Software Infrastructure for Sustained Innovation (SI²)

http://www.nsf.gov/si2/

Science is Revolutionized by CI

- Modern science
 - Data- and compute-intensive
 - Integrative
- Multiscale Collaborations for Complexity
 - Individuals, groups, teams, communities
- Must Transition NSF CI approach to support
 - Integrative, multiscale
 - 4 centuries of constancy, 4 decades 10⁹⁻¹² change!
- Multiple crisis
 - Hardware, Data, Education/WFD, ...

Software is Critical

- CI Unprecedented complexity, challenges
- Software is essential to every aspect of CI "the glue"
 - > Drivers, middleware, runtime, programming systems/tools, applications, ...
- This software is different?
 - > In its natures, who builds it, how is it built, where it runs, its lifetime, etc.
- Software crisis?
 - Software complexity is impeding the use of CI
 - Science apps have 10³ to 10⁶⁺ lines, have bugs
 - Developed over decades long lifecycles (~35 years)
 - Software/systems design/engineering issues
 - Emergent rather than by design
 - Quality of science in question

Software Grand Challenge

- SW as the modality for CF21 and Computational Science in the 21st Century
- Sustainable SW as a CI resource
 - > What SW to sustain?
 - ➤ How to sustain it?
- Fundamental Grand Challenge: Robust, Sustainable and Manageable Software at CI-Scale
 - Repeatability, Reliability, Performance, Usability, Energy efficiency,
- Sustainability, manageability, etc., are NOT addons – it has to be integrated into the design

Many complex aspects....

- Building the right software application involvement, understanding requirements
 - > scales, types of software, target user communities
- Building software right teams, reward structures, processes, metrics, verification/testing
- Protecting investments active management, sustainability, leverage/reuse, ownership, business models
- Building trust user community must be able to depend on the availability of a robust and reliable software infrastructure!

Cycles of Innovation: The Current State

> Few synergies; Plenty of repetition and re-invention

Cyber-Science: Synergies & Symbiosis

Sustained Long-Term Investment in Software

- Transform innovations into sustainable software that is an integral part of a comprehensive cyberinfrastructure
 - robust, efficient, resilient, repeatable, manageable, sustainable, community-based, etc.
- Catalyze and nurture multidisciplinary software as a symbiotic "process" with ongoing evolution
 - Domain and computational scientists, software technologists
- Address all aspects, layers and phases of software
 - Systematic approaches
 - > Theory validated by empirical trials
 - > Tools that embody and support processes
 - Metrics, validation mechanisms, governance structures
 - Amortised over large (global) user communities
 - Support for maintenance and user support

Sustained Long-Term Investment in Software

- Significant multiscale, long-term program
 - > Envisions \$200-300M over a decade
 - Connected institutes, teams, investigators
 - ➤ Integrated into CF21 framework

Software Infrastructure for Sustained Innovations (SI²) - Mechanisms

- Create a software ecosystem that scales from individual or small groups of software innovators to large hubs of software excellence
 - 3 interlocking levels of funding

Scientific Software Elements (SSE): 1– 2 PIs

• \$0.2 – 0.5M, 3 years

Scientific Software Integration (SSI): Focused Groups

• ~\$1M per year, 3 – 5 years

Scientific Software Innovation Institutes (S2I2): Large Multidisciplinary Groups

- \$6-8M per year, 5 (+) years
- Planning Activities
- FY 11 and beyond only

Software Infrastructure for Sustained Innovation (SI²): FY10 First round

- Letters of Intent (Required) May 10, 2010
 - ➤ Title, Team, Synopsis (science/engr. drivers, target user community, specific software elements)
- Full Proposals June 14, 2010
 - \triangleright SSE: \sim 2 PIs + 2 GAs, 3 years
 - ➤ SSI: ~3-4 PIs, 3-4 GAs, 1-2 senior personnel/developers, 3-5 years
 - > No S2I2 in FY 10
- Proposals from all parts of NSF were received
 - 200 projects were submitted
 - ~10% overall funding rate is anticipated
- Now we look to the future of this program!!!!

Scientific Software Innovation Institutes (S2I2) – Call for Exploratory Workshop Proposals

Goals:

- ➤ Inform NSF on what should be included in the solicitation
- ➤ Inform the community as it responds to the solicitation in FY11
- Provide a forum of discussions about the SI2 vision, and S2I2 models and structures within and across communities.

Scientific Software Innovation Institutes (S2I2)

Call for Exploratory Workshop Proposals

Questions

- What scientific areas have significant challenges that can benefit, in terms of scientific innovation/discovery as well as productivity, from an S2I2
 - Is there an need for such an Institute and if so what would be the appropriate focus area(s) and scale?
 - What communities would it serve, who would participate, what interconnections would it have to the larger community of computational scientists, experimentalists, and beyond.
- ➤ What are the key attributes of an S2I2? What are appropriate organizational, personnel and management structures, as well as operational processes?

Scientific Software Innovation Institutes (S2I2) – Call for Exploratory Workshop Proposals

Questions

- What expertise and capabilities should an S2I2 provide and how should it interface and interact with science communities? What education and outreach functionalities are meaningful in an S2I2?
- ➤ What are the critical linkages between an S2I2 and other components of a community cyberinfrastructure (i.e., software tools, databases, instruments, etc.)? What is the unique role of an S2I2 in the broader cyberinfrastructure ecosystem (e.g., TeraGrid/XD, DataNet, MREFC, etc.)?

Scientific Software Innovation Institutes (S2I2) – Call for Exploratory Workshop Proposals

Questions

- ➤ What are meaningful metrics, evaluation mechanisms and governance structures for an S2I2? What are appropriate approaches to sustainability of the S2I2?
- ➤ How would an S2I2 impact the science and engineering community and impacts its practices, capabilities and productivity?

Software Infrastructure for Sustained Innovation (SI²): Metrics of Success

- Buy-in from the broader community
- Demonstrated leverage and reuse
- Emergence of successful models, processes, architectures, metrics for S&E software – empirically validated
- Emergence of models and mechanisms for community sustainability of software institutes
- Accepted research agenda by academic community

Software Infrastructure for Sustained Innovation (SI²) – More Information

- DCL
 - http://www.nsf.gov/pubs/2010/nsf10029/ nsf10029.jsp?WT.mc_id=USNSF_179
- Solicitation
 - http://www.nsf.gov/si2/
- S2I2 DCL
 - http://www.nsf.gov/pubs/2010/nsf10050/ nsf10050.jsp?org=NSF
- SI² POC: Manish Parashar mparasha@nsf.gov

Summary

- Science is being revolutionized through CI
 - Compute, data, networking advance suddenly 9-12 orders of magnitude after 4 centuries
 - ➤ All forms of CI—integrated—needed for complex science
- NSF responsive: developing much more comprehensive, integrated CF21 initiative
 - Community deeply engaged in planning
 - ➤ Activities begin FY10, ramp up FY11-12 and beyond
- Focus on sustainability, people, innovation
 - > Longer term programs, better linked, hubs of innovation
 - Support development of computational scientists who develop and/or use advanced CI
- Robust, reliable, sustainable software is critical!

Thank You!

Voyager Spacecraft (1977 -):

Long-lived, enduring, tenacious, robust

Sustainable System

"meets the needs of the present without compromising the ability of future generations to meet their own needs"

[UN Brundtland Report 1987, of sustainable development]