

Mathematically, every point in space near a magnet can be represented by a vector, B. Because the field exists in 3-dimensional space, it has three 'components'. The equations for the coordinates of B in 2-dimensions looks like this:

$$
B_{r}=-\frac{2 M \sin \theta}{r^{3}} \quad B_{\theta}=\frac{M \cos \theta}{r^{3}}
$$

It is convenient to graph a magnetic field on a 2-dimensional piece of paper to show its shape. The lines that are drawn are called 'magnetic field lines', and if you placed a compass at a particular point on the field line, the direction of the line points to 'north' or 'south'.

The slope of the magnetic field at any point (R, θ) is defined by $\frac{B_{\theta}}{B_{r}}$.
From calculus, in a polar coordinate system, the slope of a line is defined by $\frac{r d \theta}{d r}$.

Problem 1 - What is the differential equation that relates $\frac{B_{\theta}}{B_{r}}$ to $\frac{r d \theta}{d r}$?

Problem 2 - Integrate your answer to Problem 1 to find the polar coordinate equation of a magnetic field line.

Problem 1 -

$$
\frac{r d \theta}{d r}=\frac{M \cos \theta}{-2 M \sin \theta} \quad \text { so } \quad \frac{r d \theta}{d r}=-\frac{\cos \theta}{2 \sin \theta}
$$

Problem 2 -

Rearrange the terms into two integrands: $\quad \frac{d r}{r}=-\frac{2 \sin \theta}{\cos \theta} d \theta$

The integrals become $\int \frac{d r}{r}=-2 \int \frac{\sin \theta}{\cos \theta} d \theta$

These are both logarithmic integrals that yield the solution:

$$
\ln (r)+\mathrm{C}=2 \ln (\cos \theta)+\mathrm{C}
$$

R_{0} is the distance from the center of the magnetic field to the point where the field line crosses the equatorial plane of the magnet at $\theta=0$. Each field line is specified by a unique crossing point distance. In other words, the constants of integration are specified by the condition that r $=r_{0}$ for $\theta=0$, which then gives us the final form of the equation:

$$
r=r_{0} \cos ^{2} \theta
$$

