Genetics of Adolescent/Young Adult ALL (Cytogenetics)

Christine J Harrison Professor of Childhood Cancer Cytogenetics

Leukaemia Research Cytogenetics Group

Cytogenetic subgroup by age

Moorman 2007

AYA by Age at Diagnosis and Treatment Trial 1990-present (n=1,205)

Adolescents With Acute Lymphoblastic Leukaemia: Outcome on UK National Paediatric (ALL97) and Adult (UKALLXII/E2993) Trials

Ramya Ramanujachar, мясрен,¹ Sue Richards, рьд,² Ian Hann, мд,^{1,3} Anthony Goldstone, мд,⁴ Christopher Mitchell, рьд,⁵ Ajay Vora, мд,⁶ Jacob Rowe, мд,⁷ and David Webb, мд³*

Adolescents With Acute Lymphoblastic Leukaemia 257

Fig. 1. Overall survival of patients aged 15, 16 and 17 years in the UKALL trials; Abbreviations used: Obs, observed, Exp, expected.

Fig. 2. Event free survival of patients aged 15, 16 and 17 years in the UKALL trials; Abbreviations used: Obs, observed; Exp, expected.

Age groups (n=1,205)

Immunophenotype (n=1,132)

Immunophenotype not known in 73 (6%) cases

Age-specific incidence of T-ALL

Estimates of the incidence of T-ALL specific abnormalities

Abnormality	Incidence						
	Children	ΑΥΑ	Adults				
<i>SIL-TAL1</i> /t(1;14)	22%	16%	9%				
t(11;14)(p13;q11)/ <i>LMO2</i>	12%	2%	0%				
t(10;14)/TLX1 (HOX11)	2%	4%	24%				
t(5;14)/TLX3 (HOX11L2)	17%	11%	6%				
CALM-AF10	2%	8%	0%				
CDKN2A/B	51%	46%	44%				
MLL	4%	5%	0%				
NUP214-ABL1	2%	3%	3%				

Cytogenetics of BCP-ALL in 13-24 year olds (n=837)

Estimates of the incidence of BCP-ALL specific abnormalities

Abnormality	No. Positive	No. Tested	Incidence	<13 years	>24 years
t(9;22)	68	781	9%	2%	20%
t(1;19)	27	696	4%	3-5%	3-5%
t(12;21)	25	531	5%	25%	<1%
t(17;19)	4	696	<1%	<1%	<1%
t(4;11)	27	780	4%	2%	5-10%
11q23	6	780	1%	2%	2%
НеН	149	754	20%	35%	10%
Нуро (<40)	23	754	3%	1%	5%
iAMP21	26	531	5%	<2%	<2%
IGH@	31	216	14%	3%	15%
IGH@-CRLF2	8	284	3%	<1%	~5%
CRLF2	5	115	4%	~5%	?
Normal	102	696	15%		
Other	227	696	33%		

4 cases had iAMP21 plus CRLF2 and 2 cases had iAMP21 plus an IGH translocation

"Others"

- Abnormal 9p ~50%
- +21 ~4%
- +8 ~4%
- +5

~4%

Cancer Genetics and Cytogenetics 148 (2004) 159-162

Short communication

Is trisomy 5 a distinct cytogenetic subgroup in acute lymphoblastic leukemia?

Rachel L. Harris, Christine J. Harrison, Mary Martineau, Kerry E. Taylor, Anthony V. Moorman*

Table 1													
Clinical,	survival,	cytogenetic	and	FISH	data	for	seven	patients	with	ALL	and	trisomy	5

				Time from diagnosis to		Overall				
Case Age (no. Sex	Age (vr)/		WBC (×10 ⁹ /L)	1st Rel (mo)	2nd Rel (mo)	survival		Interphase FISH		
	Sex	Diagnosis				(mo)	Karyotype	TEL-AML1	BCR-ABL	MLL
3112	7/M	Com/pre-B ALL	88.0	43	_	55+	47,XY,+5[9]/46,XY[1].ish +5(wcp5+)	Neg	Neg	Neg
1642	9/M	Com ALL	13.3	—	—	82+	47,XY,+5[5]/46,XY[3].ish +5(wcp5+)	—	—	_
2955	10/M	Com/pre-B ALL	5.3	33	_	33+	47,XY,+5[20]	Neg	Neg	Neg
1323	14/M	Com ALL	19.0	38	50	52	47,XY,+5[6]/46,XY[4]	_	_	
3209	14/M	Com/pre-B ALL	1.4	—	—	53+	46,X,-Y,+5[6]/46,XY[8]	Neg	Neg	Neg
4765	27/M	Pre-B ALL	17.6		_	14 +	47,XY,+5[6]/46,XY[7]	_	Neg	
2478	31/F	Com ALL	7.4	37	41	43	47,XX,+5[3]/47,XX,+8[4]/ 46,XX[2]	_	_	

The common/pre-B immunophenotype was CD10⁺, CD19⁺; cytoplasmic μ -chain was not tested.

Abbreviations: Com, common; Neg, negative; Rel, relapse; WBC, white blood cell count.

Duplication of chromosome 21 involving amplification of *RUNX1*

Intrachromosomal amplification of chromosome 21 iAMP21

www.nature.com/leu

Amplification of AML1 on a duplicated chromosome 21 in acute lymphoblastic leukemia: a study of 20 cases

L Harewood^{1,4}, H Robinson¹, R Harris¹, M Jabbar Al-Obaidi¹, GR Jalali¹, M Martineau¹, AV Moorman¹, N Sumption¹, S Richards², C Mitchell³ and CJ Harrison¹ on behalf of the Medical Research Council Childhood and Adult Leukaemia Working Parties

¹Leukaemia Research Fund Cytogenetics Group, Cancer Sciences Division, University of Southampton, Southampton, UK; ²Clinical Trial Service Unit, Radcliffe Infirmary, Oxford, UK; and ³Paediatric Oncology, John Radcliffe Hospital, Oxford, UK

Amplification of band q22 of chromosome 21, including AML1, in older children with acute lymphoblastic leukemia: an emerging molecular cytogenetic subgroup

Leukemia (2003) 17, 1679-1682. doi:10.1038/sj.leu.2403000

TO THE EDITOR

1 Soulier¹ ¹Centre Hospitalier Universitaire (CHU) Saint L Trakhtenbrot² Louis, AP-HP, Paris, France; V Najfeld³ ²The Chaim Sheba Medical Center, JM Lipton³ S Mathew⁴ ³The Mount Sinai Medical Center, New York, H Avet-Loiseau⁵ ⁴New York Presbyterian Hospital-Cornell M De Braekeleer⁶ Campus Cornell Úniversity Weill Medical S Salem⁷ College, New York, NY, USA; A Baruchel¹ ⁵CHU Nantes, France; SC Raimondi⁸ SD Raynaud⁷ ⁸Iude Children's Research Hospital, Memphis,

Tel-Hashomer, Israel;

⁶CHU Brest, France;

⁷CHU Nice, France;

NY, USA;

TN, USA

Demographic Profile of iAMP21 patients

- Older children/Adolescents
 Median age 10 years
- Common/Pre-B immunophenotype
- Low WBC

EFS of 28 iAMP21 patients on MRC ALL97

Moorman et al (2007) Blood 109:2327

Outcome of iAMP21 patients on MRC ALL97

Decision

To treat iAMP21 patients as high-risk in the current childhood trial: ALL2003

iAMP21: outcome in ALL2003

iAMP21

Duplication of chromosome 21 involving amplification of *RUNX1*

Every abnormal chromosome 21 has a different morphology

PNAS

Complex genomic alterations and gene expression in acute lymphoblastic leukemia with intrachromosomal amplification of chromosome 21

Jon C. Strefford*¹¹, Frederik W. van Delft¹³, Hazel M. Robinson*, Helen Worley*, Olga Yiannikouris³, Rebecca Selzer¹, Todd Richmond¹, Ian Hann**, Tony Bellotti¹⁺, Manoj Raghavan³, Bryan D. Young³, Vaskar Saha¹³, and Christine J. Harrison*¹

*Leukaemia Research Cytogenetics Group, Cancer Sciences Division, University of Southampton, Southampton SO16 6YD, United Kingdom: *Cancer Research UK Children's Canter Group and *Medical Oncology Unit, Institute of Cancer, Quéen Mary University of London, London ET4NS, United Kingdom: NimbleGen Systems, Inc., Medison, WI 53711: **Department of Haematology, Great Ormond Street Hospital for Children NHS Trust, London WC1N 3JH, United Kingdom: and **Computer Learning Research Centre, Royal Holloway, University of London, Egham, Surrey TW20 0EX, United Kingdom

Robinson et al (2007) Genes Chromosomes Cancer 46:318-26

The Breakage-Fusion-Bridge cycle

iAMP21

- iAMP21 defines a distinct patient subgroup of older children/young adults with a poor prognosis
- Chromosomal instability gives rise to complex intrachromosomal rearrangements of chromosome 21
- Genome wide they show the same abnormalities of Bcell differentiation genes
- No obvious differentially expressed genes
- Studies are in progress to determine the initiating mechanism
- Currently FISH with probes directed to *RUNX1* is the only reliable diagnostic method

IGH@ translocations in BCP-ALL

GENES, CHROMOSOMES & CANCER 39:88-92 (2004)

BRIEF COMMUNICATION

t(14;19)(q32;q13): A Recurrent Translocation in B-Cell Precursor Acute Lymphoblastic Leukemia

Hazel M. Robinson, Kerry E. Taylor, G. Reza Jalali, Kan Luk Cheung, Christine J. Harrison, and Anthony V. Moorman*

Leukaemia Research Fund Cytogenetics Group, Cancer Sciences Division, University of Southampton, Southampton, UK.

blood

2006 108: 3560-3563 Prepublished online Jul 27, 2006; doi:10.1182/blood-2006-03-010835

Overexpression of CEBPA resulting from the translocation t(14;19)(q32;q13) of human precursor B acute lymphoblastic leukemia

Elise Chapiro, Lisa Russell, Isabelle Radford-Weiss, Christian Bastard, Michel Lessard, Stephanie Struski, Helene Cave, Sandra Fert-Ferrer, Carole Barin, Odile Maarek, Veronique Della-Valle, Jonathan C. Strefford, Roland Berger, Christine J. Harrison, Olivier A. Bernard, Florence Nguyen-Khac and the Groupe Francophone de Cytogénétique Hématologique

Five members of the CEBP transcription factor family are targeted by recurrent IGH translocations in B-cell precursor acute lymphoblastic leukemia (BCP-ALL)

Takashi Akasaka, Theodore Balasas, Lisa J. Russell, Kei-ji Sugimoto, Aneela Majid, Renata Walewska, E. Loraine Karran, David G. Brown, Kelvin Cain, Lana Harder, Stefan Gesk, Jose Ignacio Martin-Subero, Mark G. Atherton, Monika Bruggemann, María José Calasanz, Teresa Davies, Oskar A. Haas, Anne Hagemeijer, Helena Kempski, Michel Lessard, Debra M. Lillington, Sarah Moore, Florence Nguyen-Khac, Isabelle Radford-Weiss, Claudia Schoch, Stéphanie Struski, Polly Talley, Melanie J. Welham, Helen Worley, Jon C. Strefford, Christine J. Harrison, Reiner Siebert and Martin J. S. Dver

IGH Testing in ALL by Age (n=1,304) 3% <10 yrs, 14% >10 years NB Selected screening

IGH@-CEBPG

Translocation	M:F ratio	Age range (median)	WBC range x10 ⁹ /L (median)	Current status where available
t(14;19)(q32;q13)	2:7	10-44	1-71	1 dead
		(19)	(5)	4 CR
t(14;19)(q32;q13)	0:1	32	94	NA
t(14;20)(q32;q13)	1:2	13-35	3-103	2 CR
		(15)	(75)	
t(8;14)(q11;q32)	5:5	3-49	2-375	1 dead
		(14)	(7)	2 CR
t(14;14)(q11;q32)	4:0	15-45	1-24	3 CR
inv(14)(q11q32)		(20)	(13)	

Summary – IGH@-CEBP family

- Four IGH@ translocations
- Involve five partner genes from the same gene family – CCAAT enhancer binding-proteins
- One subtype of haematological disease, B-cell precursor ALL in older children and young adults
- Basic leucine zipper transcription factors implicated in proliferation and differentiation
- Expressed in haematopoietic system control of myeloid differentiation
- Tumour suppressor and oncogenic effects in leukaemogenesis

Brief report

t(6;14)(p22;q32): a new recurrent IGH@ translocation involving ID4 in B-cell precursor acute lymphoblastic leukemia (BCP-ALL)

Lisa J. Russell,⁴ Takashi Akasaka,² Aneela Majid,² Kei-ji Sugimoto,² E. Loraine Karran,² Inga Nagel,⁹ Lana Harder,² Alexander Claviez,⁴ Stefan Gesk,⁹ Anthony V. Moorman,¹ Fiona Ross,⁵ Helen Mazzullo,⁶ Jonathan C. Strefford,¹ Reiner Siebert,⁹ Martin J. S. Dyer,² and Christine J. Harrison¹

"Leukaemia Research Cytogenetics Group, Cancer Sciences Division, University of Southampton, Southampton General Hospital, Southampton, United Kingdom; "Medical Research Council (MRC) Toxicology Unit, University of Leicester, Leicester, United Kingdom; "Institute of Human Genetics and "Department of Pedintrics, University-Hospital Schleewig-Holstein, Campus Kiel, Kiel, Germany; "Weasex Regional Genetics Laboratory, Baliebury District Hospital, Selisbury, United Kingdom; and "Department of Haematology and Blood Transfusion, University College Hospital, London, United Kingdom

IGH@-ID4

bHLH family of transcription factors – inhibitory proteins which regulate growth, differentiation, senescence and apoptosis

• qRTPCR

IGH@-ID4

Patients

- 13 BCP-ALL patients recurrent translocation
- Low WBC (median 3x10⁹/l, range 1-11x10⁹/l)
- Age higher than expected for BCP-ALL (median 16 yrs, range 6-48 years)

Leukemia (2008), 1–4 \odot 2008 Macmillan Publishers Limited All rights reserved 0887-6924/08 \$32.00

www.nature.com/leu

LETTER TO THE EDITOR

A novel translocation, t(14;19)(q32;p13), involving *IGH@* and the cytokine receptor for erythropoietin

IGH@-EPOR

• qRTPCR

TSLP (thymic stromal derived lymphopoietin)

• 33 patients

- BCP-ALL
 - CD34+ and CD33+
- Median age 16yrs (range 3-76yrs)

• LDI-PCR

27 BCP-ALL cell lines -2 with t(Y;14)

• Expression

Children (n=19) 10 events: 8 relapses (7 died); 2 non-remitter/early death 9 patients on ALL2003 – all in 1st CCR

IGH@Partners

IGH@translocations

- IGH@ is a promiscuous locus: common link to the genes involved and their interrelated pathways
- Majority of patients are older children or adolescents
- Cytogenetics still identifies new translocations and subgroups

Conclusions to genetics of AYA

- They show abnormalities in common with childhood ALL, although the incidences are different
- There are some novel abnormalities emerging which are common in this age group
- Detailed analysis may highlight some as these as specific targets for therapy

Acknowledgements

Newcastle, UK

- Anthony Moorman
- Leukaemia Research
 Cytogenetics Group

Leicester, UK

Martin Dyer

Kiel, Germany

Reiner Siebert

Paris, France

Olivier Bernard

To find IGH@ positive cases

Screen by FISH with IGH@ breakapart probe

Not:

- ETV6-RUNX1 positive
- High hyperdiploidy
- BCR-ABL1
- t(1;19)

• aCGH

Y

- H.

Х

• Biological consequences

WT - TTCTGCTTATCAGAGAAGAA

• JAK2 mutation?

TTC - I682F

Retroviral transfection

Data from Dr Melania Capasso

CD43+/CD19+

- •CRLF2 expressing cells are less differentiated compared to EV cells
- •Low CRLF2 expressing cells are more differentiated than high CRLF2 expressing cells

Numbers of AYA by Trial and Year of diagnosis (N=1,179)

Year of diagnosis