Management of ALL in Adolescents and Young Adults:

What have we learned and what are our challenges?

Wendy Stock, MD University of Chicago

ALL in Adolescents/Young Adults (AYA) What do we know now?
Survival rates correlate with level of participation in clinical trials

 AYAs are <u>least likely</u> population to participate in clinical trials (CTEP data)

Problem compounded by lack of consistency in approach to treatment:

Adult vs pediatric hematologist/oncologist

Paucity of specific outcome data on AYAs

ALL in Young Adults: CCG and CALGB Studies Comparison of Outcomes from 1988-2003

	<u>CCG</u>	CALGB	
	Ages 16-20	Ages 16-20	
Patients	197, (68% Male)	124, (69% Male)	
Precursor T-cell	23%	27%	
Precursor B-cell	77%	73%	
Cytogenetics:			
Evaluable cases	61/197 (31%)	69/103 (56%)	
t(9;22) or t(4;11)	4 (7%)	7 (10%)	
WBC > 50 K	67 (25%)	27 (22%)	

Summary of Results

	<u>CCG</u>	<u>CALGB</u>
Complete Remission	96%	93%
6 -year Event Free Survival (EFS)	65%**	38%
EFS by phenotype:		
B-lineage	56%	39%
T-lineage	74%	45%
EFS by WBC:		
<50 K	67%	41%
>50 K	58%	30%

Event-Free Survival: CALGB vs CCG

Stock, W. et al. Blood 2008;112:1646-1654

Young Adults Treatment Outcome Treating young adults on pediatric vs. adult protocols

What Accounts for these Differences in Outcome?

Disease Biology?

Treatment ?

The People?

Cytogenetics of ALL as Function of Patient Age

Moorman et al, Brit J Haemat 10.1111,1365, 2008

Disease/Host Biology: Much to be done

 Focus on defining the incidence of new molecular genetic prognostic markers in AYA patients
 – IKZF1, JAK2

- Little known about potential differences in pharmacokinetic or pharmacogenomic regulation as patients age
 - Impact of puberty/hormonal changes?
 - Insights into drug toxicities, delays, omissions in treatment

Treatment optimization: where are the differences in adult and pediatric regimens?

 Greater dose intensity of non-myelosuppressive drugs in pediatric regimens

vincristine, I-asparaginase, and steroid in CCG

• Earlier and more intensive CNS therapy

- Given twice during induction therapy
- Continues during long-term maintenance

Longer duration of maintenance therapy in pediatric regimens

Comparison of Dose Intensity during Post-Remission Therapy

	CCG-BFM	CALGB	
Dexamethasone	210 mg/m ²	140 mg/m ²	
Vincristine	22.5 mg/m ²	14 mg	
L-Asparaginase	90,000 u/m ²	48,000 u/m ²	
Doxorubicin	75 mg/m²	90 mg/m²	
Cyclophosphamide	3000 mg/m ²	3000 mg/m²	
IT-Methotrexate	132 mg + RT or	105 mg	
Cranial RT	216 mg, no RT	2400 cGy	

Higher Rate of CNS relapses for CALGB patients

Stock, W. et al. Blood 2008;112:1646-1654

The Human Factor: Impact on outcome?

Patient ?

- "Emancipated adolescent" vs parental supervision
 - Insurance coverage for young adults
 - Loss of parental "umbrella"
 - Compliance issues many oral medications

Role of Treating Physician/Center?

- Expertise and familiarity are relevant: Complicated regimens
 - Adherence to protocol by MD
 - ALL is "bread and butter" of pediatric heme/onc

Effect of Age on EFS

Effect of Age on EFS

Adherence to prescribed treatment: Did treatment delays impact outcome?

- Assessed time from initiation of induction therapy to the beginning of maintenance therapy by specified timeframe of the protocol
 - Only 75 (63%) CALGB and 126 (81%) CCG pts began maintenance therapy
 - Why no maintenance?: early relapses, treatment related deaths and toxicities, removal for allo-SCT, withdrawal of consent, lost to follow-up
- However, no improvement in EFS noted for patients who began maintenance therapy within one-month of protocol specified timeframe compared to those who were delayed in time to beginning maintenance therapy
 - Could not address compliance with drug dosage in this retrospective analysis

US Intergroup study for AYA 16- 30 years old: C- 10403

	С	IM	DI	Μ
DNR VCR Pred Peg-Asp IT-MTX IT-AraC	Cyclo VCR Dex Peg-Asp Ara-C 6MP	MTX VCR Peg-ASP IT-MTX	DOX Cyclo Dex Peg-Asp Ara-C 6-TG IT-MTX	DEX VCR 6MP MTX IT-MTX

T-ALL patients receive prophylactic RT after DI Maintenance therapy continues for 2 (F) – 3 (M) years

CCG-1961 Augmented vs. Standard BFM Survival outcome (Age 16+ subset)

adapted by J Nachman from Seibel et al, Blood 111:2548, 2008

Goals of 10403 study

 To estimate feasibility and DFS using a successful COG regimen in adult cooperative group setting in USA

- Flow sheets to evaluate compliance with doses/schedule of chemotherapy
- To obtain insights into age-specific molecular pathogenesis and to identify prognostic markers
 - Partnership with COG- Willman, Mullighan for GWAS studies
- To obtain insights into psycho-social and socioeconomic issues
 - Patient survey at two treatment time-points

Extending the Pediatric Approach to Young Adults: An International "Sea Change": Similar EFS and OS

6-year EFS = 60%

6-year OS Adolescents (15- 18 yrs) = 77% Young Adults (19 -30 yrs) = 63% p = NS

Ribera et al, J Clin Oncol 26:2008

Improved Survival using a "Pediatric Inspired Approach"

Huguet, F. et al. J Clin Oncol; 27:911-918 2009

GRAAL- 2003: Can we extend this approach to older adults?

- Improvements in CR rates and EFS
 - EFS 55% overall

• However, less benefit for patients > age of 45

• EFS: 46%

 Higher cumulative incidence of treatment-related deaths (23% vs 5% for those< 45 years)

Huguet et al, J Clin Oncol 27:911, 2009

CALGB 10403: Early toxicities – more than expected?

- 39 patients enrolled as of 6/1/09
- Examined asparaginase toxicities via Adeers reports
 - 3 hypersensitivity reactions to IV Peg-ASP
 - during intensification therapy
 - 2 pancreatitis
 - 2 coagulopathy events
 - 1 Sinus thromobosis, 1 subarachnoid bleed during induction
 - Incidence of coagulopathies reported to increase in 11-16 year olds compared to younger children
 - » Appel et al, Thrombosis and Haemostasis 100 2: 330-37, 2008

Need to define/refine role of allo-SCT in CR1 for AYAs Ph-Neg ALL – MRC UKALL XII / ECOG 2993:

High-Risk Cytogenetics: t(4;11), t(8;14), complex karyotype, low hypodiploidy, triploidy

Goldstone A et al, Blood 111:1827-1833, 2008

MRC UKALL XII / ECOG 2993 - OVERALL SURVIVAL Standard Risk

AYAs and ALL: Where are we now?

- Promising developments: Intensive pediatric approaches appear to be improving EFS for the AYA patient
 - Clarify role of allo-SCT in CR1
- Successful ALL treatment (at any age) is not for the faint of heart!
 - Requires steady involvement of a knowledgable and dedicated medical and psychosocial support team and
 - Highly motivated and compliant patient with strong support from family, friends
 - Insurance issues: requirement for years of outpatient medication coverage

Clinical/Correlative Research Challenges

Clinical issues:

- Development of consensus guidelines: might be useful to manage/prevent toxicities and get more patients to be able to comply throughout treatment
 - Product support for coagulopathy
 - When to administer / when not?
 - Pre-medication for PEG-asparaginase?
 - Screening/monitoring/intervention for avascular necrosis/osteoporosis

Long-term survivorship issues

Medical insurance coverage for young adults

Research Challenges

- Ensuring adequate patient material and research support for GWAS studies
 - Cooperative groups must focus on provision of diagnosis, remission and relapse samples
 - Insights into molecular pathogenesis
 - already providing new prognostic markers
 - new targets for novel therapeutic strategies

- Better understanding of the pharmacokinetic and pharmacogenetic variations in AYAs that may impact treatment outcome
 - Interplay of host and environment
- Will result in refinement in care and better outcomes for AYAs: goal of "personalized medicine" for all patients