TGFβ1 - Early Player in Mouse Colon Cancer: Suppresses IBD-Associated Colon Cancer by Preventing Pre-Clinical Inflammatory State of Readiness in Colon Mucosal Epithelium

> Thomas Doetschman BIO5 Institute, University of Arizona, Tucson

Characteristics of Adolescent and Young Adult CRC

Human CRC (~50,000deaths/Yr in US; 10% of all cancer deaths)

Under 40 CRCs (2-6%)

AggressivePoorlyRight-sidedInf. LymphocytesMucinousPoor PrognosisDifferentiatedPrevalence& ColitisCarcinomaOkuno et al, Am.Surg., 1988; Itzkowitz & Yio, Am.J Physiol Gastrointest.Liver Physiol., 2004;
Lin et al, J Gastroenterol.Hepatol., 2005; Jenkins et al, Gastroenterol., 2007; Lutgens et al, Gut, 2008

"Colitis-associated [CRC] affects individuals at a younger age than the general population. They more often have a mucinous or signet ring cell histology...in some studies, they demonstrate a more proximal distribution in the colon...<u>these same features are found</u> in CRCs arising in individuals with HNPCC."

Itzkowitz & Yio, Am.J Physiol Gastrointest. Liver Physiol., 2004

HNPCC, MSI and TGFBR2 Mutation in CRC Subtypes

Overall, the *TGFBR2* mutation frequency in human CRC ranged from 8-25% up to 30% w/other TGFβ pathway mutations (*TGFBR1, SMAD4, SMAD7*) *APC* mutations account for about 70% of all human CRC

MSS=microsatellite stable; MSI-L=microsatellite instability-low; MSI-H-microsatellite instability-high

Comparison: MSI in Human CRC and CRC in Mice with TGFβ Deficiency

<u>Human</u>

Right-sided prevalence More likely to be flat-like than polypoid Earlier onset (44yrs vs. 65 average) Faster progression Predominantly mucinous More likely to have inflam. infiltrates More likely to be diploid Less likely to be metastatic

<u>Mouse</u>

Proximal prevalence More likely to be flat-like than polypoid

Predominantly mucinous More likely to have inflamm. infiltrates More likely to be diploid Less likely to be metastatic

TGFβ- and APC-Deficient Mouse CRCs are Quite Different

Expression profiles of mouse colon tumors

BIO

Aronow et al, Genome Biology, 2007

Frequency of Disease States in *Tgfb1 Rag2-/-* mice

Engle et al (1999) Cancer Res.

Colon Tumor Progression in *Tgfb1^{-/-} Rag2^{-/-}* mice

Tgfb1^{+/+ or -/-} *Rag2*^{-/-}

Tgfb1^{+/+} *Rag2*^{-/-}

Tgfb1-/- Rag2-/- T

Normal Colon

BC

IBD-associated Hyperplasia

Adenoma

Mucinous Carcinoma

Sandi Engle et al (1999) Cancer Res.

Colitis- and Lesion-free *Tgfb1^{-/-} Rag2^{-/-}* and *Smad3^{-/-}*mice

SMAD3: Maggio-Price et al (2006) Cancer Res.

Differentially Expressed Genes in Colons of Inflammation-free *Tgfb1^{-/-} Rag2^{-/-}* mice

Microarray study:

- Altered expression of 927 genes in *Tgfb1^{-/-} Rag2^{-/-}* mice compared to *Tgfb1^{+/+} Rag2^{-/-}* mice (n=3)
- Functional association of differentially expressed genes
 - Transport 24 genes
 (inflammation, lipid & energy metab., antigen processing, flora sensing)
 - Inflammation
 Cell adhesion
 9 genes
 9 genes
 - Cell matrix
 - Lipid metabolism 20 genes

Bruce Aronow, Mohamad Azhar, Durga Cherukuri, Eyad Nusayr

10 genes

Differentially Expressed Genes in Colons of Inflammation-free *Tgfb1^{-/-} Rag2^{-/-}* mice

Microarray study:

- Altered expression of 927 genes in *Tgfb1^{-/-} Rag2^{-/-}* mice compared to *Tgfb1^{+/+} Rag2^{-/-}* mice (n=3)
- Functional association of differentially expressed genes

Bruce Aronow, Mohamad Azhar, Durga Cherukuri, Eyad Nusayr

Increased Expression of Oligopeptide Transporter in Inflammation-free *Tgfb1-/- Rag2-/-* and *Smad3-/-* mice

SIc15a1 (PEPT1) di- and tri-peptide transporter

Colonic Epithelium

MEFs

Durga Cherukuri

BI05

Plasma PGE₂ levels in Inflammation-free *Tgfb1 Rag2^{-/-}* mice

PGEM / PGEM-tracer Competitive Immunoassay

Durga Cherukuri

Dysregulation of Nitric Oxide (NO) Pathway in Absence of Functional TGFβ1 Signaling

Durga Cherukuri

Cancer is a Complex Disease

In *TGFBR2** CRCs, 84% have mutations in combinations of 5 other genes Calin et al, (2000) *Int J Cancer*

Some GWAS studies have been to some degree frustrating perhaps because different combinations of differences in multiple genes, each of which can lead to small expression differences, may confer differential cancer susceptibilities

In absence of TGF β signaling there exists in the colon mucosal epithelium a

"Sub-clinical state of inflammatory readiness"

such that in the presence of inflammatory stress, cancer progression ensues

Are There Inflammatory Cytokines in Inflammation-free Smad3-/- blood plasma

6

4

2

0

B

5mad3

Smad3

D. IL-12

Durga Cherukuri

Are There Inflammatory Cytokines in Inflammation-free *Smad3*-/- blood plasma

BO

Durga Cherukuri

In absence of TGF β signaling there exists in the colon mucosal epithelium a

"Sub-clinical state of inflammatory readiness" such that

in the presences of inflammatory stress, cancer progression ensues

Colon Tumor Progression in *Tgfb1^{-/-} Rag2^{-/-}* mice

Increased 1, N^6 -ethenodeoxycytidine (ϵ dC) levels in Colon Cancer Susceptible Tissues from $Tgfb1^{-/-} Rag2^{-/-}$ Mice with Colitis

DNA adducts	<i>Tgfb1</i> ^{+/+} (Hyperplastic colon tissue)	<i>Tgfb1-'-</i> (Hyperplastic colon tissue)	Ratio KO/WT	
1,N ⁶ -ethenodeoxyade 10 ⁸ deoxyadenosine (ɛdA/10 ⁸ dA)	enosine/ 0.9	0.5	0.55	
3,N ⁴ -ethenodeoxycyti 10 ⁸ deoxycytidine (ɛdC/10 ⁸ dC)	idine/ 1.3	10.7	8.23	

Note: Patients of Ulcerative colitis have ~4 fold increase in ɛdC (Bartsch and Nair 2005 Mut. Res.)

Mohamad Azhar (Tucson) and Helmut Bartsch, Jagadeesan Nair (DKFZ, Heidelberg)

Summary

TGF β -deficient mice model prevalent aspects of CRC patients under 40 yrs of age.

Their cancer has a proximal preference, often colitis associated, less differentiated, more flat-like and often mucinous.

These pre-tumor tissues reveal a sub-clinical state of inflammatory readiness, such that in the face of inflammatory stress, susceptibility for progression to CRC is increased.

Acknowledgements

Lab

Marcia Shull Sandra Engle Jay Hoying Ilona Ormsby Tom Mast Mohamad Azhar Durga Cherukuri

Collaborators

Joanna Groden, OSU Bruce Aronow, Cincinnati Greg Boivin, Cincinnati Ed Balish, Wisconsin Helmut Bartsch, DKFZ, Heidelberg Jagadeesan Nair, DKFZ, Heidelberg Dave Besselsen, Arizona Mark Nelson, Arizona Gene Gerner, Arizona

> NIH NCI BIO5 Institute

