on specific PSIs in field consultations
 - Field consultations held to examine the validity of the PSIs, not to judge facilities' performance
- Contact with stakeholders subsequent to meeting
 - Approved final interview protocols "TO/THRU" memo to sites asking them to participate

Goal 2: Identify False Positives Are Cases Flagged by the AHRQ PSIs Present in the EMR?

- Obtained national access to EMR: "VistaWeb"
- Hired and trained two nurse abstractors to conduct chart abstraction
- Modified AHRQ Phase I and Phase II chart abstraction tools for VA
 - □ Pilot testing and clinician review
 - Five tools "ready for prime time," five almost ready, five being developed de novo
- Completed validation of PE/DVT
- Currently abstracting charts for iatrogenic pneumothorax
- Currently piloting web-based application (InfoPath) for gathering and entering chart-abstracted data

A1	Is there documentation that the patient had a post- operative pulmonary embolism or deep vein thrombosis during this admission?	 Yes (see Q. B3 and complete A2) PE DVT No Unable to determine Record excluded
A2 D If YE Past	ocumentation of ascertainment <mark>S to A1, Describe documentatio</mark> e from record	t of event on found in the medical record:
List (Cons Date	lata source for documentation (sult note of documentation of event in d	(e.g. Progress note): ata source: 03/25/2003

Hospital Selection

- Ran PSI software (v. 3.1a) on VA inpatient data (2003-2007)
 - Obtained rates of individual PSIs and PSI composites
- Used 12 PSIs
 - □ PSIs 1-15
 - □ Excluded PSIs 1, 5, 8
- Population:
 - 158 VA hospitals
- Sample for chart abstraction:
 - □ 28 hospitals, 112 charts per PSI

Sample Selection Methodology

- Stratified population by observed and expected #s of PSIs
 - Group 1: at least 4 observed and 4 expected (n = 28)
 - □ Group 2: at least 2 observed and 2 expected (n=33)
 - Group 3: at least 1 observed and 1 expected (n=18)
 - Total for Groups 1-3: <u>79 hospitals</u>
- 2. Ranked 79 by AHRQ PSI composite (denominator weights)
 - Chose top 3 and bottom 3 from each group
 - Randomly selected from remaining hospitals within each group: group 1=4, group 2=4, group 3=2 to obtain 28 hospitals (10, 10, and 8, respectively)
 - Geographic distribution and ICU severity taken into account
- 3. Selected 6 hospitals for field consultations and ranked them based on PSI composite
 - Geographic location and size taken into account

Chart Abstraction

PE/DVT

- Conducted retrospective EMR review of 112 flagged cases
- Conducted inter-rater reliability (IRR) throughout EMR review
 - □ 28 cases (25% of all charts) reviewed for IRR due to:
 - Iarge numbers of exclusions
 - IRR > 90%
 - 89% agreement rate achieved with 1st IRR, 94% with 2nd IRR
- Issues
 - length of time to complete chart abstraction (1½ hours for full record; 20 minutes for false positives)
 - problems with accessing VistaWeb

Technical Specifications of PE/DVT

• Numerator:

- Discharges among cases meeting the inclusion and exclusion rules for denominator
 - ICD-9-CM codes for PE/DVT in any secondary diagnosis field

Denominator:

- □ All surgical discharges age 18 and older
 - defined by specific DRGs and an ICD-9-CM code for an OR procedure

Exclusion criteria for all cases:

- preexisting (principal diagnosis or secondary diagnosis present on admission, if known) PE/DVT
- procedure for interruption of vena cava the only OR procedure
- procedure for interruption of vena cava occurs before or on the same day as first OR procedure
- □ MDC 14 (pregnancy, childbirth, and puerperium)

Post-operative PE/DVT Validation Results

Total # of cases: 112

False Positives: A Comprehensive Analysis

Classification of False Positives	Number of cases	Percentage
DVT/PE Present on Admission (POA)	16	25.4%
Pre-Procedure Diagnosis of PE/DVT	13	20.6%
Remote History of DVT or PE (> 6 months)	10	15.9%
Arterial (not venous) thrombosis*	4	6.4%
Negative PE/DVT workup *	4	6.4%
"Rule out PE" as cause of death *	3	4.8%
Superficial (not deep) thrombosis or		
thrombophlebitis *	3	4.8%
Miscellaneous *	10	15.9%
Total	63	100%

* Represents coding-related inaccurate diagnosis

Coding-Related Inaccurate Diagnosis: Miscellaneous Category

Classification of False Positives	Number of cases
Vein stenosis (no thrombosis)	1
PE stands for Physical Exam not Pulmonary Embolus	1
Low dose Coumadin prophylactic not therapeutic	1
Surgery done at outside hospital	1
Cerebral embolization of AVM	1
Prophylactic heparin mistaken for therapeutic heparin	1
RLE U/S ordered to r/o abscess at surgical site	1
Unknown	3
Total	10

PE/DVT Results: Comparison of Studies

	Our study	Zhan study	AHRQ study	NSQIP and PTF study	UHC study
Ν	112	20,868	155	55,682	1022
PPV	44%	29%	68%	22%	61%
Sensitivity		68%		66%	

Problems in Coding PE/DVT

PE/DVT PSI designed as initial screen

- Accuracy of method to detect true positives using administrative data affected by:
 - □ Standards used to assign codes for "other" or secondary conditions → based on the Uniform Hospital Discharge Data Set (UHDDS)
 - "Other" conditions: those that coexist at the time of admission, develop sequentially, affect the treatment received and/or length of stay, or affect patient care
 - Definition of PE/DVT relative to
 - UHDDS coding standards,
 - ICD-9-CM Official Coding Guidelines for Coding and Reporting
 - Coding Clinic published by the American Hospital Association (AHA)

Problems in Coding PE/DVT, cont'd

- False Positive 1: chart review does not document a PE/DVT
 - 1. Code was present on admission (POA) and meets UHDDS definition of "other" diagnosis
 - 2. Code assigned as a current condition
 - □ Should have been coded as a "history of" with a V code
 - □ It was still a "rule out" condition at the time of discharge
 - 3. Coding system issue
 - Was miscoded (superficial vein and not deep vein) due to coding invention and ICD-9-CM alphabetic index
 - Coder did not identify the correct vein anatomically
 - □ Should not have been coded at all
 - False Positive 2: chart review documents a PE/DVT, but it is not a **postoperative** PE/DVT:

Diagnosis of PE/DVT occurred after admission but before surgery

Recommendations for Improving PE/DVT

- Modify coding rules:
 - □ Use NSQIP definitions to influence the coding rules
 - Specify the circumstances when the PE/DVT should be coded and publish them in Coding Clinic and Official Guidelines
 - as "current conditions" or "history of"
- Begin using POA in VA
- Explore use of "997" complication code as part of the PSI algorithm to capture post-operative PSIs
- Explore expansion of POA to include a special character denoting "POA prior to surgery"
- Undertake targeted education to help coders, researchers, and healthcare professionals understand the use of coding guidelines for "PE/DVT"

Objective 3

Question: Do High-Performing Facilities Have Higher Rates on Structures and Processes of Care than Lower-Performing Facilities?

Conduct two <u>pilot</u> field consultations locally

- determine feasibility and logistical problems
- □ test interview questions
- □ add/delete selected staff
- Conduct field consultations at 6 facilities
 - Perform structured interviews with selected staff
 - □ Gather data on safety and quality
- Assess differences between sites on structures and process using qualitative methods and ratings

Selected Staff for Interviews

- Individual Interviews

 - □ Service Chiefs
 - Other Middle Managers
 - Other Non-Managers
- Group Interviews
 - □ Surgical Service
 - □ Medical Service
 - □ Non-Managers

Interview Domains

- Organization, Structure, and Culture
- Coordination of Work and Communication
- Interface within Service
- Monitoring Quality of Care
- Quality Improvement
- General Clinical Topics
- Coding
- Technology and Equipment
- Technical Competence of Staff
- Leadership
- Interface with Other Services
- Systems Issues and Human Factors
- Staffing
- Summary Evaluation of Service Overall

Domain: Monitoring Quality of Care / Quality Improvement

- In your facility, what are some of the initiatives related to improving patient safety that you know about?
 - □ On what does it focus?
 - □ What facilitated its implementation?
 - □ What were the implementation obstacles?
 - □ How effective do you think it is?
- What are some of the most common adverse events that you see in your day-to-day work? Please refer to the list provided.
 - What is being done now to reduce the incidence of this complication?
 - What do you think would be helpful in further reducing the incidence of this?
 - Is there anything not on the list we provided you that you believe is a concern?

Domain: Coding

- Who is involved in assigning ICD-9 and procedure codes to adverse events?
- Are physicians involved in reviewing the event codes?
- Do you think there is a concern about the accuracy of coding relating to adverse events?
- □ *If yes*: What is the concern?
 - How is this addressed?

Domain: Technology and Equipment / Technical Competence of Staff

- I am curious to hear about what problems, if any, you or others have had with the technology and/or equipment on the service.
 - What problems have you had with the <u>accessibility</u> or <u>availability</u>, or both, of technology and/or equipment?
 - What problems you have had with the <u>quality</u> or <u>functioning</u>, or both, of the technology and/or equipment?
 - What problems, if any, have you or other staff had being properly trained to use the technology and/or equipment?
 - What technology and/or equipment, if any, does not exist at your hospital that would help improve patient safety?

Capturing Initial Impressions

- Immediately after each <u>pilot</u> field consultation, each interviewer summarizes her/his
 - Impressions of each domain in a paragraph
 - Overall impressions of the site
 - $\Box \rightarrow$ in both cases giving specific examples
- Soon afterwards, all interviewers and other members of the PSI validation team meet to discuss the impressions
- These discussions will be used to generate a protocol for capturing initial impressions for study's six field consultations
 - □ We may rate sites, creating examples for an "ideal" site □ We may decide to use only written impressions
 - We may decide to use only written impressions

Rating Category Possibilities

- Some numeric scale
 NSQIP rating (1 to 9; 1=poor and 9=excellent)
 Other model rating (0 to 4)
 Some hierarchy scale:
 - □ Poor, fair, good, very good, excellent
- Some recognition scale:
 - Bronze, silver, gold

Example of Rating: NSQIP

	Poc	or→Fa	air→C	Good	→Ver	y go	od→E	Exce	lent
	1	2	3	4	5	6	7	8	9
Technology and Equipment							\checkmark		
Technical Competence of Staff									\checkmark
Interface with Other Services						\checkmark	•		
Relationship with Affiliated Institution								\checkmark	

Initial Impressions of Pilot Sites

Domains	Rating*	Evidence Narrative	Examples
Monitoring Quality of Care Questions 1, 3, 4			
Quality Improvement Questions 1, 3			
Leadership			
Questions 2, 4			
Systems Issues and Human Factors			
Question 4			

* Our initial rating scale: Excellent, Very good, Good, Fair, Poor

Next Steps (1)

Identify False Negatives

- a. Use an existing "gold standard" (e.g., VA NSQIP) for 5 surgical PSIs
- b. Identify risk factors by estimating logistic regression models for each of the PSIs
- c. Use propensity score stratification to generate propensity class strata for each of the PSIs
- d. Use AHRQ Composite Tool to review medical records of "high-risk" cases for PSIs
- e. Screen EMRs of high-risk cases using keyword searches (selected "hits" will have chart review)
- f. Explore machine language processing as an informatics tool to search for false negatives

Next Steps (2)

Examine association between explicit processes of care and individual PSIs

- Match 1,680 flagged PSI cases with 1,680 controls (unflagged cases matched on demographic and clinical characteristics) to determine whether flagged cases are more likely to experience "process failures"
- b. Use propensity score methodology to perform matching; chi-square tests used to examine proportion of failure rates among cases and controls

Next Steps (3)

Revise and Improve the PSIs

a) Add additional data elements to inpatient data:

- Present-on-admission (POA) diagnoses, do-notresuscitate (DNR) codes, selected clinical, laboratory and pharmacy data elements
- b) Link inpatient data with outpatient/inpatient data 30/60 days preceding index hospitalization (obtain POA diagnoses)
- c) Link inpatient data with outpatient/inpatient data 30/60 days following index hospitalization to evaluate whether additional PSIs are detected
- d) Link VA and Medicare data to examine PSI readmission in private sector
- e) Improve coding by implementing coding changes
- f) Modify PSI numerators and denominators on inclusion/exclusion criteria
- g) Recalculate false positives and negatives

THANK YOU!

CONTACT INFORMATION:

Amy Rosen, Ph.D. Center for Health Quality, Outcomes & Economic Research (VA Center of Excellence) Boston University Schools of Public Health and Medicine, Departments of Health Policy and Management and Family Medicine

> Phone #: (781) 687-2960 E-mail: akrosen@bu.edu