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1.

Introduction

A number of recent theoretical and experimental
papers have investigated the ability to coherently

control or “engineer” atomic, molecular, and optical
gquantum states. This theme is manifested in topics such[1]. The attendant ability to create correlated, or entan-
as atom interferometry, atom optics, the atom laser, gled, states of atomic particles appears to be interesting
Bose-Einstein condensation, cavity QED, electromag- from the standpoint of quantum measurement [54] and,
netically induced transparency, lasing without inver- for example, for improved signal-to-noise ratio in
sion, quantum computation, quantum cryptography, spectroscopy of trapped ions (Sec. 3.4).
quantum-state engineering, squeezed states, and Therefore, we will be particularly interested in study-
wavepacket dynamics. In this paper, we investigate a ing the practical limits of applying coherent control
subset of these topics which involve the coherent methods to trapped ions for (1) the generation and
manipulation of quantum states of trapped atomic ions. analysis of nonclassical states of motion, (2) the imple-
The focus will be on a proposal to implement quantum mentation of quantum logic and computation, and (3)
logic and quantum computation using trapped ions [1]. the generation of entangled states which can improve
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However, we will also consider related work on the
generation of nonclassical states of motion and entan-
gled states of trapped ions [2—39]. Many of these ideas
have been summarized in a recent review [40].

Coherent control of spins and internal atomic states
has a long history in NMR and rf /laser spectroscopy.
For example, the ability to realize coherent pulses”
or “m/2 pulses” on two-level systems has been routine
for decades. In much of what is discussed in this paper,
we will consider entangling operations, that is, unitary
operations which create entangled states between two or
more separate quantum systems. In particular, we will
be interested in situations where the interaction between
quantum systems can be selectively turned on and off.
For brevity, we will limit discussion to these types of
operations in experiments which involve trapped
atomic ions; however, many of the discussions, in
particular those concerning single trapped ions, will
also apply to trapped neutral atom experiments where
the atoms can be treated as independent. The aspect of
entangling operations is shared by atom optics and atom
interferometry [41, 42] and, as described below, there
are close parallels between the ion trap experiments and
those of cavity QED [43].

Earlier experiments on trapped ions, where the zero-
point of motion was closely approached through laser
cooling, already showed the effects of nonclassical
motion in the absorption spectrum [44-46]. These same
effects can be used to characterize the average energy of
the ion. More recent experiments report the generation
of Fock, squeezed, coherent [21], and Sdimger cat
[47] states. These states appear to be of fundamental
physical interest and possibly of use for sensitive detec-
tion of small forces [26, 48]. For comparison, experi-
ments which detect quantized atomic motion in optical
lattices are reviewed by Jessen and Deutsch [49]. Also,
through the mechanism of Bose-Einstein condensation,
which has recently been observed in neutral atomic
vapors [50-53], a macroscopic occupation of a single
motional state (the ground state of motion) is achieved.

Simple guantum logic experiments have been carried
out with single trapped ions [17]; the emphasis of future
work will be to implement quantum logic on many ions
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signal-to-noise ratio in spectroscopy. We will briefly 2. Trapped Atomic lons
describe the experimental results in these three areas
but the main purpose of the paper will be to anticipate

and characterize decohering mechanisms which limit  pe to their net charge, atomic ions can be confined
the ability to produce the desired final quantum states in by particular arrangements of electromagnetic fields.
current anq future experiments. This is a particularly For studies of ions at low energy, two types of trap are
important issue for quantum computation where many typjcally used—the Penning trap, which uses a combi-
ions (thousands) and coherent operations (billions) may nation of static electric and magnetic fields, and the Paul
be required in order for quantum computation to be or rf trap which confines ions primarily through pon-
generally useful. Here, we generalize the meaning of geromotive forces generated by inhomogeneous oscil-
decoherence to include any effect which limits the |ating fields. The operation of these traps is discussed in
purity of the desired final states. A fundamental source \arious reviewgsee for example, Refs. [67]-[70]), and
of decoherence will be the coupling of the ion’s motion i, 4 recent book by Ghosh [71]. For brevity, we discuss
and internal states to the environment. Also importantis gne trap configuration, the linear Paul trap, which may
induced decoherence caused by, for example, technicalpe particularly useful in the context of this paper. This
fluctuations in the applied fields used to implement the chgice however, does not rule out the use of other types
operations. This division between types of decoherence uf jon traps for the experiments discussed here.
is arbitrary since both effects can be regarded as |y Fig. 1 we show a schematic diagram of a linear
coupling to the environment; however, the division will  pg| trap. This trap is based on the one described by
provide a useful framework for discussion. As a unify- Raijzen et al. [72] which is derived from the original
ing theme for the paper, we will find it useful to regard, - gesign of Drees and Paul [73]. It is basically a quadru-
as much as possible, the quantum manipulations we pole mass filter which is plugged at the ends with static
discuss in terms of quantum logic. Of course, the sub]_e_ct electric potentials. A potentidl,cos(2:t + U, is applied
of decoherence is much broader than the specific hetween diagonally opposite rods, which are fixed in a
context discussed here; the reader is referred to Moréquadrupolar configuration, as indicated in Fig. 1. We
general discussions such as the papers by Zurekassyme that the rod segments alongzitérection are
[55,56,57]. _ ~ coupled together with capacitors (not shown) so that the
The paper is organized as follows. In the next section, f potential is constant as a function of Near the axis

we briefly discuss ion trapping. In Sec. 3, we consider of the trap this creates a potential of the form
in somewhat more detail the three areas of application

enumerated in the previous paragraph. Since cooling of
the ions to their ground state of motion is a prerequisite (Vocosrt + U)) x%—y?
. N . . P = 1+——), Q)
to the main applications discussed in the paper, we out- 2 R
line methods to accomplish this in the beginning of Sec.

3. Section 4 is the heart of the paper; here, we attemptyyhereR is equal to the distance from the axis to the
to identify the most important sources of decoherence. g rface of the electrode. (Unless the rods conform to
Section 5 briefly discusses some variations on PrOPOSEdequipotentials of Eq. (1), this equation must be multi-
methods for realizing quantum logic in trapped ions. plied by a constant factor on the order of 1; see for
Section 6 suggests some additional applications of theexample, Ref. [72].) This gives rise to (harmonic)
ideas discussed in the paper and Sec. 7 provides a briebonderomotive potentials in theandy directions. To
summary. provide confinement along thedirection, static poten-
Such a treatment seems warranted in that several lab+g|s U, are applied to the end segments of the rods as

oratories are investigating the use of trapped ions for jhgicated. Near the center of the trap, this provides a
quantum logic and related topics; the authors are awaregiatic harmonic well in the direction

of related experiments being pursued at IBM, Almaden;

Innsbruck University; Los Alamos National Labora- 1 m 1

tory; Max Planck Institute, Garching; NIST, Boulder; ¥s= KUO[ZZ -5+ yz)] = 2_(1‘*’22[22 -5+ yz)]’

and Oxford University. This analysis in this paper

necessarily overlaps, butis also intended to complement, (2)
other investigations [58—66] and will, by no means, be

the end of the story. We hope however, that this paper wherex is a geometric factom andq are the ion mass
will stimulate others to do more complete treatments and charge, and, = (2kqU,/m)*2 is the oscillation
and consider effects that we have neglected. frequency for a single ion or the center-of-mass (COM)

2.1 lons Confined in Paul Traps
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sectionsg; (or a) will represent the harmonic oscillator

X
y lowering operator and will represent the normal mode
U oV U, > coordinate for théth mode). The solution of Egs. (3) to
= first order ing; and second order ig is given by

(, (fy — (fL 72'_%— u(t) = A(cos@it + ) [1 + % cos((t)
COT 7 S0 0~ |

Vo.cosQrt + U.

2
i

+ g—zcos(mﬂ)] + Bi%Sin(wit + ) sin(!)ﬂ)) , (4)

whereu; = x ory, A, depends on initial conditions, and

= 2 W ERWEE FRESEIRINDE SRR ERENERS N $ ¥

o =82 B = [a+ @/ ©)

Fig. 1. The upper part of the figure shows a schematic diagram of
the electrode configuration for a linear Paul-rf trap (rod spaeing

1 mm). The lower part of the figure shows an image of a string of The large amplitude oscillation at frequeneyis typi-
19%Hg" ions, illuminated with 194 nm radiation, taken with a uv-sensi- cally called the “secular” motion. Whes << g? << 1
tive, photon counting imaging tube [74]. The spacing between adja- . . . '

cent ions is approximately 0m. The “gaps” in the string are occu- an(_j Ur = Q' if we negleCt the mlcromotlon (the te_rms
pied by impurity ions, most likely other isotopes of Havhich do not which oscillate at(2; and ), the ion behaves as if it
fluoresce because the frequencies of their resonant transitions do notwere confined in a harmonic pseudopotentiglin the
coincide with those of the 194 nf%;;, — 2Py, transition of ' **Hg". radial direction given by

oscillation frequency for a collection of identical ions I

along thez direction. Equations (1) and (2) represent the qP, = 5 Mar(x” +y7) (6)
lowest order terms in the expansion of the potentials for

the electrode configuration of Fig. 1. When the size of " B ) ,

the ion sample or amplitude of ion motion is Wherew =qVo/(2"mR’) = quT/(Z\_/E) is the radial
comparable to the spacing between electrodes or theSecular freqyency)r. For most of the d|§cu55|ons in this
spacing between rod segments, higher order ternds in  PaPer, we will assum#; = 0; however it may be useful
and &, become important. However for small oscilla- " SOMe cases to make # 0 to break the degeneracy
tions of the COM mode, which is relevant here, the of thex andy frequencies. Figure 1 also shows an image
harmonic approximation will be valid. In the andy ofa ‘_‘string” of ***Hg" ions _vvhich are confined near the
directions, the action of the potentials of Egs. (1) and (2) Z @is of the trap described in Ref. [74]. This was

gives the (classical) equations of motion described by achieved by making: >> ,, thereby forcing the ions
the Mathieu equation to the axis of the trap. The spacings between individual

ions in this string are governed by a balance of the force
, along thez direction due tabs and the mutual Coulomb

d_>§ + [ax + 2qxcos(Z)] x=0 repu!smn of thg ions. Example parameters are given in
dg the figure caption.
& When this kind of trap is installed in a high-vacuum
T (s meosmy=o. @ R o e o e

background gas can be neglected (Sec. 4.1.9). Even

though the ions interact strongly through their mutual
where { = Ort/2, a, = (49/m0F)(U/R? - kUo/Z), Coulomb interaction, the fact that the ions are localized
a, = — (4a/m2?) (U/R? + xUo/Z8), = —0y = 2Vo/ necessarily means that the time-averaged value of the
(QfmR?). The Mathieu equation can be solved in electric field they experience is zero; therefore electric
general using Floquet solutions. Typically, we will have  field perturbations are small (Sec. 4.2.3). Magnetic field
& < g’ << 1,i € {x, y}. (Keeping with the usual  perturbations to internal structure are important; how-
notation in the ion-trap literature, in this section, the ever, the coherence time for superposition states of two
symbolsg and g are defined as above. In all other internal levels can be very long by operating at fields
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where the energy separation between levels is at anseparation of two

extremum with respect to field. For example, ifBe"
(Penning trap) experiment operating in a field of 0.82 T,

ions iss, 2'%s,  where
s = (q¥4msomw?)® is a length scale of ion-ion
spacings; the adjacent separation of three ions is

a coherence time between hyperfine levels exceeding 10s; = (5/4)*°s. For L large, estimates of the minimum

min was observed [75, 76]. As described below, we will

separation of the center ions are given bByL)

be interested in coherently exciting the quantized modes = 2sL7°%¢[60], 2.01&L-°**°[61], 2.29.7%°%¢[83], and

of the ions’ motion in the trap. Here, not surprisingly,
the coupling to the environment is relatively strong be-

1.9L-%% [In(0.8L)]*® [59, 81]. For typical trapping
parameters, the ion-ion separations are on the order of a

cause of the ions’ charge. One measure of the decoherfew wm and the spatial spread of the zero-point vibra-

ence rate is obtained from the linewidth of observed
motional resonances of the ions; this gives an indication
of dephasing times. For example, the linewidths of
cyclotron resonance excitation in high resolution mass
spectroscopy in Penning traps [77-79] indicate that

tional wavepackets are on the order of 10 nm. Thus there
is negligible wavefunction overlap between ions and
guantum statistics (Bose or Fermi) play no role in the
spatial wavefunction of an array.

Of the & normal modes of oscillation in a linear trap,

these coherence times can be at least as long as severale are primarily interested in the modes associated
tens of seconds. Decoherence can also occur from tran-with axial motion because we will preferentially couple

sitions between the ions’ quantized oscillator levels.
Transition times out of the zero-point motional energy
level have been measured for singl8Hg" ions to be
about 0.15 s [44] and for singfBe" ions to be about

1 ms [45]. These relatively short times are, so far, unex-
plained; however, it might be possible to achieve much
longer times in the future (Sec. 4.1).

In the linear trap, the radial COM vibration frequency
w; must be made sufficiently higher than the axial COM
vibrational frequencyw, in order for the ions to be
collinear along the axis of the trap. This configuration
will aid in addressing individual ions with laser beams

to them with applied laser fields. A remarkable feature
of the linear ion trap is that the axial mode frequencies
are nearly independent &ff1,60,61,84]. For two ions,
the axial normal mode frequencies aresaandV/3w;;
for three ions they are»,, V3w,, and (5.8Y? w,. For
L > 3 ions, theLth axial normal mode can be deter-
mined numerically [60,61,84].
2.2 lon Motional and Internal Quantum States

A single ion’s motion, or the COM mode of a collec-
tion, has a simple description when the ions are trapped

and will also suppress rf heating (Sec. 4.1.5). To prevent in a purely static potential, which is the case for the axial

zig-zag and other complicated shapes of the ion crystal,

we requirewm,/w, > 1 for two ions, andv,/w, > 1.55 for
three ions. Fot > 3 ions, the critical ratio d,/w,). for
linear confinement has been estimated analytically [80,
81] yielding (w/w,). = 0.73.°¢[60]. Other estimates
are given in Refs. [82] [o/w;). = 0.63.°%] and [64]
[(wdw,). = 0.59.°89. An equivalent result is obtained

if we consider that as the potential is weakened in the
radial direction, ions in a long string which are spaced
by distances. near the center of the string, will first
break into a zig zag configuration. At the point where
the ions break into a zig-zag, the net outward force from
neighboring ions is equal to the inward trapping force.
If we equate these forces, we obtain

2_ 7

w -—
" 8meo

(@5,

()

where{ is the Riemann zeta function. As an example,
for °Be’ ions, m = 9 u (atomic mass units) and
S = 3 wm, we must havev,/27 > 7.8 MHz to keep the
ions along the axis of the trap.

The equilibrium spacing of a linear configuration of

motion in a Penning trap or the axial motion in the trap
of Fig. 1. We will assume that the trap potentials are
quadratic [Egs. (1) and (2)]. This is a valid approxima-
tion when the amplitudes of motion are small, because
the local potential, expanded about the equilibrium point
of the trap, is quadratic to a good approximation. In this
case, motion is harmonic. An ion trapped in a pondero-
motive potential [Eq. (6)] can be described effectively as
a simple harmonic oscillator, even though the Hamilto-
nian is actually time-dependent, so no stationary states
exist. For practical purposes, the system can be treated
as if the Hamiltonian were that of an ordinary,
time independent harmonic oscillator [34,35,85-91]
although modifications must be made for laser cooling
[92]. The classical micromotion (the terms which vary
as cos2;t and cosZ);tin Eq. (4)] may be iewed, in the
quantum picture, as causing the ion’s wavefunction to
breathe at the drive frequendy;. This breathing mo-
tion is separated spectrally from the secular motion [(at
frequenciesw, and w, in EQ. (4)]. Since the operations
we will consider rely on a resonant interaction at the
secular frequencies, we will average over the compo-
nents of motion at the drive frequen€ys. Therefore, to

trapped ions is not uniform; the middle ions are spaced a good approximation, the pseudopotential secular
closer than the outlying ions, as is apparent in Fig. 1. The motion behaves as an oscillator in a static potential.
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main consequence of the quantum treatment is thatfrequency, w,>> w,.We label the internal eigenstates

transition rates between quantum levels (Eq. (18),

IM;) = |1) and|t) representing “spin-up” and “spin-

below) are altered [34, 35]; however, these changes candown” respectively, and for convenience, will assume

be accounted for by experimental calibration. In any

case, for most of the applications discussed in this paper,

we will be considering the motion of the ions along the
axis of a linear Paul trap where this modification is
absent.

Therefore, the Hamiltonian describing motion of a
single ion (or a normal mode, such as the COM mode,
of a collection of ions) in théth direction is given by

Hose = Zwify, i E{X,y,2} , (8)
wheref; = a” a; anda; anda; are the usual harmonic
oscillator raising and lowering operators and we have
suppressed the zero-point energy7ké2 The operator
for the COM motion in thez direction is given by

z=z(@+a"), 9)
wherez, = (4/2mw,)*? is the spread of the zero-point
wavefunction andm is the ion mass. That isz =
({0|z%0»)"2, where|n) is thenth eigenstate (“number”
or Fock state) of the harmonic oscillator. F&e" ions
in a trap wherew,/27 = 10 MHz, we haveg, = 7.5 nm.

uw < 0 so that the energy of tHe) state is higher than
the|. ) state. A general pure state of the two-level system
is then given by
ot i

1I/intemalzcie 2 |l>+cwe 2 |T>1 (12)
where|C,|?+|C,| > = 1. Of course, the two-level system
really could be &= 1/2 spin such as a trapped electron
or the ground state of an atomic ion with a single

unpaired outer electron and zero nuclear spin such as
24Mg+

2.2.1 Detection of Internal States

The applications considered below will benefit from
high detection efficiency of the ion’s internal states.
Unit detection efficiency has been achieved in experi-
ments on “quantum jumps” [95-99] where the internal
state of the ion is indicated by light scattering (or lack
thereof), correlated with the ion’s internal state. (More
recently, this type of detection has been used in spec-
troscopy so that the noise is limited by the fundamental
quantum fluctuations in detection of the internal state

Therefore, a general pure state of motion for one mode [100]. In these experiments, detection is accomplished

can be written, in the Schdinger picture, as

lPmotion = E Cneinw‘t|n> ’ (10)
n=0

whereC, are complex and thim) are time-independent.
For applications to quantum logic, we will be interested
in motional states of the simple formx|O)+
Bexp(—iwt)|1).

We will be interested in the situation where, at any
given time, we interact with only two internal levels of
an ion. This will be accomplished by insuring that the

with a laser beam appropriately polarized and tuned to
a transition that will scatter many photons if the atom is
in one internal state (a “cycling” transition), but will
scatter essentially no photons if the atom is in the other
internal state. If a modest number of these photons are
detected, the efficiency of our ability to discriminate
between these two states approaches 100 %. We note
that for a string of ions in a linear trap, the scattered light
from one ion will impinge on the other ions; this can
affect the detection efficiency since the scattered light
will, in general, have a different polarization.

The overall efficiency can be explained as follows.

internal states are nondegenerate and by using resonarSuppose the atom scattel$ total photons if it is

excitations to couple only two levels at a time. We will
find it convenient to represent a two-level system by its
analogy with a spin-1/2 magnetic moment in a static
magnetic field [93, 94]. In this equivalent representation,
we assume that a (fictitious) magnetic moment
©~ = umS, whereS is the spin operator§ = 1/2), is
placed in a (fictitious) magnetic field = Byz. The
Hamiltonian can therefore be written
Hinternal = ZwoS; , (11)
wheresS, is the operator for the component of the spin

and wg = — uwBo/7. Typically, the internal resonant
frequency will be much larger than any motional mode

264

measured to be in state) and no photons if it is mea-
sured to be in statg ). In practiceN will be limited by
optical pumping but can be 1@r higher [101]. Here,
we assume that is large enough that we can neglect its
fluctuations from experiment to experiment. We
typically detect only a small fraction of these photons
due to small solid angle collection and small detector
efficiency. Therefore, on average, we detagt 14N
photons whereny << 1 is the net photon detection
efficiency. If we can neglect background, then for each
experiment, if we detect at least one scattered photon,
we can assume the ion is in stgte. If we detect
no photons, the probability of a false reading, that is, the
probability the ion is in stat& ) but we simply did not
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detect any photons, is given byPy(0) = In this interaction picture, if we make the rotating-wave
(1 =) = exp(-ng). Forng = 10, Py(0) = 4.5X 107, approximation (neglecting expr( (w + wo)t) terms),
for ny = 100,Py(0) = 4 X 10*. Therefore fom, > 10, the wavefunction can be written
detection can be highly efficient.

Detection of ion motion can be accomplished directly _ -
by observing the currents induced in the trap electrodes V= NZ‘,T n% Cuzn(©) M2 ) (15)

[77-79, 102-104]. However, the sensitivity of this
method is limited by electronic detection noise. Because yhere [M,) and|n) are the time-independent internal

the detection of internal states can be so efficient, mo- and motional eigenstates. In general, this wavefunction
tIOI’]a|. states can be dett_—zcted by mapping their propertiesyjj| pe entangled between the two degrees of freedom:;
onto internal states which are then detected (Sec. 3.2).that is, we will not be able to write the wavefunction as

a product of internal and motional wavefunctions.

2.3 Interaction With Additional Applied Electro- We have H - H) = UG(t)HiUq(t) where Uot) =
magnetic Fields o _ exp(—i (Ho/%)t), resulting in

2.3.1 Single lon, Single Applied Field, Single Mode
of Motion

H' = 420 —iwt + Deiwzt — ot +
We first consider the situation where a single, period- ' S-exp((n(ae a ) D

ically varying, (classical) electromagnetic field propa-
gating along the direction is applied to a single trapped
ion which is constrained to move in tlzadirection in a
harmonic well with frequencys,. We consider situa- Where n = kz is the Lamb-Dicke parameter and
tions where fields resonantly drive transitions between S. S, &, and a” are time independent. We will be
internal or motional statesnd when they drive transi- ~ Primarily interested in resonant transitions, that is,
tions between these states simultaneously (entangle-wheres = w,(n'—n) wheren' andn are integers. How-
ment). If we assume that the internal levels €Ver,since we wantto consider nonideal realizations, we

are coupled by electric fields, then the interaction Will assumed = (n'—n) w, + A where|A| << w,, Q. If

+he. (6= w-—w), (16)

Hamiltonian is we can neglect couplings to other levels (see Sec. 4.4.6),
transitions are coherently driven between levelsn)
Hi=—ms- E(z, 1), (13) and|t, n') and the coefficients in Eqg. (15) are given by

Schralinger’'s equationZdW¥ /ot = H; ¥ to be
whereu, is the electric dipole operator for the internal
transition andE is from a uniform wave propagating )
along thez direction and polarized in the direction, Cn=—itr=mei=9 0. C,
E = EiXcoskz —wt + ¢), wherew is the frequencyk is
the wavevector 2/A, and X is the wavelength. In the
equivalent spin-1/2 analog, we assume that a traveling
wave magnetic field propagates along #hdirection, is
polarized in thex direction B = B;X coskz — wt + ¢)], where ), , is given by [105, 106]
and interacts with the fictitious spinu( = uuS).
Therefore, for the spin analog, Eq. (13) is replaced by

Cl n = _i(l—ln'—n\) ei(At_(/))Qn' n CT n's (17)

Oy = Q)| e7@ D n))|
H| =—Mm - B(Z, t)
= Oexp[-n2](nd/n)¥2 pih=nL, I"=rl(n?) | (18)

- ﬁQ(S,, + S_) (ei(kZ—wt+(j)) + e—i(kz—mt+¢)) , (14)
wheren.(n.) is the lesser (greater) of andn, andLy

where %0 =— uuBi/4 (or —udEd4 for an electric is the generalized Laguerre polynomial

dipole), S, = S, +iS), S = S —iS, and z is given by .

Eq. (9). \Ne wiI.I assume that the lifetimes of the Igyels Le (X) = 2 (=1)" <n + 01) &:‘ _ (19)
are long; in this case, the spectrum of the transitions m=0 n-m m

excited by the traveling wave is well resolved(f is

sufficiently small. Since we will be particularly interested in small values
It will be useful to transform to an interaction picture of n and «, for convenience, we list a few values of
Where we aSSUITHo = Hinternal+ Hoscandvinteraction: HI- L# (X)
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2
LX) =1, LAX) = 1 =X, LOX) 1= X + 23 Lo(X) = 1 —3><+g x?-%x3
LE(X) = 1, LA(X) = 2 =X, LA(X) = 3 —3><+%x2, LX) = 4 — 6 + 2x2—%x3
2 — 2 — 2 — 1 2 2 — 5 2 1 3
LO(X) = 1, Ll(X) =3 —X, Lz(X) =6 —4X+§X s L3(X) =10 - 1X +§X —EX (20)
Equations (17) can be solved using Laplace transforms.
The solution shows sinusoidal “Rabi oscillations”
between the stateg, n') and |i, n), so over the
subspace of these two states we have
i _iét Xnn) . A . <Xnn >:| _ % —i ét—<1>—1r\n'—n\ H <h ) ]
ez[COS( > t +|Xn|’nsm > t anlyne(z 2 )sm > t
IP(t) - 2% h +i(ét—¢_’l\n'—n\) in xn',nt i§t|:_i Asin<xn',nt> + COG(&‘ t)] IP(O), 21
- >(n',n € 2 s 2 € Xn‘,n 2 2 ( )
whereX, .= (A2+403.)2 A=w —wy— (' —N)w,, and
¥ is given by
_ N\ — CT n'
w=c.lim+Culim =27 @
Cl,n
For the resonance conditiah= 0, Eq. (21) simplifies
to
. _i @il¢+3Inm=nl gin) .,
w(t) = cis(zn,nt ie'* 2 Siny ot w(0) . (23)
—i ezl ging,, t cosy ot

When the atom starts in an eigenstate, for each value of| theny << 1, but the converse is not necessarily true. If
n' —n, the phase factop + 7|n'~n|/2 can be chosen  the Lamb-Dicke criterion is satisfied, we can evaluate
arbitrarily for the first application oH,; however once (), to lowest order iy to obtain

chosen, it must be kept track of if subsequent applica-

tions of H, are performed on the same ion. For conve- (. = (., = Oy"" (n,/n1)*? (n' =n|nH™. (24)
nience, we can choose it to be zero, although in most of

what follows we will include a phase factor as a re- We will be primarily interested in three types of transi-
minder that we must keep track of it. In these expres- tions—the carrier f' = n), the first red sideband
sions, we assumeél,, , to be constant during a given (n' = n-1), and the first blue sideband'(= n+ 1)
application timet; this condition can be relaxed as whose Rabi frequencies, in the Lamb-Dicke limit, are
discussed in Sec. 4.3.2. A special case of interest isgiven from Eq. (24) by, yn*?Q2, and n(n + 1)*20
when the Lamb-Dicke criterion, or Lamb-Dicke limit, is  respectively.

satisfied. Here, the amplitude of the ion’s motion inthe  In general, the Lamb-Dicke limit is not rigorously
direction of the radiation is much less thaf2z which satisfied and higher order terms must be accounted for
corresponds to the conditiotW,orionK?2%| Winotion) ™ in the interaction [16,21,106]. As a simple example,
<< 1. This should not be confused with the less restric- suppose¥(0) = |1)|n) and we apply radiation at
tive condition where the Lamb-Dicke parameter is less the carrier frequencys(= 0). From Eq. (23), the wave-
than 1 () << 1); if the Lamb-Dicke criterion is satisfied, function evolves as
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P(t) = cosl2,t|L, n) —ie? sin,qt|t,n)y. (25) analogous; the difference is that the harmonic oscillator
associated with a single mode of the radiation field in

Forn= 0, we havedy o = Qexp(-n?2). The exponential cavity QED is replaced by that of the atom’s motion.
factor in this expression is the Debye-Waller factor The suggestion to realize this type of Hamiltonian (in
familiar from studies of x-ray scattering in solids; for a the context of cavity-QED) with a trapped ion was
discussion in the context of trapped atoms see Ref. [106] 0utlined in Refs. [2], [3], and [7]; however its use was
and Sec. 4.4.5. This factor indicates that the matrix alréady employed in the g-2 single electron experiments
element for absorption of a photon is reduced due to the ©f Dehmelt [108]. _
averaging of the electromagnetic wave (averaging of the ~ Driving transitions between the) and|1) states will
< factor in Eq. (14)) over the spread of the atom’s Create entangled states between the internal and
zero-point wavefunction. motional states since, in general, the Rabi frequency
As a second simple example, we consider will depend on the motional states (Eq. (18)). This

W(0) =|1,n) ands = + w, (first blue sideband). Equa- conditional dynamics,” where the dynamics of one
tion (23) implies system is conditioned on the state of another system,

provides the basis for quantum logic (Sec. 3.3).

In this section, we have assumed that the atom inter-
acts with an electromagnetic wave (Eq. (14)), which
will usually be a laser beam. However, the essential
At any timet # mm/(2()y.1,) (Man integer),¥is an  ppysics which gives rise to entanglement is that the
entangled state between the spin and motion. If the 4io1's internal levels are coupled to its motion through
excitation is left on continuously, the atom sinusoidally 5, inhomogeneous applied field. In the spin-1/2 analog,

oscillates between the state n) and|t, n+1). This  the magnetic momeng couples to a magnetic field
oscillation has been observed in Ref. [21] and is repro- g = B(z,1)g, yielding the Hamiltonian

duced in Fig. 2.

P(t) = cOH2y 41 nt|L, N) + € sinQ, .1 ot|1, N+ 1). (26)

When the Lamb-Dicke confinement criterion is met Hi = —-u,B(z, t) =
and when the radiation is tuned to the red sideband
(6 = — w,), we find (choosingp = — 7/2) oB 19%B
- B0+ | 24358 | 24| @8
H = 7#n0Q(S.a+Sa" . 27)

where, as abovey, « S, + S andz is the position
This Hamiltonian is the same as the “Jaynes-Cummings operator. The key term is the gradiesB/dz. From
Hamiltonian” [107] of cavity QED [43], which  the atom’s oscillatory motion in thedirection, it expe-
describes the coupling of a two-level atom to a single riences, inits rest frame, a modulation®ét frequency
mode of the (quantized) radiation field. The problem we w,. This oscillating component @& can then drive the
have described here, the coupling of a single two-level spin-flip transition. As a simple example, suppd&sés
atom to the atom’s (harmonic) motion is entirely static (but inhomogeneous along thdirection so that

[}
1 DU
s 5
y \ Al 0 0
1)

P,(t) YATR

s Y
¥ v .
0r ! I | ! 1
0 20 40 60 80 100
time (ps)

Fig. 2. Experimental plot of the probabiliti, (t) of finding a singl€’Be" ion in the|1 ) state after first preparing

it in the |1 ) |0) state and applying the first blue side band coupling (Eq. (16)§ for w,) for a timet. If there

were no decoherence in the systdPn(t) should be a perfect sinusoid as indicated in Eq. (26). Decoherence
causes the signal to decay as discussed in Sec. 3.2.1. The solid line is a fit to an exponentially decaying sinusoid
as indicated in Eq. (43). Each point represents an average of 4000 observations [21].
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dBldz # 0) andw, is equal to the resonance frequency modes of motion folL trapped ions. Here, as was as-
wo Of the internal state transition. In its reference frame, sumed by Cirac and Zoller [1], we consider that, on any
the atom experiences an oscillating field due to the given operation, the laser beam(s) interacts with only the
motion through the inhomogeneous field. Sirce w,, jthion; however, that ion will, in general, have compo-
this field resonantly drives transitions between the inter- nents of motion from all modes. In this case Eq. (14) for
nal states. Because this term is resonant, it is the domi-the jth ion becomes
nant term in Eq. (28), stl, = — ux(dB/9z)z = (S, +
S)(a+a" = S.a+Sa" where the last equality ne-
glects nonresonant terms. If the extent of the atom’s
motion is small enough that we need only consider the
first two terms on the right hand side of Eq. (28),is where we now assumie has some arbitrary direction.
given by the Janes-Cummings Hamiltonian (Eq. 27)). We will write the position operator of theh ion (which
This Hamiltonian is also obtained B is sinusoidally ~ represents the deviation from its equilibrium position)
time varying (frequencyw), we satisfy the resonance as
condition = w — wy = — w,, and we make the rotating-
wave approximation. This situation was realized in the X =uX+uL+j¥+ux+; 2, jE{1,2,...L}. (30)
classic electron g-2 experiments of Dehmelt, Van Dyck,
and coworkers to couple the spin and cyclotron motion
[108]. Higher-order sidebands are obtained by consider-
ing higher order terms in the expansion of Eq. (28).
One reason to use optical fields is that the field gradi-
ents (for examplegd/(dz)[e*] = ke can be large

Hi = A0(S; + S))[e " + hc],  (29)

We can express the in terms of normal mode coordi-
natesg, (kE{1, 2, ... 3}) through the matrixD}?, by
the following relations [109]

because of the smallness af Stated another way, 3L 3L

single-photon transitions between levels separated by rf  u, = Z DP o, Ok = Z DP Uy, Ok = uo(ax + &),
or microwave transitions, which are driven by plane k=1 p=1

waves, may not be of interest becalsesmall ¢ large) (32)

and expikz) = 1 which impliesd/(dz)[e*] = 0. This
makes interactions which couple the internal and exter-
nal states as in Egs. (27) and (28) negligibly small. This
is not a fundamental restriction because electrode struc- : L i

. . harmonic, which is a reasonably good assumption as
tures whose dimensions are small compared to the wave

) . “long as the amplitude of normal mode motion is small
length can be used to achieve much stronger gradients . . : .
. . ; compared to the ion spacing. (For two ions, the axial
than are achieved with plane waves. Microwave or rf

transitions can also be driven by using stimulated- stretch mode’s frequency is approximately equal to

Raman transitions as discussed in Sec. 2.3.3 below. sz(\/é— 9@./a;)’) wherea, is the (classical) amplitude

) . f one ion’s motion for this mode and, is the ion
second reason to use laser fields is they can be focuse ; : .
o . . spacing). Following the procedure of the last section,
so that, to a good approximation, they interact only with

L0 . we takeH, to be the Hamiltonian of thgth ion’s inter-
a selected ion in a collection.

The unitary transformations of Egs. (21) and (23) nal states and all of the motional (normal) modes

whereq is the operator for thkth normal mode and
anda/ are the lowering and raising operators for kil
mode. We have assumed that all normal modes are

form the basic operations upon which most of the aL
manipulations discussed in this paper are based. In this Ho = AwoS; + Y, Ay, (32)
section, they were used to describe transitions between k=1

two states labeled )|n) and|1)|n"). In what follows, we
will include other internal states of the atom which will wheref, = afa.. In the interaction picture (and making
take on different labels; however, the transitions the rotating wave approximation), we haw; =
between selected individual levels can still be described Ug H; Uy whereUy = exp(—i (Ho/%)t, yielding
by Egs. (21) and (23). Sequences of these basic opera-
tions can be used to construct more complicated opera- a
tions such as logic gates (Sec. 3.3). Hi =40 S, exp i, ni(a e +al e —i(dt — q,')j)}
k=1

2.3.2 State Dynamics Including Multiple Modes of

Motion +h.c., (33)

In what follows, we will generalize the interaction where ni=(k - XD{ + k- YD + k - 2D2") . (FoOr
with electromagnetic fields to consider motion in dll 3  the linear trap case, motion will be separable in the
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X, ¥, andz directions andy} will consist of one term.)
In this interaction picture, the wavefunction is given by

W= X > Clywm ©IM) [{nd),

Mz=1,1 {ng=0

(34)

where the coefficients are slowly varying afd} ) are

where ki, k, and w1, w, are the wavevectors and
frequencies of the two laser beams and the resonance
condition between internal states corresponds to
|wL1 — wi2| = wo. Even if wy is small compared to optical
frequencies|k; —k,| can correspond to the wavevector
of an optical frequency by choosing different directions
for k; andk,; this choice can thereby provide the desired

the normal mode eigenstates (we have used the shortstrong field gradients.

hand notation fik} = ny, n,, ..., N ). In analogy with
the previous section, we will be primarily interested in
a particular resonance condition, that is, whére=
wx(nk —ny) and 2 is sufficiently small that coupling to
other internal levels and motional modes can be ne-
glected. In this case, Egs. (21) and (23) apply to the
subspace of statgs);|nk) and |1 );|nk) if we make the
definitions

¥ = 1I’J = Cf,nk|l>i |nk> + Cj

TNk

[1)ni)

j
(éi'nlk]a A=6— (M —nax,

LNk

(35)

and _ »
Xglk'vnk = (A2 + 4(‘-(2r]1k',nk)2)1/2!

! L
Dien = QLo 3 i IT e D, N,
(36)

The last expression is the Rabi frequency for particular
values of the §i,-«}. More likely, the other mode states
(p# k) will correspond to a statistical distribution; this
is discussed in Sec. 4.4.5. For the application to
quantum logic (Sec. 3.3) the COM mode appears to be
a natural choice sincej, will be independent of. The
dependence ofy) on j for the other modes is not a

fundamental problem, but requires accurate bookkeep-

ing when addressing different ions. The valuegjotan
be obtained from the normal mode coefficients as
described by James [61].

2.3.3 Stimulated-Raman Transition

As indicated in the discussion following Eq. (28), we
want strong field gradients to couple the internal states
to the motion. If the internal state transition frequency
wo is small, one way we can achieve strong field gradi-
ents is by using two-photon stimulated-Raman transi-
tions [45, 48] through a third, optical level as indicated
in Fig. 3. In this case, as we outline below, the effective
Hamiltonian corresponding to that in Eq. (14) is
replaced by

H, = 40(S. + S)[ei[(kl—kz)'X—(le—“’LZ)t+(1’] +h.c], (37)
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In Fig. 3 we consider that a transition is driven
between statel ) and|t) through statg3) by stimu-
lated-Raman transitions using plane waves. Typically,
we consider coupling with electric dipole transitions in
which case

E = :(}iEi COS((i - X — it + d)i); |E{1, 2} . (38)

0

|1)

Fig. 3. Schematic diagram relevant to stimulated-Raman transitions
between internal statés) and|1). Two plane wave radiation fields
couple to a third stat¢8). The radiation fields are typically at laser
frequencies; they are characterized by frequencies and wavevectors
wij andk;, i €{1, 2}. The couplings are typically described by electric
dipole matrix elements. For simplicity, we assume field 1 only cou-
ples states! ) and|3); and field 2 only couples statés) and|3). In

this diagram, we do not show the additional energy level structure of
the 3L modes of motion.

For simplicity, we assume laser beam 1 has a cou-
pling only between intermediate sta8 and state ! ).
Similarly, laser beam 2 has a coupling only between
state|3) and state|t). Not shown in Fig. 3 are the
energy levels corresponding to the fiotional modes.
Laser detunings are indicated in the figure, so
w1— (w2 + 8) = wo, and we assumelg >> 6, {wi}
where {w} are the 3 mode frequencies. We will
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assume the Raman beams are focussed so that thejrequency between Raman beams can be precisely

interact only with thé th ion. In the Schidinger picture,
the wavefunction is written

> 2 Clim

Mz=1,1,3{n}=0

v

X eXp[—i ((DMZ + Nyw, + Nowo + ... n3|_w3|_)t]

X Mz)[{na}) (39)
Since 4 is large, staté3) can be adiabatically elimi-
nated in a theoretical treatment (see, for example,
Refs. [32], [48], [110], and Sec. 4.4.6.2). If we assume
the difference frequency is tuned to a particular reso-
nances = w«(Nk — i), we can neglect rapidly varying
terms and obtain

- _ il
C]T,nl,...ni(, g | A_ZR C:,nlﬂ..n'k, ...naL
- I‘Qg‘k s Nk Cj,nl, SN ...Nal,
. . 2 .
ij,nl, RN R B =1 % Ci,nl,“.nk, ...Nng.
—1 (@2 n) Clay e, (40)

where

Dy == FZ (v S0y, @)
where g = Ee(1|é-r|3)exp(-ig.)/(2%),
0. = Exe(1|& - r|3)exp(—ip)/(2%), ni = (Ak - XD} +
Ak - §D¢7 + Ak - 2D )q and Ak = k;—k,. The

terms|g?|/Ar and|g?|/ Ar are the optical Stark shifts of

levels|1) and|2) respectively. They can be eliminated
from Egs. (40) by including them in the definitions of
the energies for thél ) and|+) states or, equivalently,

tuning the Raman beam difference frequengyto

compensate for these shifts. If the Stark shifts are equal,

both the|i) and |t+) states are shifted by the same
amount, and there is no additional phase shift to be

accounted (Sec. 4.4.3). Equations (40) for stimulated-
Raman transition amplitudes are the same as for the Overall,

two-level system (Sec. 2.3.1) if we make the identifica-
tions ¢1—¢p, = ¢ and Ak = k. Although the

controlled using an acousto-optic modulator (AOM) to
generate the two beams from a single laser beam. If the
laser frequency fluctuations are much less th&n
phase errors on the overall Raman transitions can be
negligible [111]. Other advantages (and some disadvan-
tages) are noted below.

3. Quantum-State Manipulation
3.1 Laser Cooling to the Ground State of Motion

As a starting point for all of the quantum-state manip-
ulations described below, we will need to initialize the
ion(s) in known pure states. Using standard optical
pumping techniques [112], we can prepare the ions in
the|! ) internal state. Laser cooling in the resolved side-
band limit [106, 113 ] can generate tfre= 0) motional
state with reasonable efficiency [44, 45]. This type of
laser cooling is usually preceded by a stage of
“Doppler” laser cooling [106,114,115] which cools the
ion to an equivalent temperature of about 1 mK. For
Doppler cooling, we havéi) = 1, so an additional stage
of cooling is required.

Resolved sideband laser cooling for a single, harmon-
ically-bound atom can be explained as follows: For sim-
plicity, we assume the atom is confined by a 1-D
harmonic well of vibration frequencw,. We use an
optical transition whose radiative linewidtfq is rela-
tively narrow, yaq << w, (Doppler laser cooling applies
whenvy.g = w,). If a laser beam (frequenay) is inci-
dent along the direction of the atomic motion, the bound
atom’s absorption spectrum is composed of a “carrier”
at frequencyw, and resolved frequency-modulation
sidebands that are spaced by, that is, at frequencies
wo + (N'—N)w, (Sec. 2.3). These sidebands in the spec-
trum are generated from the Doppler effect (like vibra-
tional substructure in a molecular optical spectrum).
Laser cooling can occur if the laser is tuned to a lower
(red) sideband, for example, @at= wy, — w,. In this case,
photons of energy (w, — w,) are absorbed, and sponta-
neously emitted photons of average enerfp,—R
return the atom to its initial internal state, whedRe=
(7K)*/2m = %wr is the photon recoil energy of the atom.
for each scattering event, this reduces
the atom’s kinetic energy bjw, if w,>> wg, a condition
which is satisfied for ions in strong traps. Since

experiments can benefit from use of stimulated-Raman o /w, = n? wheren is the Lamb-Dicke parameter, this

transitions, for simplicity, we will assume single photon
transitions below except where noted.
Another advantage of using stimulated-Raman

simple form of sideband cooling requires that the Lamb-
Dicke parameter be small. For example 'Be", if the
recoil corresponds to spontaneous emission from the

transitions on low frequency transitions, as opposed to 313 nm 2 ?P;, — 2s2S;,, transition (typically used for

single-photon optical transitions, is the difference
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laser cooling), wg/27r = 230 kHz. This is to be
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compared to trap oscillation frequencies in some laser- high efficiency. Steps (a) and (b) are repeated until the
cooling experiments of around 10 MHz [45]. Cooling atom is optically pumped into tHe)| 0) state. When this
proceeds until the atom’s mean vibrational quantum condition is reached, neither step (a) or (b) is active and
number in the harmonic well is given by the process stops. In this simple discussion, we have
(Pmin = (y/2w,)* << 1 [106,115,116]. assumed the transitiop )|n) - |1)/n —1) is accom-

In experiments, we find it convenient to use two- plished with 100% efficiency. However since, in
photon stimulated Raman transitions for sideband cool- general, the atom doesn't start in a given motional state
ing [45, 117], but the basic idea for, and limits to, |n), and since the Rabi frequencies (Eg. (18)) depend on
cooling are essentially the same as for single-photon n, this process is not 100 % efficient; nevertheless, the
transitions. The steps required for sideband laser cooling atom will still be pumped to théi )|0) state. The only
using stimulated-Raman transitions are illustrated in danger is having the stimulated-Raman intensities
Fig. 4. This figure is similar to Fig. 3, except we include and pulse time t adjusted so that for a particular
the quantum states of the harmonic oscillator for one (2, t = mar (m an integer), in which case the atom is
mode of motion. Part (a) of this figure shows how, when “trapped” in the|l )|n) level. This is avoided by varying
the ion starts in thdi) internal state, a stimulated- the laser beam intensities from pulse to pulse; one par-
Raman transition tuned to the first red sideband ticular strategy is described in Ref. [17].

[1)[n) - |1)|n—1) reduces the motional energy by So far, laser cooling to thén = 0) state has been
%iw,. In part (b), the atom is reset to the) internal state achieved only with single ions [44, 45]; therefore an
by a spontaneous-Raman transition from a third laser immediate goal of future work is to laser cool a collec-
beam tuned to thgr) - |3) transition. We assume that tion of ions (or, at least one mode of the collection) to the
there is a reasonable branching ratio from st&eto zero-point state. Cooling of any of thd. 3nodes of
state|l ), so that even if the atom decays back to lg¢vel motion of a collection of ions should, in principle, work
after being excited to leveB), after a few scattering  the same as cooling of a single ion. To cool a particular
events, the atom decays to stpte If wr << w;,, step (b) mode, we tune the cooling radiation to its first lower
accomplishes the transitiony|n — 1) - |1 )|n — 1) with sideband. If we want to cool all modes, sideband cooling

| 3)

— [3)

3
2
1
n=0
) :
e
(a) stimulated Raman (An = -1) (b) spontaneous Raman (An = 0)

Fig. 4. Schematic diagram relevant to laser cooling using stimulated-Raman transitions. In (a), we
show that whenw ; — @2 = wo — ,, Stimulated-Raman transitions can accomplish the transtipn

[n) - |1)|n — D). In the figure, the transition fan = 2 is shown. In (b), spontaneous-Raman transtions,
accomplished with radiation tuned to the) — |3) transition, pumps the atom back to the state,
thereby realizing the transitioft) [n —1) - |1) |n —1). When atomic recoil can be neglected, one
application of steps (a) and (b) reduces the atom’s motional energwhynlessn = 0, in which case

the atom is in it's motional ground state.
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must be cycled through alL3modes more than once, or
applied to all 3 modes at once, since recoil will heat all
modes. For the COM mode, the cooling is essentially
the same as cooling a single particle of masg how-
ever, the recoil energy upon re-emission is distributed
over the 3 -1 other modes. Other methods to prepare
atoms in thén = 0) state are discussed in Refs. [5], [10],
[12]. Morigi et al. [118] show that it is not necessary to
satisfy the conditionwr << w, (n << 1) to achieve
cooling ton = 0.

3.2 Generation of Nonclassical States of Motion of
A Single lon

We begin with a discussion of the generation of non-
classical motional states of a single trapped ion. This

between thel ) and?Ps,(F = 3, M = 3) energy levels.
Because the only decay channel of ti,(F = 3,

M = 3) state is back to thg ) state, this is a cycling
transition, and detection efficiency is near 1 (Sec. 2.2.1).
The experiment is repeated many times for each value of
7, and for a range of values. We find

P =2 (143 Premcos@ i), (@2
n=0

whereP, = |C, ,[?is the probability of finding the ion in
state|! )|n). The phenomeniogical decay constantg,

are introduced to model decoherence that occurs during
the application of the blue sideband. The measured sig-
nal P,(7) can be inverted (Fourier cosine transform),

seems appropriate because the other applicationsallowing the extraction of the probability distribution of

discussed in this paper incorporate similar techniques.
Much of the original interest in nonclassical states
of mechanical motion grew out of the desire to make
sensitive detectors of gravitational waves using (macro-
scopic) mechanical resonators [119, 120]. For example,
parametric amplification of mechanical harmonic oscil-

lations can lead to guantum mechanical squeezing of the

oscillation. In the meantime, nonclassical states of the
radiation field were observed [43]. The close relation-
ship of these two problems was pointed out above: in
quantum opticsiH,s of Eq. (8) represents a single mode
of the radiation field, andH, of Eq. (14) represents the
coupling between the (quantized) field and atom. The

nonclassical states of motion considered here, such as
squeezed states, are the direct analogs of the nonclassi-
cal photon states in quantum optics. They appear to be

of intrinsic interest because, as in cavity QED, they
allow the rather complicated dynamics of the simple
quantum system [described by the Hamiltonian in

vibrational state occupatioR,.

(F,Mr)
Ay \
E— (1,0)
(1,1) f
Internal state
energy
(2,2)
@1 v
(2,0) —
@1 ——aux
(2,-2)

Fig.5. Hyperfine levels of the 285, ground state oiBe' in a weak

Eq. (27)] to be studied. Before discussing some methods magnetic field (not to scale). The energy levels are designated by
to create nonclassical states, we consider one methodhorizontal lines. Above the lines, the levels are represented by atomic

for analyzing them.
3.2.1 Population Analysis of Motional States

As described below in this section, from the)|0)
state, it is possible to coherently create states of the form
[1) Wrotion Where Wyion is given by Eg. (10). One way
we can analyze the motional state created is as follows
[21]: To the statgl) Wmoion We apply radiation on the
first blue sideband( =n + 1 in Eq. (23)) for a timer.

We then measure the probabil®y(7) that the ion is in
the |1 ) internal state. In the experiments of Meekhof et
al. [21], the internal statél) is the Z2S, (F = 2,
Mg = 2) state ofBe', and|t) corresponds to thes2S,,
(1,1) state as shown in Fig. 5. The) state is detected
by applying nearly resonant-polarized laser radiation
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physics labelsK, Mg) whereF is the total angular momentum (elec-
tron plus nuclear angular momentum) avig is the projection of the
angular momentum along the magnetic field axis. The separation of
Zeeman substates in the different F manifolds is approximately equal
to 0.7 X 10'°ByHz whereB, is expressed is teslas. The separation of
theF = 1 andF = 2 manifolds is approximately 1.25 GHz B = 0.

For simplicity of notation, in most of the paper we make the identifi-
cations|[F =2, Mg =2) = [1), |1, D = 1), ]2, 0) = |aux).

3.2.2 Fock States

In Fig. 2, we show an experimental plot [21] of the
probability P, (7) of finding the ion in the|t) internal
state after first preparing it in
the |1)|0) state, and applying the first blue sideband
for a time . From Eq. (23), we would expect
P.(7) = cog() or; however, we clearly see the effects
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of some decoherence process which we can represenSchrainger’'s equation yields for the coefficients of the
adequately by the first term in Eq. (42) wavefunction

P.(7) :% <1 + e‘VOTcosml,oT> : (43) Co= VNG = iV +1C.s, (45)
where(, = —qEze'%/(2%). Equivalently, in the inter-
action picture for the motion, the Hamiltonian of Eq.
(44) leads to the evolution operator

In this experiment, we think the decoherence is not
simply caused by fundamental (radiative) decoherence
but has contributions from fluctuations in laser power
(which cause fluctuations ifi2; o), fluctuations in trap U(t) = el@a’-@ral —

. . ’ ; . t) = el wa = D ((ht) , 46
drive voltageV, (which cause fluctuations im,), and ® (42:0) (46)

fluctuations inewo. [121].

Neglecting for the moment the effects of decoher- ~ \ye can achieve the same evolution if we superim-
ence, we see that for times= mmu/(2(2;, ¢ (m an in- pose two traveling wave fields which drive stimulated-
teger), the ion is in a nonentangled state)|0) or Raman transitions between differeint) levels of the

|1)]1)). Therefore, if the ion starts in the)| 0) state, we  same internal state, and we make the difference fre-
can prepare the atom in the)|1) state (thdn=1) Fock  quency between the Raman beams equal to the trap
state) by applying the blue sideband for a time qscillation frequency. For example, assume the ion is
7= m/2(},0, a so called Rabir pulse. For other times,  gypjected to two lasers fields given by Eq. (38), where
the ion is in an entangled state given by Eq. (26). This ,, . _ ¢, =~ @, << w, The dynamics can be obtained
operation and the analogous operation on the first red fo|jowing the analysis in Sec. 2.3.3, except we replace
sideband will form key elements of quantum logic using |evel|1)|n) (|1)|n')) with level|g)|n) (|g)|n') where|g)
trapped ions. can be any ground state which has a matrix element

We can generate higherFock states of motion by a  yith level |3) . For the coefficients of Eq. (10), we find
sequence of similar operations. For example, to generate

the|1)|2) state, we start in thel )|0) state, apply ar . 2 4 g2 - '

pulse on the first blue sideband, followed byrgulse G = '[ w Cn— Z (n|Qexplin(ae™

on the first red sideband. This leads to the sequence "o

[1)]0y - [1)]1) - |1)]2) (neglecting overall phase fac- _ .

tors). In a similar fashion, Fock states ugne 16) have +ae”) —i(on - wt] + h-C-|n'>Cn} , (47)

been created [21]. Other methods for creating Fock

states have been suggested in Refs. [5], [8], [12], and \here 0 = —giG/Ar, G = QEXQ|E; - T |3) exp(=idh)/

[13]. (2%), 1= (ki—Ks) - 220, and A = wag — wa. The first

term on the right side of Eq. (47) corresponds to a Stark

3.2.3 Coherent States shift of levelg; this Stark shift can be absorbed into the
We can also create coherent states of motion; thesedéfinition of the ground state energy (see, for example,

states are closest in character to classical states of mo-Sec. 4.4.6.2). If this is done, the same equations for the

tion. This can be accomplished if the atom is subjected Cn [Eds. (47)] are obtained from the Hamiltonian (in the

to a spatially uniform classical force, or any force Oscillator interaction picture)

derived from a potential £(t) - z, wheref is a real

c-number vector. For an ion which starts in me= 0) H; = ﬁ_()exp<i [n(ae’ + ) — (wyy — sz)t]>
state, this force creates a displacement leading to a co-
herent statéa) defined bya |a) = a|a) wherea is a +h.c., (48)

complex humber [121]. This classical force can be real-
ized by applying an electric field which oscillates at  |n the Lamb-Dicke limit, if we choose the resonance
frequencyw,. For example, if we apply a (classical) condition wherew ; — w» = w, and assume?2 << w;,
electric fieldE (t) = ZE, sin(wt —¢), the corresponding Egs. (47) are the same as Egs. (45) whee= n(2.
interaction Hamiltonian (in the interaction frame for the  Therefore, in the Lamb-Dicke limit, the applied laser
motion) is given by fields act like a uniform oscillating electric field which
oscillates at frequencw,; — w . This can be under-
H, = — gEz(ae™" + ae')) sin(wt —¢) .  (44) stood if we consider that the two laser fields give rise
to an optical dipole force which is modulated in such
If we express the motional wavefunction as in Eq. (10), a way to resonantly excite the ion motion. To see
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this, assume for simplicity that, in Eq. (38, = E, = E,,

& = & = &, andk, —k, = Z|AK|. It is useful to write the
total electric field as

E = E, + E, = 22E(t)

X cos(ky + ko) - 22 —wt + ) , (49)

where@ = (w1 + w2)/2, & = (1 + ¢2)/2, andE(t) is a
slowly varying function

Ak
2

E(t) = Eoco “’Ll;““t + ¢1£¢2> . (50)
On a time scale long compared tadk/but short com-
pared to 1/ 1 — w.2), the atom experiences a nonreso-
nant electric field of amplitudde(t) which is nearly
constant in time. If we consider coupling of this electric
field between the ground state and s{abfor example,
see Sec. 4.4.6.2), this electric field leads to a spatially-
dependent Stark shift of the ground state equal to
AEsin = — 4%]9(z,1)[1 Az where

W 1 — W2

2

S, o, ot

t+ 2

9.0 =[ol* cos(

qEx(g|é - r|3)e*

> (51)

g=

This Stark shift leads to an optical dipole force
122-124]F, = — 3(AEswa)/dz. On a longer time scale,
this dipole force is modulated at frequenay; — w.»
which can resonantly excite the ion’s motion when
(w11 — w2) = w,. This leads to Eqgs. (45). Whda and
k, are both directed along theaxis (but in opposite
directions), the dipole force potential can bewed as
a “moving standing wave” in thedirection which slips
over the ion and whose accompanying dipole force reso-
nantly excites the ion’'s motion [125]. Both methods
have been used to excite coherent states in Refs. [21] an

[47]. Other methods for generating coherent states are

suggested in Refs. [4] and [48].

In the experiment of Ref. [47], a dipole force oscillat-
ing at the ion oscillation frequency was created with
particular polarizations of the laser fields. This led to a
force which was dependent on the ion’s internal state,
enabling the generation of entangled “Satinger-cat”
states of the form = (|1)|a€?) + |1)|ae)/V2.

3.2.4 Other Nonclassical States

When .1 — wi12) = 2w, a similar analysis shows that

section has a component which acts like a parametric
excitation of the ion’s harmonic well at frequencw 2
[21]. This can produce quantum mechanical squeezing
of the ion’s motion. Squeezing could also be achieved by
amplitude modulatindJ, at frequency @, by a nonadi-
abatic change in the trap spring constant [48], or
through a combination of standing and traveling wave
laser fields [4]. A quantum mechanical treatment of the
motion in an rf trap shows the effects of squeezing from
the applied rf trapping fields [34, 35, 91]. More general
nonlinear effects in the interaction can lead to higher
“nonlinear coherent states” as discussed by de Matos
Filho and Vogel [126].

Other methods for generation of Sc¢tnager-cat like
states in ions are suggested in Refs. [8], [19], [29], [31],
[33], [36], and [38]. Additional nonclassical states are
investigated theoretically by Gou and Knight [23], Gou
et al. [37], and Gerry et al. [37]. Schemes which can
generate arbitrary states of the single-mode photon field
[127,128] can also be applied directly to generate
arbitrary motional states of a trapped atom and perform
guantum measurements of an arbitrary motional observ-
able [129]. A scheme which can generate arbitrary
entanglement between the internal and motional levels
of a trapped ion is discussed by Kneer and Law [130].

The procedure for analyzing motional states outlined
in Sec. 3.2.1 yields only the populations of the various
motional states and not the coherences. Coherences
must be verified separately [21, 47]. The most complete
characterization is achieved with a complete state
reconstruction or tomographic technique; a description
of how this has been implemented to measure the
density matrix or Wigner function for trapped atoms is
given in Leibfried et al. [131, 132]. These experiments
represent the first measurement of negative values of the
Wigner function in position-momentum space. Wigner
functions for free atoms have also been recently deter-
mined experimentally by Kurtsiefer et al. [133]. Other
methods for trapped atoms have been suggested in Refs.

0[15], [22], [24], [27], [34], and [35]. These techniques

can also be extended to characterize entangled motional
states [39] and states which are entangled between the
motional and internal states.

3.3  Quantum Logic

Significant attention has been given recently to the
possibility of quantum computation. Although this field
is about 15 years old [134—-138], interest has intensified
because of the discovery of algorithms, notably for
prime factorization [139-142], which could provide
dramatic speedup over conventional computers.

the moving standing wave potential discussed in the last Quantum computation may also find other applications
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[142—-152]. Schemes for implementing quantum compu-
tation have been proposed by Teich [153], Lloyd [143,
144], Berman et al. [154], DiVincenzo [155, 156], Cirac
and Zoller [1], Barenco et al. [157], Sleator and
Weinfurter [158], Pellizzari et al. [159], Domokos et al.
[160, 161] Turchette et al. [162], Lange et al. [163],
Torméa and Stenholm [164], Gershenfeld and Chuang
[165], Cory et al. [166], Privman et al. [167], Loss and
DiVincenzo [168], and Bocko et al. [169]. In this paper,
we focus on a scheme suggested by Cirac and Zoller [1],

target bit remains unchanged; 4f = 1, the target bit
flips.

A spectroscopy experiment on any four-level quan-
tum system, where the level spacings are unequal, shows
this type of logic structure if we make the appropriate
labeling of the levels. For example, we could label these
four levels as in Eqg. (53). If we tune radiation to the
|1, 0 - |1, 1) resonance frequency and adjust its dura-
tion to make arr pulse, we realize the logic of Eq. (53).
Similarly, an eight-level qguantum system with unequal

which uses trapped ions. Since, in general, any quantumlevel spacings realizes a Toffoli gate [142], where the

computation can be composed of a series of single-bit
rotations and two-bit controlled-not operations
[140,155,156,170,171], we will focus our attention on
these operations.

In the parlance of quantum computation, we say that
two internal states of an ion can form a quantum bit or
“qubit” whose levels are labelé@®) and|1) or, equiva-
lently, |1) and|t). Single-bit rotations on iof can be
characterized by the transformation (Eq. (23)rfor n)

R(6,¢) (Cj[t) + Cij 1))

cos@/2)

— [ CT]
T He'*sin(6/2)

— e”"’sin((?/Z)] [
X
C,

cos/2) ] - (52)

In the spin-1/2 model, this transformation is realized by
application of a magnetic field,/2 which rotates at
frequency wy, and in the same sense as which is
applied slong the directiokcosp —ysing in the rotat-
ing frame. This is equivalent to application of the field
BiXcoskz —wt + ¢) in Eqg. (14). In this expression,
0 = 20,,t is the angle of rotation about the axis of
this field. For6 = 7 and ¢ = 0, R(0, ¢) is a logical
“not” operation (within an overall phase factor).
R(w/2, —7I2) (plus a rotation about) is essentially a
Hadamard transform.

A fundamental two-bit gate is a controlled-not (CN)
gate [142,155,156,157]. This provides the transforma-
tion

lew) [&2) — |e) |er®ss) (53)

where &, £€{0,1} and @ is additon modulo 2.
Although Eq. (53) is written in terms of eigenstates, the
transformation is assumed to apply to arbitrary superpo-
sitions of stateges)|sy). In this expressiong; is the
called the control bit and, is the target bit. Ifs; = 0, the
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flip of a third bit is conditioned upon the first two bits
being 1’'s—and so on (see Sec. 5.2). This basic idea can
be applied to molecules composed of many interacting
spins such as in the proposals of Gershenfeld and
Chuang [165] and Cory et al. [166]. For quantum
computation to be most useful, however, we need to
perform a series of logic operations between an arbi-
trary number of qubits in a system which can be scaled
to large numbers, such as the scheme of Cirac and Zoller
[1].

Another type of fundamental two-bit gate is a phase
gate, which could take the form

len |&2) — €91%2|ep)|ey)

(54)

This type of conditional dynamics has been demon-
strated in the context of cavity QED [162,172] and for
a trapped ion [17] (step (1b) below).

The Cirac/Zoller scheme assumes that an array of
ions are confined in a common ion trap. The ions
are held apart from one another by mutual Coulomb
repulsion as shown, for example, in Fig. 1. They can be
individually addressed by focusing laser beams on the
selected ion. lon motion can be described in terms of
normal modes of oscillation which astaredby all of
the ions; a particularly useful mode might be the COM
axial mode. When quantized, this mode can form the
“bus qubit” through which all gate operations are per-
formed. We first describe how logic is accomplished
between this COM mode qubit and the internal-state
qubit of a single trapped ion. In particular, the transfor-
mation in Eq. (53) has been realized for a single trapped
ion [17]. In that experiment, performed on a trapped
°Be' ion, the control bit was the quantized state of one
mode of the ion’s motion (labeled the mode). If
the motional state wal; = 0), this was taken to be a
|1 = O) state; if the motional state wais = 1), this was
taken to be de; = 1) state. The target states were two
ground-hyperfine states of the ion, tlie= 2, Mg = 2)
and [F = 1, Mg = 1) states, labeled.) and |1)
(Fig. 5), with the identification heré¢l) < |s;, = 0)
and|t) = |e = 1). Transitions between levels were
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produced using two laser beams to realize stimulated- (2)
Raman transitions. The wavevector differetkge— k,

was chosen to be aligned along thdirection. The CN
operation between these states was realized by applying
three pulses in succession:

(1a) A /2 pulse (X = w/4 in Eq. (25), where we
assumellyo = ()11 = ) is applied on the carrier
transition. For a certain choice of initial phase,
this corresponds to the operatvi’? (w/2) of
Cirac and Zoller [1].

(1b) A 27 pulse is applied on the first blue sideband

The elimination of an auxiliary ground state level

removes “spectator” internal atomic levels, which

can act as potential “leaks” from the two levels

spanned by the quantum bits (assuming negligible
population in excited electronic metastable

states). This feature may be important to the
success of quantum error-correction schemes
[142, 175-187] which can be degraded when
leaks to spectator states are present [188].
(Specific error-correction schemes for ions are
suggested in Refs. [182] and [187].)

transition between levelst) and an auxiliar (3) The elimination of the need for an auxiliary level
level [auy in the ion (thelF = 2, M¢ = 0) level iny can dramatically reduce the sensitivity of a CN
°Be"; see Fig. 5). This operato} isFanangousto the q”a”t“”f' logic gate to exter_nal magnetic “?'ds
ope;atorur%l of Cirac and Zoller [1]. This opera- quctuat|0n§. It is generally mposs@lt_a to find
tion provides the “conditional dynamics” for the three atomic ground states whose splittings are all
CN operation. It changes the sign of the) magnetic field insensitive to first order. However,
n=1) compoﬁent of the wavefunction but leaves f(_)r_ lons possessing hyperfine structure, the tran-
the sign of the1 ) |n = 0y component of the wave- sition frequency between two levels can be made
function unchanged: that is, the sign change is magnetic field independent to first order at partic-
conditioned on Whet,her or I"IO'[ the ion is in the ular values of an applied magnetic field (see Sec.
[n =0) or |n = 1) motional state. Therefore, this 4.2.2). . N

step is the phase gate of Eq. (54) with= 7, (4) Fln_ally, a reduction of Iaser_pulses simplifies the
where we make the identifications(= 0,1) — tuning procedure and may increase the speed of
(n=0,1) and & = 0.1) = (internal sltate'=1 . the gate. For example, the gate realized in Ref.

- Y 2— Y, And y . . .

(1c) A 7/2 pulse is applied to the spin carrier transi- [17] required the accurate setting of the phase e}nd
tion with a 180 phase shift relative to step (a). frequency of three Ias_e r pulses, and the d_urgtlon
This corresponds to the operatg(—m/2) of of the gate was dominated by the transit time
Cirac and Zoller [1] through the auxiliary level.

Steps (1a) and (1c) can be regarded as two resonantT he CN quantum logic g.ate can t_)g realiz_ed with a single
pulses (of opposite phase) in the Ramsey separated-fielopmse tuned to the carrier transition which couples the

method of spectroscopy [173]. If step (1b) is active st

(thereby changing the sign of the) [n = 1) component
of the wavefunction), then a state change (spin flip) is
induced by the Ramsey fields. If step (1b) is inactive,
step (1c) reverses the effect of step (1a).

Instead of the three pulses (1a — 1c above), a simpler
CN gate scheme between an ion’s internal and motional

ategn)|1) and|n) |t ) with Rabi frequency2,, [see
Egs. (18), (36), and (41)]. Considering only a single
mode of motion,

Onn = Q(n]€7@*Dn)| = Q6™ L, (0P, (55)

states can be achieved with a single laser pulse, whilewhere%,(n? = L% (%% (Eg. (18)). Specializing to the

eliminating the requirement of the auxiliary internal |n

= 0) and|n = 1) vibrational levels relevant to quantum

electronic level [174], as described below. These simpli- logic, we have

fications can be important for several reasons:

(1) Several popular ion candidates, includfiglg®,
40Ca+, 885r+, 1388a+, 174Yb+, 172Yb+, and198Hg+’ dO
not have a third electronic ground state available
for the auxiliary level. These ions have zero nu-
clear spin with only two Zeeman ground states
(M, = 1,1). Although excited optical metastable
states may be suitable for auxiliary levels in some
of these ion species, use of such states places
stringent requirements on the frequency stability
of the exciting optical field to preserve coherence
(see Sec. 4.4.3).

se
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QO,O = Qe—nZIZ,

011= 01 -n?) (56)

The CN gate can be achieved in a single pulse by
ttingn so thatQ, 1/ Qo 0= (2k + 1)/2m, with k andm

positive integers satisfyingn > k = 0. Setting(2; /(2o
2m/(2k + 1) will also work, with the roles of th¢0)
and|1) motional states switched in Eq. (53). By driving
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the carrier transition for a durationr such that
017 = (kK + 1/2)m, or a “m-pulse” (mod Zr) on the
[n) = |1) component, this force€,,r = mar. Thus the
states|!)|1) and |1)|1) are swapped, while the states
|1)[0y and |1)|0) remain unaffected. The net unitary
transformation, in the {0, 10, 1 1, 1 1} basis is

1 0 0 0
0 1 0 0

0 0 0 eit(— 1)km

0 0 iei¥(-1)km 0 (57)

This transformation is equivalent to the reduced CN of
Eq. (53), apart from phase factors which can be elimi-

nated by the appropriate settings of the phase of subse-

quent logic operations [157].

The “magic” values of the Lamb-Dicke parameter
which allow the above transformation satisfy
$(m) =1 -n%= (2 + 1)/2m, and are tabulated in
Table | of Ref. [174] for the first few values. [For rf
(Paul) trap confinement along the COM motional mode,
the Rabi frequencies of Eqgs. (55) and (56) must be
altered to include effects from the micromotion at the rf
drive frequency(2;. In the pseudopotential approxima-
tion (w << (), this correction amounts to replacing the
Lamb-Dicke parametem in this paper byn[l - w/
(2V'202)], as pointed out by Bardroff et al. [34, 35].
However, there is no correction if the COM motional
mode is confined by static fields (such as the axial COM
mode of a linear trap.)] It may be desirable for the
reduced CN gate to employ the) = |2) or |n) = | 3) state
instead of theln) = |1) state for error-correction of

motional state decoherence [182]. In these cases, the

“magic” Lamb-Dicke parameters satisfyi’s(n?) =
1-2n% + n*2 = (X + 1)/2m for quantum logic with
[n) =1]0) and|2), or #x(n?) =1 -371%+ 3n*%2 -1%6 =
(2k + 1)/2m for quantum logic withn) = |0) and|3).

This scheme places a more stringent requirement on
the accuracy of2 and», roughly by a factor ofm. In
the two-photon Raman configuration (Sec. 2.3.3), the
Lamb-Dicke parameten = |4k |z can be controlled by
both the frequency of the trap (appearingzihand by
the geometrical wavevector differencgk of the
two Raman beams. Accurate setting of the Lamb-Dicke
parameter should therefore not be difficult. Both
CN-gate schemes are sensitive to excitation in other
modes as discussed in Sec. 4.4.5.

The CN operations between a motional and internal
state qubit described above can be incorporated to
provide an overall CN operation between two ions in a
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collection ofL ions. Here, we choose the particular ion
oscillator mode to be a COM mode_of the collection.
Specifically, to realize a controlled-n6} ; between two
ions ¢ = control bitt = target bit), we first assume the
COM mode is prepared in the zero-point state. The
initial state of the system is therefore given by

v=(3 3
Mi=1,t Mpa=1,1

2 CMlxMZx---ML

ML=,

% (MM . .|ML)L> 0) . (58)

éc,t can be accomplished with the following steps:

(2a) Apply am-pulse on the red sideband of ian
This accomplishes the mapping |t ). +
B11)9]0) - |1 )(a|O) + B|1), and corresponds to
the operatot) 1’ of Cirac and Zoller [1]. We note
that in the NIST experiments [17], we prepare the
state @|1) + B|1))|0) from the| 1 )I0) state using
the carrier transition. We can then implement the
mapping ¢ [1) + B[ 1))[0) — [1)(«|0) + B[ 1)) by
applying am-pulse on the red sideband. This is
the “keyboard” operation for preparation of arbi-
trary motional input states for the CN gate of
steps la— 1c above. Analogous mapping of inter-
nal state superpositions to motional state super-
positions are reported in Refs. [47], [131], and
[132].

Apply the CN operation (steps 1la — 1c or, the
single carrier pulse described above) between the
COM motion and ion t.

(2c) Apply the inverse of step (2a).

(2b)

Overall,éc,t provides the unitary transformation (in the

{000 14 16 [1)e 4 ) | 1)e 1)} basis)

(o NNl
[eoNeN e}
= OOO
O, OO
|

(59)

which is the desired logic of Eq. (53). Effectivel
works by mapping the internal state of ion c onto the

COM motion, performing a CN between the motion and

ion t, and then mapping the COM state back onto ion c.

The resulting CN between ions ¢ and t is the same as the

CN described by Cirac and Zoller [1], because the oper-

ationsV*3(#) and U}’ commute.
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A third possibility, which also uses only one internal gates. Fot. = 100, a significant improvement in perfor-
state transition on each ion, is the following. We employ mance in atomic clocks could be expected.
two nondegenerate motional modes, which we label Inspectroscopy experiments bratoms, in which the
here as 1 and 2. These might be the COM modes in two signal relies on detecting changes in atomic populations,
different directions. We first map the internal state infor- we can view the problem in the following way using the
mation from two qubitsj and k onto the separate spin-1/2 analog for two-level atoms. The total angular
motional modes (which are both initially in the = 0), c
[n = 0), zero-point state). This can be accomplished as —t
described in step (2a) above. We then apply a condi- is the spin of theth atom. The basic task is to measure
tional phase gate (Eq. (54) witth = 7r) to the two wy, the frequency of transitions between thé¢ and|t)
motional modes. This could be accomplished by driving states Eq. (11). We first prepare an initial state for the
a 2m transition on a second order red sideband, at spins. We assume spectroscopy is performed by apply-
frequencywo — w1 — w,, ON a particular (extra) ion “g”  ing (classical) fields of frequencwg for a time Tg
which is initially in the|: ), state. This ion is not used according to the method of separated fields by Ramsey
to store information; it is only used for this one particu- [173]. The same field is applied to all atoms. After
lar purpose. This would be followed by operations applying these fields, we measure the final state popula-
which map the motional states back onto the internal tions; that is, we detect, for example, the number of
states of iong andk (like step (2c) above). Overall, this atomsN, in the |1 ) state. In the spin-1/2 analog, this
provides a phase gate (Eq. (54) with = 77) between is equivalent to measuring the operatdy, since
ionsj andk. To make a CN gate between iopandk, N, = JI-J, wherefis the identity operator. We assume
we need to precede the above operations with/2 the internal states can be detected with 100 % efficiency
pulse on the internal state of igr{or k) and follow the (Sec. 2.2.1). If all sources of technical noise are elimi-
above operations with &/2 pulse on the internal state nated, the signal-to-noise ratio (for repeated measure-
of ionj (or k). ments) is fundamentally limited by the quantum fluctua-

In this section, we have assumed that each ion can betions in the number of atoms which are observed to be
addressed independently. Also, since very many suchin the|i) state. These fluctuations can be called quan-
operations will be desired for a quantum computer, the tum projection noise [100]. Spectroscopy is typically
accuracy or fidelity of these operations is of crucial performed orlL initially nonentangled atoms (for exam-
importance. These issues are confronted in Sec. 4. Asple, ¥(t = 0) = ITi=,|L ). With the application of the
noted in Sec. 2.3, in each separate operation involved in Ramsey fields, the atoms remain nonentangled. For this
a quantum computation, such as application of the red case, the imprecision in a determination of the fre-
sideband in step 2(a) to ion a definite phase of the  quency of the transition is limited by projection noise to
applied fields is assumed. This phase for each ion can be(Aw)meas= 1/(LTr7)"? wheret >> Ty is the total averag-
chosen arbitrarily for the first operation, but upon ing time [100]. If the atoms can be initially prepared in
successive applications of the same operation to theparticular entangled states, it is possible to achieve
same ion, it must be held fixed, or at least be known, (Aw)mess< 1/(LTr7)"2 Initial theoretical investigations
relative to the initial phase. An exception to this is appli- for ions [3, 9] examined the use of correlated states
cation of 27-pulses as in step 1(b) where the phase of which could achieve Aw)mess < 1/(LTz7)¥? when the
the fields does not enter into the final result of the population {,) was measured. These states are

momentum of the system is given By= >, S whereS

operation. analogous to those previously considered for interferom-
eters [192, 193]. More recent theoretical investigations
3.4 Entangled States for Spectroscopy [194] consider the initial state to be one where, after the

first Ramsey pulse, the internal state is the maximally
A collection of atoms, whose internal states are entan- entangled state

gled through the use of quantum logic, can improve the
guantum-limited signal-to-noise ratio in spectroscopy. _1 st
Compared to the factorization problem, this application V= 2 (0u[6z - [+ €l 1))
has the advantage of being useful with a relatively small (60)
number of ions and logic operations. For example, for
high-accuracy, ion-based frequency standards [74,189,where ¢(t) = ¢o— Lawot. After applying the Ramsey
190,191], use of a relatively small number of trapped fields, we measure the operar=II\-; S, instead of
ions (L = 100) appears optimum. As outlined here, the J,. This gives Aw)meas= 1/(L?Tr7)"2, which is the max-
states involvingd_ ions which are useful for spectroscopy imum signal-to-noise ratio possible and corresponds to
and frequency standards can be generated witgic the Heisenberg limit [194]. In the language of quantum
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error correction, if we expres¥ in terms of the basis  thatTgis fixed. This constraint would be valid if the ions
stateg0)' = (|0) + |1))/2¥2 and|1)' = (|O) — |1))/2"2, we were subject to a constant heating rate and we desired to
find that ¢ (t) is determined from a parity check of the maintain the second-order-Doppler (time dilation) shift
total state in this second basis [142]. For an atomic clock below a certain value, for example. However, the use of
where the interrogation time is fixed by other con- entangled states may not be advantageous, given other
straints, this means that the timeequired to reach a  conditions. For example, Huelga et al. [198] assume that
certain measurement precision is reduced by a factor of the ions are subject to a certain dephasing decoherence
L relative to the nonentangled atom case. This improve- rate (decoherence time less than the total observation
ment is of significant practical importance since, to time). In this case, there is little advantage of using
achieve high measurement precision, atomic clocks aremaximally entangled states over non-entangled states.
run for averaging times of weeks, months, and even The basic reason is that the maximally entangled state
longer. decohered. times faster than the states of individual
Cirac and Zoller [1] have outlined a scheme for pro- atoms. Therefore, when using the maximally entangled
ducing the state in Eq. (60) using quantum logic gates. state,Tr must be reduced by a factor bffor optimum

Starting with the state?(t = 0) = ITk,|! );|0), we first performance. Because of this, the gain from use of the
apply am/2 rotation (2 ot = 7/4, ¢, = +7r/2 in Eq. (23)) maximally entangled state is offset by the reduced value
to ion 1 to create the staté = 24| 1)y + [1)1)[1 )] 1 )s of Tr. (Huelga et al. [198] actually show that a modest

.. .[4)|0). We then apply the CN gatey;, sequentially improvement can be obtained under these conditions by
between ion 1 and ions= 2 throughL to achieve the use of partially entangled states.) In appendix A, we
state of Eq. (60). An alternative method for generating compare entangled vs nonentangled states in the context
this state is described in Ref. [194]. As a final example, of a practical atomic clock application where a refer-
we consider a method for generating the maximally ence oscillator is locked to the atomic resonance.
entangled state which requires a fixed number of steps,
independent of the number of ions. For simplicity, we
illustrate the method for three ions. Starting with the
state (t = 0) = |1)|1)|1)|0), we first selectively drive

4. Decoherence

g ’ ) - The atomic motional and internal states, and the
one of the ions (say ion 3) with a carrier/2 pulse  (ngic) operations, were described above in an idealized
followed by a redlls;deband pulse to give theﬂ?equence fashion. In this section we consider some of the practical
[DIDID10) — 272 [1)([1) +]1)) [0) — 277[1)]1) limitations to these idealizations. These limitations can
[1)(10)) +1)). We now use the Lamb-Dicke dependence ganerally be grouped under the heading of decoherence
of the carrier transition (Egs. (56)) to make an odd it 1,y decoherence, we mean any effect which limits the

(e\ien) integer number of flips correlated with the  figelity of these operations (see Sec. 4.3). This is a more
[n=0) state and an even (odd) integer numberdfips general use of the term decoherence; in some treat-

correlated with then = 1) state (the laser beam intensity yents decoherence refers only to dephasing of qubit
is assumed to be the same on all ions). We can NOW giates and does not include state changes. Although
employ a transition to an auxiliary level. For example, if - somewhat arbitrary, we also find it convenient to break

the state after the last step, is the staté(31)[1)|1)[1) decoherence into categories: (1) decoherence of the ion
+[1)]1)[1)]0)), we could apply a blue sidebantdpulse  4tion, (2) decoherence of the ion internal levels, and

between statefs ) and|aux of one of the ions (say the (3 decoherence caused by nonideal applied fields
third) followed by a carrierr pulse on this transition to  \\hich are responsible for the logic operations.

carry out the steps™24|1)|1)1)[1) + [1)]4)[L)]0) -
2_112(| 1 >| 1 >|aUX> + |l >| ! >| ! >)|O>) - 2_1/2(| 1 >| T >| 1 > + 4.1 Motional Decoherence
[L)]1)[eN]0). (If the state after the previous step was

2741|110y + |4)]4)]4)|1)), we would sandwich For the trapped ion system discussed in this paper,
the last operation betweem pulses on thdt) - |t) decoherence may be dominated by that of the motional
transition of the selected ion.) state. Scaling of decoherence will depend on the physi-

Other correlated states can also be useful for spec-cal system being treated and the mechanism of decoher-
troscopy. A _strategy which essentially measures the ence [199, 200]. For quantum computation with ions,
variance ofN, is discussed by Holland and Burnett motional decoherence is somewhat easier to character-
[195] and Kim et al. [196]. This method has also been ize than for a general motional state since we are
incorporated into a proposed technique for spectroscopy primarily interested in relaxation of thg = 0) and
of internal states of Bose-Einstein condensates [197]. |n = 1) motional states for a particular mode (for exam-

In comparing the case for entangled vs non-entangled ple, the center-of-mass (COM) mode along the axis of a
states in spectroscopy, the above discussion has assumelkihear trap).
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4.1.1 Phase Decoherence Caused by Unstable Trap wheren is the mean number of motional quanta when

Parameters the ion is in equilibrium with the environment
(0 = [expfiw./ksT) — 117, andy is the relaxation rate of
the energy to thermal equilibrium. Since ion trap exper-
iments will typically operate in the situation where
fiw, << kgT, thenn = kgT/4w,. We will assume the
ion(s) start in the subspace of density matrix elements
PO, Pos, P10 and p;; wherep;; = (ilplj). Equation (62)
implies

A simple form of motional decoherence is caused by
fluctuations in trap parameters. Most likely, by employ-
ing electronic filtering, these parameters fluctuate
slowly on the time scale of the basic operations
(= 1/ ), therefore, the motion is subject to dephasing
due to the corresponding adiabatic changes in motiona
frequency. In the linear trap, if we assurag<< g7,
|8 ﬁgx(s ();T} %i(?céni.;gé’t\:inhl;c\)/re small fluctuation8Vo, pos(t = 0) = \/Ey (7 + 1pis — y(2T + 1/2pon

Sy, /0wy, = 3VolVo — 801/ 07 — BRIR, = —2Mypo1 , poo = — ¥[Npoo — (N + Lpui],
dw,lw, = 120k /k + 3Uy/Uy) . (61) p11=2y(N + 1py— y(3n + 1)p1s + yNpoo . (63)

The relationship between these frequency fluctuations General expressions fopttt and di)/dt are given in
and phase fluctuations in a series of logic operations is Appendix B. Based on these expressions and in the limit
discussed in Sec. 4.3.2. The effects of modulation of thatn >> 1, we will characterize the motional decoher-
these parameters by high-frequency noise is consideredence by the timé* = 1/(ny), which is approximately the

in Sec. 4.1.3 and in Ref. [66]. Although an experimen- time for the ion to make a transition from the ground
tally open question, it is expected that all of these state. This agrees with a classical estimate [103].
parameters could be controlled sufficiently well that

they should not be the primary cause of decoherence. 4.1.3  Radiative Damping/Heating

The electric dipole associated with the an ion's COM
4.1.2 Radiative Decoherence oscillatory motion will couple to thermal (black body)
Decoherence has received considerable attention in°" ambient radiation in the environment. However, since
connection with quantum measurement [201] and has the quelen_gth corresponding to ion oscillation frequen-
been put forth as a practical solution to the quantum cies \{wlltyplgally be _much Iargerthaq the trap electrodg
measurement problem [55,56,57]. In quantum optics, a spacings, this coupling can be described by lumped-cir-
paradigm for decoherence has been to consider relax-_(:u",[ mOd‘?'S [.102’ 103]. In thesg models,. We assume the
ation of the harmonic oscillator associated with a single lon’s motion induces Cl_Jrrents in the nelghborl_ng elec-
mode of the radiation field by coupling to the environ- trodes; these currer_1ts, in turn, couple to the resistance of
ment [202—-206]. This kind of fundamental decoherence the electrodes or circuit elements attac_hed to the elec-
has recently been observed in the context of cavity QED trodes. In experiments vv_he_re these resistances are pur-
by Brune et al. [207]. An important result from these posgly made high tg maximize damping of j[he lon COM
studies is that relaxation of superposition states occurs atmotlon, observed time constants agree Wlt.h the model
a rate which increases with the separation of the states[77’78’79’102’103'104]' In the two (single-ion) experi-

in Hilbert space and almost always precludes the exis- mfrg)ts Wtr."Ch Ih?\/? bt(;en able to gch||e\;eh;oollng tot the
tence of “large” Schidinger-cat-like states except on n="2motlona stat¢, tn€ measured va'u as abou

extremely short time scales. 0.15 s for a'®Hg" ion [44] and about 1 ms for a single

A fundamental source of decoherence for the COM Be’ 'Orl [17’2_1’45’47’131’132’211]' In these expert-
mode of ion motion is understood by considering that ments,t* was intended to be made as long as possible;
the dipole associated with the oscillating charged ion(s) however, the observed values iwere considerably
is radiatively coupled to the thermal fields of the envi- shorter than what we would calculate from the model,
ronment, at temperatuiie The master equation describ- as shown below. . L .
ing the evolution of the density operaofor the motion The model considers the electric-circuit equivalent

: ; : - ; hown in Fig. 6(a). Effectively, the electric-dipole
n the interaction picture) can be written [208,209,210] S"© ; . .
( ! lon picture) wr [ | oscillator formed by the ion COM motion can be consid-

.Y = 0 ered to be confined in a cavity formed by the trap
=Z(h+1 fa"—a"ap — pata : AR
P=2 ( ) (@0 - paa) electrodes. A useful representation of this situation is to

Y oo . model the COM motion (in one direction) as a series
+5n(2pa—-aap- paa) , (62) inductive-capacitivel¢) circuit which is shunted by the
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Fig. 6. Schematic diagrams of the lumped circuit equivalents for the trap electrodes and trapped ion(s). (a) The
left part of the diagram shows, schematically, the electrodes for a Paul trap with hyperbolic electrodes and a
collection of trapped ions. On the right is shown the corresponding lumped circuit equiv@jerpresents the
inter-electrode capacitance (the combined effects of the capacitances shown in the left part of therfigure);
represents the resistive losses in the electrodes and connectingwareds;, represent the equivalent inductance

and capacitance for the COM mode of oscillation in tH{gertical) direction [103]. (b) A schematic diagram of

the endcaps electrode for the trap of Jefferts et al. [211] which was used in the NIST experiments (the ring is
not shown). Induced currents in tegvertical) direction are assumed to follow a path indicated by shading; the
resistance in this path represenis part (a) of the figure. (c) The rf potential between ring and endcaps electrode
(or between pairs of rods as indicated in Fig. 1) is typically generated with a resonant rf step-up transformer. The
resistance in this transformer can, in principle, couple to the ion motion as discussed in the text.

capacitance of the trap electrodes as shown [9, 103]. 1 which can be computed [212]. For traps with hyper-
The resistance is due to losses in the electrodes and bolic electrodes, if we consider motion in tkedirec-
conductors which connect the electrodes. The Johnsontion, d = 2z, (the separation of the endcap electrodes)
noise associated with this resistance can heat the ions[67—70] andx = 0.8 [213,214,215]. For the trap used in
The equivalent inductance of the ion COM motion is the NIST experiments, whem= 130pm, I; = 60 000
given byl, = md¥/L (aq)® whered is the characteristic  henries! The resistance yields a time constant
internal dimension of the ion trap electrodeshe num- I./r = 1/y. This implies [9]

ber of ions, andx is a geometrical factor on the order of
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= L _AQ _ fwd _ dmiw, (64) i+ = Ao, [@}2
' keT ~ keTr ~ 0°Se(w,) ' q°Suy(w,) LEsl -

(65)

For a very small linear trap where= (0.3 mm)?, and
whereQ = wJl_ /1 is the quality factor of the ion oscilla-  for m= 9 u (e.g..’Be") and w,/27 = 10 MHz, we have
tor. The last expression in Eq. (64) shawsn terms of Uo = 17 V. ForEs = 100 V/m andS;, = (1 nV)/Hz (the
the spectral density of electric field fluctuations at the Johnson noise voltage from a @O resistor at room
site of the ion which can be writte®& = 4ksTr (a/d)? temperature), we haw¢ = 430 s. Sincd* = w,d? we
where &gTr is the Johnson noise voltage associated see there is a premium on having a relatively large trap
with the effective resistor. The trap reported in the  with large values ofJ, to keepw;, as large as possible.
NIST experiments had the endcaps made of a single In the above, we assumed that the ions couple to the
piece of molybdenum as shown schematically in Fig. surroundings through the oscillating electric dipole due
6(b) (ring electrode not shown). We assume the induced to their COM motion. In situations where the extent of
currents flow in the endcaps electrode as indicated in the the ion sample is small compared to the distance to the
shaded portion of Fig. 6(b), wheig is the skin depth.  electrodes, the induced currents result dominantly from
This seems to be a conservative estimate since currentedhe COM mode; therefore radiative decoherence from
will also flow in the sides of the endcap electrodes and modes other than the COM mode can be substantially
will not be confined to the skin depth [216], thereby suppressed [1, 103]. For example, for two trapped ions
reducing the effective value af Taking the resistivity aligned along the axis, we would expect electric fields
of molybdenum to bep(Mo) = 5.7 X 10° Q cm, wy = from stray (fluctuating) potentials on one of the end
125pm, andxr = 1 mm, we findr = 2pX/8swr = 0.0415 electrodes to cause an excitation force on ztstretch
Q. If we assumeTl = 300 K,t* = 4.6 s, considerably = mode which is suppressed by a factor equal to the ratio
longer than the observed valuetéf= 1 ms). An alter- of the ion spacing to trap dimensions compared to the
native model for dissipation of charges moving parallel force on the COM mode.
to a nearby surface [200] predicts a much larger value  Fluctuations inV, and U, for Es = O can also cause
of t*. Lamoreaux [217] has derived an expression which heating of the ions. These sources are discussed in Ref.
agrees with Eq. (64), however he chooses a value of [66]. Heating might be caused by parametric processes.
higher than what we calculate. For example, heating could be induced if the trap pseu-

Faster heating will occur it >> 300 K. This can be  dopotential is modulated (coherently or by noise) at
expected at the relatively high powers delivered to the twice the secular frequency. This problem has been
step-up transformer used to generdid= 1 W in the treated by Savard et al. [218] in the context of optical
NIST experiments), but this alone cannot explain the dipole traps for neutral atoms (a kind of Paul trap for an
difference between what the model predicts and the electron to which the atomic core is attached). For the
observed heating rate. Conversely, if the trap can be conditions of the NIST°Be" experiments, this kind of
operated at cryogenic temperatures, this kind of heating heating was estimated to be too small to account for the
should be substantially reduced. observed value of* [66].

Heating can occur in the axial and radial directions
due to the interplay of a stray static field (e.g., from
patch potentials on the electrodes) and nois&lgor Vo Noise from various ancillary electronic devices might
near one of the secular frequencies. Here, we explain pe injected onto the electrodes; this additional electronic
what appears to be one important case, a fluctuation of noise could then heat the ions. Added electronic noise
Uo in the presence of a stray static field along the  can be modeled as a resistorin Fig. 6 that has a
direction of a linear trap. This and other cases are dis- temperature much higher than the ambient temperature.
cussed more fully in Ref. [66]. These sources of noise can be tested by injecting noise

In equilibrium, the force on an ion from a stray static at a level equal to or above the ambient noise level and
field E = EsZis balanced by the field from the trap given  |ooking for a shortening of*. For this test to be valid,
by Eq. (2). We havéss = 2kqUoZequi, Wherezeqi is the  we must have a reliable means of sensing the noise at the
equilibrium position of the ion (here, we assume trap electrodes. This may be difficult to achieve in prac-
Zequi= 0 in the ideal case). A fluctuation ido therefore  tice, since, in the experiments, it is usually desirable to
causes a fluctuation in the electric field seen by the ion. filter the electrodes from the rest of the environment at
We can characterize the spectral density of these field the motional frequencies. This was the case in the NIST

4.1.4 Injected Noise

fluctuations as: (w) = (BJ/Uo)*Sy, (@) whereS, (w) is experiments, where electronic filtering at the motional
the spectral density of potential fluctuations. From frequencies precluded the direct observation of voltage
Eq. (64), we have noise on the electrodes.
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4.1.5 Motional Excitation From Trap RF Fields
symmetrically between endcaps). The effective induc-
The rf fields used for trapping in a Paul trap can lead tance of the ions for this type of coupling is given by
to excitation of the ion motion. We will consider four |} =1./82 Associated witlrs(w) in a small bandwidth
types of effects in which the rf micromotion can, indi- Ay aroundw is a series Johnson noiéé?) = 4ksTAvre,
rectly, cause heating. For the first type of effect consid- The electric field associated with this noise at frequen-
ered, we will analyze heating of the axial motion of a ciesw = {21 £ w, can heat the ion motion in a way
single ion in a conventional spherical-quadrupole Paul similar to the way in which the motion can be excited by
trap; the results can be generalized to other cases sucka coherent excitation at these frequencies [68]. From
as the heating of radial modes in a linear trap. For a Eq. (3.7) of Ref. [68], we see that an electric fiddgz
spherical quadrupole trap, motion in the (axial) applied at a frequency); = w, is equivalent to an
direction has the same form as Eq. (4). If we assume aelectric field [w,/(£2:\V/2)]E12 applied at frequencys,.
potential Vocos((t) is applied between the ring and Therefore, the Johnson noise from the series resistance
endcap electrodes, we have r{w = O £ w,) is equivalent to that from a series
resistances = [w?/(203)]rs (w = Q1 * w,) at frequency
w;. The heating from this source is characterized by the
heating timet*' =11/ (rsn). For the NIST singlBe" ion
experiments, this source of heating was estimated to be
where A, and ¢, are set by initial conditions, negligible.
0. = 8qVo/ (MOQE(ré + 223)), w, = q.02:/8Y2 1y is the inner A second type of rf heating can occur due to the
radius of the ring electrodezgis the distance between Coulomb interaction between ions. In a collection of
endcaps, and we assume< 1. In the radial direction,  ions, such a string of ions in an ideal linear trap, the
the motion will be similar with radial secular frequency Coulomb coupling between ions makes all of the
o = w,/2. From this equation, we see that the ion’s motional modes, except the COM modes, nonlinear.
motion in thez direction has components at frequencies This can lead to excitation of these modes in a Paul trap
o = O = w, Since the rf voltag®/, is typically applied by the driving fields at frequency2;. This excitation
through a resonant step-up transformer [shown sche-and the resulting chaotic motion have been studied
matically in Fig. 6 (c)] the ion’s motion at these frequen- extensively for two ions trapped in a conventional Paul
cies might be expected to couple to the resistaRege  trap. Experiments have been performed at Munich and
between the ring and endcaps associated with this step1BM; these studies are discussed in Ref. [219]. More-
up transformer. At a frequencyn near (2, the over, even for a single (harmonically bound) ion, nonlin-
impedance between the ring and endcaps electrode carear subharmonic excitation can occur if the exciting
be represented by a parallel tuned circuit as shown in field is inhomogeneous [220]. Both types of heating can
Fig. 6(c). This impedance is given by be made negligible when the mode frequencies are not
submultiples of(2;, whena;, g*> << 1, and when all
modes are sufficiently cooled and therefore very linear.
= rgw) +iX(w), (67) Another type of rf heating occurs in some experi-
14 2iQ<w _9T> ments when the conditioa, g2 << 1 is not rigorously
O satisfied and the trapped ions are fairly energetic. The
motion of single ions (or multiple ions when the mutual
where Q is the quality factor for the circuit Coulomb interaction or “space charge,” can be
(Q = Ry/(£2L+1) = Rr2:Cy). Coupling to the effective  neglected) will be unstable when the condition
series resistance(w) should not occur if the endcap pw, + mew, = (¢ is satisfied in a spherical quadrupole
electrodes are placed symmetrically around the ring trap or whermpwy + mewy = €21 in a linear trap) p andm
electrode (as intended). However, since the relative elec-are integers). This type of heating has been observed in
trode positions are difficult to control in small ion traps, some beautiful experiments [221] and has been ex-
a displacement of the ring electrode toward one of the plained theoretically [222]. These “heating resonances”
endcaps will cause a net induced current from ion arise from terms in the trap potential which are higher
motion to flow between ring and endcaps at frequencies order than quadratic. We briefly explain their origin for
o = O = w, We characterize this current (in tte a single ion. For simplicity, we neglect the contribution
direction) byl = Bqz(2zy), wherez is the ion velocity of the static potentials; their inclusion will not change
and B is a geometrical parameter which expresses the the analysis significantly.
coupling to the electrode@E& 0 when the ring is placed

2(t) = A,COS@;t + b,) [1 + %Z cos((th)] . (66)

Z(w) = Rr
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In general, the potential of the trap can be expanded coupling parameters (Sec. 4.1.8) will, in general, be
about the equilibrium position of the ion and written in  very small.
spherical coordinates (0, ¢) as A fourth type of heating due to rf trap fields is ex-
plained as follows. A common problem in ion trap ex-
periments is the presence of stray static electric fields.
These fields can give rise to coherent motion at fre-
quency{2; and potential to heating, which must be ac-
counted for. Stray static electric fields can arise from
potential variations on the electrode surfaces (“patch”
fields) due, for example, to the finite crystalline grain
size of the electrode material [223], or charge buildup
on the trap electrodes. Charge buildup can occur be-
only two terms in the expansion in Eq. (68) contribute, cause, typically, ions are created by electron impact
C.2 = C,o=—(2m/15)2 (For the ideal spherical ionization of neutral atoms which pass through the trap.
quadrupo|e trap, neg|ecting a constant term, 0n|y one Often, the ionizing electrons are also collected by the
term contributesC, o = 4(x/5)Y2) For a nonideal linear ~ €lectrode surfaces. Electrode charging is particularly
trap, the resonance heating can be explained as due tdmportant at low temperatures where, apparently, ad-
terms in Eq. (68) which give rise to a Hamiltonian of the sorbed gases on the electrodes can provide an insulating

&d =V, cosft 2 2 CI m

5] Yin0.0). 68)

=0 m=-

whereY,  are the spherical harmonics ashi a charac-
teristic dimension of the trap. We takk= R for the
linear trap (andl = (r§ + 2z%)"? for the spherical quadru-
pole trap) [67,68,69,70]. For the ideal linear trap
(Eq. (1) withU, = 0, and neglecting a constant term),

form

H = q® = qVynm [%]p Hm cosit . (69)

In the interaction picture for the motion, this becomes

H;:ﬂpv_

2 [R} [yo} <(ax)p (ayD)’“+hc> (70)

where this last expression is the leading term which
satisfies the resonance conditipiay + mw, = . This

surface upon which stray charge resides for long periods
of time (hours).

If stray static electric fields are present, the equi-
librium position of an ion is shifted to a place where the
force from the stray field is counterbalanced by the force
from the pseudopotential. We will analyze the effects of
such stray fields using a classical treatment of the
motion of a single trapped ion. In gener&y,y = Ex
X + By + Eq2z. Stray fields along the direction in a
linear trap merely shift the origin along this direction
and can therefore be neglected. For balance irx toed
y directions, we havé~, = qEx — d(q®P,)/dx = 0 and

interaction will be suppressed because of the inherentF, = g, — d(q®,)dy = 0 whered, is given by Eq. (6).

smallness of high-order anharmonic tertyg, (for sim-

This leads to offsetax and Ay and resultant motions

ple trap electrode shapes) and the smallness of the termswhich are, to first order iy and g, given by

(X/R)? and {/R)™ Furthermore, if thex y modes are
cooled to near the zero-point energy, matrix elements of
the motional operators will be near 1. For large ampli-
tudes of motion, the mode frequencies are not well de-
fined because of anharmonic terms and heating from
this coupling would be expected to occur. In any case,
it is easy to check for a resonant heating of this type by
varying the resonant frequencies and wy relative to

{r. It can also be checked by varying the initial ampli-

tudes of motion in the modes. These tests were used for

the NIST single’Be’ ion experiments; no change in the
heating was observed.
Similarly, in a linear trap ngithL ions, we would

expect resonances to occur whzimew, = 2r wherem
k=1
are integers andy are normal mode frequencies (see

X(t) = (AX + A, COS(wut + ¢y)) [1 + quOS(QTt)]

Ax = qux
mwx

YO = 8y + A coso+ &) 1+ Feoson) |

quy
wy

Ay = (71)

where, as in Eq. (4)Ac and A, are the amplitudes of
secular motion. The presence of the offsétsand Ay
means that the ion motion has an additional component
at frequency(2;. This motion will effectively give rise

Sec. 2.3.2). If all modes are cooled to the point where to sidebands on the applied radiation as seen by the ion,
only a few motional states are excited, then the mode thereby reducing the size of matrix elements between
absorption spectrum will consist of sharp features states. For example, for single-photon transitions driven
around the mode frequencies, and the resonances can by a traveling wave with wavevectér= kX + k.9, the

avoided by changing the trap parameters. Moreover, the electric field from this traveling wave at the site of the
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ion is proportional to exp(kx(t) + ky(t) — ot + ¢]) +

c.c. Terms in the exponential lik&Ax are (constant)
phase shifts which can be neglected. Terms kke
cos(t + ¢y) [1 + (gx/2)cos((2:t)] are just the motion of
the ions in the ponderomotive potential in the ideal case.
The factor from the remaining term,

exp( %X [ky AX — k,Ay] cos((Xit))

= cosfpq cos(2:t)] + isin[¢, cos@ )],  (72)

whereg,, = (0« /2)[k«AX — k,Ay] gives rise to frequency

dent or very slowly varying (< 500 Hz) components
[223]. However, fluctuating patch fields caused by fluc-
tuating adsorbate coverage has been studied in some
cases [229, 230]. These studies differ somewhat in the
low frequency behavior at time scales comparable to
diffusion times, but at frequencies> 1., where 14 is

a time constant characteristic of surface diffusion, they
predict S(®,, v) « v whereS(d,,v) is the spectral
density of rms potential fluctuationd, (in units of
V2—HzY anda = 3/2 [230]. To estimate the effects
of time-varying patch potentials on a single trapped ion,
we assume the ion is sensitive only to the potential on a
portion of a nearby electrode. We take the area of this
portion equal tora; wherea, is the distance between

modulation sidebands on the spectrum which are spacedthe ion and the nearest part of the electrode surface. The

by (. If we consider the carrier or central part of this
spectrum (the first term in the expansion of
cos[pncos(t], we find that the matrix elements are
reduced by the factody(¢p,) compared to the case
where the static fields are absent. Ky << 1, Jo(dq)
=1 —(¢pn/2)* = exp(- (Pn/2)?). Therefore the effect of
the micromotion looks like an additional Debye-Waller
factor due to the smearing out of the atom’s position
over the exciting wave (see the discussion following Eq.
(25) and Sec. 4.3.5).

To the extent that offset fields are constant, they
should not cause heating unless #¢ sidebands give

effects of these potentials on the ion motion in one
direction is then estimated by assuming the ion is cen-
tered between two capacitor plates of ares sepa-
rated by a distanceag The fluctuating potentials on
these plates give rise to a fluctuating field at the site of
the ion which can then excite its motion.

Patch potential fluctuations can be caused by the
fluctuations in the surface coverage from adsorbed
background gas molecules (or atoms). High frequency
fluctuations appear to be dominated by surface diffu-
sion rather than adsorption and desorption [230]. The
number of adsorbed molecules in an ares can be

rise to unwanted spectral components that are close toapproximated byN(6) = 6(wa2)/(wrZ) whered is the

transition frequencies of interest. However, the offsets
Ax andAy can lead to a problem if the trapping field has
noiseV, at frequencied?; * w, that is, Vocosf2:t —
Vocostit + V,cos((2r + w)t + V,cos((2r — wit. In this
case (assumingy = 0 for simplicity), the ion experi-
ences noise fields at frequenciés = o, equal to

E, = — d®/ox = —V,Ax/R?[Eq. (1)]. From the first part

of this section, this is equivalent to noise fields of ampli-
tudeV,Axq/(4R?) applied at frequency, [66]. For the
NIST single®Be" ion experiments, this effect was esti-
mated to be negligible. Moreover, this source of heating
was tested for by purposely applying a static field offset

fractional coverage and, is the radius of the adsorbed
molecule. For low coverage® < 1), the number of
molecules will fluctuate randomhAN = N2 which
leads to fluctuations in coveraged = 6"%,/a,. A sim-
ple model for changes in the surface potential due to
adsorbed molecules is that the molecules are polarized
by the surface and effectively screen the surface poten-
tial. We can relate the change in potential of the plate to
the change in surface coverage®® = kA6 = k¥ ,/
a,, Wherek is a proportionality constant.

If we take S(&,, v) = & (constant) fory < v, and
S(P,, v) = S(v/v)¥?for v> v, we have(D?) = [S(D,,

and seeing if the observed heating rate increased; a nully)dv = 3Sv.. Here(®d?)*? is taken to be equal to the
result was obtained. Experimentally, it has been possible value of A® estimated in the previous paragraph. The

to reduce stray static electric fields by heating the elec-
trodes [191, 224] or cleaning the electrodes with elec-
tron bombardment [225]. Alternatively, they can be

cutoff frequencyw is given byw, = 14z wherety« can
be approximated by = 13/(4D) whereD is the diffu-
sion constant and is the diffusion length [231]. Here,

compensated for with the use of correction electrodes we takelq to be the radius of the effective patdh< a).

[226-228].
4.1.6 Fluctuating Patch Fields

Electrode patch fields might also vary in time; if the

We then find forv > v,

S(dy,v) = 4 ODY2 [(La)z (73)

38y

] V_3l2 ,

spectrum of these variations overlaps the mode frequen-
cies, this could lead to ion heating. Investigations into where an extra factor of 2 has been included to account
patch fields have primarily been done for time indepen- for the two capacitor plates which are placed on either
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side of the ion. To calculate the heating rate from these electrode surface to another are much less théh 46

potential fluctuations, we first note that they will pri- that field emission occurs as if the fields are quasi-static.
marily act over a narrow bandwidth associated with the  Since the onset of field emission varies exponentially
ion’s motional frequency. In this case, we can represent with the applied voltage between electrodes, it is
the fluctuations as coming from the Johnson noise of a possible to check for field emission by varying the trap
resistor at temperaturé@ connected between the capac- potentials by small factors, and monitoring the ion heat-

itor plates, that isS(®,, v) = 4ksTr (assuming the
capacitive impedance is much greater tmdnThere-
fore, we can rewrite Eq. (64) as

* — 4ﬁ(x)z|L
t* = (@) (74)
wherew, is the ion oscillation frequency.

Since the polarizability of molecules and atoms does
not change dramatically for different species, we will
estimatex from a measurement of change in surface
potential for potassium atoms on tungsten. From Fig. 2
of Schmidt and Gomer [232], we find = 3 V. For an
estimate off, we extrapolate the data presented in
Fig. 6.6 of Tompkins [233] for Hon tungsten and find
6 = 0.13 at a partial pressure of #®a. The diffusion
constant for H on Mo is approximately equal to 10
cn? - s [233]. To make a comparison with the heating
observed on a singfBe’ ion in the NIST experiments,
we takely = a, = 130 pm, w,/27 = 11 MHz, L = 1,
l;=6.2x 10*H, r,= 1 nm (Sec. 4.1.3), and we fing
= 2.4X% 107 Hz andt* = 3000 s.

This model is very sensitive to the high frequency
dependence db(®P,, v) on v, and because of the very
low value of v, estimated here, the model should be
refined. However, we note that if the value B{= 1
ms) for®Be’" observed in the NIST experiments is caused
by fluctuating potentials on the surfaces of the elec-
trodes, this would correspond t8(®,, 11 MHz)
= (1.3 nV}/Hz. This should be detectable with a sensi-
tive amplifier. Therefore, independent of the model, this
type of noise may be detectable in a straightforward way.
Conversely, we note that a single trapped ion in the
experiments considered here will be an extremely
sensitive detector of potential fluctuations on electrodes
in vacuum.

4.1.7 Field Emission

Field emission from sharp protrusions on the elec-
trode surfaces can cause ion heating, either from the
direct electron-ion Coulomb coupling or from associ-
ated electronic noise on the electrodes. Field emission
caused by the trap potentials is not unexpected, and field
emission points have been observed to grow in a number
of ion trap experiments. For typical values\Gfand trap
dimensions, the electron transit times from one
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ing rate. This technique appears to have ruled out field-
emission heating in the NIST experiments since the
change in ion heating was much less than a factor of two
whenV, was reduced by a factor of two. This argument
assumes the exponential variation of field emission with
applied voltage; if the emission or some leakage current
is less sensitive to voltage changes, this test may not be
valid. If field emission points are formed, it is usually
straightforward to remove them by momentarily apply-
ing a large negative potential to the electrode in
guestion. The resulting high current is usually sufficient
to “burn out” the field emission tip.

4.1.8 Mode Cross-Coupling From Static Electric
Field Imperfections

According to the scheme of Cirac and Zoller [1], the
operations which provide guantum entanglement of the
internal states of. trapped ions involve the coherent
manipulation of a single modeof collective motion. In
the quantum logic scheme discussed in Sec. 3.3, this
mode is typically taken to be the COM mode along the
axis of a linear trap. A potential source of motional
decoherence is caused by the coupling of this kth mode
to one or more of the [3-1 other spectator modes of
vibration in the trap. If the B-1 other modes of oscilla-
tion are not all laser-cooled to their zero-point energy,
then energy can be transferred to kik mode of inter-
est. Even when the spectator modes are cooled to the
zero-point state, they can act as a reservoir for energy
from the COM mode. This does not lead to heating but
can cause decoherence. Ideally, the ions are subjected to
quadratic potentials as in Sec. 2.1. In practice, higher-
order static potential terms are present; these terms can
induce a coupling between the modes. Similar couplings
are induced by the intentionally-applied time-varying
fields necessary for providing entanglement; these are
discussed in Sec. 4.4.7 below.

We will assume that the higher order field gradients
act as a perturbation to the (harmonic) normal mode
solution. Following the convention of Eq. (30), these
fields will be specified byE; fori €{1,2,. .. 3L} where
the indexi specifies both the ion and direction Bf We
write the electric field at th¢th ion as

Ej = Ej X + EL+j y + E2|_+j Z , 16{1,2, A L} . (75)
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From Eq. (31), we can write the equation of tkth
normal mode as [109, 234]

3L

&2
5_tq wqu = 2 (76)
In general, we can write
E=E({u}) = E{a})
JE;
“eq=0+ S afE|
m11q;
1 L 3L |: ain :|
+ = m + 77
2 E me1 W | 03 {g}=0 ()

where the derivatives are evaluated at the equilibrium
positions. The first term on the right side of this equa-
tion just gives rise to a shift of the equilibrium positions,

and the second term can be absorbed into new defini-.

tions of the normal mode frequencies. The second-
order term (last term shown in this equation) can reso-
nantly couple two modes of oscillatiohgndm) to the
normal mode of interedt. We find a possible resonant
term:

9°Ey ]
9% o] q3=0 °

Dx Gi0m [

(78)
where thd andm mode frequencies satisfy + wn| =
wx. This type of coupling can either add to or extract
energy from modé, depending on the relative phases
of motion in the three modes. By substituting the free
solution to modes andm [q;(t) = Q;exp(Ei(wjt + ¢;)]
into the last equation, we find that f(t = 0) =
(dgi/dt),=o = 0, the driven solution to the amplitude of
modek initially grows linearly with time:

3L

2L > leQm[

2Mawy 01

i)
A Iqm] {a}=0

lak ()| =

(79)

We illustrate with an approximate numerical example
which might have been expected to play a role in the
heating that was observed in the NIST experiments.
In those experiments, performed on sinte’ ions, the

For a single ion, the three normal modes are just the
oscillation modes along the, y, and z directions
(=X, 0. =Y, 0z = z; D = 8,«). The mode frequencies
were (wx, wy, w,)27 = (11.2, 18.2, 29.8) MHz, thus
approximately satisfying the conditiat + wy = w,. For
sake of argument, we assume this resonance condition to
be exactly satisfied. We consider heating of threotion
assuming both thg andz modes are excited. From Eq.
(79), we find|x(t)| = |qtAA,[0°Ex/0y 8Z] (y = 2= o) /(2Mawy )]
whereA, and A, are the amplitudes of motion in the
andz directions. For simplicity, we neglect the fact that
energy is exchanged between the three modes; that is,
we assume the amplitudes of thandz motion remain
fixed. In this approximation, i, = A, = £, the time it
takes to excite th& motion to the same amplitud&)(

is given byt = |2mawy/(Q€[0°Ex/dydZ]y=2=q)|. If & =

10 nm (corresponding t,) = (A,) = 1 for the condi-
tions of the singléBe" ion NIST experiments, the field
gradient required to drive the x motion to an amplitude
of 10 nm (f,) = 1) in the observed time of 1 ms is
approximatelys’E, /oydz = 1000 V/mmi. It is highly
unlikely the gradient was this large for the NIST exper-
iments, and, furthermore, the resonance condition was
only approximately satisfied. Moreover, this source of
heating was easily tested by varying the initial values of
A, and A, (by varying the Doppler-cooling minimum
temperature through laser detuning) and studying the
heating rate of th& motion which had previously been
cooled to the zero point of motion. No dependence on
the initial values ofA, andA, was found. In any case, if

all modes of motion are initially cooled to the zero-point
state this source of heating vanishes because the as-
sumed coupling only provides an exchange of energy
between modes. This places a premium on cooling all
modes to as low an energy as possible. Finally, it appears
that this single-ion example gives a worst case scenario
since, for large numbers of ions, the force on the gener-
alized coordinates [right hand side of Eq. (76)] requires
a high-order field gradient to be nonzero. These gradi-
ents are highly suppressed in the typical case where
ion-ion separation is much smaller than the distance
between the ions and the trap electrodes.

4.1.9 Collisions With Background Gas

Although trapped ion/quantum logic experiments will
typically be carried out in a high-vacuum environment
(P < 10 Pa), residual background gas collisions can be
important. The effects of collisions can be broken up
into two classes: (i) inelastic collisions, which alter the
internal state of the trapped ion or even change the
species of the ion, and (ii) elastic collisions, which only
add kinetic energy to the ion. Both types of collisions

heating that was observed was such that the ion made awill cause decoherence, although heating from elastic

transition from then =0 ton = 1 level in about 1 ms.
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The most troublesome inelastic processes are chemi-used in the NIST°Be" experiments [47,76,211], the
cal reactions and charge exchange. A background gasdominant background gas constituent is usually H
atom or molecule can collide and chemically react with For H,, we obtairk angevin= 1.64X 10 °cnm® — s %, Ata
the trapped ion, creating a different ionic species which pressure of 1¢ Pa and a temperature of 300 K, we
is no longer useful. For the reactions to occur, they must have yangevin= 0.004 s*. Other candidate background
be energetically favorable (exothermic), and, if the back- molecules and atoms have similar polarizabilities and
ground neutral is a molecule, the reactions almost always values ofk_angevin EXperimentally, we observe lifetimes
proceed since the internal degrees of freedom of the of several hours for trappetBe’ and >Mg"* ions at
molecule can help satisfy energy and momentum con- pressures of arourrd 10 8 Pa, indicating that at least for
servation in the reaction. In the ion trap experiments ground state’Be* and *Mg* ions the probability of
discussed here, the ion can spend an appreciable amounthemical reactions with the background gas constituents
of time in the (optically) excited state due to laser exci- is small. In a cryogenic ion trap fdP*Hg’, the lifetime
tation; in this case the extra energy due to laser excita- is many days [74].
tion can make an otherwise endothermic reaction be- Background gas can heat the trapped ions by transfer-
come exothermic. For example, in experiments on ring energy during an elastic collision. The Langevin
laser-cooled Hgions [235], when ions were excited to  rate above gives too low an estimate of the rate of colli-
the metastabled56s? D5, level (approximately 4.4 eV sions which transfer energy to the ion, since a “heating”
above the ground state) they reacted with neutral Hg collision need not penetrate the angular momentum bar-
atoms in the background gas to cause loss of thé Hg rier. A conservative estimate for the heating rate can be
ions (presumably due to radiative association causing given from the more general expression for the total
Hg: dimer formation). As a second example, in experi- collision cross sectiomr.sic(in the quasi-classical limit)
ments orfBe" ions [47,76,211], the ions were converted in a C,/r* potential [238]. We takeC, = aq%8me, and
to BeH" upon collision with an Hmolecule when reso-  find
nant light was applied to th&S,, — 2Py, 3, transitions.

As a final example, the formation of YtHby a similar
process has been carefully studied by Sugiyama and
Yoda [236]. The second form of inelastic collision is
charge exchange, where a neutral background atomlf we average over a thermal distribution of background
gives up an electron and neutralizes the trapped ion. H, velocities, this results in the rate constdatsi.=
Both types of inelastic collision depend critically on the < geasiv > = 1.23X 10°a 3@ whereV = (2ksT/u)Y2
particular constituents involved. For H, at 300 K and a pressure of T0Pa, we find

Chemical reactions and charge exchange can occurkeasic=1.24X 1078cm® — s and yepasic= 0.03 s*.
only if the interparticle spacing of the two colliding Although each collision on average transfers a large
partners approaches atomic dimensions. An upper limit amount of energy to the trapped ion, we conclude that at
on these rates is given by the Langevin rate, for which typical UHV pressures, such collisions will also be rare.
background neutrals penetrate the angular momentumcCallisional heating can be tested by raising the back-
barrier and undergo a spiraling-type collision into the ground gas pressure. A simple way to do this is simply
ion [237]. In these collisions, the electric field from the turn off the vacuum pump; collisions as a source of
trapped ion polarizes the background neutral (polariz- heating in the NIST experiments was eliminated in this
ability ), resulting in an attractive interaction potential way. However, doing so does not insure that all partial
U(r) = — ag?(8mer ). Impact parameters less than a pressures increase by the same factor. Preferably, the
critical valuebe; = (aq%meouv?) ™ will result in spiral- partial pressure of selected gases should be increased by
ing collisions, wherew andv are the reduced mass and leaking them into the vacuum system and looking for an
relative velocity of the pair. (Since the ions are assumed increase in ion heating.
to be nearly at rest from laser coolingis simply given When ions are first loaded into a trap, their kinetic
by the velocity of the background constituent.) The ve- energy is in general comparable to the depth of the trap
locity-independent Langevin rate constant (typically greater than 1 eV). In this regime, elastic
KLangevin= 0V = mb&;v leads to an overall reaction rate collisions with the background gas are actually benefi-

cial, as the background gas can provide a viscous damp-
_ _ Ta ing medium and bring the temperature of the trapped
Yiangevin= NKiangevin = NG o’ (80) ions into thermal equilibrium with the surrounding gas
[239]. This allows initial laser-cooling to proceed much
where n is the density of the background gas. In a faster.
metal/glass room-temperature apparatus such as was

aq2 2/3
Oelastic = ﬂr(lls)[l&oﬁv] . (81)
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4.1.10 Experimental Studies of Heating other cause by comparing the heating rates of the axial-

. . . . COM and axial-stretch modes of two ions in the trap.
Some experimental diagnostics for heating have been.l_he heating of the COM mode should be nearly the
discussed above in Secs. 4.1.4-4.1.9. As discussed in 9 Y

. L . ..~ “same as for a single ion since it can be excited by a
Sec. 4.1.2, we are primarily interested in determining spatially uniform (oscillating) field. However, since the
the heating from théh=0) or [h= 1) states. In the P y 9 ) '

NIST single’Be" ion experiments, heating could be esti- f;rdeigctii:/emhoed;ir\:vmofﬁ]gxg;%de gn%etl)gsae:g?‘a%rsdlfergﬁh
mated by first preparing the ion in thgl )[D) state, g y g

waiting a certain delay time, and then measuring the the trap electrodes should be significantly less.
strength and ratio of the first red and blue sidebands

[44,45]. This method gives a simple indication of the 4.1.11 Experimental Studies of Motional
heating rate, but a more complete method is described Decoherence

here.

More recently, we have determined that depletion of
the [h = 0) state was dominated by a nearly continuous
and smooth heating which initially took the atom from
n=0 to n=1. This was established in experiments
where the distribution of level populations was mea-
sured after a delay time using the technique of Ref. [21]

It is desirable to have some methods to test for deco-
herence. Full characterization of decoherence in a mo-
tional state could be accomplished by reconstruction of
the density matrix [131,132] coupled with a time delay
between creation and measurement. This complete char-
acterization may not be necessary and other methods
and the tomographic technigue of Leibfried et al. have bgen used. One possibility is to create an interfer-

ence signal between two states that depends on decoher-

[131,132]. For example, in the experiments of Ref. [21], ; . .
ence mechanisms and monitor the contrast of that signal
many measurements were repeated for each value of the

. : . o in time. This type of measurement was used to charac-
time delay in order to extract the population distribu- : d o
. . S terize the purity of Schidinger-cat states for trapped
tions fromP, (t) [Eq. (42)]. In this way the time™ [Eq. ot
. . atoms [47]. Decoherence of Sckinger-cat states of

(64)] was determined to be about 1 ms. In this same - o .

. . . __the electromagnetic field, caused by radiative damping,
apparatus, if we make the assumption that the heating

. X has been monitored by studying a correlation between
was caused by a coupling to the environment at 300 K, : .
. o .’ observed states of two successive atoms which probe the
the overall time constant to reach equilibrium is

Tout = 1 (ke T/i0y) = 570 s field [207]. One kind of Schidinger-cat for motional
equil — ) = .
Interestingly, under typical operating conditions, states has the formi) + L «)) whereLlr) denotes a

. ; X o .’ coherent state. A measurement of the value of the
these tests of heating are highly insensitive to heating ., . . - _ :
- . . Wigner function at the originV(a = 0) may be suffi-
caused by collisions. In the previous section, we saw that . . i
. - cient to characterize decoherence [131,2404 i suf-
at the typical background pressure of 4@a for the ficiently big (Okx) = 0), we would expect an initial
experiments of the NIST singRBe" ion experiments, y big ' P

. . nonzero value foW(0) that is damped toward zero in
collisions would be expected to occur at a maximum rate .
_ ) : the course of decoherence [240,241]. For quantum logic
of about 0.03 &', as estimated from total elastic scatter-

ina. Strona heating collisions. aiven by the Langevin with ions, it appears that decoherence of the COM mo-
g 9 g » O . y 9 tional states in the submdoid of states[0) and[L) is

rate, occur at a rate of about 0.004.sThese rates . . -

- . N . of primary importance. It may therefore be sufficient to

indicate a time constant to reach equilibrium with the reconstruct the X 2 matrix spanned by tHed) andCL)

300 K background gas of between 30 s and 250 s, P y

shorter than the 570 s time estimated from the observednumb(.ar states of the COM mode and charaptenzg its
O ~ . . evolution due to decoherence. One scheme is outlined
n=0 - n=1 heating rates (previous paragraph). How- here
ever, since each heating-rate experiment takes only ' - N
: . Suppose we initially create the stat#(t=0)=
about 1 ms, at most, only one experiment in about [1)(C.o (O)D) +C, (O)CL)). In a particular experi-
30 000 indicates a background gas collision; these events o L ! P P

. ) . . ment, after a timety the state becomesP(ty) =
are simply lost in the experimental noise. In effect, the ()32, C.; (t)[)) due to motional decoherence. We
technique of measuring is able to detect the continu- 1=0 =i '

ous, smooth heating occurring in between collisions, can then apply wo analysis pulses of radiation to this

- state. We first apply ar pulse on theél )[11) — [ )[D)
even though collisions are expected to be a stronger . - : .
. . red sideband transition. We assume this pulse takes time
overall heating source. This effect was even more pro-

nounced in the experiments of Ref. [44]. tu (2ot = m/2). We follow this with am/2 pulse on the
L . [O) - [h) carrier transition. Here, we simplify the dis-
Although the source of heating in the NIST experi- . : : .
X . . cussion by assuming the time for both of these pulses is
ments is not understood at the present time, it should be

; ) - L short enough that decoherence during the pulses can be
possible to tell if the heating is radiative or from some L g
neglected. The wavefunction is now given by
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_ 1 nal state superpositions. As an example, in Fig. 7, we

Wina = 72 <Dl Y () + T )i (X)>’ show a spectrum taken of a particular hyperfine transi-
tion in °Be" ions [76]. This resonance, obtained with the

P (X) = [C, o(ty) — €7 92C, 4(ty)] D) Ramsey method of separated fields [173], has a

linewidth of less than 0.001 Hz (at a frequenay/

— isingy 4, *C, o(tq) L) (82) 2m = 303 MHz) and corresponds to a coherence time
between the two internal levels of the transition of more

- than 10 minutes. (We could independently establish that

* ,2:; [Coﬂ‘“tlc‘ i () the noise apparent in Fig. 7 was primarily caused by the

fluctuations in the oscillator driving the transitions and
— ising ke HC, ,~+1(td)][i ) not due to decoherence of tPe” internal levels.) More
recently, a slightly narrower resonance was reported by
Fisk et al. [244]. This resonance was observed on a
where¢, and¢, are the phases (Eq. (23)) of the analysis much higher frequency hyperfine transition ifYb*
pulses relative to the pulses used to create the state(= 12.6 GHz) which resulted in@ factor of 1.5x 10"
¥(0). We now measure the probabiliy of finding the (Q =transition frequency/linewidth). For levels sepa-

atom in the( ) state and obtain rated by optical energies, very long coherence times are
also possible because of the very long radiative lifetimes

a1 of particular optical levels. So far however, observed

P.(Ad) = /Z[EC*’O(td)B+ (a0 coherence times have been limited by the linewidth

of the probing lasers to a few tens of hertz

— 2RiC, o(t)C. 1(ty)e4?] + iECl i (td)[?], (83) [235,245,246,247].

15000 .

where A¢ = ¢ — ¢,. In this expression, we have as-
sumed all cross terms of the for@;,C, ., fori=1
average to zero over many measurements; this will be
true if decoherence is caused by some process which is’
uncorrelated with the creation and analysis pulses.
We find (Re(C/C, 1))=Y«P,(mw)—P,(0) and
(IM(C; C, 1)) = Y¥«P,(w/2) — P,(— w/2)). Therefore,
from measurements dP, for four values ofA¢,we
measure the coherencg; (C, 1) (or po(ts), the off-di- 0 :
agonal matrix element of the motion after tirag If -0.0013 0.0000 0.0013
necessary, we can find the amplitudgs, (ts)d and

[T, 1(t) O by applying the blue sideband #(ty) for a frequency(Hz) - 303016377.265
time = and reducingP, (7) as described in Sec. 3.2.1.

tensity

¢ 1n

(counts/s)

fluorescenc

Fig. 7. Ramsey signal of the Si(M,=— Y2, My=+%2)
25 2S,,(— 3/2, +112) hyperfine transition ifBe* at a magnetic field of
4.2 Internal State Decoherence 0.8194 T). This resonance was obtained using a free precession time
of 550 s. The data are the result of one sweep (one measurement per
For many years, one of the principal applications of frequency point). The fluctuations in the data were due to the instabil-
the stored-ion technique has been for high-resolution, ity of the reference oscillator used to take the spectrum. These kinds
high-accuracy studies of internal state structure of of measurements indicated that the coherence time for superpositions
. . . . . between the two hyperfine states (which could be used as qubit levels)
atomic ions. This capability can be applied for use in

: - was longer than 10 min [76].
atomic clocks (for relews of effortsfrom a number of
laboratories, see Refs. [242] and [243]). High resolution  1pege relatively small rates of decoherence indicate

and accuracy are obtained because ions can typically b st quantum states considered for clock transitions are
stored for long times (many hours or days) with minimal - 5155 attractive as qubit levels for a quantum computer.

perturbations to their internal structure from electric o vever. the long coherence times obtained in the spec-

and magnetic fields. troscopy experiments were obtained under special con-

Energy level shifts caused by electric fields (Stark gitions which may not always be compatible with their
shifts) are usually small and, in many cases, magnetic sq in quantum logic. Therefore, in this section, we

field level shifts can be controlled well enough; these ngjger various sources of internal state decoherence
properties lead to very weak decoherence between inter-, .4 how they might be controlled.
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4.2.1 Radiative Decay

A fundamental limit to internal state coherence is
given by radiative decay. In general, we must consider
decay from both levels of a two-level system; for sim-
plicity, and as is often the case, we will assume the lower
state is stable.

For electric dipole radiation, the decay rate from up-
per state[2) to lower state[l) is given by Y=
wd20u ) F/(3meic®) wherew, = (E, — E)/Z andu
denotes the atomic dipole operator. For magnetic dipole
radiation, we havey,.q = wi{20u () (3we/ic®). For
hyperfine transitions, which decay by magnetic dipole
radiation, we make the approximatiot2u ()= us,
the Bohr magneton. If we assurmg/2w = 10 GHz, then
Yiaa = 1072572, clearly small enough for the discussion
here. For optical electric dipole transitions, we make the
approximation{2(Ju [1)(0= qa, where— q is the elec-
tron charge andy, is the Bohr radius. If we assume
wol2m = 10" Hz (A = 300 nm), we findy,aq = 7.5 X 10
s !, which is much too fast for our purposes. However,
as is well known, a number of trapped-ion species have
first excited optical levels which are metastable. A well-
studied case is Bdor which the first excitedDs, state
radiatively decays by electric quadrupole radiation. It
has lifetime measured to be about 35 s [95,248,249,
250]. Other ions also have metastable optical levels
which are interesting for the purposes here. Some of

these are considered by Hughes et al. [63,64] and Steane

[60]. Lifetime measurements of various ions have been
compiled and reewed byChurch [251].

4.2.2 Magnetic Field Fluctuations

In the absence of purposely applied electromagnetic
fields which provide the logic operations, uncontrolled
fluctuating external magnetic fields are expected to give
the primary contribution to internal state decoherence.

considered quasi-static during the time of a single oper-
ation 7,,. A common source of low frequency fluctua-
tions which would typically fit into this category are
sinusoidal field fluctuations due to unbalanced currents
in ac power lines. Therefore, in the spih-analog, we
assume

Hinternai = oS [1 + B(t)], (85)
where woB<<(rp) 2 For this Hamiltonian,
Schralinger’s equation yields

C.(t — to) = C, (to) €0,
C.(t — to) = C,(to)e *0, (86)

() s% [wot " jB(t')dt'].

In a sequence of logic operationg(t) must be small

enough or be taken into account (see also Sec. 4.3.2).
As a second case, we assume the magnetic field varies

rapidly; specifically, we assumB varies sinusoidally:

B — By = ABcoswst where wg >> 1/7,,. We find

_[9w
dw= [aBLOABCOS‘th

P w

1 2
+ [@]BO(AB) (1 + cos2upt).

2 (87)

The term p2w/0B?AB%4 on the right side of this ex-
pression is a frequency shift which can be absorbed into
the definition ofw, if AB remains constant. For simplic-
ity, assume that one of the cosine terms in Eq. (87)
dominates so tha@w sinusoidally oscillates aby = ws

or 2wg SO thatB(t) = Bocoswnt in EQ. (85). The effects

of this fast modulation can be seen if we consider apply-

Decoherence results from the fact that the energy sepa-Ng external radiation near the carrier frequengyof

ration between two levels of interest depends on the
external magnetic field. In most cases, it will be

the internal state transition. Scldinger's equation
leads to expressions similar to those of Egs. (17) which

possible to express the transition frequency between two take the form (ford = 5 = 0)

levels to sufficient accuracy by

d
wo t+ dw = wo t+ [a—cé)]Bo(B - B())

0w

EIRCRL

where B, is the average magnetic field ang is the
transition frequency foB = B,.

The effects of a fluctuating magnetic field depend on
the spectrum of the fluctuations. We first assume the
typical case that the fluctuations are slow enough to be

1

+ > (84)
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CT W= — ei(drnmsinwmt)_(zn "Cin,

Cip=— il msmmd) C, ., (88)
where nm = wo/wn. We have
eiinmsinmmt - \]O('nm)
+ Z[Jz(nm)cosbmt + Jy(mm)COS4ont + ]
+ 2 [Jl(nm)sina)mt + ] (89)
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whereJ; (X) is theith Bessel function with argumeit are the same levels as those used for the clock reported
For wm >> 1/, = (), the sinusoidally varying terms  in Refs. [75] and [76]; the transition frequenayy/

on the right average to zero (as in the rotating wave 2w = 303 MHz is first-order field independent at a field
approximation). Therefore the wavefunction evolves just of B, = 0.8194 T. At this magnetic field, the transition
as in Eq. (25) except we must replac#l,,00 by frequency has a second-order dependencedad/

2., Do(mm). Since thed, factor can be absorbed into 2w = — 5.2pB/B,)*> MHz. Therefore, a field fluctua-
the definition of (2, this steady modulation should not tion of 8B =10* T from B, leads to a frequency offset
cause a problem. An important source of high-fre- of the transition of only about 80 mHz. For the first CN
quency magnetic fields is from the currents in the elec- gate described in Sec. 3.3, we could usetansitions
trodes which oscillate at the trap drive frequen@y. between thelh) and ‘Caux” = [11/2,1/2 level. How-

The gate demonstrated in Ref. [17] had a strong sen-ever, this transition has a first-order dependence on
sitivity to magnetic field fluctuations since the qubit magnetic field at 0.8194 T given bydg/2m)/
frequency and the auxiliary transition frequency had a dB = — 22 MHz/T. Therefore if the field shifts by
dependencéw/dB = ugl7% = 10°° Hz/T. If this scheme 8B =10* T, this will cause a shift of this transition
is used in future experiments, sufficient magnetic frequency of A/2w = — 2200 Hz. Similar consider-
shielding must be provided. Alternatively, the magnetic ations must be applied to quantum logic using other ions
field dependence can be minimized by operating at a such ag”Hg" ions where the splittings between hyper-
magnetic field where the transition frequency becomes fine transitions are much higher [252]. Since it will be
independent of magnetic field to first order (making the difficult to find two field-independent transitions at the
dw/oB terms in Eq. (84) and (87) vanish). For example, same field, it may be advantageous to use logic gates
most atomic clocks are based on hyperfine transitions in which require only one internal state transition as in the
ground electroniéS,, states, where the nuclear spiis second and third gates described in Sec. 3.3.
half integral {/2, 3/2, 5/2, ...). In these cases, where the
total angular momentumF(=1 +S) is integer, the
(F,m:=0) o (F',m: =0) transition is first-order field
independent fof BJ= 0. These particular transitions In Sec. 4.4, we treat the effects of electric fields from
may not be useful in the applications discussed here the applied laser beams; in this section we treat the
since other transition frequencies (for example, effects of other electric fields. Electric field shifts are
(F,me=0) o (F',me == 1) transitions) will be very likely to be less important as a source of internal state
close to that of theH,m: = 0) - (F',m: = 0) transition decoherence than shifts due to external magnetic fields.
frequency asB [ - 0. This may cause unwanted cou- First, electric-field shifts are second-order in the field,
plings to these other levels. At optical frequencies, sim- except for exceptional cases involving nearly-degenerate
ilar first-order field independent transitions in ions have states of opposite parity. Second, the fields are relatively
been used in frequency standards [235]. However, othersmall at the site of the ion. In analogy to Eq. (84), we
hyperfine and optical transitions become first-order have
field independent at nonzero magnetic field, and their
frequencies are separated from competing transitions S = ! [62_0)] £
(see, for example, Refs. [76] and [189]). Do OWE= 0TS | 9B e

For quantum logic, storing qubit information in two
states whose energy separation is first-order field inde- whereE is the magnitude of the electric field. Unlike
pendent therefore appears to be attractive. However, theEq. (84), the expansion is made arouid O, rather
conditional dynamics which is central to quantum logic than a nonzero valug,, since, as noted previously, the
may necessitate a transition to an auxiliary state. In the mean value oE is zero for an ion in a trap. If it were not
notation of Sec. 3.3, a transition between th¢ and zero, then the ion would have a mean acceleration and
Caux levels will have a transition frequency which will,  would not be spatially localized. Of course, the ion must
in general, not be first-order field independent if the experience an average electric field to counteract the
0 ) — ) transition frequency is field-independent. force of gravity, but this field is extremely small. For an
Therefore, if the external field fluctuates, the fidelity of ideal rf trap, such as one in which the rf potential is
this operation will be compromised. As an example, described by Eq. (1), and in which there are no stray
suppose quantum logic is performed on a collection of static electric fields, the ions are attracted to the line
°Be" ions using the & %S;, m=-—3/2,m=1/ along which the rf electric field is zero. In this case, the
2)="“[0)" and O- 1/2,1/2 =“[)" levels as qubits mean-squared electric fields due to confinement experi-
(strong-field state representation). With these designa- enced by cooled ions are very small. If stray fields are
tions, levell ) has a higher energy than levél). These present, the mean-squared electric field seen by the ions

4.2.3 Electric Field Fluctuations

(90)
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will be nonzero and can be significantly larger [228]. for other states with electronic angular momentum
The stray fields can be reduced by applying potentials to J < 1, like the®P, states in the Group llIA ions, such as
compensation electrodes; to some extent this is neces4n* [256]. The trap rf electric fields have gradients, but,
sary anyway for the efficient laser cooling. It should be since they oscillate sinusoidally, they average to zero.
possible to reduce the rms electric fields from the elec- Static electric field gradients due, for example, to patch
trodes and neighboring ions to less than 1 V/cm. We effects, or the static potential to confine ions along the
note that rms electric fields of about 8 V/cm are present axis of a linear trap [Eq. (2)] would be more of a prob-
at room temperature, due to the blackbody (thermal) lem. For a typical value of,= 10 a3 and an electric
electromagnetic field. Since the spectrum of this field is field gradient of 10 V/crh Swq/2m = 0.7 Hz. Fluctua-
dominated by infrared frequencies and because it is tions in this (small) shift will probably be small com-
steady, this should lead only to a small ac Stark shift pared to those of magnetic field shifts. Electric field
[253]. gradients due to neighboring trapped ions will also be
We briefly consider two cases that have been dis- present [257]. Consider an ion at pository=2z=0.
cussed for ion trap quantum computation: narrow opti- The electric field gradient componeii,/9z due to ions
cal transitions between the ground and a metastable statédhaving chargey, located atx=y=0,z==*dis — g/
and transitions between ground-state hyperfinadesu (med®). Ford = 10 wm, this is 575 V/cm However, this
els. For an optical transition between two energy levels, should be relatively constant, since the spacing between
the energy shift, derived from perturbation theory, is ions is determined by the trap fields, which must be kept
roughly (@a)’E%AE, whereqga, is the product of the  nearly constant if motional decoherence is to be avoided.
proton charge and the Bohr radius, that is, a typical Thus, they may lead to energy shifts, but not to decoher-
electric-dipole matrix elementAE is a typical energy  ence.
difference between one of the two levels and another Garg [58,59] has considered the decoherence of inter-
which is connected by the electric-dipole operator, and nal states of ions due to fluctuating electric fields in-
E is the electric field. For the case of the 85 2Sy/-to- duced by the reservoir of vibrational modes of a string
5d %Dy, transition which has a wavelength of 1.jén, of trapped ions. Such decoherence is present even if the
this expression predicts a shifibe/2m of approximately modes are in the ground state, because of zero-point
3 mHz for E=1 V/cm, if AE is taken to be the $ motion. This form of intrinsic decoherence was found to
%5,,-t0-6p 2Py, energy difference. This is in rough be negligible, at least for the specific case in which the
agreement with the experiment of Yu et al. [254]. Simi- 6s2S,, and the 8 ?Ds, states of Baare used to store the
lar values ofdwg are estimated for thed3%s °S,;, — qubits. For a string of 1000 ions, the decoherence time
5d%s? 2Dy, transition in**Hg* [228]. Transition fre-  was found to be around 16- 10° times longer than the
guencies between hyperfine levels, such as those used imatural lifetime of the upper state, which is 35 s.
the NIST single®Be" ion experiments, are even less

sensitive to electric fields, since, to a good approxima- 4.3 [ ogic Operation Fidelity and Rotation Angle

tion, an electric field shifts all dalevels of the hperfine Errors
multiplet by the same amount. A differential shift be- ) ,
tween the sublevels arises third-order perturbation The third and perhaps most important class of deco-

theory [253]. For’Be", for example, the fractional shift herence involves imperfections in the logic operations.
between hyperfine dlevels is approximately Ideally, a quantum computation transforms an initial-
— 4% 10 for E= 1 V/cm [255]. ized state vector ¥(0) to UieaW(0), where
So far, we have considered only electric dipole shifts, Yitear= €XPI— iHigeal /%] (With Higea time independent)
that is, the shifts that are due to a uniform electric field. IS the unitary evolution operator without errors. In prin-
An electric quadrupole shift, which is proportional to CiP!e; Pboth Uiea and the corresponding interaction
the product of the electric quadrupole moment of the HamiltonianHie. operate on the Hilbert space formed

state and the applied electric field gradient, may also be PY thell) andl) states of thé qubits. In practice, for

present. The shifswg is given approximately by the_ case of trapped ions, the physjcal implementation of
logic gates requires that we must include at leastihe

~ 9 9E and[) states of the chosen motional mode and perhaps

duwg = Foar’ (1) an internal auxiliary state (Sec. 3.3). If decoherence

mechanisms cause other states to be populated, the
whereQ, is the atomic quadrupole moment a#ig /dr; Hilbert space must be expanded. Although more
is a typical component of the electric field gradient streamlined algorithms may be available, the operator
tensor, such ag&k,/dz. The precise value depends onthe Uigeq can always be broken up into fundamental single
whole electric field gradient tensor and the details of the and two-bit quantum gates [140,155,156,157]; for sim-
atomic state. There is no quadrupole shift for S-states or plicity, this will be assumed in what follows.

293



Volume 103, Number 3, May—June 1998
Journal of Research of the National Institute of Standards and dEgyn

In the previous sections, we have concentrated on thetween state preparation and application of the diagnos-

decoherence of the state vectBrdue to environmental
coupling, in the absence of purposely applied additional

tic.
An adequate characterization of the effects of noise in

fields. Here, we treat decoherence due to imperfectionsa quantum computation requires knowing the type of

in the evolution operatdd;s. Which is implemented by
these additional applied fields. We break this decoher-
ence into two categories: (i) errors or noise in the (clas-
sical) gate parameters (that is, the rotation anglesd
Oyatin Eg. (23)) which result in undesired evolution
and, (i) coupling to the environment induced by the

noise processes present, and application of this noise to
a specific computational algorithm on a specific input
state. This is most straightforwardly accomplished using
numerical simulations [1,263—266]. Here, we do not
treat any specific algorithms, but will attempt to make
some general observations on particular sources of logic

gates (for example, spontaneous emission induced by theoperation errors and how these errors accumulate after

applied fields). In some cases, we can model noisy logic
gates by considering an emsele of cates whose
parameters are statistically distributed. This allows a
simple characterization of several candidate noise
sources.

The final step in an ideal quantum computation is a
probabilistic measurement of all the quantum bits,
which yields a giver -bit numbelrk, or equivalently, the
state k, with probability P,=OkUgea¥(0)CF
(k=0,1,2,...,.2 — 1). A particular quantum computation
is thus completely characterized by the vector of proba-
bility amplitudesA, = (k[Uigea ¥ (0)). The usefulness of
a quantum computer algorithm relies on the coherent
interference of the probability amplitudes, resulting in
only a small fraction of the '2possible numbers with
appreciable measurement probability. If the actual evo-
lution operatorJ contains imperfections, the probabil-
ity amplitude vector is instea®, = (kLU ¥(0)) # Ax.

We characterize the fidelity of a computation by the
expression

2l-1

F= <[{Uidea|q’(0)[U 1I/(O)>E?> = <|:|2 A By Ij>, (92)

where the average is performed over any random vari-
ables affecting the operattt. Roughly speakingf- is

the probability that errors in the operatddo not affect

the result of a computation, witk =1 representing
error-free computation. This characterization of the fi-
delity follows the approach of quantum trajectories
[258,259]. A quantum computation can be interpreted as
the evolution of a complicated path through Hilbert

space. If the operations comprising the computation are

imperfect, the path of computation bifurcates into a
superpositions of the correct path and incorrect path
[260]. In this model, the fidelity is just the probability

that the correct path has been followed. Schemes for
complete characterization of a quantum process in terms

of a input-output matrix have been proposed in Refs.
[261] and [262]. This approach would be able to charac-
terize the fidelity of any of the operations discussed

here. It can also be used to test for decoherence of the

internal and motional states, by use of time delays be-
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many operations.

4.3.1 Accumulated Errors

Each successive operation in a quantum computation
based on the Cirac/Zoller trapped-ion scheme can be
regarded as a rotation between two stdidg[h) and
[(A');[h") in a multidimensional Hilbert space where
[A) and[A') are fromO. );, [t ), or Caux); andCh) and
[h') are from[0) or 1) of the selected motional mode.
Before thekth operation, assumed to be applied to the
jth ion, we can, to a good approximation, write the
wavefunction as

Y1 = a1 W10 [UTk—La) + Bt W15 Dljk—l,/ﬁ
+ Ve D1y D1[7k—1,y>, (93)

whereOfi—1,.); and Ofi—14); are the basis states for the
rotation (for example, théh ); (1) and Caux); (D) states
required to carry out step 1b of Sec. 3.3). The state
(-1, is the part of the wavefunction for theh ion
which does not include states involved in the rotation
(for example, theO ); state). The statesi—_1.),
Ok-1), andOfy—1 ) are states which include other ions
and, because of gate imperfections, may involve states
outside the Hilbert space spanned by tAe), ),
and (aux internal states, andD) and (1) motional
states. We chooseuy 10k 14) = (Y1800 18) =
(-1, Wrc-1,) = 1 so thatTby1[F + [Be1[F + Oy [F =

1. From Eg. (23), the “actualkth operation can be
written as

Ra(Oc + &) =
cos@+ &) —id*sin(@ + &) Q1

RVES ,

cos@k + &) } [Bk_1:|

(94)

[—i e '*sin(@ + &)

where, to simplify notation, we have chosen
Ok = (2 nt)cand{y, ¢ << are the errors in the ampli-
tude and phase of the rotation. We can write
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Ra=Rc+ AR, (95)
whereR, = RoCok[ Ro = Rc(6k, 0)] is the ideakth op-
erator and

SinOkSingk

AR« _ .
i[(e"¢k — 1)sing.cosy + e"d’kcoseksingk}

AR, has terms which are first order (and real)jirand

¢«. Nevertheless, we might expect that the overall fi-
delity has errors which depend only quadraticallyZen
and ¢ since a general computation may approximate a
sequence of nearly random rotations on a multidimen-
sional Hilbert space. To see how this might come about
we express a general computation consistingl afper-
ations as

O = RvaRm-1a.--Raa- - RoaRia = O1 + O, + 05, (97)
where
O; =RuRy-1...RRy,
0,=[Ry...RAR]] + [Ru.. ARRY]...
+..[RuARy_1...R] + [ARyRy-1...R],  (98)

03 =Ru...RRARAR; + Ry.. ARsRAR,...

+ ..ARyRu-1ARy-2...R; + ARWARy-1Ru-2...Ry,

and where we have neglected terms which are higher

than second order ik and¢. In this notation, the ideal
computation is given by the operator
Oigear = Ruo...ReoRu0. (99)
For the fidelity, we need to calculate
(¥(0)IO"igealO O¥(0)) = (¥ (0)O Tigeal(O1 + O, +
0O;)¥(0)) where we will neglect terms of third order
and higher in AR }. For the first term, we find

-

(PO OLOWO)=1- 3 &

i=1

(100)

For the second term, we have a sunivbferms; thekth
of which is given by

(¥(0)OleaRuRu-1..AR...RRI¥(0))
= (V(0)RIRo... ROARR-1..RIO¥(0))  (101)

= <1I’k—1,o|:RJoARk W10
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i[(e"”k — 1)sing.cosy + é¢kcos9ksin§k]

(96)
Sih@ksing’k

Q/here V10 corresponds to the wavefunction repre-
sented in Eq. (93) for the ideal case. We find

(Y1, ROAR 1,0 = — ﬂ K SinPOk [ O 1F + (Bk-1 7]

— i[([b{k_lEF - mk—l[?)(ékcogk + SinHk)¢kSin9k

(102)

2
+ 2Re[oqll1,8k,1](%< singccostk — &)

- 2|m[01;71Bk71](Sin0k + gkC0$k)¢kC0$k].

The third term(¥(0)[0"4.Q:0%(0)) is straightfor-
ward to evaluate and is clearly second ordetdmnd
¢«. Even though the imaginary term in Eq. (102) has
terms linear in, and ¢, when the fidelityF is calcu-
lated, these terms add only in quadrature so ktte
operation gives only a contribution of second ordegiin
and ¢. Therefore, in general, we have

Fe1o 2[cklgk2+ Colich + ck3¢>k2], (103)
k=0

where the coefficient,;, Co, Cs < 1. For general
computations involving many operatiohé in a large
Hilbert space, it might be expected that the errors in
rotations are distributed in an approximately random
fashion. In this case, we would expect the fidelity to be
approximately given byF =1 — M(F {2+ Fyud® +
F:s{¢$) wherel and¢ are characteristic of the errors for
all operations andF;, Fy4, Fzs = 1. In the case ampli-
tude errors {) dominate, then the maximum number of
operations before the fidelity drops appreciably below 1
is Mmax = 1/£ 2. For example, laser intensity fluctuations
on the order of 1 part in XQvould give M. = 10°. At

the other extreme, the errors might add coherently in
some cases. These operations could conspire to give
contributions to the fidelity that goes a&¥s)% We
can illustrate this with a simple example. Assume that
an intended rotatiofi has an errofy << . The state of
the system before application of this rotation can be
expressed by Eg. (93). From Eq. (92) we filkd=
COSY(&ic/ 2) (Cot—1 LF+Bx-1F) + 4[Re{ a1 B 1€xp )} 2
sir¥(&/2). The existence of the second term only serves
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to improve the fidelity, so at worst (whea;=1 or excited (electronic) state. However, in practice, other
B = 1), the fidelity of this single operation is given by excited states are driven by the coupling (laser fields)
co(4/2) = 1 — (&)%8. Now suppose that a second ro- thereby affecting the fidelity of the transfer [271]. Fur-
tation 6, about the same axis has errgy. A similar thermore, the high powers required for adiabatic rapid
analysis shows that when these two operations are ap-passage and adiabatic transfer aggravate decoherence
plied in succession, a worst case for the fidelity is given from spontaneous Raman scattering (Sec. 4.4.6.4).
by F=coSs@/2 + {ml2) =1 — (& + Lm)¥8. Similarly, Therefore, we will only consider the case of Rabi
for rotations onM bits, the worst case fidelity is given  pulses, where population is transferred by applying a
by F = cos@M ¢/2) so that the errors could accumulate resonant field with a well-controlled amplitude envelope
linearly. Most likely, this case will correspond to rather and duration.
uninteresting computations and one can generally expect When a resonant radiation field is applied to a two-
that the errors will accumulate in a way which is be- level system, the resultant unitary transformation is
tween random walk and linear. given by Eq. (23). We can further generalize this expres-
The effects of operation errors;( ¢) have been  sion replacing, .t by 6, (t)/2 where
observed in simulations of quantum computations to N
factorize small numbers [263,266]. If the errors flgctq— Onn®)=2 | Qun(t)at
ate randomly about the correct value, the fidelity is
given by a simple expression which is essentially the
same as Eq. (103) fdf = 1 [266]. However, for con-  The factor of two in this equation is introduced so that
stant errors the fidelity indicated by the simulations is the condition/ (2, (t')dt' = m/2 corresponds toa pulse
somewhat worse indicating that the computational al- of the effective Bloch vector. Here, as opposed to the
gorithms cannot be assumed to be rotations about axessituation assumed in Sec. 2.3.1 (where the coupling
chosen pseudo randomly. Therefore, the simulations in- radiation was assumed to be turned on instantaneously,
dicate that requirements on systematic offsets are moreleft at constant amplitude, and then turned off instanta-
stringent than the requirements on random fluctuations nNeously), we now allow the coupling radiation to be
from operation to operation_ turned on and off gradually. This more C|OS€|y approxi-
mates a real experimental situation and can be advanta-
geous since the spectrum &,(t) can be tailored to
suppress off-resonant transitions (Sec. 4.4.6). Here, we

As in the last section, we will consider two sources of call @, the pulse area of the applied radiation and
noise: (1) those which result in offsets from, and fluctu- 2{wn(t) the Rabi frequency envelope. If the applied
ations in, the ideal Rabi frequencies [for example, off- Pulse area is noisy or set incorrectly, then the output
sets and fluctuations a®, .t in Eq. (21)] and (2) those  state will fluctuate from it's ideal value as discussed in
caused by phase fluctuations between applications of the previous section.. . .
separate operations to a particular ion [fluctuations from ~ We must also consider detunings between the applied
some constant value @f in Eq. (21)]. frequencies and resonant frequencies of the ions [in Eq.

We first make some remarks regarding the coherent (21)] and phase fluctuations between successive opera-
evolution between two states of the system which com- tions on the same ion [fluctuations ¢hin Eq. (21) from
prise the basis states for a single operation. First, thereoperation to operation]. This could occur from fre-
are a number of methods of coherently transferring pop- duency or phase fluctuations in the applied fields or
ulation between a two level system with radiation, in- fluctuations in the ion internal or motional frequencies.
cluding constant amplitude Rabi pulses as representedFor frequency fluctuations, we consider that for a given
by Egs. (21) and (23), adiabatic rapid passage [267], andOperation on ion, 4;(t) is slowly varying over the time
adiabatic transfer via dark states [268—270]. The advan- of & single operation (Sec. 4.2.2). In the limit that detun-
tage of the last two techniques is that fopulses, their ings are small, the dominant effect can be characterized
efficiency does not depend critically upon the pulse area by assuming thatd =0 for each operation, but that
(Eq. (104) below) of the applied field. However, for different phases
rotations other tharr, this advantage is lost. Moreover, t
for these techniques to work with high efficiency, par- b= fAj (t)dt, (105)
ticularly simple atomic level structures are required and
coupling to any off-resonant levels can potentially con- ) L
taminate the transfer. For example, adiabatic transfer &€ Present for successive applications of the same oper-
can be extremely efficient between ground state hyper- &tion. [n this expressiori, is the time that the first

fine levels if the transfer occurs only through a single ©P€ration is applied at iopandt is the time of thekth
operation (applied to thgth ion).

(“pulse area”). (104)

t'=0

4.3.2 Pulse Area and Phase Fluctuations

to
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4.4 Sources of Induced Decoherence active power stabilization, where a beamsplitter directs

. . . a portion of the laser power to a photodetector, and an
Below, we consider various sources of fluctuations : . .
error signal is derived and fed back to an upstream

and decoherence caused by the logic operations and how

. : . modulator or, in the case of a diode laser, directly to the
these might be evaluated and controlled in experiments. . D
: . . : amplitude of the laser source [272,273]. The limiting
First, we are interested in controlling the accuracy and

stability of the Rabi pulse aré, given by Eq. (104) noise of this stabilization sqhgme is degraded slightly by
. the imperfect quantum efficiency of the photodetector
and the accumulated phase as expressed in Eq. (105), . . .
) . . : . as well as the beamsplitter. If the beamsplitter directs a
Since gates will most likely be implemented with laser

o . ) . . - fraction e of the input optical power to the stabilizer
transitions we will examine laser intensity and timing . . . .
fluctuations (which then gives an optical pow;, = (1 — €)P, di-

rected to the ion), and the quantum efficiency of the
photo detector i, the limit of fractional power noise
4.4.1 Applied Field Amplitude and Timing in the logic pulse is (assuming no added electronic noise
Fluctuations in the feedback loop)

Fluctuations in the laser intensity at the site of a given
. . . . . . oP, fw
ion can arise from both fluctuations in the relative posi- B = Poroed =€) (107)
tion of the beam with respect to the ion and fluctuations ! uTopTldet® €
in laser power. Laser/ion position stability is particularly
important since the Cirac/Zoller scheme of quantum
logic assumes that ions in an array be selectively ad-
dressed, thereby requiring a high degree of control of
the laser beam spatial profile (Sec. 4.4.4). Of course, the

simplest method for minimizing position fluctuations is This estimate applies only to the laser power fluctua-

to employ mechanically stiff mounts for the optics and .. . .. .
. tions at the beamsplitter and assumes no additional noise
ion trap electrodes, and have the laser source as close as

possible to the ions. A quadrant detector indexed to the 'S introduced between the beamsplitter and the photo

; etector or the beam splitter and the ions. Typically, the
trap electrodes and placed near the ion may also be use .
. - . . usable part of the laser beam must be directed further
to actively stabilize the beam position by feeding back to . : )
. . through optics, the air, and a window to the vacuum
a galvanometer or acousto-optic modulator. If optical . . )
. . . . envelope enclosing the ion trap. Fluctuating etalon ef-
fibers are used to deliver laser beams to the ions, posi- . : ) .
. ) . . fects in the optics and air currents may therefore seri-
tion fluctuations between the fiber and the ions could be . .
) . ... ously increase the power fluctuations beyond Eq. (107).
made small; however, we must also consider position : . : ;
: : The effects of (Gaussian) noise on laser intensity have
fluctuations between the laser source and the input to . .
. . been treated by Schneider and Milburn [274]. These
the fiber. If the position tolerances can be adequately . . .
) . : : effects show up in a well-characterized way for transi-
controlled, the dominant source of intensity noise at the

) . ) . : ) tions involving Fock states.
ion would likely be given by fluctuations in optical ! Lo .
. - Fluctuations in timing errors may also be important.
power and laser mode. Here, we estimate limits on laser : . . ;
. . Clearly, fractional fluctuations in the duration of laser
amplitude noise. . . .
. . pulses will correspond directly to the same fractional
If we assume the laser fields responsible for quantum ; . . .
. . fluctuations in the desired value @, ,. If we require
logic operations are coherent states, the fundamental ; ; .
4 ) . fractional fluctuations of 1 on 6, then we require
noise floor is photon shot noise. For a laser beam of

. o timing precision of 1 ps on a Ls pulse. Similar consid-
average poweP,, the fractional level of shot noise is . i,
erations apply to the stability of pulse envelope shapes.

Sp o Fo_r both amplitude and_timing fluctuations, it may bg
P /W’ (106) possible to sample a portion of the beam used for logic
0 0fop and apply it to a “check bit” ion. The response of this ion
could then be used to monitor and control the amplitude

and timing of the pulses.

For a laser wavelength of 313 nm, and assungirg).5
and nger= 0.5, we havedP/P, = 2.3 X 10°° (Py7op) Y2
For 1 W of usable laser power ang,=1 ps, this
corresponds to a fractional power fluctuation of
=2.3x10°

wherew is the (optical) photon frequency, is the time
the radiation is applied, and, for simplicity, we assume
square pulse envelopes as in Eq. (23). Of course, lasers

seldom produce amplitude noise at the photon shot- 4.4.2 Characterization of Amplitude and Timing
noise limit. Almost all laser sources have significant Fluctuations

amplitude noise in the 10 Hz to 10 kHz range due to
acoustic vibrations which, for example, affect the laser
cavity resonators. Much of this noise can be removed by

In practice, it may be easiest to characterize the am-
plitude and timing fluctuations with a power detector
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placed as close as possible to the position of the ions.where A £2.9? = {(£2 — (2)?. In both cases the contrast
However, it would be useful to characterize these effects of the signal drops about a factor of two fer= 1/
using the ions themselves. One possibility is to observe A, Although the second choice db (2 — ()
the sinusoidal Rabi oscillations predicted by Eg. (21). seems less physical, it indicates the exact spectrum of
For example, for a single ion initially prepared in thie) the noise may not be important for a qualitative test. If
state, we can record the probabili®y(r) of detecting we need to detect fluctuations of ord&f2¢/(2, then
the ion in thell ) state after the laser is applied to the ion we must measurd?, after approximatelyQ7/2w =
for time 7. From Eq. (23), if we first prepare the ionin  Q2/(2wAL,) Rabi cycles. For example, if we require
the 0O,n) state and if the power is constant, sensitivityA£,J/2 = 10"* we need to make measure-
P.(7) = [T, n[F = co€, ot 0= Y2[1 + cos2A;nt]. In ments ofP,(7) after about 1500 Rabi cycles.
Fig. 2, we show this type of curve for=0 andn' = 1. If, instead, the intensity fluctuates slowly compared
This plot includes a decay due to decoherence. Here, weto 7, but fast compared to the time (P, (7)) is a less
consider decoherence caused by specific types of noise sensitive test of the fluctuations since their effects tend
We will cast the results in terms of fluctuationsdi ,, to average out. In order to show the effects of high-fre-
however, they may easily be converted to corresponding quency fluctuations of2 for a simple case, we consider
time fluctuations since we are really interested in fluctu- a sinusoidal time variation:
ations in the net rotation angle given by Eq. (104). For
simplicity of notation, in this section, we writ@,. , = (2.

First assume thaf? fluctuates slowly so that it is 0O(t) = o+ AQSsin(@amgt + @), (110)
constant over the time for an individual measurement
of P,(7) but fluctuates over the time taken to make an
average measurement(®f, (7)). We characterize power  wampis the modulation frequency of the Rabi amplitude
fluctuations by a spectrund (2 — ()) of 2 values £(t). This analysis should, at least, yield the dependence
around the desired valu@,. We have on the amplitude and frequency of the fluctuations. The
measured quantiti?, (7) is given by

(P.(r)) = 1/2f[l +cos227]D (2 — Q)d(2 — (D).

(108) P.(7)= % [1 + cosd(7)], (111)

We illustrate with two possibilities fob, finding

where the rotation anglé(r) is given by Eq. (104)

_1 —Z(An,msvﬂ]
(P.(7))=5 [1 +cos2ire for which, here, takes the form

_1(0-00\2
1 z(mm)

D(2— Q) =——+-— , T 7
0 .
V 2 A s (109) % = fo_(l(t)dt =+ AL Lsm(wampt + @)dt

< L L (112)
P.())=5 [1 + coth—z] for
2 1+ 2(A0ms7) =7+ :‘)—Q [cosp(1 — COSwampT) + SINESiNWamgT]-

lamp

V200-040
e A-Qrms

1
A\Qrms

D(2— () =

O This yields

P,(7) :% [1 + co<2.(207 + %ﬁ [cosp(1 — COSwamgT) + singosinwampr]>]

:% [1 + COS(Z’Zm')CO?(i)A—Q [cosp(1 — COSwampT) + singosinwampr]> (113)
amp
_ sin(ZQoq-)sin@)A'Q [cosp(1l — COSwampT) + singosinwampa-])].
amp
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SinceP, (7) is obtained by repeating the measurements,
and since the phagewill be random from one measure-
ment to the next, we average ouer

2m
(P.(1)),= % + Cosﬁ?ﬁ) f cos(i)Mi [cosp (1 — coswamgT) + Sin(pSinwampT]>qu
0 am

(114)
Sm(ZQOT) f s,|n<2A'(2 [cosp(1 — cOSwampT) + smgosmwampr])
If we assume thafA2/w.md1<< 1, which is valid for a
small, high-frequency, modulation, then the integrands
can be expanded to second order &YX wamp):
P, (), = 1 COS(ZQOT) j [ (i}A‘Q> [cosp (1 — COSwamgT) + SINESINWamgT] ]
sm(2(207-) J <2A'Q>[00&p(1 — COSwamgT) + SlngDSIHwampT]] (115)

_1, cos(Axr) [1 (AQ

5 5 ) a- co&)ampf)}

Wamp

Aside from the fast oscillations due to the eagsr
term, which might be difficult to observe, the effect of
the high-frequency fluctuations d® is to reduce the
visibility of the signal by 20.0Q/wamy®. This result can
be averaged over a distributid2(wamp)-

pegarded as one test of the phase sensitivity of the
oscillator used to drive the indicated internal state tran-
sition. Stimulated-Raman transitions have the disadvan-
tage that they give rise to ac Stark frequency shifts as
indicated by thel, ,[f/Ar terms on the right side of
Egs. (40). If these shifts are equal for both qubit levels,
4.4.3 Applied Field Frequency and Phase the net shift is zero. If they are different, the effective

Fluctuations qubit frequency is shifted during the operation. This

must be measured and accounted for. The shift can be
tuned to zero by appropriately adjustinty and the
relative intensities and polarizations of the Raman
beams. A problem still exists if the Stark shifts fluctu-
ate; we examine the consequences of those fluctuations
ere.

From Egs. (40), the ac Stark frequency shift of the
tqubit transition due to stimulated-Raman transition is

A simple source of fluctuations is due to frequency or
phase fluctuations in the radiation that is used to carry
out the basic operations. Schneider and Milburn [274]
have considered a specific model of phase fluctuations
for ion experiments and calculate the corresponding h
decoherence for operations of the type used in quantum
logic. If qubit energy levels are separated by optical
energies, the lasers that drive qubit transactions mus
have the required frequency and phase stability. Given
the performance of current stable lasers [235,245,246,

247], this may be a problem for long computations. As so that the shifted qubit frequency is given by

discussed in Sec. 2.3.3, optical stimulated-Raman trans-w, = o + w0 We first consider the effects of freauenc
actions provide the required strong field gradients . °_ “° ™ q y

2 - fluctuations of the Raman beams. If the two beams are
whereas the overall frequency sensitivity in the transi-

; . . . derived from the same beam with the use of a modula-
tions is dominated by the difference frequency of the . .
. tor, the frequency shift of the two laser beams will be
lasers, not the frequency of each laser. Since the two
the same. Therefore, to a good approximation, we find
Raman beams can be derived from one laser beam with

the use of frequency modulators, the frequency fluctua- dwo = — (d4dg/dr)ws where dAr represents the fre-
tions are dominated by those of the oscillator which quency shift of both laser beams. Typicallys > 10

drives the modulator. The phase stability of these GHz, and frequency fluctuations of lasers can be con-

trolled to less than 1 kHz, so this source of error should
sources can be high and does not appear to pose prob;

be small. Moreover, it is essentially absent if we tune
lems. For example, the data shown in Fig. 7 can be

to be zero.

Ws = Ws2 — Ws1— — (Egzt? - Eglt?)/AR, (116)

299



Volume 103, Number 3, May—June 1998
Journal of Research of the National Institute of Standards and dEgyn

More serious are fluctuations in laser intensity. We els separated by optical frequencies. This situation
will characterize these fluctuations by the correspond- might change as laser oscillators become more stable.
ing fluctuations ing; (< square root of laser intensity). In the above discussion, we have neglected the alter-
From Eq. (116), we have ation of the ion motional frequencies caused by the

superimposed dipole force potentials of the focussed
Sws = 20ss 30, 2w518_gl (117) laser beams. However, if we assume the Raman beams
(o o/ have waistsnvg which are approximately equal and that
the magnitudes of the projections of théirvectors
As a worst case, we will assume fluctuationggirand along thez axis are the same, it is straightforward to
g. are random and uncorrelated and, for simplicity, we show that the relative shift of (single trapped ion) secu-
assume((30/01)?) = ((80./02)?) = €2, where() denotes lar frequencies for statés. ) and [t ) is approximately
an average over the spectrum of the fluctuations. There-equal todws(z/Wo)>. Therefore, since, << w, the fre-

fore quency shifting effects will be dominated by the shifts
of the internal states.
{((Bwe)? = 4EH(wé1 + w). (118) Phase fluctuations of the laser beams themselves will

also directly affect the fidelity of the operations. In the
As discussed in Sec. 4.3.2, we assume the fluctuationsstimulated-Raman case, where both beams are derived
are slow compared te,, wherer, is the time of the from the same beam, phase fluctuations between Ra-
operation. In a particular operation, a frequency offset man beams will be very nearly cancelled. However, an-
dws gives rise to a phase fluctuati®es = dwsTop. It iS other source of laser phase fluctuations will come from
useful to characterize the effects of these phase fluctua-path length fluctuations between the (laser) source and
tions by comparing their size relative to fluctuations in the trapped ions. Path length fluctuations are expected
rotation angles caused by the corresponding fluctuationsto be dominated by mechanical vibrations; these vibra-
in the Rabi rated?2,,. With the same assumptions re- tions are typically restricted to low frequencies (<1

garding 8g: and 8g,, we have (802 1/ n)?) = 2£2. kHz). They could result from a number of causes such
Therefore, fluctuations in the overall rotation angle as fluctuating mirror mounts or trap mounting hard-
Onn =201, [EQ. (104)] are given by{(86y./ ware. For single photon laser transitions, the overall

Onn)? = 2£% From these expressions we find path length between the laser and ions is important; for
stimulated-Raman transitions, the primary problem will

((8pe)® _ (wi + w) (119) be caused by path length differences between the two

(80D~ 20%, Raman beams after the frequency modulator. Therefore,
for stimulated-Raman transitions using overlapping, co-
For quantum logic, a worst case appears to be for side- propagating beams (which can be used to drive carrier

band excitationn'=n = 1. If we assume the Lamb- n'=n transitions) the paths are the same and there

Dicke limit, we find should not be a problem. However, for stimulated Ra-
man sideband transitions, we requkeand k, along
((3dg)® _ (0¢+07) (120) different paths, so that the path length problem is

((36,,)»  29%gfg:” analogous to the problem for single photon transitions.
For brevity, we will treat the problem of single-photon
From this expression, it is desirable to haye= g, to transitions; other cases (including the stimulated-Ra-
minimize the effects ob¢s relative t0d6),,. Even in man case) are easily generalized from this.

this case, rms phase fluctuations caused by Stark shifts We assume the laser electric field at the exit of the
are worse than those caused by Rabi frequency fluctua-laser oscillates as cas(t). At the position of the ion,
tions by a factor of= 1/n. Most likely, however, fluctu- the field is given by the same expression with the time
ations in intensity will be dominated by fluctuations replaced by the retarded tinte- d./c whered, is the
from the primary laser from which both beams are distance between the laser and ion. Therefore, the overall
generated. Therefore we expect fluctuations to be corre- phase difference between the field at the laser and ion is
lated 3g,/g; = 8g,/g.. When, in additionws; = ws,, the w.d/c. We will assume the fluctuations ih are slow
phase fluctuations caused by Stark shifts will be less enough that over the time of a single operation the phase
than those caused by Rabi frequency fluctuations. If can be considered constant. df fluctuates by an
these conditions hold true, it appears that stimulated amountAd,, the phase of the field fluctuates Byl w, /
Raman transitions between two qubit levels separatedc=2wAd. /A where A is the laser wavelength. In the
by fairly low (for example, hyperfine) frequencies are NIST single®Be" ion experiments, all of the operations
superior to single-photon transitions between qubit lev- have typically taken less than 1 ms; therefore vibrations
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have not been a problem. However, in longer computa- transitions) of 1.8 % relative to the center of the beam—
tions, the requirements axd, are stringent. Some form  clearly a problem. Ifan, = 2 wm could be obtained, the
of active stabilization, such as the method described by intensity (electric field) would be down by a factor of
Bergquist et al. [235], will probably have to be used. 1.3x 10 * (1.1 10 7). However, these estimates are
That technique can baewed as d@oppler shift cancel-  too optimistic because they assume the laser beam is
lation scheme and was based on a Doppler shift cancel-normal to the axis of the linear trap; to address the axial
lation scheme used in spacecraft tracking [275]. To il- modes by the methods described in Secs. 2 and 3, we
lustrate what is, in principle, possible, we note that need a component of the laser belwector along the
optical cavities can be made to track the frequency of axis. Therefore, if the angle of the laser beam relative to
lasers to precision much smaller than 1 Hz the trap axis ispx, we must replace in Eq. (121) by
[235,245,246,247]. For a laser frequency ok3.0* SminSingx. In addition, imperfections in the surfaces of
Hz (A = 600 nm), and a cavity composed of two mirrors the intervening vacuum port window, multiple reflec-
separated by a distance of 50 cm, this corresponds totions from these windows, and diffraction typically dis-
holding relative positions of the mirror to within 18 tribute laser intensity outside of the theoretical waist of
cm. Therefore, although they add additional complica- the beam. The degree to which this occurs depends on
tions to the experiments, such schemes for length stabi-the details of window surfaces, etc. and must be resolved
lization can be used to effectively null the effects of path experimentally.
length variations. Alternatively, we could accomplish all of the opera-
tions described in Secs. 2 and 3 by usingtthasverse
gradient of the field associated with a focused beam
[125]. Therefore to accomplish sideband transitions, we
would displace the laser beam laterally, with respect to
The scheme of Cirac and Zoller for trapped ion quan- its k vector from the position of the ion. This would give
tum logic requires that ions (along the axis of a linear rise to a coupling to the ion’s motion which is in the
trap) be addressable individually with laser beams for direction of the transverse intensity gradient of the laser
logic operations. This may be difficult, because the high beam. In this case, we can make the direction of the
vibrational frequencies desired for efficient laser cool- beam normal to the trap axis. This method has the
ing and suppression of decoherence also results indisadvantage that the field gradient would be reduced
closely spaced ions. As discussed in Sec. 2.1, the mini-relative to the case treated above thereby leading to
mum separation of adjacent ions in a linear trap is be- smaller Lamb-Dicke parameters and correspondingly
tween the center ions and is approximately reduced values af};, for n' # n.

4.4.4 Individual lon Addressing and Applied Field
Position Sensitivity

Smin = 28L7%%¢ with s = (q%/4memw?)*® wherel is the The transverse intensity gradients of focused laser
number of ions. FofBe" ions with an axial COM fre- beams can also cause significant intensity fluctuations
quency ofw,/27 = 1 MHz, this separation is aboufm at the selected ion if the relative position of the beam
for 10 ions. with respect to the ion is not stable on the time scale of

The most straightforward method for individual opti- the computation. An alternative to using tightly focused
cal addressing is to tightly focus laser beams on the Gaussian laser beams is to first feed the (expanded)
selected ion [1]. The transverse intensity distribution of laser beam through a sharply defined aperture, and use

a Gaussian optical beam of poweiis a lens to image the aperture at the position of the ions.
With this technique, the beam intensity can be dis-
() = 2P exp<— 2L2> (121) tributed more smoothly around the selected ion and have

TWE wg/)' very steep intensity edges (on the order of the original

aperture sharpness) away from the ion, thus suppressing
wherew, = A/(-NA) is the beam waist) the radiation beam vibration problems and confining the radiation to
wavelength, andNA = tand is the numerical aperture of a single ion. This technique has been used to make

the beam with cone half-angte(the formula forw, in relatively “hard” walls for an optical dipole trap [277].
the paraxial ray approximation is valid only fiA < 1) For this technigue to work well, the imaging lens must
[276]. For large numerical aperturedA= 0.5), beams  collect a large fraction of the light transmitted through
can apparently be focussedwg = A, but this is diffi- the aperture or else diffraction effects will result in light
cult to realize in the laboratory. f, = 5 wm in a Gaus- intensity outside the image of the aperture. To address

sian beam, at a distance 0n from the center of the individual ions, we require very small aperture images,
beam, this would imply a relative intensity of about which gives rise to a design tradeoff. If a one-to-one
3 X 107 (relevant for stimulated-Raman transitions) or relay lens is used to image a small object aperture,
an electric field amplitude (relevant to single photon effects of diffraction are enhanced. If a demagnifying
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lens is used to reduce a large object aperture, then theent to give this selectivity, we require the Zeeman split-
aperture must be placed a large distance from the lens ting between adjacent ions to be much larger than the
requiring a relatively large lens. For two ions, imaging Rabi frequency, oAw (00B[10z)s/7% >> (2, whereAuis
a sharp edge such as a razor blade at the space betweeime difference inu-B)/[(B Obetween the two levels of
the ions may be sufficient. We might also consider hav- interest, andis the ion separation along tkaalirection.
ing every other ion in a string be a “garbage” ion which For Ap = ug, s=10 um, and a Rabi frequency a®/
is not used in the computation, thereby increasing the 2w =1 MHz, this requires) (B (Joz>> 0.1 T/cm. Field
spacing between qubit ions by a factor of two (or more, gradients of this magnitude can be achieved; however,
if more garbage ions are used between each qubit ion).they would introduce large, and not-easily-controlled
This has the disadvantage that total number of ions (and phase shifts for the other ions in a quantum register.
spectator modes) increases, aggravating the problems The laser beam itself can provide ion selectivity by
associated with large quantum registers. If sufficiently employing the transverse gradient in the optical field
good addressing on one ion in a string can be accom- intensity. For instance, if we desire to perform-gulse
plished, it may be simpler to adiabatically shift the posi- on ionj without affecting neighboring iok, the inten-
tion of the ions, rather than the laser beams, in order to sity profile of the laser beam can be set so that the ratio
address different ions. This could be accomplished by of field strengths (intensities for the case of two-photon
applying different static potentialdo(t) andUq(t) to the stimulated-Raman transitions) at igrvs. ionk is 6/
end segments of the rods in Fig. 1. However, changes in2wm, wherem is an integer. Now if the pulse duration
Uo(t) andUy(t) would have to be coordinated to keep the is set so that iopis rotated byg, ionk receives a rotation
COM axial frequency constant or else additional phase of 2em and hence returns back to its initial state (with
shifts would be introduced. Stimulated-Raman transi- an extra phase factor of-)").
tions have the advantage thet can be made parallel to For the case of two-photon stimulated-Raman transi-
the axis of the trap even though each beam is at an angletions, the laser beam can provide ion frequency selectiv-
with respect to the trap axis to facilitate selection of a ity by employing the Stark shift and the transverse gra-
particular ion. This is important, since coupling to trans- dient of the optical field. Here, for example, we could
verse modes is eliminated. assume that two counterpropagating Raman beams of
Another method of optically addressing individual equal intensities and spatial profiles are offset so that
ions is to cause a destructive optical interference at thebeam 1 is centered on ignand beam 2 is centered on
position of a specific ion, with a net coupling at the adjacent iork as depicted in Fig. 8. We will assume the
other ion(s). For instance, if ionis positioned at the  coupling scheme of Fig. 3. Letbe the fraction of peak
node of a resonant standing wave laser field, the cou- intensity seen by the offset ions (that is, the intensity of
pling between stateBl );(hy) and [t ) Ch¢') is propor- beam 2 at ior) and beam 1 at iok). Assume that when
tional to(n, [5in[ni(a, + a))][hy). In this case, the cou-  both beams are positioned on either iga=g,=g.
pling of the standing wave to iopvanishes when the  When the beams are offset, the two-photon resonant
laser frequency is tuned to an even order sideband suchRabi frequency at each ion i€ = e*3g%Ag), where
as the carrierr = ny) (also see Sec. 4.4.6.2). If, in- g%Agis the Rabi frequency expected if both beams were
stead, the ion is positioned at an antinode, the coupling centered on a given ion. The Stark shifts of the two ions
is proportional to{n,' Ctosy’k(ac + a')]hy); thus, the are in opposite directionsy; = + 8o, &= — &, Where
coupling vanishes when the laser frequency is tuned to & = 2(1 — €)/e?. If we maked, >> (2 (e << 1), then
an odd order sideband, such as the first blue or red by appropriately tuning the difference frequency of the
sideband 1t = ny = 1). By appropriately choosing the laser beams, we can selectively drive transitions on ei-
angles of focused laser beams relative to the trap axis orther ionj or k. Alternatively, if, for example, we desire
the spacing between ions, it should be possible to posi- to perform af-pulse to ionj without affecting ionk in
tion an antinode (node) at igrwhile positioning nodes  an “unrepairable” waye can be adjusted to a particular
(antinodes) at the ions adjacent to ipr{for equally value which results in iotkk making the transformation
spaced ions). In the case of two-photon stimulated Ra- i = o[ )+ B0t ) — i = €% )+ €58 )). For
man transitions, we desire to place iprat common example, if we use Rabi pulses which have a square
nodes or antinodes of two standing waves. Although this pulse envelope, Eq. (21) applies. For ipnthe laser
interference technique should allow individual access to must be tuned to the shifted frequeneip = wjo + &o;
each of two trapped ions, it appears technically difficult Eq. (21) applies witmd = 0 and[¥2,,[t = #/2 wheret is
to extend this technique to more than three ions. the pulse time. For ok, wio = ww — &; EQ. (21) ap-
Finally, we consider the application of external field plies with A = 25,. To achieve the desired form @fy,
gradients which shift the internal energy levels of ions we want 6/2(1 +8%0%"?=mm, or €* — [1 + (2nm/
depending on their position. For a magnetic field gradi- 6)?e+ 1 =0, where m is an integer. Fom=1 and
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Fig. 8. Scheme for differential ac Stark shifting of neighboring ions. Equal intensity counter propagating beams
1 and 2 are centered on iopandk, respectively. A fractiore of the peak intensity, of each beam is applied

to the other ion. This results in a differential ac Stark shift of ipasdk, allowing the possibility of individually
accessing the ions by tuning the frequency of the laser beams.

0= (a m-pulse on ionj), we find e=0.208, and 4.4.5 Effects of lon Motion (Debye-Waller
£=1.74r. The phase shif¢ on ion k and the corre- Factors)

sponding phase shift on ignmust be kept track of in
subsequent operations on these ions. Generalizing this tob
more than two ions becomes difficult if the laser beams
also overlap other qubit ions. This scheme places an
additional premium on laser power stability, since the
light shifts are bigger than the Rabi frequencies 1/

The Rabi frequencyl, , describes the transition rate
etween statels) )[h) and(h )[h'). To realize the condi-
tional dynamics desired for quantum logic, we wékht,
to depend on the motional quantum numbessdn' of
a particular vibrational mode and be independent of the

for e<< 1. In addition, in both of the above schemes state of motion of other modes. In addition, for simple

. . . rotations on internal states, we wagt , to be indepen-
employing the laser beams to differentially addres; dent of the motional state for all modes. It is not possi-

neighboring ions, one major drawback is that the posi- ble, in practice, to rigorously satisfy both of these
tions and profiles of the laser beams must be accurately ~ ™’ . - )
requirements. For instance, the conventional controlled-

controlled. )
Many of the above differential addressing schemes _not gate employs two carrier pulses (steps (1a) and (1c)

. . . ; in Sec. 3.3) which are intended to not depend on the
appear useful when dealing with only two ions instead SN : )
. . . ) state of motion; this requires the Lamb-Dicke parameter
of a string of many. This leads us to seriously consider ;
) . 7 to be small [see Eq. (56)]. In the Raman configura-
systems where quantum logic operations are performed ; . : .
. . : tion, n is proportional to the difference in two wavevec-
on accumulators consisting of only two ions, with the tors and can be made nealidible by USiNG co-propadatin
other ions located somewhere else (Sec. 5.1). A pro- g9 y g co-propagating

posal has also been made for transferring quantum in_beamsAk = 0). On the other hand, with single-photon

) . ! optical transitions, the Rabi frequencies depend on the
formation from one register to another by optical means . : .
[151,278]. motion of all modes which have a component of motion
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along the direction ok. As discussed in Sec. 2.3, we .
can take advantage of the motional dependence of the S n _
. . L 224 (X)) =
carrier to construct a logic gate, but in this case also, the n=0
Rabi frequency will depend on the motion in the other
modes along the direction & or Ak. Similarly, for oo
sideband operations, such as step (1b) in Sec. 3.3, it will, g 2% (x)? = €1z | <2x\/2>
in general, be impossible to ha¥#,,, depend on only o " 1-z%\1-z
one mode of motion. In this section, we examine the
influence of extraneous modes on the Rabi frequenciesin these expressiongz[0<1 andly(e) is the zeroth
Onn. modified Bessel function with argumeat
Transitions will generally be affected by motion in the The first expression in Eq. (124) shows the exponen-
3L-1 spectator modes of vibration. The motion in these tial reduction of the Rabi frequency due to motion in
other modes reduces the Rabi frequency in much the modesp (Debye-Waller factor). For each moge we
same way as lattice vibrations affect a single emitter or can write ¢))%(n, + Y/2) = (Y2kZ(x})?) whereke is the
scatterer embedded in a crystal, as described by theeffectivek vector of the radiation ang), is the amplitude
Debye-Waller effect [279,280]. From Eq. (36), we have of the component of motion parallel tq for the jth
the Rabi frequency for thigh ion (assuming all modes ion. ForL large, the product term on the right side of the
are in specific Fock states) first expression is approximately equal to exp(
2kZ(Xim9)?) Wherexlys is the total rms amplitude of mo-
tion parallel tokes. This is the Debye-Waller reduction
factor due to the thermal energy of thi ion.
(122) The second line in Eq. (124) allows us to determine
the fractional fluctuations in the Rabi frequency from
experiment to experiment

e 1z
1-2z’

(125)

Ohne = O, [ Ao} O [ €D g}

p#k

= OS] e 2’ %, (mh)?),

p#k

where2\%, = QTnCexp(ini(a + al)) i) Ois t'he Rabi _ \/ (QJ—>2 B (QJ—>2
frequency of thekth mode (selected for logic), in the AQITS_ e e
absence of thel3-1 spectator modes labeled by ingex Dre Qoo

and vibrational numben,. We assume the vibrational
states of spectator modes are independently thermally

distributed with mean vibrational numbag: _ \/[l—[ | (2(nj)z\/m>} 1
- 0 p p\lp -

p#k

@)
Pry = T+ py (129)

=S @), (126)

If we average over this distribution, the mean and mean- P

squared Rabi frequencies are given by
In this last approximation, the Bessel function is ex-
o N 5 L
= 0O - 112())? < i 2>] panded to lowest ordetd€) = 1 + €74 + -] which is
Ot ‘Q”k'”kn[Z Prye Zao\ () appropriate if the B-1 arguments of the Bessel function
in Eqg. (126) are all small compared to 1. This is ex-
= 00, [] e b pected to be the case if all modes are cooled to the
Mk Lamb-Dicke limit [(n})’n, << 1]. Eq. (126) describes
(124) the fractional rms fluctuations in the Rabi frequency
) due to thermal motion in the spectator modes of vibra-
Ol V= (IO 2 (b iy2 2] tion.
(D)™ = (i) g[npz_l Prye g“”(“'p) ) Typically, the thermal motion is determined by initial
conditions and the reservoir is “turned off” once the
— (i) \2 2y 112) < IO ) gxperimer_nt .b_egins. This i; expecteq to_ be the case for
@]l e " ol 2mp) "V p(Np + 1) imperfect initial laser-cooling, resulting in a probability
distribution of stable Rabi frequencies with the above
where we have used the Laguerre polynomial sum iden- mean and rms values. In this case, the Rabi frequencies
tities for each ion maintain a constant value during a single
run of the experiment, but deviate from the mean as

p#kbng=1

p#k

p#k
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indicated in Eq. (126). Stating the results in another way,
if the total number of modes is large, then the distribu-
tion of Rabi frequencies is nearly Gaussian, and the
probability that a given run of the experiment results in
a Rabi frequency which is fractionally withia of the
mean Rabi frequencyl,, n, is

Pr<

= erf

i — )
‘Q”k'vnk _ an'x”k <e
“lek',nk

€

V2 () A+ 1

p#k

(127)

For example, if each of 100 spectator modes is laser-
cooled to n,=0.1 and has Lamb-Dicke parameter
1) = 0.01, then the probability that the Rabi frequency
is within 10* of the mean value is approximately 0.23.
To see how Eq. (126) scales with the number of ions,
assume thalte is aligned with the axis of a linear trap,
where the axial motion is described hymodes. If the
frequencies and amplitudes of all modes contributing to
the axial motion of ionj are assumed to be about the
same, we can writey) = ny/L"? andn, = n wheren,

andn are the Lamb-Dicke parameter and mean occupa-

tion for the axial motion of a single (thermalized)
trapped ion. In this case, Eq. (126) becomes

mz[ﬁﬁl_+ 1)] v

This expression indicates that a large number of ions is

AONTY
Qg‘k'xnk

(128)

beneficial because it tends to average out the effects of

motion in the L — 1) extraneous modes. Equation (128)
is an overestimate of the fluctuations since the- 1
extraneous modes will have higher frequency than the
COM mode, leading to smaller amplitudes of motion
than assumed in this crude estimate.

The Rabi frequency fluctuations discussed here trans-

late to fractional phase offsets[(6x of Eq. (94)] for

each gate operation as indicated in Egs. (124) and (126).

In practice, the mean Rabi frequeng€y, ,, can be mea-
sured by averaging over many experiments. If we as-
sume the COM mode is used for logic, thewe n,/LY2
Therefore, forL >> 1, we cannot choose; to be too
small, or else the entangling operations for quantum
logic become too slow (Eq. (24)). To suppress the ef-
fects of Debye-Waller factor fluctuations, it is therefore
desirable to cool all modes (whose motion is parallel to
kerr) to the zero-point state.
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4.4.6 Coupling to Spectator Levels

We have assumed that each time an external field is
applied to form part of a logic operation, only two quan-
tum states take part in the interaction. This assumption
is valid when any other state is far from resonance. To
explain this in a simple example, we refer to Fig. 9.
Suppose we want to drive a transition between states
to [r) with radiation resonant with this transition. If
level (0 ) is coupled to levels) with this radiation, the
wavefunction will have a small admixture of stdib)
after the operation; the amplitude of stat® will be-
come larger agl becomes smaller. After a sequence of
many operations, the amplitudes of these “spectator”
states can build up and cause errors in the computation.

|1y

Fig. 9. Simplified energy level diagram for characterization of cou-
pling to, and spontaneous emission from, off resonant “spectator”
levels. We assume coherent radiation is tuned near the transition fre-
quency for thel )th) — [ )Ch') transition (for simplicity we have

not shown the motional substructure for the) and [t ) states). The
state [5) is assumed to be the nearest spectator state from which
off-resonant coupling can occur.

4.4.6.1 Polarization Discrimination of Internal
States

In an array of trapped ions, two internal states of each
ion comprise a qubit of information. In addition, a third
auxiliary internal levelCauX may be required (tran-
siently) for the operation of a CN gate as described in
Sec. 3.3. This state might be a particular Zeeman sub-
level of a hyperfine multiplet [17] or an optical
metastable state [1]. By employing suitable polarizations
of the driving field, particular internal state transitions
can be selected with high discrimination. Furthermore,
the Zeeman dalevels can bspectrally resolved (assum-
ing the Zeeman splitting is much larger than the Rabi
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frequency), by applying a magnetic field. This combina-
tion will help to isolate the two internal levels of interest
from other internal levels. Here, we give an example of

Ho = /ia)oDT ><T [+ ﬁ((x)o + A)ES><SD
(129)
H, = 24 coswt (2[00 )+ O+ O )1 0O

how polarization selection can be used to suppress cou-

pling to internal “spectator” states.

We consider the case of Ref. [17], which uses two 2
25,,, ground statéF, me) hyperfine levels ofBe* ions
as qubit levels. These levels are designaiep= 2,2
and(h) = 1,1 (Fig. 5). We also make the identification
Caux = [2,0). They are driven using stimulated-Raman
transitions by detuning the lasers from g, state. By
choosing the Raman beam coupling between?hg
and ) states to ber polarized and the coupling be-
tween the?Py, and[It ) states to ber polarized, thel )
and [ ) states form a closed family; that is, neither the
Ol ) or [ ) state can be driven to other Zeemamhleu-

els. In this case, the nearest off-resonant transitions to

+ 0[O XsO+ B4 0),

where the expression fat, is equivalent to that in Eq.
(14). In the Schidinger picture, we write#=C, [0 ) +
C.exp(— imot)[h ) + Ceexp(— i [wo + A]t)(H). This leads
to equations for the amplitudes

C = —ine’c, — e oC,

C, =-iReC, (130)

C=—ieitoC,

consider are detuned by at least the hyperfine frequencywhereé = w — w, and we have neglected rapidly vary-

(= 1.25 GHz in°Be"). Similarly, by choosing the beam
coupling between théPy, and Caux states to bes*
polarized (and the coupling between th&, and )
states to ber polarized), thesaux level is coupled only
to the () level.

4.4.6.2 Spectral Discrimination of States

Spectator states can include both motional and inter-

ing terms proportional to exp(i(w + wy)t) (the usual
rotating wave approximation). If we make the substitu-
tion C;= C€“, the equation folCs can be written
C.+iACi=—i'e™C,. (131)
For 'O small enough relative taCA] we can

“adiabatically eliminate” level s, by assumingiC;/
dtO<< CACJ In this case, Egs. (130) become

nal states. For example, a single CN gate uses pulses

which drive on the carrier as well as first motional
sidebands of the COM mode. Discrimination between
these two types of transitions cannot be made with
polarization selection since the relative strengths of the
matrix elements are independent of polarization. Since,
in the Lamb-Dicke limit, the carrier operation will have

a higher resonant Rabi frequency than the sideband op-

. _ )2
C, = —iNeC, +i (QA) C.,

~ — —idt, ' o —idt,

C. =—ine™C, Cs:—Ze C. (132)

The Stark shift tern®, = (£2')%A is a downward energy

erations, the largest source of contamination may be dueshift of thel ) state. It can be suppressed in the previ-

to an off-resonant excitation of the carrier during the

sideband operations. The basic problem can be illus-

trated by considering the simple example illustrated in

ous equation by including it into a shift ak. That is, by
making the substitutiol©, = C,exp(ss) and choosing
w — wy =8, we find

Fig. 9. Here, we assume decay from the excited states is

negligible,I's= I', = 0. We assume we want to carry out
an operation which coherently drives thé) « [h)
transition (resonance frequeney) and avoid the pres-
ence of any amplitude in the “spectator” stai after
the operation. We assume radiation of frequescy wo

is applied which couples level§l) and ) with
strength(2. We assume this radiation also couples levels
(1) and [b) with (resonant) strengti?', but, for sim-
plicity, does not couple levelst ) and(¥). In the context

of quantum logic {2 might correspond to the Rabi fre-
quency for a sideband transition arfil the Rabi fre-
quency for the carrier transition. If we take the zero of
energy in Fig. 9 to be the energy of the) level, we can
write the Hamiltonian a$l = Hy + H;, where
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0

C. =-i0c,, C, =-incC, c;:—A

C.. (133)

In this caseC, and G are given by Egs. (17), leading
to a the desired evolution between the) and )
states. Moreover, if the coupling3 (and{(2') are turned
on and off slowly compared to A/ (the condition of
adiabaticity), then the amplitude in stdib) adiabati-
cally grows during the operation and reduces to zero
upon completion of the operation, since it is propor-
tional to (2.

The general problem, however, is that we desire to
make all transitions as fast as possible. This means that
we cannot satisfy the adiabatic condition; therefGee
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will not be simply proportional t&2' and will have some
nonzero value aftef)' is reduced to zero. For example,
if (2 is turned on adiabatically, but turned off diabati-
cally, Cs will have a final amplitude with magnitude
[¥2'C,/A0 Estimates of these effects in specific con-
texts are given by Poyatos et al. [261] and James [61].

Since it should be possible to separate internal states

by relatively large frequencies and further discriminate

from internal spectator states with polarization, the most

important task will be to suppress transitions to mo-

transitions and consider only motion along thdirec-
tion. We want to suppress all terms in the expansion of
the field [Eq. (28)] except theE/dz term. We need to
synthesize, usinlyl separate standing wave laser beams,
a wave which has the form

E= EO[E Cmsin(kmz)]cos@t), (134)

wherek, =k, - 2z, and wherez= 0 corresponds to the

tional spectator levels. The fundamental problem is that equilibrium position of the ion in question. The case of
in order to discriminate between carrier and sideband M = 1 has already been suggested in various contexts to

transitions, the ion must be able to tell that it is moving.
If the time of the operation,, is small compared to the
inverse of the frequency of the motional mode, this is
impossible. Therefore, the fundamental limit &g is
given approximately by Iicom. TO maximize computa-

tional speed, we desire to approach this condition as

suppress coupling to the carriekr(= 0) transition (see
Ref. [40] and Sec. 4.4.4 above). Rdr> 1, we want to
satisfy

Ciki+ Cki+ ... +Cukii =0, n=3,5.. M —1.(135)

closely as possible. This can be aided by using Rabi In this case, the next sideband spectator level which has
envelopes which can suppress certain spectral compo-nonzero coupling is one whet@' — n[0=2M + 1. This

nents [281,282]. Since the general problem will involve

transition is detuned byMw, from the transition of

more than one spectator level (more motional states), ainterest and the coupling is suppressed by approximately

more general approach might be to apply optimal con-
trol theory [283-286].

4.4.6.3 Tailoring of Laser Fields

As discussed in the last section, the speed of an ion-

trap quantum computer will be fundamentally limited
by excitation of motional sidebands other than the de-

sired one. To see this in a specific case, the conditional

dynamics for the first CN gate described in Sec. 3.3
occurs in step (1b). That step usesmlse on 1st blue
sideband of théh )(1) —~ CAuxL[D) transition. To make
this step fast, we would like to increase the field inten-

sity and decrease the interaction time accordingly. How-
ever, as the pulse becomes shorter, the spectrum of the

pulse becomes wider. Eventually, the spectral width of
this pulse is larger than, so that we drive the relatively
strong and unwanteid )(1l) —~ CAux[l) carrier transi-
tion. In general, we also drive )(1l) « CAux[h') tran-
sitions, wheren' > 1. Most of these unwanted transitions

7™ = (ko)™ compared tafd; o or Q1.

Second, we consider carrier transitions)(h) «
[ )Ch), where n=0,1. With the stimulated-Raman
technique on hyperfine transitions, transitions of the
type (1 )[h) « Ot)Ch'), n # n', are highly suppressed
by the use of copropagating beams. For single photon
transitions, we need to synthesize, using separate laser
beams, a wave which has the form

M
E= EO[Z Cmcoskmz)]cos@t). (136)
m=1
ForM > 1, we want
Ckki'+ Ck3+ ... +Cykli = 0,
n=24,..2M - 1). (137)

In this case, the next spectator level which has nonzero
coupling is one wheréh' — n[0= 2M. This transition is

can be suppressed by making all terms in the expansiondetuned by Rw, from the carrier and the coupling is

in of EQ. (28) equal to zero except the term proportional
to aB/az (or 9E/azfor electric dipole transitions). In this
case, we suppress coupling to all unwaritady levels
except theCAux[P) state whose resonant frequency is
detuned from théh (1) ~ CAux[D) transition by 2v,.
Suppression of even or odd order terms in Eq. (28)
can be accomplished by appropriate positioning of
standing waves relative to the ion [40,61,287,288]. To
illustrate with an example, we first examine the transi-
tion 0 )[D) ~ [ )[IL). For simplicity, we assume single
photon electric-dipole (rather than stimulated-Raman)
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suppressed by approximately™ = (k;z)* compared
to (2, or £y, For the carrier transitions, we do not have
the problem with the remaining spectator level as noted
for the first sideband case above. On the other hand, for
logic operations which use the carrier transition (Sec.
2.3 and Ref. [174]), we do not wamtto be too small,
or else the gates take to long to implement. Therefore
the suppression of the higher-order sidebands may not
be as great as in the case of logic using first sidebands.
For qubits coupled by single-photon transitions, it
may be difficult to suppress couplings to motional
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modes in thex andy directions. This will be true if we  state which is designated as sta& in the figure. For
carry out logic on a string of ions in a linear trap and use simplicity, we assume that level$) and (1) are cou-
the axial COM mode. The laser beams must be at an pled only to the ground stafé ) (and not each other) by
angle with respect to the axis to be able to select the applied radiation, and that they decay by the same
particular ions. This kind of problem can be eliminated coupling process to the ground state with rakésnd
by using thex or y COM mode for logic and making I';. To allow for different coupling processes for thie)
orthogonal to the other directions. Finally, we remark and(h) states, we lef’, = xI'sand we negleci® factors
that the use of standing waves will give rise to optical in the differences of the lifetimes (this would be valid if
dipole potentials which can shift the ion motional fre- thell) - [) transition frequency is much larger than
guencies. These shifts should be small, and they can bed). The worst case is given by considering sideband
incorporated into the definitions of the motional oscilla- transitions between leveld ) and[th ). From Sec. 2.3.1,
tion frequencies. the resonant Rabi frequency is given By = 00, , =
k20, . We assume that during the operation, the ion
has a probability of about 0.5 of being in thé) and
[ ) state. With these assumptions, the rataf sponta-

The internal atomic states of trapped ions, which neous emission (from both upper levels) to Rabi fre-
store quantum bits of information, must be protected quency is
from spontaneous emission, at least for the duration of
the computation. This excludes the possibility of “error _R 1 1 (Qs,i>2 _ I < g)

o . . E=="=ZT+ZT|—=") = k+2), (138)

correction,” (See Sec. 3.3) which can tolerate a certain 0, 2 2 A 20,
level of errors due to spontaneous emission. As dis-
cussed in Sec. 4.2.1, for qubit levels coupled by single where/ = 27(nA)? and the factors df. come from the
photon optical transitions, this may be accomplished by probabilities the ion is in thél ) or (It ) state. The most
employing long-lived energy levels which do not have an optimistic answer is given by minimizingwith respect
allowed electric dipole coupling, such as metastable to k which leads toé = I'J/(nAd). As an approximate
electronic levels with a quadrupole or intercombination “best case” we takd /2w = 25 MHz, A/2w = 10" Hz,
coupling to the ground state. Although the interaction of 2,/27 =10 MHz, n=0.1, giving ¢ = 2.5X 10°° and
these states with the vacuum (causing spontaneousrequiringk = 0.4¢andI’, = 107°I;. Therefore, weakly
emission) is reduced, their interaction with an external allowed transitions are desirable if single photon optical
field for use in quantum logic operations is also reduced. transitions are used for qubit transitions.
This results in a fundamental limit on the accuracy of  In the case of two-photon stimulated-Raman transi-
each operation by roughly the ratio of the spontaneous tions between stable electronic ground states, the ratio of
emission rate to the Rabi frequengy I'/(2. In the case spontaneous emission rate to Rabi frequency is approxi-
of optical transitions(2 cannot be increased indefi- mately &g = v:d(9%Ar), Whereys.= I'g%/ A3 is the off-
nitely, since at optical intensities beyond about*M/ resonant spontaneous emission rafés the resonant
cn?, the atom is quickly photoionized. This amounts to single-photon Rabi frequency of each laser beam, and
inaccuracies due to spontaneous emission on the orderdgis the detuning of the Raman beams from the excited
of £=10°— 1077 [289]. Even this limit may be too  state (Sec. 2.3.3). This results in an inaccurBtys due
optimistic, as the two-level approximation breaks down to spontaneous emission, which is independent of opti-
before photoionization occurs, and the coupling to other cal intensity. Since Raman transitions between S elec-
electronic levels must also be considered [188,289]. tronic ground states are effective only when the detun-
This results in inaccuracies due to spontaneous emissioning Ag is not much greater than the fine structure
on the order o =10° — 10°°, depending on the par-  splitting of the atom [290]; this results in an inaccuracy
ticular ion used. To understand the nature of the prob- &r due to spontaneous emission in range from about
lem, we examine a simplified system. More detailed 10 “(°Be") to 107 (***Hg"), depending on the particular
treatments are given in Refs. [188] and [289]. ion used. Spontaneous emission from spectator elec-

Consider the situation shown in Fig. 9. We assume tronic levels should not significantly affect this limit,
that levels[l ) and () comprise the qubit states. We provided that their splitting from the virtual excited
want to drive coherent transitions between these two state significantly exceeds and that the single photon
levels but, in general, we must consider spontaneousresonant Rabi frequencies coupling the ground states to
Raman scattering from other non resonant spectatorthe spectator levels are not much bigger tigai188].
levels. For this approximate treatment, we will consider These appear to be reasonable assumptions for most
only the effects of the nearest, most strongly coupled candidate ions.

4.4.6.4 Spontaneous Emission

K
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The decohering effects of spontaneous emission canvibrational quanta, accompanied by the raising or lower-

be overcome by error correction schemes. Error correc-

tion is complicated by the fact that when spontaneous

ing of the internal electronic levels of ign In general,
we must account for all terms in Eq. (139) which do not

emission occurs, the atoms may decay to states outsidevary rapidly in time, or terms in which the resonance

the original set of computational basis states. However,
this situation can, in principle, be detected by optically
pumping the ions back to the computational basis and
applying the error correction schemes [291,292].

Spontaneous emission decoherence could, in princi-

ple, be nearly eliminated by driving single-photon tran-
sitions between ground-state-hyperfine or Zeeman lev-
els with rf or microwave radiation since spontaneous
emission from these levels is negligible. Refs. [3] and
[293] discuss this possibility, where inhomogeneous
magnetic fields couple the internal and motional states.
The speed of sideband operations is limited by the size
of the field inhomogeneity one can obtain. From Eq.
(28), we want a coupling HamiltoniaH, = — u,(3B,/
dz)z. Assume 9B,/9z = (0Bx/0Z)scOwt, pux=pum
andz=z(a+a'") as in Sec. 2.3.1. For resonance at the
first red sidebandd = wo — w,), H, is given by Eq. (27)
with 02 = — uu(9By/02)02y/(47%). If we take um = ue,

Z, =10 nm, then to achiev&,/2w = 1 MHz, we require
(9B«/92)o = 290 T cm'%; a difficult task. Moreover, it
would be difficult to address selected ions because of
the long wavelength of the radiation relative to typical
ion spacings (see also Sec. 5.3).

4.4.7 Mode Cross Coupling During Logic
Operations

condition is nearly metX (b — d)w = 6 = w(NK' —
ny). Although detailed treatment of this problem is be-
yond our intent, a couple of comments may be made.

In general, we must account for all the terms in Eq.
(139) which cause significant errors in the overall com-
putation we are trying to carry out. For two or more
trapped ions, some combination of modes will nearly
always satisfy the resonance condition. However, this
may occur only for high orders df andd,, and if the
Lamb-Dicke criterion is met, the contributions are van-
ishingly small. The terms that will cause problems are
the ones that are close to satisfying the resonance condi-
tion and are relatively low order iy and d,. If the
Lamb-Dicke criterion is satisfied, it will always be pos-
sible to avoid these spurious couplings, but it may be at
the expense of making the Rabi frequency so small (in
order to avoid coupling to relatively nearby off-resonant
terms) that the operations will become too slow.

To understand this problem in the context of a simple
example, we assume that a cross-mode coupling of this
type occurs when two modgsandq, have frequencies
which satisfy the conditiomyw, — Ngwq = 0, or * wy
corresponding to possible extraneous mode coupling on
the carrier, first blue sideband, or first red sideband of
the logic operations (assumed to utilize mdde This
additional resonance condition yields, to lowest order in
the Lamb-Dicke parameters, the effective Hamiltonian

In the preceding sections, we have assumed that when

transitions are driven betwedn ) [he) and (It ); Chy)
involving a single mode of motiok, the other B-1

spectator modes of motion are not affected because

coupling to them is nonresonant. However, when the
sum or difference frequency of two or more spectator
modes is near the frequency of the desired miotien-
sition ([ — N0, higher order couplings can entan-
gle thel ) [hy) and [ );Chy) states with the spectator
mode states.

Equation (33) describes the general interaction
Hamiltonian between the internal levels of ipand all
3L modes of motion. By expanding the exponential in
Eq. (33) to all orders, we find

3L

HY, :m'[sﬂ-m Z

I=1 by,d=0

(infa)” (infa)"
bld!
% ei(b|*d|)w|1>e*i(3t*¢j) + h.c.], (139)

where2' = Qexp[— Y23 (n/)?]. This equation describes
the processes of each mddgaining or losing iy — d,)
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Hy' = A0S {1 +ini(ae =+ ale™)

4 (1m35)(im )“qé<npwpfnqwq>‘}efi<5‘*d’ﬂ+h-C-, (140)

Np!Ng!

where the resonance conditions are givendsyw —

wo =0, +ax, Or — wy. A specific example is relevant to
the NIST singl€Be" ion experiments. Here, modtavas
the x oscillation, and modep andq are identified with
the z andy oscillations of the single ion in the trap. In
this experimentn, =k - XX, ny =K 9yo, m.=k - z,

and o= w,— w,. (The frequency relationship
wx= w, — wy iS a consequence of Maxwell's equations
for a quadrupole rf trap in the absence of static poten-
tials applied to the electrodes [211].) We assume that the
desired transition is the first blue sideband of mode
X(6 = wy). In this case, the resonant part of Eq. (140)
becomes

H = ﬁﬂ'[&{inxax*— nMyasay + O(n3)} + h.c.}.
(141)
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The term proportional ta, is the desired anti-Jaynes- with very high trap frequencies (see Sec. 4.4.4). The

Cummings operator, and the term proportionabia, very small number of logic ions in an accumulator (1 or
can entangle the internal state with the other spectator2) would make extraneous mode coupling much easier
modes ¢ andy), leading to errors. to avoid. The main disadvantage appears to be that com-

For logic operations on a string of ions in a linear putational speed is reduced because of the time required
trap, we will assume that all other mode frequencies are to shuffle ions in and out of the accumulator and provide
higher. With the use of stimulated-Raman transitions, laser cooling with the auxiliary ion, if required. How-
we can make\k||z and restrict our attention to spectator ever, energy shifts of the ion’s internal structure, due to
modes along the axis. Nevertheless, as becomes the electric fields required to move the ion, need not be
large, nearby resonances of the type shown in Eg. (140)severe. For example, to move°Be* from rest to a
will become harder to avoid. These coupling terms al- location 1 cm away (and back to rest) inps would
ways scale as products of Lamb-Dicke parameters. Thusrequire a field of less than 50 V/cm. Electric fields of
if the spectator mode Lamb-Dicke parameters are small this order should give negligible phase shifts in qubits
enough, or if at least one Lamb-Dicke parameter is ap- based on hyperfine structure (Sec. 4.2.3). The accompa-
proximately zero, the higher order unwanted resonancesnying phase shift caused by time dilation for a transition
may be sufficiently suppressed. Furthermore, if the
spectator modes are cooled to near the zero-point energy
((A) << 1), then any couplings in Eq. (140) with powers
of the annihilation operata, will be absent most of the
time. Hence, in large registers, it will probably be im- [ ]
portant to cool all modes to near the zero-point energy. [ T

additional storage registers, accumulators
"logic" beam for ion k

" £ "nulling" beam

,-'. :.. 4__

for ion m
5. \Variations L H -
T T T b b {1
5.1 Few-lon Accumulators =
Many of the problems anticipated above, such as un-|_| o ° Ow__ ausiliary fon

wanted coupling to adjacent ions or spectator modes,| |
will be aggravated by a large number of ion qubits in a CT I 1T 1T &1 11
single ion trap “register.” Moreover, implementation of [ | ACCUMULATOR
quantum error correction schemes will require highly []
parallel processing [294]. Therefore, a multiplexing [T]
scheme for ion qubit registers is desirable. One possibil- [
ity is to perform all logic in minimal accumulators [
which hold one or two ions at a time [65]. lons would be
shuffled around in a “super-register” and into and out of |
(multiple) accumulators which are well shielded from |
the other ions. The shuffling could be accomplished | |
with interconnected linear traps with segmented elec- |_|
trodes as shown schematically in Fig. 10; construction
of such traps appears to be possible with the use of
lithographic technigues [295]. Single-bit rotations on additional storage registers, accumulators
the mth ion would be accomplished by moving that ion
into an accumulator. Logic operations between ioms  Fig. 10. Schematic diagram of an ion trap “super-register” containing
andk would be accomplished by first moving these ions few-ion accumulators in which logic operations are performed. We
into an accumulator. An accumulator could also hold a assume the trap is generically equivalent to the linear trap of Fig. 1.
second species of ion (say KJgvhich could be used to Th_e rods_of the trap in Fig. 1 are replaced by segmer?ted electrodes in

. . . which adjacent segments are at the same rf potential but where the
provide laser cooling tf’ thieh = O> Stat_e of the motional segments support different static potentials. This allows ions to be
mode used for the logic operations, if necessary. There- sejectively moved around an in and out of ion accumulators. In the
fore, for logic operations, an accumulator would hold accumulator shown a logic operation between ikr@ndm is indi-
two computational ions and the auxiliary ion. This cated. The configuration of the laser beams is chosen to null the
scheme should make it easier to select ions with |aserintensity on iormwhile performing an operation on idn The beams

. . . _must be reconfigured to perform an operation onrnowhile leaving

beams because it should be possible to address one io

- ’ . | ) %n k unaffected. The auxiliary ion may be required to perform laser
while nulling the laser intensity on the other ion, even ¢qoling each time new logic ions are moved into the accumulator.

CIT T T T 1.1 11
STORAGE REGISTER
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frequency wo/2m = 1.25 GHz (hyperfine structure in
°Be") would be less than furad.

5.2 Multiplexing With Internal States

In principle, it should be possible to multiplex quan-
tum information into all 8 modes of ion motion. This
will probably be useful in experiments which use a
small number of ions. However, because of the higher
potential for decoherence of motional modes, it might
prove more useful to multiplex quantum information in
multiple internal states. This would give more work
space with a smaller number of ions. Quantum logic
within multiple internal states would most likely follow
the ideas of NMR quantum computing [165,166]. A
simple example is given by the eight ground state hyper-
fine levels in°Be" which can be labeled like states of
three coupled spifz particles [k, e, €) where
€ € {0,1}. For instance, a Toffoli gate [140] is realized
by driving a« pulse on thelF,Mg) =12,2) - 1,1
transition in the ground state hyperfine nfatd of °Be*
if we label the statesR,2) = [1,1,0 and(l,1) = [11,1,1),
in the notation(F,Mg) = [k, €, €). Technically, the
readout of specific internal qguantum states would be
more complicated since the methods doyed in the
experiments so far distinguish between only two possi-

bilities, seeing fluorescence or not seeing fluorescence,

on any given ion. However, by appropriate mappings,
superpositions of any two internal states could be

mapped onto two states of “readout” ions and the detec-

tion accomplished as described above. To multiplex in-
formation into internal states, we need a way to map
qubits from any ion into the internal levels of other ions.
To give a specific example of how this can be accom-
plished, we consider the case ®e" where we might
wish to multiplex into thd F,Mg) = [2,2), [1,1), [2,1),
and[1,0 states shown in Fig. 11. This figure is essen-
tially the same as Fig. 5, but for simplicity of notation,
we label these hyperfine states @, (1), [0'), andl')
respectively. We want to accomplish the transformation

W, = a|0)a|0)e+B|0)a|1e+v|1)a|0)e+8|1)a|1)s

O <a|O>A+B|1>A+’)’|0'>A+3|1'>A>|0>B,
(142)

between ions A and B. This can be realized with the
transformation

M= Cap- éA,B' éB,A" éB,A : ﬁA,l,O‘: (143)

where the operatdil, ; o denotes ar transition between
the stategl), and|0') on ion A and the operatoiG.,

311

(F,Mr)
an <
i,_())_ 1' L1
] 1
Internal state
energy
2,2)
2,1 0
2,0) g
@,-1)
(2,-2)

Fig. 11. Hyperfine levels of the £2S,,, ground state oiBe" in a weak
magnetic field (not to scale). The energy levels are designated by
horizontal lines. Above the lines, the levels are represented by atomic
physics labelsK, M) whereF is the total angular momentum aht

is the projection of the angular momentum along the magnetic field
axis. The separation of Zeeman substates in the différemanifolds

is approximately equal to 0.% 10'°B, Hz whereB, is expressed in
teslas. The separation of tife= 1 andF = 2 manifolds is approxi-
mately 1.25 GHz aB, = 0. For simplicity of notation, in Sec. 5.2, we
make the identificationsF,Mg) = (2,2 = [0), [(11,1) = 1), [(R,1) =

o), L0 =[').

are defined in Sec. 3.3. For examp(é,,\.,B denotes a
controlled-not operation with th')» and|1'), states
acting as the control bit states and B and|1)s states
acting as the target bit states.

5.3. High-Z Hyperfine Transitions

The possibility of using highly charged ions as qubits
poses some interesting possibilities. For simplicity, we
consider using hyperfine states in highhydrogenic
ions as qubit levels wher@& is the nuclear charge.
More complicated higl¥ ions appear to show similar
features. 1Z is high enough, hyperfine transitions occur
in the optical region of the spectrum. Therefore, the
required high field gradients necessary for quantum
logic would be provided by the laser fields used to drive
the hyperfine transitions. The potential advantages
are: (1) Off-resonant spontaneous scattering, which is a
source of decoherence in other cases (Refs. [188], [289],
and Sec. 4.4.6.4), is essentially eliminated since the first
excited 2 level is at much higher energy above the
ground state. (2) The trap binding of highaydrogenic
ions can typically be stronger that singly-ionized atoms,
thereby increasing motional frequencies and reducing
the time of fundamental operations. The disadvantages
are (1) HighZ ions are hard to produce. (2) The life-
times of the upper hyperfine states are short enough that
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spontaneous emission decoherence from these states 1 i

. . - — + )
cannot be neglected. (3) Detection of internal states may v 2 () )zre? 1l 1)) (144)
be difficult.

The ion production problem is not intractable; for Inthe context of EPR, this is called a Bell state. Accord-
example, recent storage ring measurements have beering to Bell's theorem [300], such a state allows us to
able to determine the transition wavelengths and life- distinguish between quantum mechanics and all local
times of hydrogenic®Bi®** [296] and ***Ho®®* [297]. hidden-variables theories. If the states of the two en-
Effort in some laboratories is directed to transferring tangled particles are detected outside of each other’s
similar highZ ions to low energy ion traps. The hyper- light cones, then, for particular sets of measurements,
fine frequency of a hydrogenic ion can be estimated to we may derive inequalities which all local hidden-
be whe/ 2 =2.54x 10° Z°F |g,| Hz, whereF andF-1 are variables theories must obey, but which quantum
the values of angular momentum in the hyperfine states mechanics violates. The experiments performed by
and g, is the nucleag-factor (w = unlgn, pn = nuclear Clauser and Shimony [301] and Aspect et al. [302]
magneton,| = nuclear spin) [298]. The spontaneous provide strong evidence against local hidden-variables
decay rate from the excited state is estimated to be theories. Their work used polarization measurements on
YViad = UTraa= 1.01X 1072 [My/ (2Fp+1)] (wni/27)3 7, entangled pairs of photons. In their experiments, the
where the term in square brackets [298] depends ondetection of the photons’ polarization states occurred
matrix elements and is on the order of 1. For example, outside each others’ light cones. Thus, the measurement
the hyperfine transition if°Bi®* has a wavelength of  on one photon could not possibly have affected the other
244 nm and the upper level decays with a lifetime of measurement, which closed possible “loopholes” in the
351 s [296]. For'®Ho®", the transition wavelength is  proof of quantum mechanics over other explanations.
573 nm and the decay time is 2 to 3 ms [297]. These  However, some loopholes still remain open. Since the
experimental numbers agree roughly with the formulas photon detection in the Aspect, et al. experiments was
above. These wavelengths are reasonable for quantunmot 100 % efficient, the group had to make assumptions
logic, but the lifetimes are somewhat short. However that the photons they measured were a “fair” sample of
since the lifetime scales asZf it might be possible to  the whole population of events. Thus, their experiments
use lowerZ, longer wavelength transitions. The readout do not rule out the (seemingly implausible) possibility
of the qubits appears difficult, because coupling to a of local hidden-variables theories in which the hidden
higher electronic level and observing fluorescence is variables cause some sub-embée of the photon
impractical due to the short wavelengths involved. In pairs to preferentially interact with the measurement
principle, however, the qubit information from these apparatus.
ions could be transferred to other ions whose states are In the system of two ions, we may detect the state of
easier to read, perhaps using small accumulators aseither ion with nearly 100 % efficiency through the use

described in the previous section and in Sec. 4.3. of “electron shelving” (Sec. 2.2.1). On the contrary, it
will be difficult to perform measurements on two ions

6. Other Applications outside each other’s light cone. Such a measurement

6.1. Quantum Correlations would require separating the ions by a distance larger

than the speed of light times the measurement time or

In a classic Paper, Einstein, Podolski, and Rosen transferring quantum information over large distances
(EPR)[299] argued that quantum mechanics provides an[151]. (In principle, the ions could be first entangled and
incomplete description of physical reality and specu- then placed in different traps which could be separated
lated that it might be an approximation to some theory by large distances before measurements were per-
which would provide a complete description. Today formed.) Nonetheless, an experiment with two trapped
such theories, which supplement quantum mechanicsions could be viewed asomplementary: the photon
with additional, as-yet unobserved parameters, are experiments definitively close loopholes of causality,
called hidden-variables theories. If such a theory obeys and the ion experiments could close loopholes due
some physically reasonable conditions forbidding action to detection inefficiency. Such experiments have the
at a distance, it is called a “local hidden-variables additional appeal of studying EPR on massive particles
theory.” [303]. EPR states of atoms have recently been created

Simple quantum logic gates performed on small in an atomic beam using the methods of cavity QED
numbers of trapped ions can lead to interesting experi- [304]; if detection efficiency can be improved, these
ments which may shed light on the viability of local experiments could also close loopholes due to detection
hidden-variables theories. For example, as described byinefficiency. Moreover, even though measurements of
Cirac and Zoller [1] and Sec. 3.4, using controlled-not quantum correlations between entangled ions cannot be
gates, we can generate the state
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easily performed outside each other’s light cone, one whered = w—wo, where we have used the rotating-wave
can argue strongly that the ions cannot transfer infor- approximation, and where we have neglected phase
mation by any known mechanism. Therefore, if the factors of the field. The parameteiis equal to 1 when
observed correlations violate Bell's inequalities, the internal state transitions are involved and 0 when the
correlations are established by some new force of natureinternal state is unchanged. In Eq. (14®),is the
or are, in fact, inherent in the structure of quantum wavevector of the field for single photon transitions or
mechanics. k - ki—k, when stimulated-Raman transitions are
An intriguing possibility for ions is the possibility of  used. Similarlyw is the frequency of the applied field
making “GHZ states” [54,305,306]. For three ions, the for single-photon transitions and — w1 — w >, when
GHZ state is stimulated-Raman transitions are used. In an interaction
picture of the ion’s motion, this Hamiltonian becomes

1 .
WZ—\/_(|l>1|l>2|l>3+é¢|T>1|T>2|T>3). (145) _ _
2 Hi=/i(2[8fe"(?’“‘b) [ exp[n (g e
j=x,y,z

For such a state, a single measurement can distinguish
between the predictions of quantum mechanics and
those of any local hidden-variables theory [54,305].
Aside from this, Bell states, GHZ states, and where n, =k-XX,, & is the lowering operator for the
Schralinger-cat states are highly entangled, and are thusx motion of frequencywy, etc. Now, assume tha? is
of inherent interest for the study of uniquely quantum small enough, and that, in generad, wy, and w,
behavior. As the experiments improve, it will be interest- are incommensurate, so that we can excite only one
ing to push the size of entangled states to be as large aspectral component of the possible transitions induced
possible. The question is hot whether we can make statesby this interaction. For a particular resonance condition
which have the attributes of Scitionger cats, but how 6 = —w—¢,w—~C,w,, and in the Lamb-Dicke limit,
big can we make the cats? Certain theories which we find
address the measurement problem will be amenable to

+a;' € ‘)+h.c.] . (147)

experimental tests, for example, quantitative limits on o 6t (ima)d!

spontaneous wavefunction collapse theories [307,308] H"'ﬁﬂe‘ﬁsnzgvz[‘s‘i"ﬂw*' (1-3¢1141)

can be established. The isolation from the environment

exhibited by trapped ions, coupled with the control (ima)ld! ] h 148
possible over their quantum state and high detection 4! €., (148)

efficiency make them an interesting laboratory for the
study of fundamental issues in quantum mechanics. the two mode case where= ¢,=0 is considered by
Drobny and HladKy[310], and in a different excitation
6.2. Simulations scheme in Ref. [110]. If the Lamb-Dicke limit is not
rigorously satisfied, we must consider higher order non-
linear corrections to this expression; specific examples
are discussed in Refs. [28] and [110]. These nonlinear
terms are the origin of the high-order corrections to the
Rabi frequencies (Eq. (18)). The case of carrier, and first
red and blue sidebands on internal state transitions (e.g.,
e=1,¢=4,=0, ¢,=0, =1) are used extensively for
guantum logic and generation of nonclassical motional
states and are discussed above. The case0,
t=4¢,= 0, |¢,| =1 has been used to create coherent
[21] and Schidinger cat [47] states of motion and is
discussed in Sec. 3.1. The case 0, ¢=+¢,= 0,
|¢;| = 2 has been used to create squeezed states; this is
discussed in Ref. [21]. A realization of the Hamiltonian
Hi o Si(ax)?+h.c. (e=1, ¢x=¢,=0, ¢{,=-2) has
been reported by Leibfried, et al. [132]. This is similar
to the case of two-photon excitation in cavity QED
H, = 40S; <2 1 c, (146) analyzed by Buck and Sukumar [311] and Knight [312].

The nonlinearities with respect to motional raising
and lowering operators inherent in the coupling
Hamiltonians of Egs. (14), (37) and (48) can lead to a
rich variety of dynamics between the ion motion and
internal levels. Some of these dynamics for a single ion
have been discussed in Sec. 3.2. An interesting system
which can be simulated with these couplings is a
“phonon maser” which provides vibrational ampli-
fication by stimulated emission” e&diation [309]. This
would be an analog of the micromaser with some
interesting differences such as the effects of recoil in the
pumping process.

The Hamiltonians of Egs. (14), (37) and (48) for a
single ion can be consolidated into the general interac-
tion Hamiltonian
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Interactions proportional t&.afa,+h.c., S;a.a,+h.c., interferometer can be simulated by shifting the relative
andaja,+h.c. might be used to generate the maximally phases of the fields in Eq. (148) between successive of
entangled state of Eq. (60) without the need to addressapplicationsB... In a particle (e.g., boson) interfero-
individual ions [194]. An example of an interesting new meter, one typically measures the number of particles in
case would perhaps be the realization of three-phononeither one or both output modes. In a single ion experi-
downconversion (e.g.€=0, =3, ¢,=-1, ¢,=0). ment, we have only one convenient observable, the inter-
This case is analogous to three-photon downconversionnal state of the ion (eithgn ) or |t ). Nevertheless, we

in quantum optics (see Refs. [110],[313], and references can characterize the action of the phonon interferometer
therein). Here, it corresponds to driving a two-mode by repeating the experiment many times and measuring

resonance using stimulated-Raman transitions wherethe density matrix of the output state [132].

w1 —w2=wy—3wx. A suggestion to realize a
Hamiltonianxa?a)+h.c.(e=0, ¢,=0, ¢, =2, £,=-1)

is discussed by Agarwal and Banerji [314]. Clearly, a
large number of possibilities could, in principle, be
realized just for a single ion; moreover, the number of
possibilities increases dramatically if we consider all
modes of motion for multiple trapped ions. The only
limitation on how high| | in Eq. (148) can be is that
{2 be chosen sufficiently small that couplings to other

It will be most interesting to characterize the action of
the interferometer for various nonclassical input states.
One example is the two-mode Fock statg)|n,),
[195]. This state could be prepared by applying the
techniques described in Sec. 3.2 sequentially to the ion’s
x andy modes. This state is interesting because it has
been shown that one could approach the Heisenberg
uncertainty limit in a Mach-Zehnder interferometer by
measuring the distribution of bosons in the output

(unwanted) resonances are avoided. This will require modes [195,196,197]. An alternative technique for
that decoherence be small enough to see the desirecstudying the action of a beamsplitter on the two-mode

dynamical behavior before coherence is lost.

Various forms of interactions which satisfy the
requirements of quantum nondemolition (QND) mea-
surements [20,25,315] of ion motion or quantum
feedback [316] can be extracted from Eq. (148). QND
experiments employing dispersive

Fock states has been suggested by Gou and Knight [23]
when oy = w,. Here, a beamsplitter could be simulated
by first preparingny)«|ny )y along two orthogonal axes
and then probing along two other axesgndy') which

are rotated (in they plane) with respect to the first. This

interactions are technique could also be used to analyze, for example, the

considered by Retamal and Zagury [36]. These schemes(|0), |2)y + |2),|0)y)/\V/2 state from an initially pre-

rely on measuring the ion’s internal state however,
which almost always involves recoil heating, thereby

pared|1)|1), state [23].
Another interesting state to consider for the phonon

destroying the state we wish to preserve. This could be interferometer is the |Kl)x|0),+(|0)x|N),)/2Y? state

circumvented by coupling the ion’s motion to a cavity
field which then serves as the probe [317].

6.2.1 Mach-Zehnder Boson Interferometer With
Entangled States

Realization of the various Hamiltonians indicated in
Eq. (148) can lead to simulation of various devices of

practical interest. As an example, consider a Mach-

(which is the desired state after the first beam splitter).
This state has been shown to yield exactly the
Heisenberg uncertainty limit for an interferometer for
any value ofN [194], if after the second beamsplitter,
we measure the number of partichéx) in thex output
port. The result of this measurement is assigned the
value (-1)®. This state could be prepared from the
|1)]0)«|0), state by the following two steps:

Zehnder interferometer which acts on two modes of (1) Apply aw/2 pulse on théth blue sideband of mode

oscillation of a single trapped ion; to be specific, we will
consider thexandy modes of motion. The analogy with

a Mach-Zehnder interferometer for bosons is that

x[e=1, &,=-N, ¢,=0 in Eq. (148)]; this creates the
state {1 )|0),+|1 )|N)x)|0),/2"2.

the two input modes to the boson interferometer are (2) Apply amw pulse on theNth blue sideband of mode

replaced by the x and y modes of ion oscillation. The

y [e=1, ,=0¢,=—N in Eq. (148)]; this creates the

(50/50) beamsplitters in the boson interferometer are state|t )(|N)x|0),+|0)x N ), )/2*2.

replaced by an operatd. = exp[=im(a,a,+a,a,/4]
[193,318,319]. This operator can be realized by
applying the interaction in Eq. (148) wite=0, and
& =—4¢,= 1 for a time given byOnmt= w/4. A
differential phase shift between the two arms of the
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After the second beamsplitter, we have a state which can
be written as

N
1Iffinal = |T > 2 Cnx|nx>x|N_n<)y-

ny=0

(149)



Volume 103, Number 3, May—June 1998
Journal of Research of the National Institute of Standards and dlgyn

In principle, we would like to measurg,, record the

value N(x), and assign the value (). Effectively,

6&=-1,¢,= 1, ¢,=0ande=1, =1, (= -1, ¢,=0,
respectively. The kth pulse has Rabi frequency

this assignment can be accomplished if we can find an 2n,n, [(N/2+k)(N/2—k+1)]"? in the Lamb-Dicke re-

interactionM which provides the mapping

N
MW =[1) >, Co €40, ) [N-1,),

ny even

N
+[1) D Cp €4™n,),|N-n),. (150)

ny odd

After this mapping, we need only measure the internal

state; if the ion is found in thér ) state we assign th
value +1 to the measurement; if the ion is found

e
in

the |1 )state, we assign the value —1. The mapping

M can be achieved by applying radiation wikh| X

at the carrier frequencye€E 1, ¢ =0) and insuring
0O, ot = 2rm= nem wheremis an integer. From Eq. (18),

we have

2

s N
Oy o t=0te 2 [1—nm3<1+z—nxj>] . (151)

Therefore, if we makeQexp(-n2/2)t=2mm and
n2(1+n2/4 = (2m™) we achieve the desired mapping

as

long as the contribution to the phase from the term

proportional ton? in this equation is small compared
w. Therefore we requiren>>N?/8 or, equivalently,
Nx<<2/N.

One final example of a two-mode phonon interfe
meter which directly yields Heisenberg\lphase sensi

to

ro-

tivity is a “beamsplitter” which creates the state
(1400 INY,+| 1 )INY, 0}, )/ V2. This state can be cre-

ated by starting with an initial| ()+|1 ) [N/2)«|N/2),/
V2 dual Fock state (Sec. 3.2). Next, we apply2

w-pulses alternating between the two interaction

Hamiltonians H: = Qnmy(Sala,+h.c) and
H, = 2n.my(S-a@,+h.c.) which can be realized in th
Lamb-Dicke regime. In this way, the state of motion
the ion is stepped through

NN NN H
|l>|2>x|2>y+|T>|2>X|2>y -
N N N N H
|T >|§+ 1>X|§_1>y+ |l >|§_1>X|§+ 1>y %

D+ 252+ [1Dl-2il5+2,
(152)
[DIN)0)+1I0NIN),

e
of

where, in this example, we assurhg2 is even. The

interactionsH; andH, follow from Eq. (148) withe=1,
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gime. After a relative phase is accumulated in the two
“paths” of the interferometer (simulated by adjusting
the phase of the laser pulses as discussed above), we
reverse the above steps and apply a finaR” pulse on

the carrier. Upon measuring the probability of occu-
pation in staté! ) or |1 ), the interference fringes exhibit

1/N phase sensitivity.

If the Lamb-Dicke criterion is not satisfied, the two
components of the wavefunction superposition may
experience different Rabi frequencies during each pulse,
leading to undesired evolution. The exact Rabi frequen-
cies of the two components of the wavefunction upon
application of thekth pulse (interactioi; or H,) follow
from Eq. (18):

0, = Onemy g V2mitng) Livzka(nd) Lo ()
A V/(N/2+k)(N/2—k+1)

(153)

0 = Onemy e V20 Livzeka(n5) Lo (m3)
® V/(N/2+k)(N/2—k+1)

where (2, is the Rabi frequency between states
IN/2+k—1),IN/2—k+1), and|N/2+k),IN/2—k), and s

is the Rabi frequency between staiéd2—k+1),IN/
2+k—1), and [N/2—k),IN/2+k),. The only differences
between(2, and(); are the arguments of the associated
Laguerre polynomials. Thus, as long gas= 7y, the
system will evolve as in Eq. (152), even when the Lamb-
Dicke criterion is not satisfied.

6.2.2 Squeezed-Spin States

As an example which demonstrates the advantages of
using entangled states in spectroscopy, we discuss the
following simple experiment which can be carried out
on a single ion. Let us suppose we are interested in
measuring, with maximum signal-to-noise ratio, the
Zeeman frequency between states dfal manifold in
an atom. To be specific, consider that we are interested
in measuring the Zeeman frequency of thiglr = +1
transitions in the’S,, (F = 1) ground-state hyperfine
multiplet of a®Be" ion (Figs. 5 and 11). This manifold
is composed of the three leve|&,Mg) € {|1,0,),
|1,= 1)}. We will assume that the applied field is small
enough that the frequency of this—1) - |1,0) transi-
tion is equal to the frequency of the,0) — |1,1) transi-
tion. A straightforward way to measure the Zeeman
frequency would be to prepare the atom in tig1)
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(or |1,-1) state, drive the Zeeman transition (using the at such low energies that anharmonic shifts (electric
Ramsey method), and then measiyeWe will assume potential and relativistic) would be very small. (At
this detection can be accomplished with 100 % detec- present, however, high-resolution mass spectrometry
tion efficiency, so the noise in the measurement is experiments are limited by other effects such as mag-
limited by the quantum statistics in the measurement netic field drifts [77,78,79].) In mass spectroscopy, the
process [100]. After many measurements, requiring a basic problem is to measure a “test” ion’s cyclotron
total averaging time, a certain precision in the Zeeman frequency and compare it to the cyclotron frequency of
frequency would be obtained. However an alternative a “measurement” ion (in the same magnetic field) which
measurement strategy, described below, would requireserves as the transfer standard.
an averaging timer/2 to reach the same measurement  One idea [48] is to store two ions in separate Penning
precision. traps which are stacked along their symmetry axis and
The basic idea is outlined in Ref. [9]; fdr=1, it is share a common endcap and a common, axial magnetic
equivalent to the more general technique described by field. The axial frequencies of the ions are adjusted to be
[194]. We prepare the atom in the staté0) =|1,0) and the same, in which case the axial harmonic oscillators
then apply the Ramsey fields. Subsequently, we measureare coupled through the charge in the common endcap.
the probability of the ion to remain in thid,0) state. The technique might work as follows: The axial motion
(This measurement scheme has been used in the experef the “measurement” ion (for examplée") is first
iments of Abdullah et al. [320]; the noise in these exper- laser cooled to then =0 level. When the ions’ axial
iments, however, was not limited by projection noise.) modes are resonantly coupled, this cooling can be trans-
This measurement is equivalent to measuring the opera-ferred to the test ion’s axial motion; if the coupling is left
tor I-J?, wherefis the identity operator, and therefore on for a certain amount of time, the energies in the ions’
equivalent to measuring the operalgr as discussed by  axial oscillations are exchanged. Subsequently’Be
Wineland, et al. [9], or the operatdlo,;, as discussed ion’s axial oscillation is recooled so that both ions are
by Bollinger, et al. [194]. After application of the first cooled to the zero-point energy. This axial cooling is
Ramsey pulse to thf,0) state, the ion is in the state then transferred to the test ion's cyclotron mode by
(11,1> +|1,-1)/V2; this is equivalent to the maximally ~ parametric coupling, after which the axial motion of
entangled state of Eq. (60) which could be formed by the measurement ion must be recooled to the zero-point
two spin-1/2 particles. As described in Sec. 3.3, we energy. An external field is then applied to weakly
would expect the time required to reach a certain excite the test ion’s cyclotron motion. When the ampli-
measurement precision to be reduced by a factor of tude of this field is adjusted appropriately and the
2 (L = 2) over the case of uncorrelated particles, repre- resonance condition is met, the= 0 ton = 1 transition
sented by starting the ion in the statg0) =|1,1) or in the test ion is driven with high probability. The steps

|1,-2) state and finally measuringy. above are then reversed so that if the test ion’s cyclotron
We could carry out this experiment in the following motion was excited to the= 1 level, the’Be* ion’s axial
way. We first optically pump the ion to th&,2) hyper- motion is now in then=1 level. When the resonance
fine state. We then apply two successivpulses which condition for the test ion’s cyclotron frequency is not
carry out the transformation,2) - |2,1) - |1,0) with met, the®Be" ion’s motion remains in the =0 level.

stimulated-Raman transitions. We then perform Ramsey Discrimination between the= 0 andn = 1 axial level is
spectroscopy on thél,0) state. We can measure the then performed using quantum logic operations applied
probability of subsequently finding the atom in tig0) to theBe" ion as discussed in Sec. 3. For example, after
state by first reversing the order of the twqulses and  the steps above, an axial red sidebanulise will excite
then measuring the probability of finding the ioninthe a|i) - |1) transition in the’Be" ion conditioned on
|2,2) state. whether or not théBe" ion’s axial mode was in the
n=0 orn =1 state. The test ion’s cyclotron frequency
can be referenced to a spin flip frequencyBe" (either
electron or nuclear) which then acts as a transfer
standard. Finally, by performing a cyclotron resonance
Quantum logic operations may be useful in precision measurement on a second test ion in the same fashion
measurements other than spectroscopy (Sec. 3.4). Fowe can find the ratio of the two test ions’ cyclotron
example, Ref. [48] discusses a method to measurefrequencies and therefore derive their mass ratio.
cyclotron resonance frequencies of single ions at the Ref. [48] also suggested that these ideas could be
quantum level; this technique essentially employs quan- applied to measure magnetic moments of test ions. In
tum logic to distinguish between motional quantum this section, we describe a variation on the method dis-
states. This capability would provide mass spectroscopy cussed there. The basic idea is to perform NMR on an

6.3 Mass Spectroscopy and NMR at the Single
Quantum Level
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unknown magnetic moment (the test ion) at the single —ﬁi F dr
spin level. Using quantum logic operations, the spin flip
is detected in a measurement ion to which the test ion is
coupled. We will describe the ideas in the context of a
specific example; but the techniques are easily general-
ized to measuring the magnetic moments of other ions.
Suppose we want to measure the ratio of proton and
antiproton magnetic moment. Such a measurement is of
high current interest and can provide a second test of — = —
CPT on baryons in addition to the precise mass com-
parisons already performed [79]. Precision measure-
ments of the magnetic moment ratios coupled with the
mass ratios should test much of the same physics in the
context of CPT as precision spectroscopy of antihydro-
gen [321]. A measurement scheme for the proton/vertical
antiproton moment ratio has been suggested previously
by Quint and Gabrielse [322]. This method would WIre€
employ the same basic ideas as in the electron g-2
experiments of Dehmelt and coworkers [108], where the
proton’s (or antiproton’s) magnetic moment energy is
transferred parametrically into its cyclotron energy Fig. 12. Schematic diagram of a trap for simultaneous storage of two
(WhiCh is then detected) by use of applied inhomoge- ionswith differen_t charget_o mass ratimlml andgz/m,. We assume
neous (oscillating) magnetic fields. The apparent draw- the trap is gengrlcally equivalent to the linear trap of Fig. 1. The ron
. h - of the trap in Fig. 1 are replaced by segmented electrodes in which
back to this scheme is that it is slow because of the adjacent segments are at the same rf potential but where the segments
weakness of the parametric coupling and the difficulty support different static potentials in order to make a double well
of detecting small changes in the cyclotron energy. The potential alongz. Therefore in this figure, the view is from above,
method Suggested here incorporates the same kind ofwhere we see IWO (of four) segmented electrode_swhich have rgplaced
parametric coupling but is potentially more efficient WO °f the rods in the trap of Fig. 1. On the left is a cross section of
L. s . a wire through which an rf oscillating current is sent; this wire gener-
because it is sensitive to transfer at the single quantum yees an rf magnetic field at the site of the ions as explained in the text.
level through the use of quantum logic techniques.
The basic idea of the method we propose here is to
first store a proton and #Be" ion in trapping potentials  in cross section in the figure) is at one end of the trap;
which are in close proximity and in a common mag- oscillating currents in this wire generate an oscillating
netic field (Fig. 12). The proton spin flip frequency is magnetic field which can be used to drive the spin flip
then compared to th&e" spin flip frequency (elec-  transitions of the proton and nuclear spin flip transition
tron or nuclear), which acts as a transfer standard, effec-in the °Be* ion (the electron spin flip transition itBe"
tively calibrating the (common) magnetic field. We then could be driven with injected microwave radiation).
perform the same kind of measurement on a simulta- Oscillating currents in this wire will also provide a
neously trapped antiproton afle’ ion. By combining parametric coupling between the proton spin and axial
the two measurements, we determine the proton/ motion (below).
antiproton magnetic moment ratio. The experiment could proceed as follows: We first
First consider the measurement of the protofBie’ tune the static potentials so that the proton &Rd
spin flip frequency ratio. We simultaneously store a axial frequencies are the same. By performing Doppler
single proton andBe" ion in a double-well potential as  laser cooling on théBe' ion’s axial and radial modes,
indicated in Fig. 12. We assume that the ions are con- the proton’s axial mation is cooled. The proton’s radial
fined in a direction perpendicular to theaxis by a modes will also likely be cooled through the Coulomb
linear rf trap combined with a superimposed static coupling. If not, we must apply an inhomogeneous
magnetic fieldB = By2. (One particular geometry for a  rf field which parametrically couples the proton’s radial
Paul trap in a strong magnetic fields is described by and axial frequencies. We now uncouple the proton
Bate, et al. [323].) The quadrupole electrodes are and °Be* ion by adjusting their axial frequencies to
segmented to provide a static double-well potential be different. We then cool thiBe" axial motion to the
along thez direction. We assume the electrode segments ground state (Sec. 3.1) and follow this by switching
are capacitively coupled together so the rf electrode the axial modes back into resonance. The Coulomb
potentials are independent of A vertical wire (shown interaction between the ions gives rise to a coupling

Z;

317



Volume 103, Number 3, May—June 1998
Journal of Research of the National Institute of Standards and dEgyn

0:02/(4meo|Z~24)), whereZ; and Z, are the respective
axial positions of the ions ang;, andq, are, here, the
charges of the proton ari@e* ion. We have neglected

the methods as discussed above and in Sec. @, I§
nonresonant, the modes remain in the- 0) state.
If the proton is initially in the|l) state andwy, is

the effects of induced charges in the trap electrodes, thisresonant, then the field at frequeney =w,—w, has no

will not be a large effect if the distance between ions is

effect, and the ion remains in the= 0) motional state

on the order of or less than the distance of each ion to and gives a false “no signal.” However, whe, is

the trap electrodes. For small amplitudes of oscillation
we can writeZ=Zy+z, i €{1,2} where Z, are the
equilibrium positions of each ion. In the limit of weak
coupling and to lowest order in;,zthe interaction
between ions is given by

_ Qa2
q1d2 — 2’1T€0d3 ’

H (154)

whered = |Z,~Z,|. This gives rise to a frequency split-
ting between axial normal modes of [48]

0102
2 Eod3 w2z \/m]_mz ,

(155)

6601,2 = mltexen=

where m; are the ion masses arig, is the time to

reapplied, thén = 1) state is produced giving a signal.
After reinitializing (that is, preparing both ions in their
axial ground states), signals are always produced,if
remains resonant. kb, is nonresonant and the proton
initial state igt ), no signals are ever produced. However
if wmis nonresonant and the proton initial statg is we
produce a false signal. After reinitializing and repeating
the experiment, we produce no signals. This is true on
subsequent tries as long as, remains nonresonant.
Therefore to reduce the effects of false signals, we
should repeat each try several times for each value,of
and discard the first measurement. Interlaced with
measurements of the proton spin flip frequency, we
measure théBe" spin flip frequency by driving with
resonant rf radiation and using the techniques outlined
in Sec. 3 for detection. This allows us to monitor and

exchange the energy of the two ions’ axial energies after correct for magnetic field drifts on a fairly short time

they are coupled together. At the tirhgy, the ions are
again decoupled, leaving the proton in its axial ground
state. ThéBe' ion is subsequently recooled to its axial
ground state.

Assume the proton is initially in the lower energy
statel 1 ). We now apply an oscillating magnetic field at
a frequencyw, which is near the proton spin flip
frequencywo = gy usBo/ % Whereg, is the proton gyro-

scale.

The antiproton’Be" comparison is accomplished
similarly except for the important difference that axial
potentials must be trapping for one species and nontrap-
ping for the other at a given location. Apparently, the
biggest liability in the scheme presented here is the
same as that of the proposal of Quint and Gabrielse
[322], namely, the weakness of the parametric coupling

magnetic ratio expressed in terms of the Bohr magneton between proton magnetic moment and axial motion.

(9p=1.521x10°%. The amplitude and duration of this
field is adjusted to make & pulse if the resonance
condition w, = wy is satisfied; that is, the proton spin
undergoes the transitioft) — |1 ). We now apply an
inhomogeneous magnetic field at a frequenay by
driving a currentl cosw,t through the vertical wire,
shown on the left in Fig. 12. If we neglect the shielding
effects of the trap electrodes, this provides a field at the
site of ion 1 equal tdB (t) = Xuol cosw t/ (2mp) and a
field gradientd B,/ 9z = — cosw,t/ (2mp?) wherepis the
distance from the wire to the proton. This oscillating
field gives rise to a coupling which has the form of
Eq. (28). If the resonance conditian =wy—w; is satis-
fied, this coupling takes the form of Eq. (27) with
0y = gouspolzo/ (4n7ip?) where z, is the zero-point

For w,/2w=1 MHz, we find zy(proton)=71 nm. With
I=1A, andp=1 mm, we find(2,/2w = 0.15 Hz. For
these same conditions and=0.5mm, we have
texcn= 27 ms. At a field of 5 T,w/27 = 106 MHz. At
very high resolutions we want resonance linewidths of
less than 1 Hz which, in turn, requires long resonance
times for the proton spin flip. Therefore the long times
required fort.uping N€Ed NOt be a serious liability.

We have not considered details of proton, antiproton,
or °Be" transfer into the trap, however this might be
accomplished by adapting a scheme similar to that
described in Sec. 4.1. The trapping arrangement we
show in Fig. 12 is essentially the same as the coupled
trap idea of Ref. [48]. By removing the common endcap
in the coupled-trap scheme, we arrive at the situation

motion for the proton (as in Sec. 2) . We assume that the depicted in Fig. 12. In either case, we can show that the

durationteeuping Of this inhomogeneous field is adjusted
to give a complete transfér )|0) — |1)|1)(Qiteouping=
w/2). We now couple the axial modes for a titag, SO
that if the proton was in thén = 1) state after the last
step, the'Be" ion is now in theln = 1) state. Finally, the
[n = 1) motional state is detected on tPige" ion using

318

coupling between ions is approximately given by Eg.
(154) wherd is the overall distance between ions 1 and
2. The potential advantage of the scheme described
here is thatd can probably be made smaller than
in a coupled trap, thereby reducing.. We have
assumed the use dBe" ions, but many other ions
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would work. A potential advantage &Be' ions is that \E}Q@ \\\\\§§\\\\\\\

the axial potential wells required to make = w, are

not as different as for other choices of ion 2. In a similar —
spirit, we could measure the proton (or antiproton)
magnetic moment in terms of other atomic parameters.
For example, the proton spin flip frequency®@e" spin

flip frequency could be combined with a separate T)
measurement of thi8e" spin flip frequency compared qr 7
to its cyclotron frequency to yield a measurement of the L
proton spin flip frequency té8Be" cyclotron frequency
in the same magnetic field. Coupled with an accurate _¥
value of the electron t8Be" mass ratio, these measure-
ments yield an accurate value g@f. An important
systematic effect to consider in these measurements is
magnetic field inhomogeneity. Field homogeneity could

be checked to high accuracy by moving Bt ion to Fig. 13. Schematic diagram of an ion coupled to mechanical
various locations in the trap, thereby mapping the resonator. The bridge-type cantilever is essentially the same as that

tic field. E IV i tant in th ton/anti reported by Cleland and Roukes [325], but is assumed to support a
magnetic field. Equally iImportant in the proton/antipro- - e5jizeq sphere supporting chamge An ion g is confined by the

ton comparison is to insur? that the prOton_ and anti- potentials on the metallized sphere and additional electrodes shown
proton are in the same location. It appears this could be schematically as A, B, and C. The Coulomb coupling between the

accomplished by insuring tHBe" is always at the same  charges provides the coupling between the two harmonic oscillators.
location (using optical means) and adjusting the trap

i

>
N
T

L

w2
L

\

e

potentials to always yield the same values®fand assume the conditions realized in the experiments of
dwi . By this method, it appears that accuracy signifi- Cleland and Roukes [325]. The beam resonator has a
cantly better that 1 part in 2&ould be achieved. lengthD, thickness in the direction equal taAzand a

thickness in thex direction (out of the plane of Fig. 13)
equal toAx. If we take the conditions of Fig. 3 of
Cleland and Roukes [325] as a guide, we have
D=7.7pm, Az=0.8pum, and Ax =0.33um. We

Much of what we have discussed concerns manipula- assume that the beam is metalized near its center and
tion of the mechanical oscillation of atoms or atomic can support a chargg. For simplicity, we will assume
ions. It is perhaps interesting to speculate on the possi-the metalization is confined to a spherical shell of radius
bility of applying similar techniques to the manipulation R,, but the exact geometry is not so important. Neglect-
of macroscopic or mesoscopic mechanical resonators ining the dielectric effects of the Si bearh £ 4 K), the
the quantum regime [119,120]. If studies can be per- capacitance of the metallized sphere is approximately
formed at the quantum level, new sensors at the single equal toC, = 4wesR;. The sphere can therefore support
phonon level could be built [324]. One approach is to a chargeq; = C,V, Where V, is the potential on the
make the mechanical resonators small enough andsphere. An atomic ion of chargg; and massm, is
the temperature low enough théi > ks T [325]; this trapped by a combination of electrodes at a distahce
approach may obviate the idea discussed here. The idedrom the cantilever. One of the electrodes is the
we examine here is an extension of the idea of coupling charged, metallized sphere; the other electrodes are
the oscillatory motion of two ions together; here we indicated schematically as A, B, and C. To estimate the
consider coupling the motion of an ion (or the COM massm, of the mechanical resonator we assume it has
mode of a collection of ions) to a single mode of a mass equal to half of the beam’s mass and that this
mesoscopic mechanical resonator. Although current mass is concentrated in the metallized sphere. For the
techrology appears to prohibit performing such experi- conditions assumed here, ap(5i) = 2.33 g cm™3, we
ments at the quantum level, the development of find m;=2.4x10'2g. We arrange the trapping poten-
mesoscopic resonators is rapid and such experimentstials so that thez-oscillation frequency of the ion is
may be possible in the future. Similar considerations equal to the beam oscillation frequency; in this case, we
regarding coupling of ions to piezoelectric resonators realize two coupled oscillators as described in the
were discussed in Ref. [48]. previous section. If we takel =5 pum, V,=1000V,

To be specific, we consider the situation sketched in w/2w =70 MHz, ¢, = g(proton), m,= 9 u ¢Be"), we
Fig. 13. The mechanical resonator is assumed to befind from Eq. (155) thate«n= 6.4 S. To reliably work
a silicon beam resonator, fixed at both ends; we will inthe quantum regime of the mechanical oscillatgg,

6.4 Quantum State Manipulation of Mesoscopic
Mechanical Resonators
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must be smaller that', the time for the mechanical Various sources of internal-state decoherence are
oscillator to make a transition from it = 0) ground discussed in Sec. 4.2. In the current experiments,
state to thén = 1) state. If we assume the conditions of decoherence is dominated by fluctuations in magnetic
Cleland and Roukes [325] wherd =4 K, and fields acting on qubit transitions which are strongly field
Q=2x10% Eqg. (64) givest’ =0.0382us. This is dependent. It appears that this problem can be highly
clearly too short to sympathetically cool the beam suppressed by the use of magnetic shielding and, eventu-
resonator's mode to the ground state, although someally, use of qubit transitions which are insensitive
cooling could be achieved as outlined by in Ref. [48]. In to magnetic field to first order. We expect that internal
the future, it might be possible to make the ratifie,cn state decoherence will be negligible compared to
larger than 1, perhaps through high@fs and lower motional decoherence.
ambient temperatures [or perhaps if more exotic ion  Decoherence induced during application of the logic
species withZ, >>1 become available (Sec. 5.2)], it pulses (Sec. 4.4) may be the most troublesome. Many of
may be possible to manipulate the quantum motion of the sources of this type of decoherence are primarily
mesoscopic mechanical resonators by these techniquestechnical, for example, caused by intensity fluctuations
in the laser pulses which induce transitions, or
7. Summary/Conclusions stray light impinging on ions not directly addressed.
The more fundamental causes of decoherence are
We have attempted to identify some of the important (1) coupling to internal or motional states other than the
practical effects which must be taken into account in intended ones (spectator level problem), (2) coupling to
order to create arbitrary, entangled quantum states ofunintended motional modes (cross-mode coupling), and
trapped ions. We have taken a “passive stabilization” (3) fluctuations in the Rabi rates due to excitation of the
approach in that we try to anticipate and suggest ways to 3L-1 unused motional modes (Debye-Waller factors).
guard against the physical effects causing decoherenceThe first two of these effects appear to be a question of
Ultimately, complicated manipulations, such as lengthy speed. Coupling to unwanted spectator modes and
guantum computations, are expected to benefit from cross-mode coupling can always be avoided by making
and/or require some form of active error correction. the operations slow enough that the extraneous
Indeed, some of the near-term future experiments will couplings are suppressed by spectral selection. This has
probably demonstrate some of these schemes. Inthe negative effect of allowing more time for decoher-
Sec. IV, we have listed some of the potential sources of ence and increasing the required time for a given
decoherence in trapped ion experiments; here we computation. Fluctuations caused by fluctuating Debye-
speculate on what appear to be the most important of Waller factors are, in principle, reduced as the number
these. of ions increases because of the averaging effects of
Motional decoherence is discussed in Sec. 4.1. many modes [Eq. (128)]. However, it is also likely that
In the NIST single’Be" ion experiments [17,21,45,47, excitation of these modes is harder to avoid as the
131,132,211], heating appears to be the most importantnumber of ions (and unwanted spectator modes)
source of decoherence, primarily because, at the presenincreases. It will therefore be desirable to laser-cool all
time, its source is still unidentified. Various possibilites modes to the zero-point state.
were discussed and, although the heating may be caused As the number of trapped ions increases, it will be-
by some fundamental effect, we speculate that it is come increasingly difficult to avoid these three types of
probably caused by some, as yet undetected, source okffects. Therefore, some sort of multiplexing scheme
added electric field noise. (Because the current experi- will be necessary when large numbers of qubits are
ments employ electronic filtering at the motional involved. In Sec. 5.1, we have presented one possible
frequencies, direct observation of fluctuating potentials solution where the ions are broken up into smaller
on the electrodes has been precluded.) Future experi-numbers of independent groups or registers. The ions
ments will be able to resolve this. Moreover, once this are then connected by moving ions around between
source of noise is understood, the ion becomes anregisters. It may also be advantageous to multiplex
extremely sensitive detector of fluctuating potentials quantum information within multiple internal states of
appearing on the electrode surfaces. In any case, it will ions; this is briefly described in Sec. 5.2.
probably be desirable to eventually operate the ion  Stimulated-Raman transitions between long-lived
trap at cryogenic temperatures in order to, for example, qubit states (such as ground-state hyperfine levels) ap-
reduce the effects of ion loss due to background pear to offer significant advantages over single-photon
gas collisions. A cryogenic environment will have the optical transitions. Single-photon transitions require
added benefit of reducing sources of electronic noise high laser frequency stability, whereas stimulated-
and associated heating. Raman transitions require only high relative frequency
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stability between the Raman beams, which is techni- than any other time scale in the problem. We assume
cally easier to accomplish. Stimulated-Raman transi- that decoherence of the internal states is negligible
tions also provide the ability to select the magnitude and during the Ramsey free precession tifiie To make an
direction of the effectivek vector K.s) by choosing atomic clock, we want to steer, or “lock,” a reference
different directions for the beams. This has the advan- oscillator ( “local oscillator”) to the atoms’ resonance.
tage of, for example, allowing.; to be parallel to the  Typically, we can find a local oscillator whose rms
axis of ions in a linear trap, thereby suppressing frequency fluctuationsAw o(7) over short averaging
coupling to radial modes, while still allowing the Lamb- timest are smaller than the intrinsic fluctuations given
Dicke parameter to be controlled by adjusting the angle by projection noise. However, for long times, the
of the beams. At the same time, spatial selection of ions frequency fluctuations of the local oscillator are worse
along the axis of the trap can be good since each Ramarnthan those given by projection noise. (If this were not the
beam can be at a relatively steep angle relative to the case, the local oscillator would be a better clock, obviat-
trap axis. With single photon transitions, selection of ing the need for the atoms.) By measuring the atomic
ions and modes by appropriately choosing the direction populations after each application of the Ramsey radia-
of k can only be obtained for the radial modes in a linear tion [3,9,100], we can generate an error signal which
trap. Stimulated-Raman transitions have the potential steers the local oscillator to the center of the atomic
disadvantage of inducing significant ac-Stark shifts resonance with a servo time constantThe servo can
(Sec. 4.4.3). However, for anticipated operating condi- make a correction after a few independent measure-
tions, the effects of Stark shifts can be suppressed ments on the atoms; for simplicity, we assume: Tg
relative to the effects of laser amplitude fluctuations, (Eg. (A4) below). To make the error signal as large as
which affect both single-photon and stimulated-Raman possible, we want the atomic linewidftw , as small as
transitions. possible. The atomic linewidth can be expressed as
Decoherence in the ion trap system can probably be Aw,= w/(L?YTg), where e=1/2 for nonentangled
substantially reduced over what has been obtained instates andc =1 for entangled states [3,9,100]. There-
experiments so far. How far this reduction can be carried fore, we wantTy as large as possible. However, if we
is an issue which must be resolved experimentally. make Tz too large, the local oscillator fluctuations
Decohering effects may eventually be controlled to such Aw o(Tr) Will be larger thanAw ,, thereby giving no
a level that fault-tolerant error correction schemes might useful signal. This is the constraint which tells us
be employed toachieve computations of arbitrary whether entangled or nonentangled states are more
length. This may only require a single operation fidelity useful.
of 10°to 10°[185,326]. If this condition is met, speed To analyze this problem in detail, we make the follow-
will become an important issue because of the poten- ing assumptions: (1) We assume the (free-running
tially large amount of overhead (increase in number of or unlocked) local oscillator has fluctuations over
required qubits and operations in fault tolerant averaging timer equal to
schemes). As discussed in Sec. 4.4.6, the Rabi rate for
any operation is limited to approximately the motional Awo(r)=Cr" (A1)
mode frequency. In principle, mode frequencies can be
substantially increased beyond what is currently This is assumed to hold over the range of values of
achieved £ 10 MHz). An obvious direction to pursue is  which includeTg and . We will consider only values of
to make smaller traps with higher trapping potentials; n= -1/2, since, fom < -1/2, the local oscillator will
however, this aggravates the problem of addressability, better than the atoms for sufficiently long. (2) We
and will increase the coupling of the ions to the elec- assume the intrinsic atomic clock stability, limited by
trodes thereby increasing decoherence. The optimumprojection noise, is given by (Sec. 3.4)
conditions must, again, be resolved experimentally.

AwmeadT) =

. Vi -
8. Appendix A. Entangled States and
Atomic Clocks : .
(3) For a given servo time constant we assume

We compare the use of entangled vs nonentangled Awio(1s) = KiAwmead Ts) (A3)
states in an atomic clock under conditions and con-
straints different than those considered in Sec. 3.4. We Normally, in the case wherAw o < Awmeas for short
assume that the resources available are a given numbetimesr, we would think of adjustings so thatk; < 1;
of atomsL and a total observation time which is longer that is, the local oscillator is locked to the atomic reso-
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resonance at or before the timavhen the local oscil-
lator fluctuations become worse than the projection
noise. However, wheK; > 1, the locked local oscillator
stability can eventually reach the stability given by
projection noise (approaching it asrlgiven adequate
servo gain [327-329]. Therefore we will allo; to be
larger than 1.

Along with these assumptions, we impose two con-
straints: (1) The servo time constantmust be longer
than the sampling tim&g. (We will assumeTy is much
larger than the dead time, that is, the time for optical
pumping, detection, etc.) This is expressed by the condi-
tion

7s = KT,

Ky> 1. (Ad)

For nonentangled states on large numbers of atéms,
and T are both much larger than for entangled states,
and a very long time may be required to achieve the
intrinsic atomic clock stability given by Egs. (A2) and
(A7). therefore, as a practical issue, we may wish to
constrainK; to be equal to 1. In that case we find, from
Egs. (A3) and (A5) two values d®z. We must take the
smaller of these, which results from the value derived
from Eq. (A3) (withK; = 1). Plugging this value of
into Eq. (A2), we find the stability of the locked oscilla-
tor to be

1 (2n+1)
2(n+1) L_E( 2n+2 ) 1

v

For largel, entangled states will give a smaller value of

A wmeas= |:CK3+1/2:| (Ag)

For entangled states, each measurement gives one of twd wneasfor all values ofn > —1/2; however this result is

possible values (Sec. 3.4). Therefdfg,must be larger

not fundamental and simply comes from the constraint

for entangled states than nonentangled states. (2) ForthatK; is equal to 1.

7= Tg, the atomic linewidth must be greater than the
local oscillator fluctuations or else the error signal used
to correct the local oscillator frequency is ambiguous.
This is expressed by the condition

Ks> 1.
(AS)

Awa(TR) = TF/(L (ZE_l)TR = K3AL¢)|_0 (TR),

Eq. (A5) gives the sampling timgg as a function oK,

e

Plugging this into Eqg. (A2), we find that the stability of
the locked local oscillator at long timesis

1

™ n+1

—_— A6
C K3 L 25—1) ( )

1
2(n+1 L

(ne+1/2)
n+l

1

v (A7)

AWmeas= [%]
™

This is the main result of Appendix A. From this expres-
sion, we see thah wneasis smaller for entangled states
when n > 0; however, the gain is not as significant as
when we assumedr to be fixed. We also see that
Awneas is smaller for nonentangled states wher 0.

9. Appendix B. Master Equation for the
Density Matrix of a Radiatively
Damped Harmonic Oscillator

Equation (62) is the master equation for the density
matrix p of a single harmonic oscillator, including
radiative damping terms. This equation is equivalent to
the following system of coupled first-order differential
equations for the diagonal and off-diagonal number-
state matrix elements gf:

<n|P|n> = pon = y(M+1)(N+1)pnsine
—y(2nN+Nn+MN) ppetyNNPn_1n-1

(mlp[n) = pmn= ¥ (M1)V(M+L1)(N+1)pmm1 e
+7ﬁ Vv mmm—ln—l
%V[Zﬁ(m+n+1)+(m+n)] Pmn
(B1)
Some special cases of these equations were given in Eq.

(63), where they were used to estimate the time for an
ion to make a transition from the state).|@Cohen-

These results are due to the constraint expressed inTannoudji [330] treated a similar system, in which the

Eqg. (A5). From the above, we also find

,‘TK2+1/2

Kl L l-€ o K2+ll2 L 1-€ .

(A8)

3
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incoherent excitation was absen£0), but a
monochromatic perturbation was present. The time
derivative of the thermal average of the number of
vibrational quanta is
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4R . B .
%E 2 NPnn = 7(n+1) 2 n(n+1)Pn+1n+l
n=0 n=0
—y >, Npm
n=0
—y(2n+1) 2 N2 pon
n=0

+7ﬁ 2 r]zpn—ln—l

n=1
(B2)
The sums can be simplified to
2 N(N+1)pneanes = 2 (N+1-1)0+1)pne1ne
n=0 n=0
= 2 (n+1)2 Pn+1n+1
n=0
_2 (n+1)pn+1n+l
n=0
= 2 nzpnn_ E NPnn
n=0 n=0
(B3)
and
E r.|2pn—ln—1: E [(n_1)2+2n_1]pn—1n—1
n=1 n=1
= > [(n-1P+2(n-1)+1]pr-10s
n=1
= E N? pon +2 2 I"Pnn"'z Pnn
n=0 n=0 n=0
= 2 n? P +2 E Npnn +1.
n=0 n=0
(B4)
Collecting terms, we have
> Npm= [y(A+1) —y(2R+1)+yA] > n? pn,
n=0 n=0
+ [y (1) —y+2y71] D) Nppot y7
n=0
=—y > Nput Y7,
n=0
(B5)

323

or
d(n) _

dt

y(N)+yI. (B6)

In the steady statén) = mr, independent o (see also,
Ref. [121], p. 97).
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Note added in proof

Some recent experiments are relevant to the subjects
of this paper. In addition to the work at NIST [72,191]
and Garching [219], other groups have realized
Doppler-cooled “arrays” of ions which might be used as
quantum registers [331-335]. The motional modes of
two trapped ions have recently been laser-cooled to the
ground state [336] and differentially addressed to make
approximate Bell states [337]. Recent experiments on
neutral atoms confined in optical lattices have éyed
sideband laser cooling using stimulated-Raman transi-
tions [338,339]; these experiments have achieved cool-
ing to (ny=0 with high efficiency [338,340]. Quantum
state engineering and manipulation, and schemes for
guantum logic will follow [340-342].
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