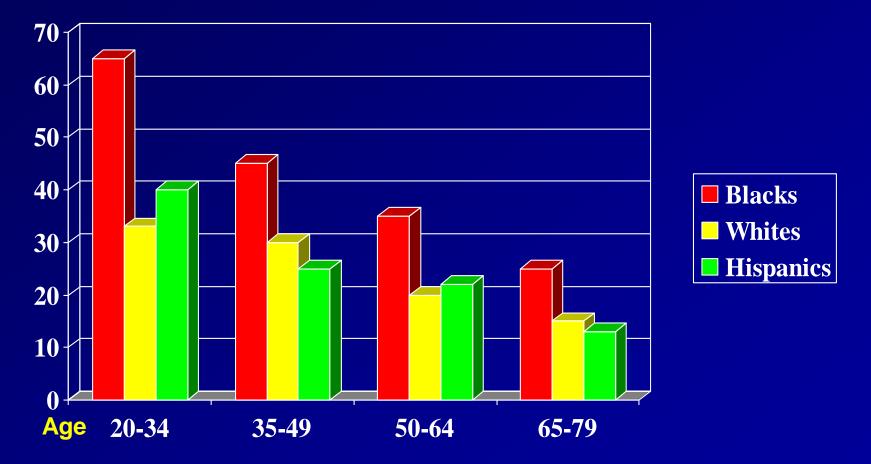


Breast Cancer in African-American Women

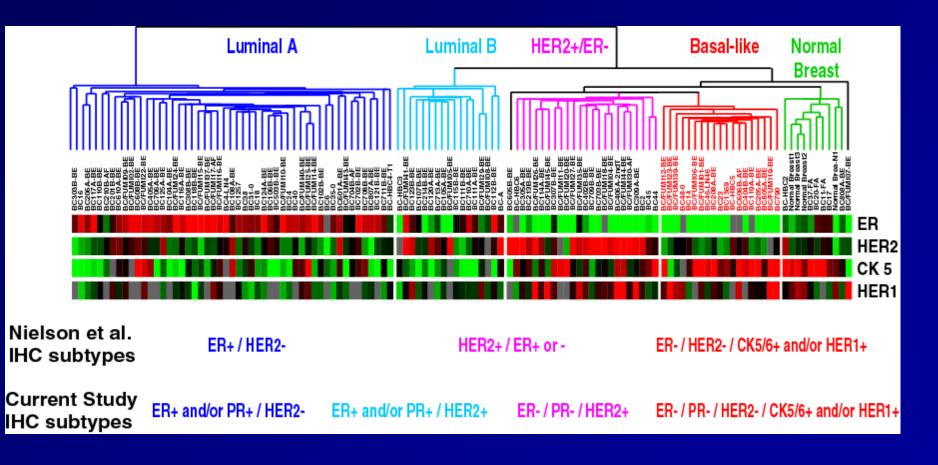
Christine B. Ambrosone, PhD

Chair, Department of Cancer Prevention and Control Roswell Park Cancer Institute


Breast Cancer in African-American Women

- Higher incidence overall of breast cancer in European-American women
- African-American women more likely to be diagnosed before age 40
- More aggressive tumors in African-American women
 - High grade
 - Negative for estrogen receptor expression
 - High mitotic index

Breast cancers among young women have poorer prognosis


Is the higher incidence of more aggressive cancers among African-American women due to the earlier age at onset?

Proportion of ER-/PR- tumors by race in 13,239 women within age quartiles

Gapstur et al. Cancer, 1996

IHC surrogates for gene expression profiling

JAMA 2006, 295: 2492-2502.

Slide courtesy of R Millikan

Basal-like (TN) Breast Cancers

- More common in African-American than European-American women
- In CBCS (n=1,424 cases), 16% basal-like different distributions by race, age (Millikan RC 2008)
- Women < 40 years have 4.5 times the risk of basal like breast cancer than those > 60, in comparison to luminal A

Menopausal status	EA (%)	AA (%)
Pre	14.5	27.2
Post	9.3	16

Race, Age and Breast Cancer Characteristics

- Unique molecular characteristics of tumors among younger women
 - Immune function, mTOR/rapamycin pathway, hypoxia, BRCA1, stem cell biology, apoptosis, histone deacetylase, signaling (Anders 2008)

Differential tumor epithelial and stromal gene expression patterns between African-American and European-American women (Martin 2009)

- Genes regulating angiogenesis and chemotaxis; unique interferon signature
 - Higher microvessel density and macrophage infiltration in tumors from African-American women

What is driving these differences in tumor subtypes?

- epidemiologic risk factors? (modifiable)
- biology?
- genetics?

What Risk Factors Differ by Subtype?

Carolina Breast Cancer Study, 1803 cases, 1,564 controls

	Luminal A	Basal-like	Basal-like	Basal-like
	OR (95% CI)	OR (95% Cl)	Premenopausal	Postmenopausal
Waist hip ratio <0.77 0.77-0.83 0.84+	Referent 1.1 (1.1-1.7) 1.5 (1.1-1.9)	Referent 2.3 (1.5-3.5) 2.3 (1.4-3.6)	Referent 2.3 (1.3-4.1) 1.9 (1.0-3.6)	Referent 1.4 (0.7-2.8) 1.4 (0.7-2.7)

Millikan Br Ca Trt Res 2008

What Risk Factors Differ by Subtype?

Case-control	Luminal A	Basal-like
analysis	OR (95% CI)	OR (95% CI)
Parity		
Nulliparous	Referent	Referent
1	0.7 (0.5-1.0)	1.7 (0.9-3.0)
2	0.7 (0.6-1.0)	1.8 (1.1-3.1)
3+	0.7 (0.5-0.9)	1.9 (1.1-3.3)
Months breastfeeding per child		
Never	Referent	Referent
0-3.9	0.8 (0.7-1.0)	0.8 (0.6-1.2)
4+	0.9 (0.7-1.2)	0.6 (0.4-0.9)

Carolina Breast Cancer Study; Millikan Br Ca Trt Res 2008

Carolina Breast Cancer Study

	Luminal A OR (95% CI)	Basal-like OR (95% CI)	AA < 40y	AA 40-49y	EA < 40y	EA 40-49y
Parity and lactation						
Nulliparous	Referent	Referent				
1-2, never	0.7 (0.6-0.9)	1.8 (1.1-3.0)*				
1-2, ever	0.7 (0.5-0.9)	1.1 (0.6-2.0)				
3+, never	0.7 (0.5-0.9)	1.9 (1.1-3.3)*	18%	30%	5%	7%
3+, ever	0.7 (0.5-0.9)	1.3 (0.7-2.3)	9%	10%	10%	26%

For luminal A, parity reduces risk, regardless of number of children or breastfeeding; importance of terminal differentiation of breast ductal cells

Basal like – increased risk with parity ameliorated by breastfeeding

Risk Factors for Early Onset Breast Cancer among African-American Women

Black Women's Health Study (Palmer, PI)

- High parity IRR= 2.4 (CI=1.1-5.1) in women < 45; reduced risk in older women IRR = 0.5 (CI 0.3-0.9) (JNCI 2003)
- High BMI inversely associated with risk in premenopausal women IRR=0.71, (CI 0.53-0.93); no association in postmenopausal (IRR=0.84, CI 0.63-1.12) (CEBP 2007)
- Reduced risk with strenuous activity at age 21 for premenopausal (IRR=0.5, CI 0.3-0.8), but not postmenpausal women (*J Nat Med Assoc* 2001)

Need for very large sample sizes to subtype tumors, evaluate risk factors for subtypes by race, age

Developing P01 to pool studies (CBCS, Millikan; BWHS, Palmer; WCHS, Ambrosone)

Women's Circle of Health Study

Grant developed in 2000

- African-American women (and girls) have higher levels of estrogens, higher BNI, earlier age at menarche, earlier age at first birth, more children
- Distribution of polymorphisms differs across racial and ethnic groups
- Could these differences account for earlier onset and more aggressive disease?

1. To investigate genetic, reproductive, hormonal and related risk factors in relation to breast cancer risk among African-American and Caucasian women.

2. To examine risk factors related to earlier age at diagnosis and more aggressive disease (ER-, high grade tumors).

3. To determine proportion of early age/aggressive breast cancer due to differential racial distribution of risk factors.

Study Design

First funded by DOD as part of Breast Cancer Center of Excellence for Biobehavioral Research (Bovbjerg, Center PI; Ambrosone, Project 1 [case control study] PI), Mount Sinai School of Medicine

Obtained NCI funding to expand sample size, extend to Caucasians

Christine B. Ambrosone, PhD Elisa Bandera, PhD Dana Bovbjerg, PhD Helena Hwang, MD (pathology) Gregory Ciupak, MPH Lina Jandorf, MS

MOUNT SINA SCHOOL OF MEDICINE

Funded by NCI R01 CA 100598 and DAMD17-01-1-0334, BCRF

Study Design

Ascertainment of African-American (n=1200) and European-American (n=1200) women with incident, primary breast cancer through hospitals in the NY metropolitan area, and through NJ State Tumor Registry (SEER site) – Now limited to enrollment in NJ

Equal number of healthy controls identified through random digit dialing

Permission from physician to contact patient

In-home interviews, sample collection

Recruitment Progress

The Women's Circle of Health: Recruitment (as of May 5, 2009)

	Cases	Cases=1,249		Controls=1,085		
	AA*	White	AA*	White		
NYC	338	340	356	338		
NJ	251	320	93	298		
Total	589	660	449	636		
Goal:	1,200	1,200	1,200	1,200		

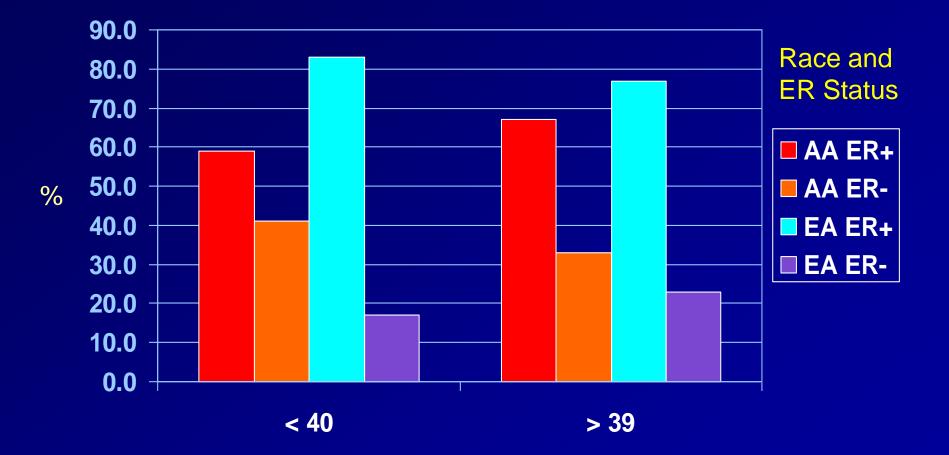
*AA: African American

Breast Cancer Detection among Younger and Older Women

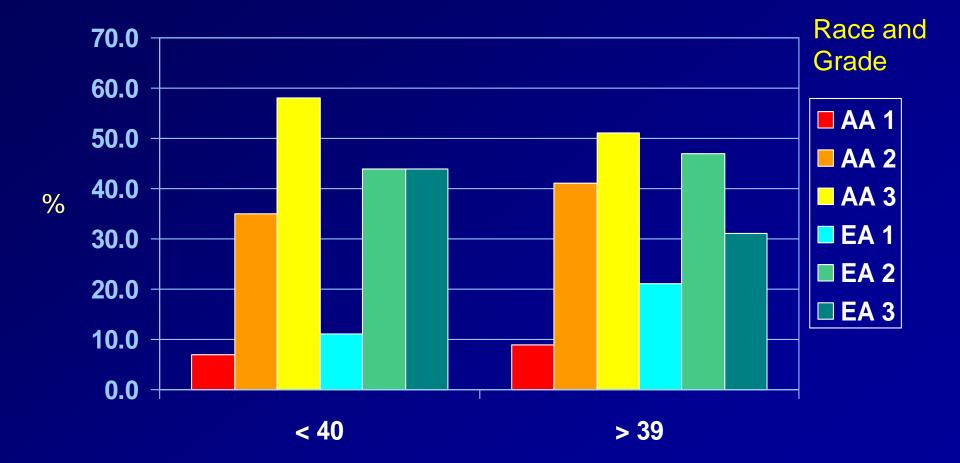
How was your breast cancer found?					
	AA	(%)	Е	EA (%)	
	< 40	< 40 ≥ 40		<u>≥ 40</u>	
Self-exam	31	25	24	10	
Accidental	40	22	35	18	
MD exam	9	10	7	13	
Mammogram	8	40	13	55	

Ever have a screening mammogram

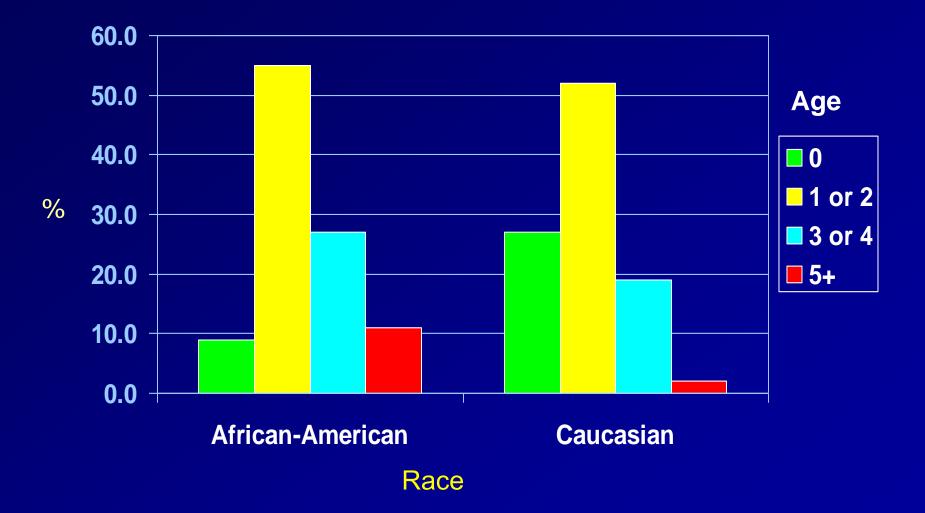
AA		EA		
< 40	≥ 40	< 40	≥ 40	
40%	84%	47%	93%	


Classification of Subtypes

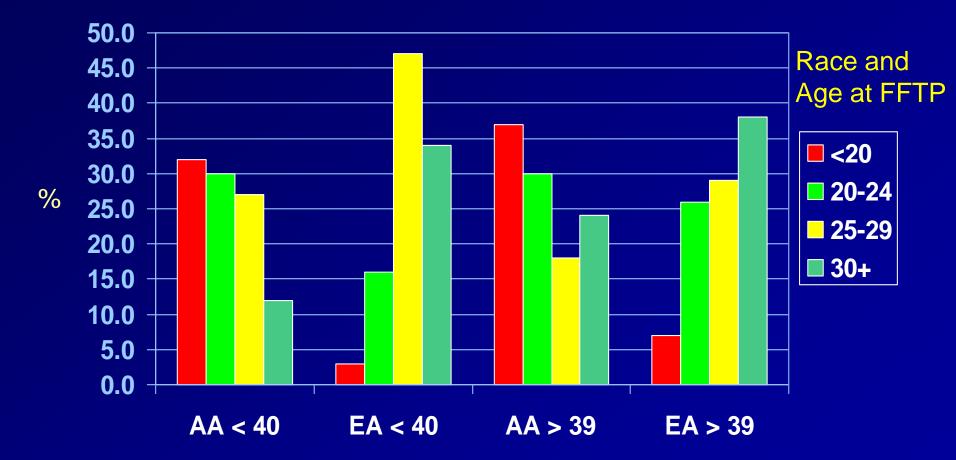
Collection of tumor tissue blocks from hospitals


Standardized grading by one pathologist at RPCI

Construction of TMAs, staining for ER, PR, HER2, cytokeratins


Estrogen Receptor Status by Race and Age (WCHS)

Tumor Differentiation by Race and Age (WCHS)

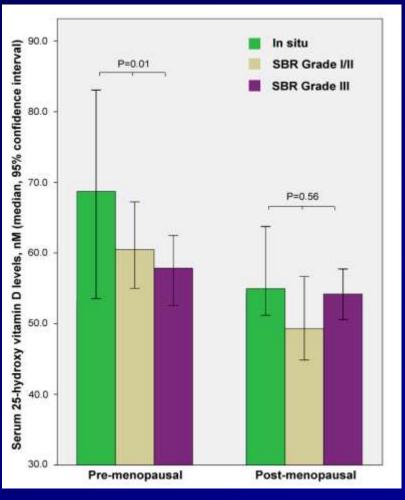

Parity by Race among Cases (WCHS)

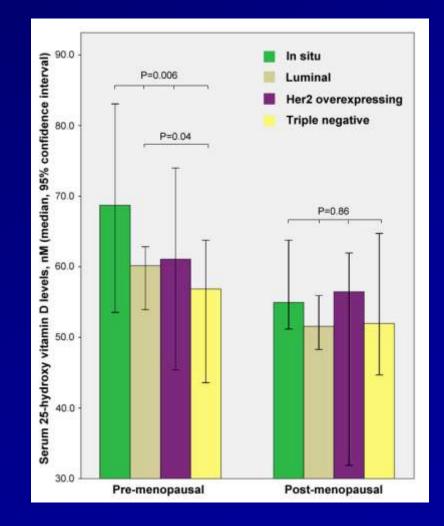
Age at First Full Term Pregnancy by Race (WCHS)

Age at FFTP by Race and Age (WCHS)

GWAS of Breast Cancer in African-American Women (Haiman, PI)

- 12 Participating studies – 4,684 cases, 4,506 controls
- Illumina 1M chip
- Risk variants found in EA GWAs slight associations in AAs (FGFR2, 8q24, MAP3K1)
- Additional unique SNPs identified (ORs=1.2), specific to ER- breast cancer
- Stratify by age at onset


Breast Cancer in African-American Women: an 'Out of Africa' Hypothesis


Higher pigmentation in Africans –

- adequate absorption of vitamin D in sub-Saharan environment
- High prevalence of vitamin D deficiencies in African-Americans
- Distributions of polymorphisms in Vitamin D receptor and VDR metabolism varies by ancestry

Relationship between Vitamin D levels and basal-like breast cancers?

Vitamin D levels according to clinical characteristics by menopausal status

Funded by BCRF

Vitamin D and Early, Aggressive Breast Cancers in African-American Women

Low vitamin D levels associated with high grade, triple negative breast cancers ONLY among premenopausal women

Ongoing assessment in relation to early onset, aggressive breast cancer in African-American women in WCHS study; vitamin D receptor polymorphisms Breast Cancer in African-American Women: an 'Out of Africa' Hypothesis

Adaptation to endemic infectious disease (malaria) in Africa

Development of robust immune/inflammatory response – differential distributions of SNPs in these pathways

Relationship with high grade, early onset breast cancers?

Early, Aggressive Breast Cancers in African-American Women

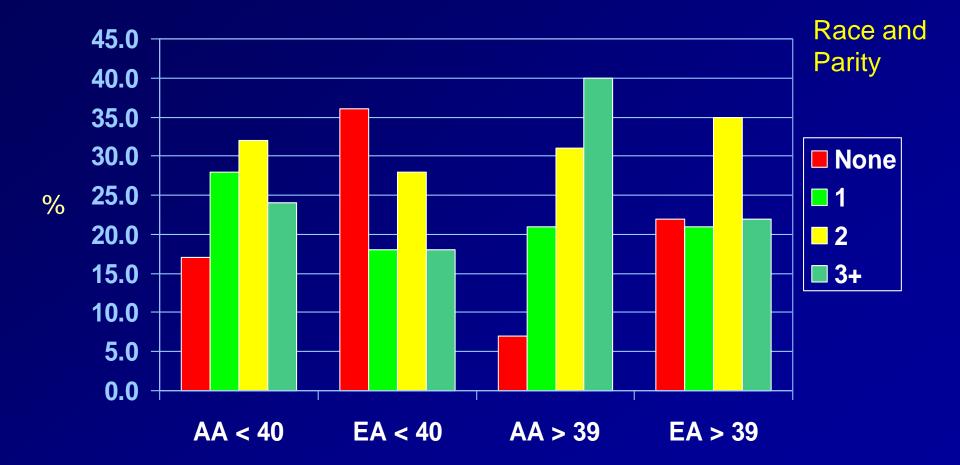
Racial differences in tumor characteristics appear to be independent of early age at onset

Intensive research to identify modifiable risk factors for early aggressive breast cancers

In collaboration with.....

Elisa Bandera, CINJ

Karen Pawlish, NJ Dept. Health and Senior Services


Dana Bovbjerg, U Pittsburgh

Lina Jandorf, MSSM

Gregory Ciupak, Warren Davis, RPCI

Multiple clinical and scientific collaborators

Number of Children by Race and Age among Breast Cancer Cases (WCHS)

