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Abstract

Celiac disease (CD) is a gluten-sensitive enteropathy that develops in
genetically susceptible individuals by exposure to cereal gluten proteins.
This review integrates insights from immunological studies with results
of recent genetic genome-wide association studies into a disease model.
Genetic data, among others, suggest that viral infections are implicated
and that natural killer effector pathways are important in the patho-
genesis of CD, but most prominently these data converge with existing
immunological findings that CD is primarily a T cell–mediated im-
mune disorder in which CD4+ T cells that recognize gluten peptides in
the context of major histocompatibility class II molecules play a central
role. Comparison of genetic pathways as well as genetic susceptibility
loci between CD and other autoimmune and inflammatory disorders
reveals that CD bears stronger resemblance to T cell–mediated organ-
specific autoimmune than to inflammatory diseases. Finally, we present
evidence suggesting that the high prevalence of CD in modern soci-
eties may be the by-product of past selection for increased immune
responses to combat infections in populations in which agriculture and
cereals were introduced early on in the post-Neolithic period.
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CD: celiac disease

HLA: human
leukocyte antigen

TG2:
transglutaminase 2

T1D: type 1 diabetes

HISTORY AND KEY FEATURES
OF CELIAC DISEASE

The first clear description of celiac disease (CD)
was found in the writings of the Greek physician
Aretaeus between the first and second centuries
AD (reviewed in References 1 and 2). CD was
described as an intestinal disorder associated
with diarrhea and malabsorption occurring in
children and adults, more frequently in women
than in men (3). The idea that the disease was
linked to food ingestion was brought forward
in 1888 by Gee (4). This idea was confirmed in
the 1950s, when Dicke and colleagues (5) es-
tablished that the consumption of wheat and
rye brought on CD and that removing these
grains from the diet resulted in a marked im-
provement in the condition. In 1954, Paulley
(6) became the first to report that the clinical
manifestations of CD are linked to destruction
of the lining of the small intestine. Many years
later, Marsh (7) established a histological classi-
fication of celiac lesions, which range from hy-
perproliferative crypts with intraepithelial lym-
phocytosis to total villous atrophy.

Around the period in which important
progress was made in the clinical and histo-
logical definition of CD, epidemiological stud-
ies showed that twins and first-degree relatives
have a much higher incidence of CD than do
members of the general population, indicating
a genetic component in CD (8–11). A link to hu-
man leukocyte antigen (HLA) alleles was sug-
gested in pioneering studies by the Strober (12)
and Cooke (13) groups, who showed that 88%
of adult CD patients in the United States and
England have the HLA-B8 antigen, compared
with 22–30% of controls. Later, it was found
that the association is stronger with HLA-DR3
(14, 15) and HLA-DQ2 (16). Cloning of major
histocompatibility (MHC) class II genes finally
revealed that the genes encoding an HLA-DQ2
variant and HLA-DQ8 are the causative genes
for CD (17, 18). Insights into the molecular ba-
sis of the association of CD with MHC class
II molecules were provided more than 30 years
after the first evidence for an HLA association
was found (19–26).

Interestingly, during the establishment of
the association of CD with HLA genes,
Ferguson et al. (27) and Ferguson &
MacDonald (28) reported that CD is associ-
ated with a lymphocyte-mediated immunity
to gluten within the small intestinal mucosa
and that T cell–mediated immunity causes
villous atrophy and crypt hyperplasia in an
allograft rejection model. These observations
were fully appreciated when immunologi-
cal studies performed on intestinal biopsies
showed that inflammatory gluten-reactive
T cells recognized gluten selectively in the
context of HLA-DQ2 or HLA-DQ8 molecules
(29, 30) and were present only in the small
intestinal mucosa of individuals with CD (31).
In addition to providing a molecular basis for
the association with MHC class II molecules,
these studies suggested that HLA-DQ2-
or HLA-DQ8-restricted CD4+ T cells are
critical to the pathogenesis of CD. Why gluten
peptides, which are very rich in glutamines but
very poor in acidic residues, bind to HLA-DQ2
and HLA-DQ8 molecules that have a prefer-
ence for negatively charged peptides remained
enigmatic until it was found that gluten is an ex-
cellent substrate for transglutaminase 2 (TG2;
also known as tissue transglutaminase) (32, 33).
This enzyme converts glutamine residues into
negatively charged glutamate residues in a pro-
cess termed deamidation. Strikingly, Schuppan
and colleagues (34) found that CD patients de-
velop autoantibodies against the same enzyme,
which suggests that CD has an autoimmune
component despite its induction by a dietary
antigen (see discussion of the mechanism
underlying the induction of autoantibodies in
the section entitled Immunological Model of
Celiac Disease Pathogenesis). Accompanying
antibodies to TG2 as well as to gluten is a
massive plasmacytosis in the lamina propria
with dominance of immunoglobulin A (IgA)
plasma cells in the overt celiac lesion (35). The
relationship between CD and autoimmunity is
further supported by epidemiological studies
that show a link between CD and autoimmune
disorders, in particular type 1 diabetes (T1D)
and autoimmune thyroiditis (36).
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IEL: intraepithelial
lymphocyte

NK: natural killer

Although the role of CD4+ T cells in CD
pathogenesis is well established, these cells’ ef-
fector role in mediating tissue damage has been
questioned by studies in human and mouse sug-
gesting that CD4+ T cell–mediated adaptive
antigluten immunity is necessary but not suf-
ficient to induce intestinal damage, specifically
villous atrophy. This idea had been proposed in
1993 by Ferguson et al. (37, p. 150), who wrote:

Although mucosal immunological sensi-
tization is an invariable feature of celiac
disease, it is not the precipitating factor for
the expression of the full intestinal lesion;
a second factor drives the enteropathy from
minimal (latent) to overt. . . Candidate factors
include an episode of hyperpermeability,
nutrient deficiency, increased dietary gluten,
impaired intraluminal digestion of ingested
gluten, adjuvant effects of intestinal infection
and a non-HLA associated gene.

We know now that CD is a complex multi-
genic disorder that involves HLA and non-
HLA genes, adaptive and innate immunity, and
environmental factors.

In addition to increased numbers of T cells
and plasma cells in the lamina propria, there
is, early on in the disease process, a marked
increase in the number of intraepithelial lym-
phocytes (IELs) (7). The role of IELs in CD
pathogenesis had long been disregarded be-
cause no link to MHC class I genes could be es-
tablished (38) and no gluten-specific IELs could
be identified. However, the increase in cyto-
toxic T cell receptor (TCR)αβ+ IELs typically
correlates with the presence of villous atrophy
(39), and the malignant transformation of IELs
is a hallmark of CD (40, 41), which suggests that
IELs are implicated and abnormally activated in
CD. A breakthrough came with studies showing
that cytotoxic CD8+ TCRαβ+ IELs express-
ing activating natural killer (NK) cell receptors
induced the killing of intestinal epithelial cells
expressing stress- and inflammation-induced
nonclassical MHC class I molecules (42–46).
These findings unraveled the key role played by
CD8+ IELs in inducing villous atrophy (47).

Despite the numerous advances in the field
of immunological disorders, many questions
remain unanswered. CD is the only human
immune-mediated disease for which we have
comprehensive immunological information on
the target tissue under normal and diseased con-
ditions, in addition to extensive epidemiological
and genetic data. In this review, we discuss CD
pathogenesis and its relationship to other au-
toimmune and inflammatory disorders in light
of the knowledge obtained from these different
fields of investigation.

EPIDEMIOLOGY OF A
COMPLEX DISEASE

The Celiac “Iceberg” or the
Clinical and Pathological Spectrum
of Celiac Disease

CD can occur at all ages following the intro-
duction of gluten to the diet. Similar to most
autoimmune disorders, CD is more frequently
(twice as often) found in women than in men
(48). The clinical expression of the disease is
very eclectic: The most typical manifestations
are related to nutrient malabsorption (diarrhea,
failure to thrive in children, anemia, etc.) (49).
The diagnosis of CD is made based on the
presence of anti-TG2 antibodies and intestinal
villous atrophy (see sidebar). CD has a wide
biological, histological, and clinical spectrum.
Some healthy family members of CD patients
show a local increased inflammatory response
to rectal gluten challenge (50). Other individ-
uals with anti-TG2 antibodies have normal
intestinal morphology but can present with
gluten-sensitive skin lesions in the context of
a disease known as dermatitis herpetiformis
(47). Still other patients present typical CD
features with severe malabsorption and total
villous atrophy. Finally, patients with the most
severe form of the disease become refractory
to a gluten-free diet and develop enteropathy-
associated T cell lymphomas. Due to the het-
erogeneity of CD manifestations, investigators
(51–55) have proposed a representation of CD
as an iceberg reflecting different forms and/or
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KEY FEATURES OF CELIAC DISEASE

1. Gluten and gluten-related proteins present in wheat, rye, and
barley are the causative antigens of CD.

2. Histological lesions are characterized by the presence of crypt
hyperplasia, intraepithelial lymphocytosis, and destruction of
the surface epithelial lining of the small intestine.

3. Clinical presentation is eclectic, but the most characteristic
presentations are linked to the malabsorption of nutrients.

4. The presence of autoantibodies directed against TG2 suggests
that CD has an autoimmune component.

5. Epidemiological studies show a high prevalence of autoim-
mune disorders in CD patients and, conversely, a high inci-
dence of CD in autoimmune patients.

6. CD occurs almost exclusively in patients who express the
MHC class II HLA-DQ2 and HLA-DQ8 molecules.

7. Posttranslational modifications of gluten by TG2 result in the
introduction of acidic residues and better binding of gluten
peptides to the HLA-DQ2 and HLA-DQ8 molecules.

8. CD4+ T cells in the lamina propria of CD patients recognize
gluten peptides in the context of HLA-DQ2 or HLA-DQ8,
and the preferential presentation of gluten peptides by these
molecules explains the HLA association.

9. In CD patients, there is an expansion of cytotoxic IELs that ex-
press activating NK cell receptors, which recognize stress- and
inflammation-induced nonclassical MHC class I molecules.
These NK receptors mediate epithelial cell destruction by
lowering the TCR-activation threshold of IELs or by medi-
ating direct TCR-independent killing.

stages of antigluten immunity. Expanding on
Ferguson et al.’s hypothesis, we proposed that
to develop villous atrophy, patients must have
an intestinal stress response that, in association
with adaptive antigluten immunity, leads to
the activation of IELs and villous atrophy (56).
Patients who have only the adaptive antigluten
immune response would have anti-TG2
antibodies and possible intraepithelial lympho-
cytosis but would conserve a normal intestinal
architecture (57). Conversely, patients with
epithelial stress and no adaptive antigluten im-
munity would show signs of gluten sensitivity
in the absence of anti-TG2 antibodies (56). In
any case, the celiac iceberg suggests that mul-
tiple “hits” are required to develop the classical

features of CD, namely adaptive antigluten
immunity and villous atrophy. Future studies
will help delineate the different clinical and
pathological representations of dysregulated
immune responses to gluten, as well as their
underlying genetic risk factors. One day we
may conclude that, depending on the genetic
background and environmental factors, some
CD patients will develop villous atrophy,
whereas other patients will suffer from gluten-
induced irritable bowel syndrome or from a
neurological disease such as gluten ataxia.

Celiac Disease Is a Multifactorial
Disorder Whose Development Is
Controlled by a Combination of
Genetic and Environmental
Risk Factors

CD is a complex disorder, the development of
which is controlled by a combination of genetic
and environmental risk factors. The primary
environmental factor associated with the devel-
opment of CD is gluten consumption. The crit-
ical role played by wheat gluten (consisting of
gliadins and glutenins) and the related proteins
of rye and barley (58) is illustrated by the fact
that, under a gluten-free diet, clinical symptoms
of disease, anti-TG2 antibodies, and villous at-
rophy typically recede. From a genetic perspec-
tive, susceptibility to CD is strongly associated
with the MHC class II molecules HLA-DQ2
and HLA-DQ8. Indeed, almost all patients with
CD express at least one of these HLA molecules
(17, 18).

Given the key roles played by gluten (envi-
ronment) and HLA-DQ2 and HLA-DQ8 (ge-
netics) in the development of CD, one might
predict that the regions of the globe where
these risk factors are found at higher frequen-
cies should present elevated rates of CD. We
compiled the prevalence of CD, the levels of
wheat consumption, and the frequencies of
HLA-DQ2 and HLA-DQ8 for different re-
gions of the globe (Figure 1). Overall, our anal-
yses reveal that although these two factors are
required for the development of the disease, in
the absence of other factors they are not strong
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a b

c d

Prevalence of celiac disease Wheat consumption

Haplotype frequency of DR3-DQ2 Haplotype frequency of DR4-DQ8

Unknown
0.1 – 0.5%
0.6 – 1%
1.1 – 1.5%
>1.6%

0 – 5%
6 – 10%
11 – 15%
16 – 20%
21 – 25%

Not available
Not available
0 – 5%
6 – 10%
11 – 15%
16 – 20%

Kcal/person/day
13 – 398
399 – 783
784 – 1,167
1,168 – 1,552

Figure 1
Prevalence of celiac disease (CD), wheat consumption, and frequencies of the DR3-DQ2 and DR4-DQ8 haplotypes worldwide.
(a) Prevalence of CD based on the screening of adult populations or on the screening of child populations when the prevalence in adults
has not been determined. (b) Worldwide distribution of wheat consumption levels. Data were obtained from the Food and Agriculture
Organization of the United Nations (http://www.fao.org). (c) Frequency of the DR3-DQ2 haplotype (DRB1∗0301-DQA1∗0501-
DQB1∗0201). (d ) Frequency of the DR4-DQ8 haplotype (DRB1∗04-DQA1∗03-DQB1∗0302).

predictors of the prevalence of CD in most parts
of the world. Indeed, and possibly surprisingly
at first glance, we do not observe a significant
correlation between the prevalence of CD and
the levels of wheat consumption, the sum of
the frequencies of DR3-DQ2 and DR4-DQ8,
or the product of both factors [i.e., the fre-
quency of (DQ2+DQ8) × wheat consumption]
(Figure 2a–c). However, the dual requirement
of wheat and HLA for the development of
the disease is well illustrated in Burkina Faso,
where the prevalence of CD is zero, probably
due to a very low frequency of HLA-DQ2 or
HLA-DQ8 genes and low levels of wheat
consumption (59).

Further analysis reveals that the overall lack
of correlation between wheat consumption
and CD-predisposing HLA expression with
CD prevalence is driven primarily by a small

number of clear outlier populations spread
over most of the continents: Algeria, Finland,
Mexico, north India, and Tunisia (Figure 2).
Indeed, by excluding these populations, we
observe a significant correlation between the
combination of both risk factors and the inci-
dence of CD worldwide (correlation coefficient
R2 = 0.4; P value = 0.002) (Figure 2d ). We
also observe a significant correlation between
the prevalence of CD and wheat consumption
(R2 = 0.14, P value = 0.03) and the preva-
lence of CD and the frequency of DQ2+DQ8
haplotypes (R2 = 0.24, P value = 0.03). The
existence of clear outlier populations, together
with the fact that the observed correlations are
far from complete (i.e., R2 = 1), suggests that
other environmental and genetic factors must
contribute to the development or pathogenesis
of CD.
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Figure 2
Correlations between the prevalence of celiac disease (CD), wheat consumption, and the frequencies of the DR3-DQ2 and DR4-DQ8
haplotypes. (a) Correlation between the prevalence of CD ( y axis) and wheat consumption (x axis). (b) Correlation between the
prevalence of CD ( y axis) and the sum of the frequencies of the DR3-DQ2 and DR4-DQ8 haplotypes (x axis). (c) Correlation between
the prevalence of CD ( y axis) and the product of the frequencies of DR3-DQ2+DR4-DQ8 and the amounts of wheat consumption (x
axis). (d ) Correlation between the prevalence of CD ( y axis) and the product of the frequencies of DR3-DQ2+DR4-DQ8 and the
amounts of wheat consumption (x axis) after excluding the following outlier populations: Algeria, Finland, Mexico, north India, and
Tunisia.
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In the Maghreb area, where wheat and bar-
ley are the major staple foods, there is a re-
markable disparity between the incidences of
CD in the neighboring countries of Algeria
and Tunisia. Indeed, despite similar frequen-
cies of the DR3-DQ2 and DR4-DQ8 haplo-
types (60–62), the prevalence of CD in Algeria
(5.6%) is by far the highest reported worldwide
(63), whereas the prevalence of CD in Tunisia
(0.28%) remains one of the lowest (Figures 1
and 2) (64). A similar pattern is observed be-
tween two other adjoining countries, Finland
and Russia (Figures 1 and 2). Although these
two countries have similar wheat consumption
levels and comparable HLA haplotype frequen-
cies, the prevalence of CD in Finland is 1–2.4%
(65–67), whereas in the adjacent Russian repub-
lic of Karelia, the prevalence of CD is consid-
erably lower (0.2%) (68). Mexico is an interest-
ing example where, despite a very low level of
wheat consumption, a high prevalence of sero-
logical CD has been reported (69). Altogether,
these observations suggest that other environ-
mental and/or genetic factors can significantly
impact disease outcome. Such factors could, for
instance, influence the microbiome of individ-
uals, which in turn could change the immuno-
logical responses to oral antigens. It would be
of great interest to obtain more information on
CD for distinct regional areas that could display
different dietary habits and/or genetic features,
as the data available do not necessary reflect
the whole-country situation. For example, in
northern China, where there are a high preva-
lence of CD-associated HLA and a high level of
wheat consumption, there may be a high preva-
lence of CD (70) that would be missed when
looking at the country as a whole. This pos-
sibility remains to be investigated, as we have
only very limited information on CD preva-
lence in China. Altogether, these observations
suggest that similar levels of wheat consump-
tion and predisposing HLA expression can be
associated with strikingly different levels of CD
prevalence, which highlights the role of envi-
ronmental factors and other genetic risk factors
in CD pathogenesis.

ROLE OF THE HUMAN
LEUKOCYTE ANTIGEN
LOCUS IN CELIAC
DISEASE PATHOGENESIS

Genetic Insights

HLA is the single most important susceptibil-
ity locus for CD (71). As mentioned above, the
primary genetic factors associated with CD are
the MHC class II genes that encode HLA-DQ2
and HLA-DQ8 (Figure 3). HLA-DQ2 is, how-
ever, more strongly associated with CD than
HLA-DQ8 is (38). For example, 89% of CD
patients from France have one or two copies of
HLA-DQ2.5, compared with 21% in a matched
control population (72). That HLA-DQ2 and
HLA-DQ8 molecules are also commonly found
in healthy individuals demonstrates that they
contribute to but are not sufficient for disease
development.

Several haplotypes encoding for the risk
HLA-DQ2.5 heterodimer have consistently
been associated with CD in several populations
(Figure 3). Indeed, the risk heterodimer
HLA-DQ2.5 can be encoded in cis, when both
DQA1∗0501 and DQB1∗0201 are located on
the same DR3-DQ2 haplotype, or in trans,
when these two molecules are located on
different haplotypes, namely DR5-DQ7 and
DR7-DQ2 (Figure 3). The resulting cis and
trans HLA-DQ2.5 heterodimers differ by only
one residue in the leader peptide of the DQ α-
chains (DQA1∗0501 versus DQA1∗0505) and
by one residue in the membrane-proximal do-
main of the DQ β-chains (DQB1∗0201 versus
DQB1∗0202) (73). It is unlikely that these dif-
ferences have any functional consequence, and
they are considered to confer a similar disease
risk. In contrast, there is a dramatic difference
in the genetic risk conferred by HLA-DQ2.5
and by HLA-DQ2.2; see below (Figure 3) (74).

Disease susceptibility depends on the
dosage effect of the DQ2.5 heterodimer
(75, 76). Homozygous individuals for the
DR3-DQ2 haplotype or heterozygous DR3-
DQ2/DR7-DQ2 express the highest levels
of DQ2.5 heterodimers (77). These two
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DQ8
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Haplotype 
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for celiac disease 
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DRB1* DQB1* DQA1* 

HLA-DQ8

030302 04DR4-DQ8
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Figure 3
Human leukocyte antigen (HLA) associations in celiac disease (CD). HLA-DQ2 is the strongest genetic risk
factor associated with CD. The great majority of CD patients express the HLA-DQ2.5 heterodimer
encoded by the HLA-DQA1∗05 (α-chain) and HLA-DQB1∗02 (β-chain) alleles. These two alleles are
carried either in cis on the DR3-DQ2.5 haplotype or in trans in individuals who are DR5-DQ7 and
DR7-DQ2.2 heterozygous. HLA-DQ2.2, another variant of the HLA-DQ2 molecule, is encoded by the
HLA-DQA1∗0201 and HLA-DQB1∗02 alleles and confers a very low risk for CD on its own. DQ2-negative
patients express HLA-DQ8, which is encoded by the DR4-DQ8 haplotype.

genotypes are associated with the highest risk
of CD. A dosage effect for DQ8 molecules
has also been suggested (78). Furthermore,
refractory CD patients who do not respond to a
gluten-free diet and have aberrant intestinal T
cells have greatly increased levels of homozy-
gosity for the DR3-DQ2 haplotype (44–62%),
compared with other CD patients (20–24%)
(79).

Along with the genes encoding the DQ
molecules, the HLA locus contains additional
immune-related genes that may impact suscep-
tibility to CD. In accordance with this hypoth-
esis, several studies have suggested that genetic
variation in other HLA-associated genes, such
as MICA, MICB, and TNF, can also predispose
to CD (reviewed in Reference 38). However,
the observed associations should be interpreted
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LD: linkage
disequilibrium

RA: rheumatoid
arthritis

cautiously because most of these studies failed
to formally correct for the levels of linkage dis-
equilibrium (LD) (i.e., genetic association) be-
tween these genes and the genes encoding the
DQ risk molecules. Future resequencing or fine
mapping studies of the HLA regions in large
patient cohorts should help determine whether
or not the HLA region contains susceptibility
factors in addition to those already recognized
for the DQ region.

The Immunological Role of the
HLA-DQ2 and HLA-DQ8 Molecules

The genetic and epidemiological findings that
position HLA-DQ2 and HLA-DQ8 molecules
at the center of CD pathogenesis are supported
by functional studies showing that gluten-
specific CD4+ T cells can be isolated from the
mucosa of CD patients but not from that of
healthy controls (31). Further, such CD4+ T
cells selectively recognize gluten in the con-
text of HLA-DQ2 or HLA-DQ8 molecules
and have a strong preference for deami-
dated gluten peptides over native gluten pep-
tides, which lack negatively charged residues
(Figure 4) (21, 29, 32, 33). Altogether, these
findings indicate that the pathological re-
sponse in the intestinal environment associ-
ated with the development of villous atrophy
is HLA-DQ2 or HLA-DQ8 restricted and is
directed mainly against deamidated gluten pep-
tides. Deamidation is mediated by the enzyme
TG2, which targets specific glutamine residues,
particularly in glutamine-X-proline sequences
(where X denotes any amino acid) (80, 81). Pro-
line residues, like glutamine residues, are highly
prevalent in gluten. Importantly, these residues
prevent the complete digestion of gluten by in-
testinal enzymes. This explains how long gluten
peptides that are good substrates for TG2 and
can bind MHC molecules can be generated in
the intestinal environment, in contrast to most
other dietary proteins, which are readily fully
digested (82).

The molecular basis for the association of
CD with HLA-DQ2 and HLA-DQ8 is linked
to the physicochemical properties of these

MHC molecules. Both HLA-DQ2 and HLA-
DQ8 molecules have positively charged pockets
that have a preference for negatively charged
peptides. HLA-DQ2 has a lysine at position
β71, which confers its preference for binding
peptides with negatively charged residues at
positions P4, P6, and P7 (22). Both HLA-DQ2
and HLA-DQ8 are characterized by the lack of
an aspartic acid at position β57 (83). This β57
polymorphism renders the P9 pocket of HLA-
DQ8 basic, which explains why HLA-DQ8 has
a preference for negatively charged residues at
P9. Notably, the role of β57 polymorphism in
HLA-DQ2 remains unclear. In addition, HLA-
DQ8 has a preference for negatively charged
residues at position P1, and therefore many of
the HLA-DQ8-restricted gluten epitopes har-
bor two negatively charged glutamate residues,
specifically in P1 and P9 (Figure 4). Overall,
these observations exemplify how an enzyme
present in a tissue environment can give an anti-
gen improved binding to particular MHC class
II molecules and promote pathogenic T cell
responses.

Rheumatoid arthritis (RA) is another ex-
ample of how posttranslational modifications
by enzymes can promote T cell–mediated im-
mune disorders by increasing the affinity of
the causative antigen to the predisposing HLA
molecules, in this case mainly HLA-DR4.1
(Figure 4) (reviewed in Reference 84). This
HLA molecule has a basic P4 pocket that favors
negatively charged or polar residues. This pref-
erence is well illustrated by the crystal structure
of HLA-DR4.1 in complex with the 1168–1180
type II collagen peptide, which reveals aspartic
acid in the P4 pocket of HLA-DR4.1 (85). No
definite autoantigen has been identified in RA,
but there are several candidates, including type
II collagen, vimentin, and fibrinogen. The en-
zyme peptidylarginine deiminase can convert
the positively charged guanidine group of argi-
nine residues into the uncharged ureido group
of citrulline residues through an enzymatic pro-
cess known as citrullination, and citrullinated
model peptides of candidate autoantigens bind
with improved affinity to RA-associated HLA-
DR molecules (Figure 4) (86).
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Figure 4
Posttranslational modification of antigens improves the binding of peptides to human leukocyte antigen (HLA) molecules in the
context of celiac disease and rheumatoid arthritis. Gluten is a very good substrate for transglutaminase 2 (TG2), which converts
glutamine residues to glutamate. This process, known as deamidation, generates peptides with negatively charged amino acid residues
that bind with higher affinity to the disease-associated HLA-DQ2 or HLA-DQ8 molecules. P4, P6, and P7 pockets in HLA-DQ2 and
P1 and P9 pockets in HLA-DQ8 have a preference for negatively charged anchor residues. (Left) Binding of a gluten peptide with
glutamate in P6, and binding of a gluten peptide with glutamate residues in P1 and P9, to HLA-DQ2 and HLA-DQ8, respectively.
(Right) In rheumatoid arthritis, the deimination of arginine to citrulline, also known as citrullination, is a posttranslational modification
driven by peptidylarginine deiminase (PAD). This enzymatic conversion changes the positively charged arginine side chain to a neutral
form that can be better accommodated in the P4 pocket of the HLA-DR4.1 molecule.

These observations pose the question
of how these enzymes are induced and/or
activated. In the case of CD, TG2 is highly ex-
pressed in the intestine but is not constitutively

active (87). Studies in humanized HLA-DQ8
mice suggest that deamidation is not required
for the initiation of the antigluten CD4+ T
cell response but that it plays a role in the
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amplification of this response. Amplification
of the antigluten immune response is achieved
through the recruitment by HLA-DQ8 of
cross-reactive TCRs that recognize native
and deamidated peptides (24). The molecular
basis for this process is that the polymor-
phism at position β57 enables HLA-DQ8
to switch from interaction with a negatively
charged residue in the TCR to interaction with
a negatively charged residue in the peptide.
Therefore, not only can the antigluten immune
response be initiated in the absence of TG2
activation, it can also trigger the activation
of TG2. However, environmental factors,
such as viral infections, may induce expression
and activation of tissue enzymes by inducing
inflammation and tissue damage. In particular,
this may be the case for HLA-DQ2 individuals
because, unlike HLA-DQ8-restricted T cells,
HLA-DQ2-restricted T cells have an exquisite
preference for deamidated peptides (88). In
the case of RA, the presence of inflammatory
cells increases expression of peptidylarginine
deiminase (89). Finally, several recent studies
suggest that posttranslational modifications
may play a role in the pathogenesis of T1D,
which is associated with HLA-DQ8 and HLA-
DQ2 molecules (90). Interestingly, the β57
polymorphism in I-Ag7, the mouse homolog
of HLA-DQ8, is required for the development
of T1D (91, 92). The β57 polymorphism in
I-Ag7, which is characteristic of NOD mice
that spontaneously develop T1D, acts on the
selection of autoreactive TCR repertoire in
the same way that HLA-DQ8 acts on the
selection of gluten-specific TCR (25). Future
studies will determine whether cross-reactive,
autoreactive TCR with a negative charge in the
CDR3 plays a role in the pathogenesis of T1D.

The immunological basis for the HLA gene
dosage effect is that there are threshold ef-
fects for disease development in which HLA-
DQ expression and the available number of
T cell–stimulatory gluten peptides are critical
limiting factors (77). Homozygous individuals
express more predisposing HLA-DQ2.5 and
HLA-DQ8 molecules on the surface of their
antigen-presenting cells and consequently can

recruit a T cell response of larger magnitude.
That the T cell response must reach a certain
threshold to be pathogenic may also explain
why another DQ2 variant (DQ2.2), encoded
by the DQA1∗0201 and DQB1∗02 alleles of the
DR7-DQ2 haplotype, is barely associated with
CD on its own. The α-chain of DQ2.5 carries a
tyrosine at position 22, which in contrast to the
phenylalanine of DQ2.2 forms hydrogen bonds
with the peptide main chain. Consequently,
DQ2.5 forms more stable complexes with
gluten peptides than does DQ2.2. This stability
allows DQ2.5 to better retain gluten peptides
for sustained presentation to T cells, thereby in-
creasing the likelihood that the T cell response
will reach the pathogenic threshold (88).

Taken together, epidemiological, genetic,
and immunological studies suggest that asso-
ciations with particular MHC molecules in CD
and probably other tissue-specific autoimmune
disorders are driven by the fact that the T cell
response must achieve a certain threshold to
be pathogenic, that is, to induce tissue dam-
age. This threshold may be achieved by se-
lecting for HLA molecules that allow for the
most stable MHC-peptide complexes (DQ2.5
versus DQ2.2), increasing the number of HLA
molecules (gene dosage effect), inducing post-
translational modifications that increase the
affinity of the causative antigen to the HLA
molecule (TG2 and deamidation), and recruit-
ing distinct cross-reactive TCR repertoires that
can recognize native and enzymatically mod-
ified antigens (e.g., the β57 polymorphism in
HLA-DQ8 that allows it to act as a switch).

ROLE OF NON–HUMAN
LEUKOCYTE ANTIGEN
LOCI IN CELIAC DISEASE
PATHOGENESIS

Susceptibility to CD has a strong genetic basis
outside the HLA locus. This hypothesis is sup-
ported by the observation that siblings of CD
patients (who share 50% of the their genome)
have a 30-fold-higher risk of developing the dis-
ease than do individuals in the general popu-
lation (10). More importantly, HLA-identical
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GWAS: genome-wide
association studies

SNPs: single-
nucleotide
polymorphisms

IBD: inflammatory
bowel disease

siblings and dizygotic twins have concordance
rates in disease outcome of 30% and 10%,
respectively, whereas the concordance rate—
approximately 75%—is extremely elevated in
monozygotic twins (93). The recent introduc-
tion of low-cost, high-throughput genotyping
platforms prompted researchers to interrogate
the whole genome for genetic associations with
CD. These so-called genome-wide association
studies (GWAS) identified a large number of
genes implicated in CD and other autoimmune
diseases (94). Below, we discuss (a) how GWAS
have helped decipher the relative contributions
of HLA-linked and non-HLA-linked loci to
CD susceptibility and (b) the immunological in-
sights gained from these studies.

Recently, several GWAS have attempted to
find non-HLA genomic regions associated with
CD. To date, 40 such genomic regions har-
boring 64 candidate genes have been identified
(Table 1) (95). These regions correspond to
LD blocks that, in most cases, contain multiple
genes. Thus, the single-nucleotide polymor-
phisms (SNPs) that have so far been associated
with CD are termed tag SNPs of the risk hap-
lotypes, but they themselves are not the causal
variants associated with the disease. Interest-
ingly, although the causative mutations have
yet to be identified, 53% of the CD-associated
SNPs are genetic variants for which different
genotypes correlate with differences in expres-
sion levels of at least one physically close gene;
these differences are referred to as cis expression
quantitative trait loci (cis eQTL) SNPs. The
number of cis eQTL SNPs observed among
CD-associated SNPs is much larger than would
be expected by chance (95), which suggests that
some of the identified risk variants (or other
SNPs linked to them) might influence CD sus-
ceptibility through a mechanism of altered gene
expression rather than through changes at the
protein-coding level.

The individual impact of each of these re-
gions on disease susceptibility is small, and to-
gether these regions explain only ∼5% of the
genetic heritability (95). In contrast, the HLA
locus alone accounts for 35% of the genetic
heritability (96). Thus, although much progress

has been made, approximately 50% of the ge-
netic heritability remains to be explained. This
missing heritability can be partially accounted
for by the fact that the associations found for
non-HLA loci are, at least in most cases, not
with the actual causal variants associated with
CD, which might lead to an underestimation
of the impact of these loci in the pathogene-
sis of the disease. However, this finding alone
is probably not sufficient to explain the miss-
ing heritability, and the most likely explana-
tion is that many other common variants of
small effects and/or highly penetrant rare mu-
tations have yet to be identified. Alternatively,
epistatic interactions between risk genes may
occur. Epistasis has not yet been convincingly
demonstrated in CD (95), but the reason might
be that gene-gene interactions occur not be-
tween a single pair of genes but rather between
groups of genes, which is very difficult to test.

The loci identified so far, however, provide
important clues to the pathogenesis of and im-
munological pathways associated with CD. To
gain insight into the biological nature of the
candidate genes associated with CD, we consid-
ered functional annotation based on the Gene
Ontology and Kyoto Encyclopedia of Genes
and Genomes databases (Figure 5). The set of
genes associated with CD appears to be remark-
ably enriched for immune genes, particularly in
genes coding for chemokine receptor activity,
cytokine binding, T cell activation, and lym-
phocyte differentiation; this finding supports
the idea that CD is a T cell–mediated immune
disorder. There is also enrichment for genes
involved in stress pathways, innate immunity,
and tumor necrosis factor receptor superfamily
signaling. All these enrichments are also found
for other autoimmune disorders and inflamma-
tory bowel disease (IBD) (see section entitled
Overlap of Genetic Pathways and Loci with Au-
toimmune and Inflammatory Diseases). How-
ever, interestingly, the NK cell–activation and
interferon (IFN)-γ-production gene pathways
appear to be selectively enriched in CD, which
suggests that these pathways may be more im-
portant in CD than in other immune-mediated
disorders (Figure 5).
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Table 1 Celiac disease (CD) susceptibility loci

Loci associated with CD
Association with other autoimmune and/or inflammatory

disordersa,b

Locus Candidate gene(s) in the region Odds ratio RA T1D SLE MS PSO UC CrD

1p31.3 NFIA 1.11

1p36.11 RUNX3 1.12

1p36.23 PARK7, TNFRSF9 1.14

1p36.32 TNFRSF14, MMEL1 1.12 144

1q24.2 CD247 1.1

1q24.3 FASLG, TNFSF18, TNFSF4 1.1 145

1q31.2 RGS1 1.25–1.39 146

2p14 PLEK 1.14

2p16.1 REL, AHSA2 1.15 147 148

2q12.1 IL18RAP, IL18R1, IL1RL1, IL1RL2 1.19–1.28 146 149 149

2q31.3 ITGA4, UBE2E3 1.13

2q33.2 CTLA4, ICOS, CD28 1.14 150 151 152, 153

3p14.1 FRMD4B 1.19

3p21.31 CCR1, CCR2, CCRL2, CCR3, CCR5, CCR9 1.21–1.3 146

3p22.3 CCR4 1.13

3q13.33 CD80, KTELC1 1.13

3q25.33 IL12A, SCHIP1 1.35–1.36 154

3q28 LPP 1.23–1.29 155

4q27 KIAA1109, ADAD1, IL2, IL21 1.44–1.59 156 151

6p21.32 HLA-DQA1, HLA-DQB1 6.23–7.04 157 158–160 145, 161 154, 162,
163

164

6p25.3 IRF4 1.21

6q15 BACH2, MAP3K7 1.13 151, 165

6q22.33 PTPRK, THEMIS 1.17

6q23.3 TNFAIP3 1.23 144, 166 145, 167 168

6q25.3 TAGAP 1.16–1.21 146

7p14.1 ELMO1 1.14

10q22.3 ZMIZ1 1.12 154

11q24.3 ETS1 1.21 145, 169

12q24.12 SH2B3, ATXN2 1.2 155 151, 158

14q24.1 ZFP36L1 1.12

16p13.13 CIITA, SOCS1, CLEC16A 1.16 151, 159 170, 171 148

18p11.21 PTPN2 1.17 151, 159 158, 172,
173

21q22.3 ICOSLG 1.14 172

22q11.21 UBE2L3, YDJC 1.13 145

Xp22.2 TLR7, TLR8 1.14 174

aColored boxes indicate that the locus has also been associated with another inflammatory disorder or autoimmune disease. Blue boxes refer to associations found through
genome-wide association studies, and green boxes refer to associations found through gene candidate approaches. For the latter, we considered only associations that have been
replicated in at least two independent cohorts. References are provided inside the boxes.
bGenes located in the linkage disequilibrium block associated with CD. Abbreviations: RA, rheumatoid arthritis; T1D, type 1 diabetes; SLE, systemic lupus erythematosus; MS,
multiple sclerosis; PSO, psoriasis; UC, ulcerative colitis; CrD, Crohn’s disease.
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Figure 5
Gene ontology enrichment analysis for genes associated with celiac disease (CD). We used GeneTrail to test for an enrichment of
functional annotations among genes associated with CD. Shown are the fold enrichments ( y axis) observed for some of the most
significantly enriched biological functions (x axis). Background expectations were based on all human genes. P values were calculated
using a hypergeometric distribution, and we used the approach of Benjamini & Hochberg (143) to control the false discovery rate.
Abbreviations: CCR, chemokine receptor; IFN, interferon; NF-κB, nuclear factor κB; NK, natural killer; TNFR, tumor necrosis
factor receptor.

The 64 non-HLA genes (Table 1 and
Figure 6) identified to date can be classified
according to where they exert their function
in the immunological cascade, although some
of them can act at several levels (e.g., IL21).
Some genes, such as REL, which is part of the
nuclear factor κB (NF-κB) signaling pathway,
are implicated in numerous cell types and func-
tions. Others play a role in the thymic dif-
ferentiation of CD4+ T cells (e.g., THEMIS)
and CD8 T cells (e.g., RUNX3). Some are in-
volved in immunological processes that take
place in inductive sites such as the mesenteric
lymph nodes, where they regulate T cell (e.g.,

CD28 and IL2) and B cell (e.g., ICOS and
IL21) activation and promote the differentia-
tion of proinflammatory T cells (e.g., IL12A,
TLR7/TLR8, IRF4, IL1RL1, and IL18R1). Fi-
nally, others are implicated in cell migration
(e.g., different genes coding for chemokine re-
ceptors and ITGA4) and regulation of effector
cell functions (e.g., MAP3K7 and IL21, which
are part of the c-Jun N-terminal kinase activa-
tion pathway that is critical for the function of
activating NK receptors expressed by cytotoxic
IELs).

Altogether, GWAS have identified a se-
ries of genes implicated in adaptive and innate
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Figure 6
Integration of immunological pathways and celiac disease (CD)-associated genes into a model of CD pathogenesis. The figure is
subdivided into three distinct anatomical regions in which T cell differentiation (thymus), T cell polarization (inductive site), and
effector immune response (effector site) take place. Genes associated with CD by genome-wide association studies are listed in red
according to their potential implication in distinct immunological pathways. THEMIS and RUNX3 are involved in the thymic
differentiation of CD4 and CD8 T cells, respectively. Dendritic cells located in the lamina propria acquire a proinflammatory
phenotype upon viral recognition (TLR7/8 and IRF4) and migrate to the mesenteric lymph nodes (inductive site). There, they present
gluten peptides (HLA-DQA1, HLA-DQB1, and CIITA) to naive CD4 T cells and promote T cell activation (e.g., CD28, CD80, CTLA4,
CD247, PTPN2, SH2B3, TAGAP, IL2, and FASLG) and differentiation into inflammatory effector T cells (IL12A, IL18R1, IL18RAP,
IL1RL1, and IL1RL2). In addition, transglutaminase 2 (TG2) and gluten-specific B cells (that have internalized gluten-TG2 complexes)
receive help from gluten-specific T cells, become activated, and differentiate into immunoglobulin (Ig)A- and IgG-producing plasma
cells (ICOS, ICOSLG, IL21, and RGS1). Other genes regulate activation and migration of cytotoxic intraepithelial lymphocytes (IELs)
(MAP3K7, IL-21, CCR9, and RGS1). Finally, some genes are involved in cell migration [e.g., genes coding for chemokine receptors
(CCRs) and ITGA4], and others regulate tumor necrosis factor (TNF)-dependent pathways (TNFAIP3, TNFSF4, TNFSF18, TNFRSF9,
and TNFRSF14). Even though their genes have not been identified by genetic studies, interleukin (IL)-15 and interferon (IFN)-α play
a critical role in orchestrating the immune responses that lead to CD pathogenesis. IL-15 upregulates activating natural killer cell (NK)
receptors and licenses IELs to kill epithelial cells, whereas IFN-α promotes the differentiation of proinflammatory dendritic cells.
Abbreviations: HLA, human leukocyte antigen; TGF, transforming growth factor; Th, T helper cell.

immunity. As we discuss further below, unlike
IBD, for which genetic studies have yielded
some unexpected insights into the pathogen-
esis of the disease, almost all the genes iden-

tified in CD can be easily integrated into a
model based on immunological studies us-
ing mainly cells from human intestinal biopsy
samples.
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HOW GENOME-WIDE
ASSOCIATION STUDIES
AND IMMUNOLOGICAL
STUDIES CAN BE INTEGRATED
INTO A MODEL OF CELIAC
DISEASE PATHOGENESIS

Immunological Model of Celiac
Disease Pathogenesis

Phenotypic and functional immunolog-
ical studies in human suggest that both
gluten-specific CD4+ T cells and cytotoxic
intraepithelial T lymphocytes play a key role
in the development of CD, as defined by the
presence of anti-TG2 antibodies and villous
atrophy. The default immune response to an
oral antigen in the intestinal environment,
where transforming growth factor (TGF)-β
and retinoic acid are abundant, is the induction
of regulatory Foxp3+ CD4+ T cells that
produce anti-inflammatory cytokines such
as TGF-β and interleukin (IL)-10 (97–99).
The induction of an inflammatory CD4+ T
cell response to gluten implies that dendritic
cells in the intestinal mucosa of CD patients
have a proinflammatory rather than tolero-
genic phenotype. IFN-α, which is highly
expressed in CD mucosa (100), may play a
critical role in promoting the differentiation
of proinflammatory dendritic cells. The role
of IFN-α in CD pathogenesis is illustrated by
the development of CD in hepatitis C patients
treated with IFN-α (101), as well as by the
increased prevalence of CD among Down
syndrome patients (102). Indeed, chromosome
21 harbors the IFN-α receptor, which explains
why cells of Down syndrome patients show
increased levels of IFN-α receptor expression
and a greater response to type 1 IFNs (103).

Gluten-specific CD4+ T cells are central to
all aspects of CD pathogenesis. They proba-
bly assist in the induction of anti-TG2 anti-
bodies by providing help to anti-TG2 B cells
(104). This hypothesis is based on the observa-
tion that anti-TG2 antibodies develop only in
HLA-DQ2 or HLA-DQ8 individuals (105) and
recede when gluten is excluded from the diet
(106, 107). Gluten may form complexes with

TG2, which are internalized by TG2-specific B
cells. Such B cells can therefore present gluten
peptides at their surface in the context of HLA-
DQ2 or HLA-DQ8 molecules and can receive
help from antigluten CD4+ T cells to dif-
ferentiate into IgA and IgG anti-TG2 plasma
cells (104). However, the role of anti-TG2 and
antigluten antibodies in the development of the
celiac lesion remains to be defined. They may
amplify the inflammatory immune response to
gluten by increasing gluten uptake (108) and
by inducing the activation of Fc receptors ex-
pressed on granulocytes. Gluten-specific CD4+

T cells also play a role in tissue remodeling
via the production of IFN-γ and metallopro-
teinases (109). However, this role is not suffi-
cient to induce villous atrophy. It is thought that
epithelial damage is mediated by cytotoxic IELs
that express activating NK cell receptors, which
recognize stress- and inflammation-induced
ligands on intestinal epithelial cells (47). IL-
15 upregulates the activating NKG2D receptor
and confers NK-like properties—namely the
ability to kill in a TCR-independent manner
(43, 44, 110)—to IELs. Whether IFN-α, which
promotes NK cell activity, also plays a role in
the activation of IELs remains to be assessed. It
is very likely that gluten-specific CD4+ T cells,
which produce IL-21 (100) and IFN-γ (111),
also play a role in the activation of IELs. They
may do so by upregulating inflammatory lig-
ands on epithelial cells [e.g., IFN-γ promotes
upregulation of the nonclassical MHC class I
molecule HLA-E on epithelial cells (112)] and
by promoting cytolytic activity in IELs [e.g.,
IL-21 promotes NK-like activity in cytotoxic T
lymphocytes (113, 114)]. Refractory sprue is an
extreme case in which the presence of gluten-
specific CD4+ T cells is no longer required
for villous atrophy. This severe complication
of CD cannot be treated by gluten withdrawal
(115, 116). It is characterized by the presence of
IELs that have acquired an inherent and aber-
rant highly activated NK-like phenotype (115)
that is promoted and maintained by high lev-
els of IL-15 expression in the epithelium (117,
118). Refractory sprue is mimicked in an IL-15
transgenic mouse model, in which IL-15 has
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been modified such that it is secreted in an un-
controlled manner because it does not require
its private IL-15Rα receptor to be expressed on
the cell surface (119). In addition, it plays a role
in licensing cytotoxic IELs to become effective
killer cells and prevents TGF-β and regulatory
Foxp3+ T cells from blocking inflammatory ef-
fector responses (120, 121).

Overall, the value of the model of CD patho-
genesis presented in Figure 6 resides in its
foundation on human studies. However, as in
all models based on functional studies in hu-
mans, it is based more on correlations than
on the demonstration of cause-effect relation-
ships. Therefore, it is important to examine this
model in view of the susceptibility genes iden-
tified by GWAS.

Interactions Between Key
Immunological Markers of Celiac
Disease and Susceptibility Genes

On the basis of human studies suggesting that
IL-15 (42, 117, 122) and IFN-α (100) are
significantly increased in the celiac mucosa and
are central to CD pathogenesis (Figure 6) (44,
110, 117, 121), we might expect GWAS to
identify mutations in the coding or regulatory
regions of the genes encoding IFN-α and
IL-15. Intriguingly, however, no genetic
associations with CD have been found for the
genes encoding IL-15 or IFN-α. The lack
of association with these genes suggests that
the increased levels of these cytokines in CD
patients might be the by-product of the dereg-
ulation of genes that can modulate the levels
of these cytokines—that is, trans effects. We
therefore used the STRING database (123) to
look for known functional interactions among
CD susceptibility genes as well as between
CD susceptibility genes and IL-15 or IFN-α
(Figure 7). Our results show that 40 out of
the 64 candidate genes associated with CD
have a functional connection with one or more
other CD genes. The 40 genes that are part
of this CD susceptibility functional network
(out of the 64 reported in Table 1) probably
represent the best candidates to harbor the
causative associations with CD. In addition,

we noticed that several of the genes in this
network have a direct association with IL-15,
IFN-α, or both (Figure 7). This observation
supports the hypothesis that the increased
levels of IL-15 and/or IFN-α observed in CD
patients probably result from functional vari-
ation in this network. For example, functional
variation that increases the responsiveness of
the transcription factor REL, a member of
the NF-κB complex, could ultimately lead
to increased levels of IL-15, as this gene is
regulated by NF-κB (124, 125). However,
increased signaling via Toll-like receptor
(TLR)7 or TLR8, which are innate receptors
involved in the detection of viral infection,
would lead to increased IFN-α production.

The results from the network analysis may
also explain the heterogeneity of the cellular
phenotypes observed in CD patients. Indeed,
this analysis demonstrates that, depending
on the combination of genetic susceptibility
markers present in each patient, a patient
could have increased levels of IL-15, IFN-α,
or both. In agreement with this hypothesis,
preliminary analysis of 21 active CD patients
shows that CD patients can be divided into
IL-15 high expressers, IFN-α high expressers,
and IL-15/IFN-α high expressers (B. Jabri,
unpublished data). If confirmed, this obser-
vation would suggest that CD patients do
not constitute a homogeneous group and
that different immune pathways may lead
to dysregulated inflammatory antigluten
immunity and activation of IELs. To better
delineate which genetic markers account for
increased levels of each of these cytokines
in CD patients, association studies could be
performed to group CD patients on the basis
of their inflammatory phenotypes—that is,
according to whether they have high IL-15
and/or high-IFN-α expression.

OVERLAP OF GENETIC
PATHWAYS AND LOCI WITH
AUTOIMMUNE AND
INFLAMMATORY DISEASES

Epidemiological data suggest that CD is more
associated with autoimmune disorders, in
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Figure 7
Network of known functional interactions between celiac disease (CD)–associated genes and key immunological markers of CD. We
used the STRING database to look for known functional interactions among CD susceptibility genes, as well as functional interactions
between CD susceptibility genes and interleukin (IL)-15 or interferon (IFN)-α. The STRING database assembles information about
both known and predicted protein-protein interactions on the basis of numerous sources, including experimental repositories,
computational prediction methods, and public text collections. Several CD susceptibility genes functionally interact with IL-15
( yellow), IFN-α (red ), or both ( purple).

particular T1D and autoimmune thyroiditis
(126, 127), than with IBD, which comprises
Crohn’s disease and ulcerative colitis (128,
129). In accordance, when we looked for which
pathways were enriched among CD suscepti-
bility genes, the strongest enrichments were
observed among disease pathways associated

with T cell–mediated organ-specific autoim-
mune diseases such as T1D [false discovery
rate (FDR) = 1.13 × 10−07] and autoimmune
thyroiditis (FDR = 3.24 × 10−07), but not
IBD. This observation is plausible, given what
we know about the immunological mechanisms
underlying these diseases. In particular, tissue
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destruction in Crohn’s disease is not cell spe-
cific and is thought to be mediated by general
inflammatory effector mechanisms involving
macrophages and neutrophils, whereas tissue
destruction in autoimmune disorders and CD
is mediated primarily by HLA-restricted T
cells and cytotoxic T cells that target specific
tissue cells, specifically intestinal epithelial
cells in CD (130).

That CD susceptibility genes are enriched
among genes known to be involved in other au-
toimmune pathways predicts that the genetic
risk factors associated with CD also represent
risk factors for other autoimmune disorders.
To test this hypothesis, we compiled a list of
all the regions identified by GWAS as associ-
ated with CD (Table 1), autoimmune diseases,
and inflammatory disorders (Figure 8). Next,

CeliacCeliac
diseasedisease

AutoimmuneAutoimmune
diseasesdiseases

InflammatoryInflammatory
diseasesdiseases

Celiac
disease

Autoimmune
diseases

Inflammatory
diseases

3p22.3: CCR4
1q24.2: CD247
3q13.33: CD80, KTELC1
7p14.1: ELMO1
3p14.1: FRMD4B
6p25.3: IRF4
2q31.3: ITGA4, UBE2E3
1p31.3: NFIA
1p36.23: PARK7, TNFRSF9
2p14: PLEK
6q22.33: PTPRK, THEMIS
1p36.11: RUNX3
14q24.1: ZFP36L1

6p21.32: HLA-DQA1, HLA-DQB1
16p13.13: CIITA, SOCS1, CLEC16A
2q12.1: IL18RAP, IL18R1, IL1RL1, IL1RL2
18p11.21: PTPN2
2p16.1: REL, AHSA2
10q22.3: ZMIZ1

6q15: BACH2, MAP3K7
3p21.31: CCR1, CCR2, CCRL2, CCR3, CCR5, CCR9
2q33.2: CTLA4, ICOS, CD28
11q24.3: ETS1
1q24.3: FASLG, TNFSF18, TNFSF4
22q11.21: UBE2L3, YDJC
4q27: KIAA1109, ADAD1, IL2, IL21
3q28: LPP
1q31.2: RGS1
12q24.12: SH2B3, ATXN2
6q25.3: TAGAP
Xp22.2: TLR7, TLR8
6q23.3: TNFAIP3
1p36.32: TNFRSF14, MMEL1
3q25.33: IL12A, SCHIP1

21q22.3: ICOSLG

Figure 8
Overlap between celiac disease (CD) genetic risk factors and genetic risk factors identified for other
autoimmune and inflammatory diseases. Shown are the overlaps between the regions identified by genome-
wide association studies (GWAS) as associated with CD and the regions identified by GWAS as associated
with autoimmune diseases or inflammatory disorders. The set of autoimmune diseases includes rheumatoid
arthritis, systemic lupus erythematosus, type 1 diabetes, multiple sclerosis, and psoriasis. The set of
inflammatory disorders includes Crohn’s disease and ulcerative colitis.
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we looked for overlaps between CD-associated
genomic regions and those associated with at
least one autoimmune or inflammatory disease
(Figure 8). As anticipated, we observed a sig-
nificantly higher overlap between CD and au-
toimmune disorders (12%) than between CD
and inflammatory diseases (2%) (Fisher exact
test; P value = 0.025) (Figure 8). T1D showed
the strongest overlap with CD. This finding is
well illustrated by the fact that 35% of the CD-
associated genomic regions also impact suscep-
tibility to T1D (Table 1). Notably, T1D and
CD are the only diseases that share genes in-
volved in immune responses against viral de-
tection, in line with the hypothesis that viral
infections may influence development of these
diseases. Overall, the genes found to be com-
mon to CD and autoimmune disorders were
implicated in cytokine and chemokine signal-
ing and, importantly, T cell activation (FDR
≤5 × 10−08) (Figure 8). In contrast, the genes
found to be common to CD, autoimmune dis-
orders, and IBD were more generally involved
in immune activation; these genes include those
that code for signaling molecules (e.g., REL
and PTPN2) (Figure 8). Curiously, the ge-
nomic region that encodes for genes involved
in the inflammasome pathway (IL18RAP,
IL18R1, IL1RL1, and IL1RL2) affects suscep-
tibility to CD, autoimmune disorders, and IBD
(Figure 8). This finding is interesting in light
of the current idea that activation of the in-
flammasome is important not only for the con-
trol of microbial infections but also to sig-
nal the presence of endogenous tissue stress
and thereby enhance inflammatory immune re-
sponses (131). This analysis also allowed us to
define genomic regions specifically associated
with CD (Figure 8). These regions are partic-
ularly interesting in that they might help eluci-
date which immunological pathways are unique
hallmarks of CD. The genomic regions selec-
tively associated with CD are enriched for genes
related to central and peripheral T cell differen-
tiation (FDR = 2 × 10−3), which suggests that
the pathogenic T cell response observed in CD
has unique features and again stresses the cen-
tral role of T cells in CD pathogenesis.

THE EVOLUTIONARY
HISTORY OF CELIAC
DISEASE–ASSOCIATED
SUSCEPTIBILITY GENES

Even though there is incomplete knowledge of
the worldwide prevalence of CD and great vari-
ance in the consumption of cereals across popu-
lations (Figure 1a,b), there nonetheless appear
to be differences among ethnic groups in terms
of susceptibility for CD. The disease appears
to be particularly common among Caucasians.
Two alternative hypotheses could account for
this fact. First, the elevated prevalence of CD
in certain populations could result from the in-
crease in frequency of CD susceptibility alleles
by genetic drift (i.e., random chance). Second,
CD susceptibility alleles could have increased
in frequency as a result of positive selection if
they confer a selective advantage to the car-
riers. To test these two hypotheses, we used
evolutionary genetic tools to search for molec-
ular signatures of positive selection on the genes
associated with CD (Figure 9).

One of the most striking signatures of pos-
itive selection is an increase in the strength
of LD associated with the selected allele (132,
133). Indeed, when an allele is targeted by
positive selection, the beneficial allele increases
in frequency in the population at a much faster
rate than that of a neutrally evolving allele,
and as a consequence, the haplotypes carrying
the advantageous allele are longer relative to
haplotypes that rise to similar frequencies solely
by random genetic drift (132, 133). We used
the integrated haplotype similarity test (134)
to search for this molecular signature of pos-
itive selection among all the CD-associated ge-
nomic regions (Table 1). Four out of the 40
CD-associated regions—namely the IL18RAP,
IL12A, IL2/IL21, and SH2B3 loci (Figure 9)—
show a strong signature of positive selection.
The proportion of CD-associated loci showing
signatures of positive selection is higher than
would be expected by chance (P = 0.04, if one
randomly samples 40 regions of the genome
and tests for evidence of selection). Curiously,
for all loci, with the exception of the IL2/IL21
locus, the allele/haplotype that shows evidence
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Figure 9
Signatures of positive selection on celiac disease (CD) susceptibility alleles. (a) |iHS| (absolute value of integrated haplotype similarity
score) values for single-nucleotide polymorphisms (SNPs) tagging genomic regions associated with CD. For this analysis, we used the
European HapMap phase II SNPs (the population consisted of individuals of European descent from Utah) because all genome-wide
association studies for CD have been performed in populations of European descent. The dashed line represents the ninety-fifth
percentile of the genome-wide |iHS| distribution for the European samples from HapMap. |iHS| above the ninety-fifth percentile
(red dots) are therefore suggestive of positive selection. (b) Worldwide frequency distribution of the SNP linking the SH2B3/ATXN2
locus with susceptibility to CD. (c) Worldwide frequency distribution of the SNP linking the IL12A/SCHIP1 locus with susceptibility
to CD. (d ) Worldwide frequency distribution of the SNP linking the IL18RAP/IL18R1/IL1RL1/IL1RL2 locus with susceptibility to
CD. The red fraction of the pie charts in panels b–d represents, for the corresponding SNP, the frequency of the CD susceptibility
allele, whereas the blue fraction represents the frequency of the protective allele in different areas of the world.

of positive selection is the one associated with
increased susceptibility to CD.

The latter observation can be easily ex-
plained if having CD is associated with some
sort of selective advantage, which would bypass
the negative effects associated with the disease.

For example, increased levels of IL-15 or
IFN-α and/or the absence of villi in CD pa-
tients could confer protection against intestinal
infections that lead to death in young children.
Although this is an interesting possibility, our
evolutionary results do not fully support these
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hypotheses. Indeed, if having CD were an
advantageous phenotype, the strongest signa-
tures of selection would be associated with the
DQ2.5 haplotype(s) because they explain most
of the genetic variance associated with CD.
However, our results do not provide strong
evidence for the action of positive selection on
the DQ2.5 haplotype(s). The lack of signal of
selection could be due simply to the low power
of the integrated haplotype similarity test (as
all other neutrality tests) to detect selection in
high-recombining regions such as the MHC
region. Yet, the fact that we observed strong
signatures of selection (using the same test)
for the HLA-DRB1 haplotypes associated
with RA, multiple sclerosis, and systemic lupus
erythematosus appears to disfavor such a hy-
pothesis. Moreover, the four loci identified as
targeted by positive selection are not specific to
CD. Indeed, these same loci also represent risk
factors for other autoimmune and/or inflamma-
tory disorders, such as T1D, ulcerative colitis,
and Crohn’s disease, among others (Table 1).

Thus, as previously suggested (135, 136),
these CD-risk alleles were positively selected
probably because they confer increased resis-
tance to past or present infectious agents. Stud-
ies on the functional role of the SH2B3 risk al-
lele (an amino acid–altering mutation) strongly
support this hypothesis (136). Indeed, stimu-
lation of peripheral-blood mononuclear cells
with MDP, a specific ligand of the pattern-
recognition receptor NOD2, shows that cells
isolated from individuals homozygous for the
SH2B3 CD-risk allele display an increased pro-
duction of proinflammatory cytokines, such as
IL-1β, IL-6, and IL-8, compared with ho-
mozygous or heterozygous individuals for the
other, nonrisk allele (136). Thus, individuals
homozygous for the SH2B3 allele probably en-
joy increased protection against certain infec-
tious agents because they can induce stronger
proinflammatory responses, but at the cost of
increased susceptibility to autoimmune or in-
flammatory disorders.

Less intuitive, at least in the context of
CD, is the functional role described for the
positively selected risk allele in the IL18RAP

locus. Indeed, carriers homozygous for the
IL18RAP risk allele have a significantly lower
level of IL-18RAP expression (at the messenger
RNA level) (96, 136). This finding suggests
that individuals at risk of CD show reduced
signaling in response to IL-18 and that they
generate less IFN-γ. This observation is
surprising, given the well-described intestinal
inflammation and high mucosal IFN-γ levels
observed in CD (111). Interestingly, this same
risk allele has also been associated with differ-
ent isoforms of IL-18RAP. Individuals who are
homozygous or heterozygous for the IL18RAP
risk allele have increased amounts of a short
form of IL-18RAP (37 kDa versus 70 kDa for
the longer isoform) compared with individuals
who are homozygous for the other allele (137).
Although the function of this short isoform
remains to be determined, it may increase
IL-18-induced signaling, an explanation that
would be more compatible with our current
knowledge of the pathogenesis of CD.

Altogether, these data suggest that the high
prevalence of CD in modern societies is at
least partially the by-product of past selection
for increased immune responses to combat
pathogens. The massive increase in human pop-
ulation sizes and the exposure to new zoonoses
after the development of agriculture and fol-
lowing the domestication of animals may have
resulted in the spreading of new infectious dis-
eases (138), which in turn may have promoted
the selection of genetic polymorphisms that in-
crease predisposition to CD. Interestingly, the
susceptibility alleles targeted by positive selec-
tion are absent or are found at very low frequen-
cies among African populations, in which agri-
culture was introduced more recently, whereas
these alleles attain considerable frequencies in
Europe and Asia (Figure 9). Although specu-
lative, this observation might explain why the
prevalence of CD is higher in European Amer-
icans than it is in African Americans (139, 140).

GENERAL PERSPECTIVES

Data from genetic, immunological, and epi-
demiological studies converge to suggest that

514 Abadie et al.

A
nn

u.
 R

ev
. I

m
m

un
ol

. 2
01

1.
29

:4
93

-5
25

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
by

 U
N

IV
E

R
SI

T
Y

 O
F 

C
H

IC
A

G
O

 L
IB

R
A

R
IE

S 
on

 0
5/

02
/1

1.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



IY29CH18-Jabri ARI 14 February 2011 14:25

CD is primarily a T cell–mediated immune
disorder induced by dietary gluten, in which
CD4+ T cells and MHC class II molecules play
a central role (Figure 10a,b). In particular,
typical CD, as defined by the presence of
villous atrophy and anti-TG2 antibodies, is
found only in patients with HLA-DQ2- or
HLA-DQ8-restricted antigluten CD4+ T cells
(Figure 10a,b). However, numerous obser-
vations in human and mouse also suggest that
adaptive antigluten CD4+ T cell immunity is
not sufficient for the development of villous at-
rophy and that other cell types are required for
the induction of tissue damage. For instance,
the role of cytotoxic IELs (i.e., CD8+ T cells)
in CD is supported by the observation that
their expansion and activation correlate with
the presence of villous atrophy. In accordance
with this hypothesis, polymorphisms in genes
involved in the differentiation (RUNX3) and
migration (CCR9) to the epithelium of cyto-
toxic CD8+ T cells confer susceptibility to CD.
In addition, immunological studies suggest that
these intraepithelial cytotoxic CD8+ T cells
mediate the destruction of stressed epithelial
cells by acquiring an NK-like phenotype. The
role of NK cell–like–mediated responses in CD
pathogenesis is further supported by GWAS
showing that the genomic regions impacting
susceptibility to CD have an approximately
40-fold enrichment for genes involved in NK
cell activation.

Accumulating evidence from genetic and
epidemiological studies suggests that viral in-
fections might be an important triggering factor
of CD. On one hand, high levels of IFN-α ex-
pression were reported in the intestinal mucosa
of CD patients (100), and recurring rotavirus
infections were found to increase the incidence
of CD (141). On the other hand, GWAS iden-
tified viral response–associated genes such as
TLR7, TLR8, and IRF4 as risk factors for CD.
Altogether, these observations suggest that re-
peated viral infections might constitute a risk
factor for CD, particularly among patients with
polymorphisms in viral response genes.

Although these findings illustrate how
genetic risk factors and environmental factors

can synergize to lead to increased development
of disease, particular exogenous factors may
promote CD by compensating for the lack of
certain susceptibility genes (other than HLA)
(Figure 10b). As an extreme example, IFN-α
treatment in hepatitis C patients induced CD in
patients bearing the CD-associated HLA. Con-
versely, given the right genetic makeup, it may
be possible to reach the same outcome without
the need for additional environmental hits out-
side of gluten consumption (Figure 10a). One
can therefore imagine a spectrum of disease
susceptibility: On one end are individuals with
a large number of genetic susceptibility mark-
ers for CD and limited need for environmental
hits, and on the other end are individuals with a
limited number of genetic risk factors (e.g., the
correct HLA genes but a limited number
of non-HLA genes) who require multiple
environmental hits to develop disease. The
former group of patients may get CD as
soon as gluten is introduced into the diet,
whereas the latter group may never develop
the disease or may develop it late in life. How
gluten influences disease development can vary
depending on the amount of gluten and when
it is introduced into the infant diet (142), which
further suggests a complex interplay between
genes and environment.

Similar levels of genetic susceptibility to
CD may be attributable to distinct sets of
non-HLA genes, as different genetic pathways
may lead to the same immunological outcome
(Figure 10a). This is well illustrated by the
genetic network showing how different gene
combinations lead to expression of IFN-α,
IL-15, or both (Figure 8). Both cytokines play
a critical role in the induction of inflammatory
T cell responses, and both promote NK cell
activity in cytotoxic CD8+ T cells. Interest-
ingly, some preliminary evidence suggests
that CD patients could be subdivided into
patients who express only one of the cytokines,
patients who express both, and patients who
express neither. Thus, similar effector immune
responses and the same disease outcome can be
achieved in many ways, which supports the idea
of genetic heterogeneity among CD patients.
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Furthermore, there may be an even larger ge-
netic heterogeneity if one expands the classical
definition of CD by including gluten-mediated
intestinal disorders without intestinal damage
and by including diseases that are associated
only with extraintestinal manifestations. For
example, cases of patients with dermatitis
herpetiformis and no villous atrophy have
been reported (Figure 10a). Conversely, some
patients who lack HLA-DQ2 or HLA-DQ8
molecule may still have an intestinal epithelial
stress response leading to clinical symptoms
associated with irritable bowel syndrome
(Figure 10a). Genetic studies are now re-
quired to unravel the genetic idiosyncrasies
associated with these different manifestations
of CD-like disorders.

CONCLUSION

GWAS have identified a fair number of
genomic regions associated with CD, but
much more work remains to be done before
we know how genetic variation in these
regions impacts immunological (or other)
phenotypes. Resolving these issues will not
be easy, given the limited possibilities for
further genetic mapping in regions with strong
LD as well as the tremendous challenge of
linking mutations with altered function in
complex biological systems. Despite these
challenges, the general findings from GWAS

studies are in exquisite agreement with existing
immunological models. The remarkable con-
cordance between genetic and immunological
observations encourages further efforts to
harness the presently established pathogenic
players of CD to develop alternative therapies
and effective prevention. On the genetic side,
future studies should aim to identify rare gene
mutations with high disease penetrance, which
could point to novel molecular targets that
would be particularly effective for therapeutic
intervention. In addition, it will be of particular
interest to unravel the function of present-day
uncharacterized genes or gene-desert genomic
regions that show consistent associations
with CD. Such studies might provide us with
important clues about unexpected biological
pathways implicated in CD pathogenesis.
Finally, we should take advantage of the
recent development of several technologies
(for example, expression microarrays, RNA
sequencing, and mass spectrometry) that allow
assessment of the levels of interindividual
phenotypic variation at the genome-wide level.
For example, it would be interesting to charac-
terize genome-wide transcriptional signatures
(i.e., expression levels) that are associated with
different forms and stages of the disease. These
molecular signatures could be used as prog-
nostic tools, but they could also illuminate the
specific immunological mechanisms associated
with specific forms of the disease.

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Figure 10
Role of genetic factors in celiac disease (CD) development. Various scenarios for the interplay between
human leukocyte antigen (HLA) and non-HLA genes and environmental factors. (a) HLA and non-HLA
genes contribute to CD development under similar environmental pressures. (i ) HLA genes are necessary
but not sufficient for the development of CD. (ii ) Different combinations of non-HLA genetic risk factors
can lead to CD in individuals who carry the predisposing HLA molecules. (iii ) Nonclassical gluten-induced
pathologies. Patients who lack the predisposing HLA molecules but carry particular non-HLA risk factors
may develop irritable bowel syndrome–like disorders in response to gluten ( purple). Conversely, patients
with predisposing HLA molecules and other non-HLA risk factors may develop dermatitis herpetiformis
(blue) in the absence of intestinal manifestations. (b) Impact of environmental factors on CD development in
HLA-DQ2- or HLA-DQ8-carrying individuals. (i ) Quantitative differences in gluten-intake influence on
CD development. (ii ) Viral infection and/or other environmental factors promote CD in individuals with
low non-HLA risk factors who otherwise would not develop CD.
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