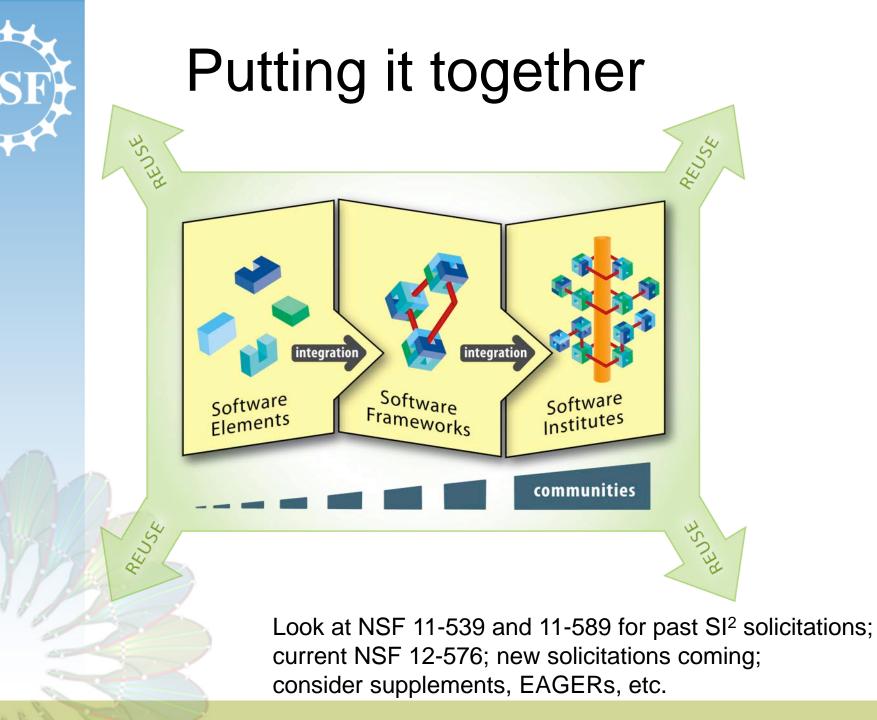


Software at NSF/OCI

Daniel S. Katz Program Director, Office of Cyberinfrastructure



Support the foundational **research** necessary to continue to efficiently advance scientific software Create and maintain a software ecosystem providing new **capabilities** that advance and accelerate scientific inquiry at unprecedented complexity and scale

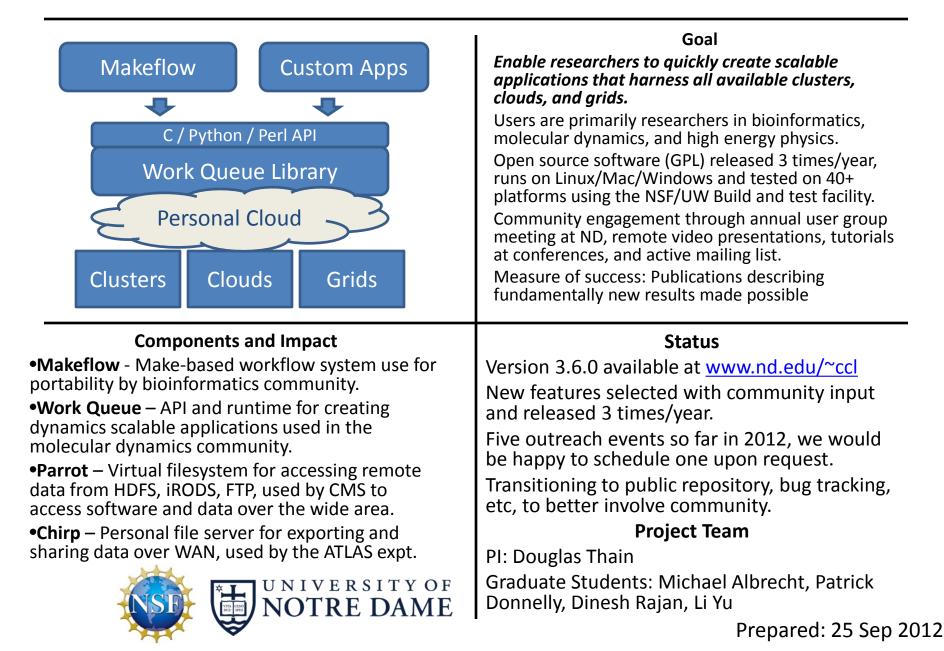
Enable transformative, interdisciplinary, collaborative, **science and engineering** research and education through the use of advanced software and services

Transform practice through new **policies** for software addressing challenges of academic culture, open dissemination and use, reproducibility and trust, curation, sustainability, governance, citation, stewardship, and attribution of software authorship Develop a next generation diverse workforce of scientists and engineers equipped with essential skills to use and develop software, with software and services used in both the research and **education** process

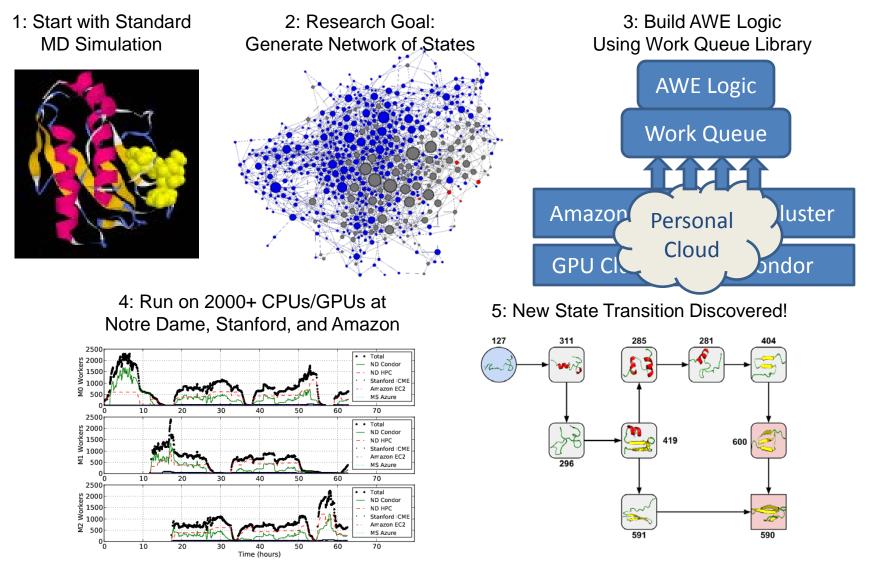
NSF Software Vision: http://www.nsf.gov/publications/pub_summ.jsp?ods_key=nsf12113

SI² Solicitation and Decision Process

- Cross-NSF software working group with members from all directorates
- Discusses solicitations, determines who will participate in each
- Discusses and participates in review process
- Work together to fund worthy proposals
- How does SI² fit with other NSF programs that support software?
 - See: Implementation of NSF Software Vision http://www.nsf.gov/funding/pgm_summ.jsp?pims_id=5 04817

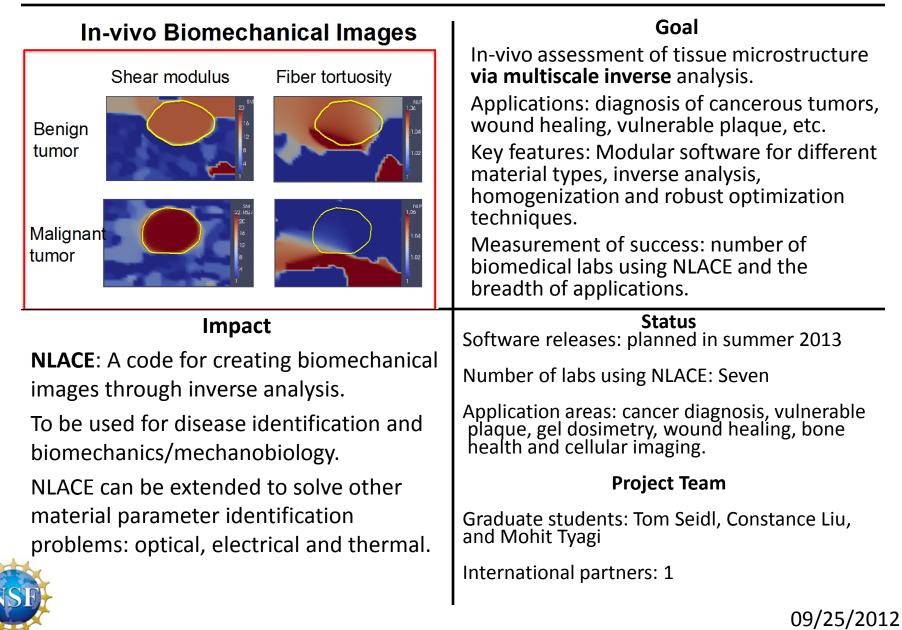


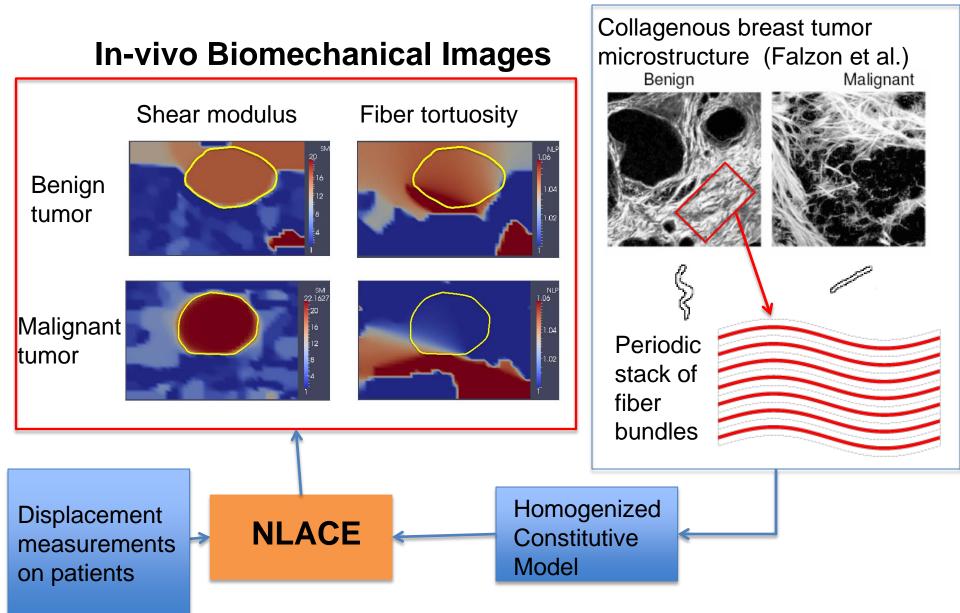
SSE: Parallel and Adaptive Simulation Infrastructure for Biological Fluid-Structure Interaction – PI: B.E. Griffith, NYU School of Medicine


http://cims.nyu.edu/~griffith/movies/101220/valve_flow_side.mov	Goals Many problems in biological fluid dynamics involve fluid-structure interaction (FSI) and require localized regions of high spatial resolution. Project aims to enhance and extend the IBAMR software framework for biological fluid dynamics. IBAMR provides parallel implementations of the immersed boundary (IB) method for FSI and extensions of the IB method that support an adaptive mesh refinement (AMR) approach to providing high spatial resolution. IBAMR leverages high-quality open-source libraries (e.g. SAMRAI, PETSc, libMesh).
Impact Primary product is the open-source IBAMR	Status Present distribution is via open svn repository;
software. Project aims to extend types of problems to which IBAMR may be applied (e.g. to nanoscale systems that require accounting for thermal fluctuations). Project also aims to improve performance (e.g. via improved solver methods and implementations). Modular design facilitates third-party extensions. Hosted at http://ibamr.googlecode.com.	plan formal release later in Fall 2012. Actively used for a variety of projects at NYU and at Northwestern, Tulane, UCLA, U. Cincinnati, U. Glasgow (UK), U. North Carolina-Chapel Hill, U. Utah, and others. Beginning work with Kitware, Inc. Project Team A. Donev, B.E. Griffith, D.M. McQueen, C.S. Peskin (NYU); A.P.S. Bhalla, N.A. Patankar (Northwestern); R. Ortiz (Kitware, Inc.)

Prepared: 9/20/2012

SI2-SSE: Bridging Cyberinfrastructure with the Cooperative Computing Tools PI: Douglas Thain, University of Notre Dame


Example: Adaptive Weighted Ensemble


Badi Abdul-Wahid, Li Yu, Dinesh Rajan, Haoyun Feng, Eric Darve, Douglas Thain, Jesus A. Izaguirre, Folding Proteins at 500 ns/hour with Work Queue, IEEE e-Science Conference, 2012

SSE Advanced Software Infrastructure for Biomechanical Inverse Problems

Assad A Oberai (RPI), Chris Carothers (RP) and Paul E Barbone (BU)

Imaging Tissue Microstructure

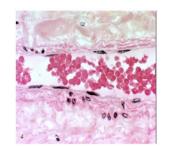
SSE: Software for integral equation solvers on heterogeneous architectures

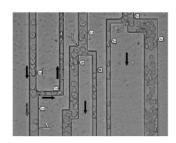
George Biros (UT Austin), Denis Zorin (NYU)

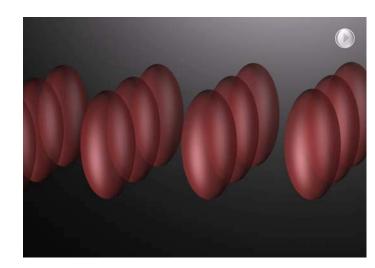
Target App: Microcirculation of blood flow				Goal	
RBCs	points/c ell	unknowns/ core	core s		Primary applications: blood flow simulation in small capillaries; complex fluids; microfluidics.
50M	84	~450K	196K		Such problems require fast multipole methods (FMM) and boundary integral equation solvers
				(BIE). We are developing new parallel algorithms for these computational kernels.	
			P	We have designed extensive verification tests for each of the main computational kernels of the software. Algorithmic robustness to near	
simulate accurately plasma and cells				collisions and long time integration.	
Impact					
		Impact			Status
Massive	ly parallel	Impact FMM code ((pKIFM	M) @	pKIFMM: released;
	es.utexas	-			
padas.ic develop	es.utexas ment.	FMM code (le (Mol	3o) in	pKIFMM: released;
padas.ic develop FMM is plasma j protein electron	es.utexas ment. applicable physics, co electrosta nagnetics.	FMM code (edu; BIE code to many are omplex fluids itics, elastody Several grou	eas of s s, scatte ynamic ps in na	Bo) in cience: ering, s, and ational	pKIFMM: released; MoBo: (BIE) is under development
padas.ic develop FMM is plasma j protein electron	es.utexas ment. applicable ohysics, co electrosta nagnetics l universit	FMM code (edu; BIE coc to many are omplex fluids	eas of s s, scatte ynamic ps in na	Bo) in cience: ering, s, and ational	pKIFMM: released; MoBo: (BIE) is under development Project Team UT Austin: Bryan Quaife(postdoc), Logan Moon (research scientist), Dhairya

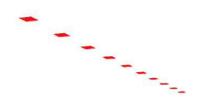
Sep/28/2012

Algorithmic challenges

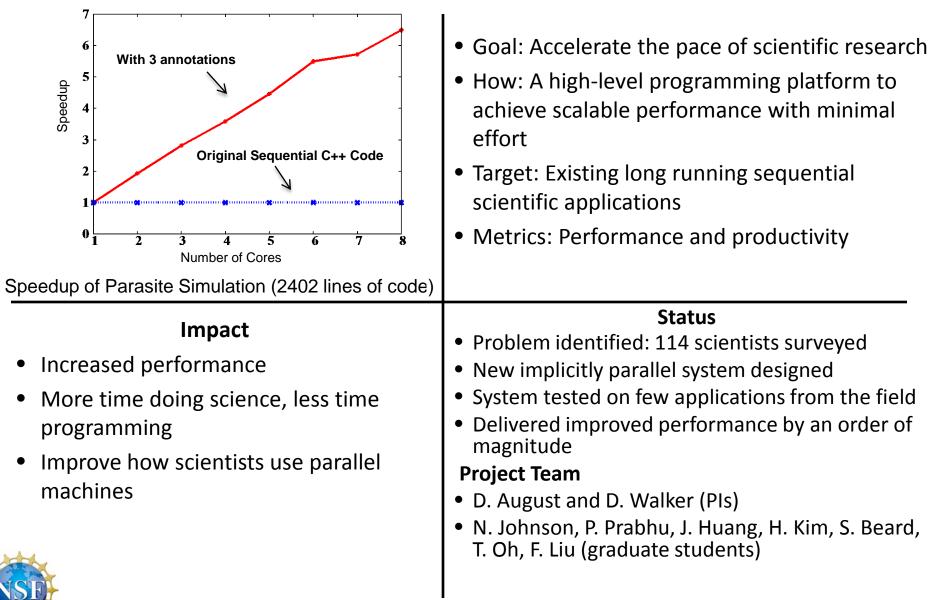

- Complex geometry
- Nonlinearity
- Algorithmic parallel scalability


Implementation challenges

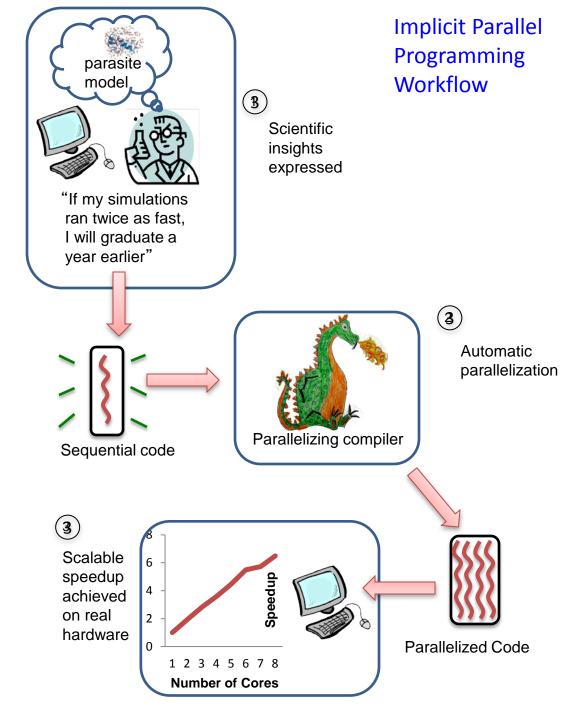

- Multiple phase algorithms
- Manycore architectures


Software challenges

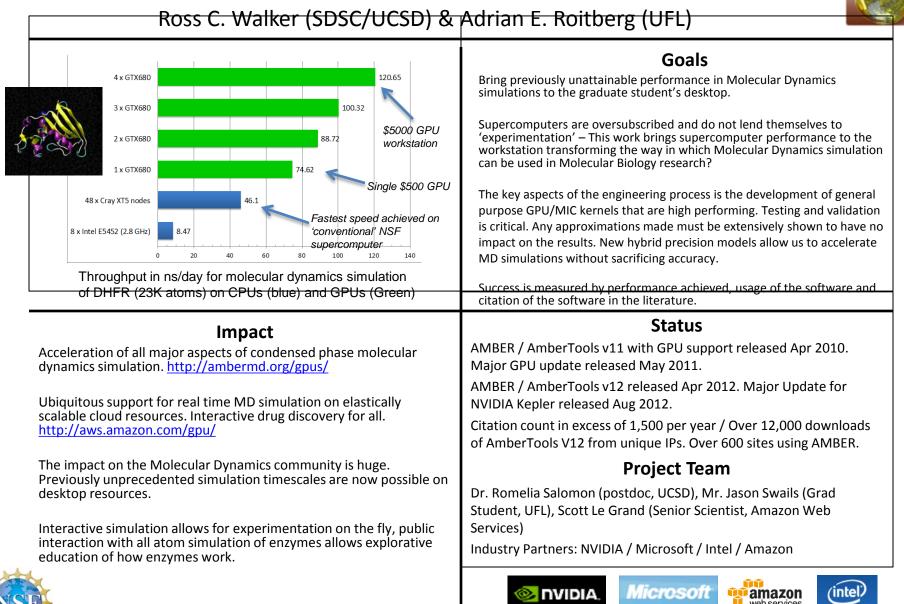
- Verification and validation
- Code complexity
- Sensitivity to problem setup *limits generality*



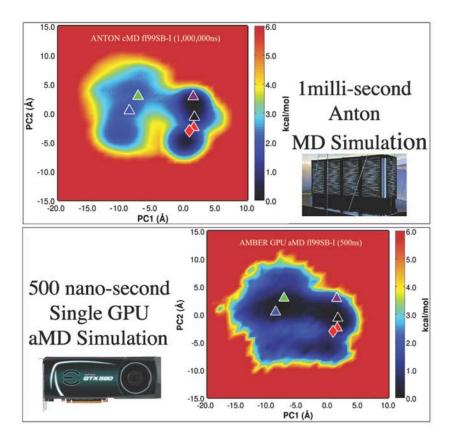


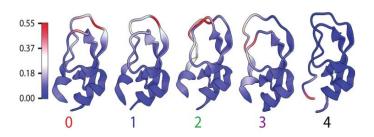


Accelerating Research with Implicitly Parallel Programming PIs: David August and David Walker, Princeton University



09/27/2012




SSE: Sustained Innovation in Acceleration of Molecular Dynamics on Future Computational Environments: Power to the People in the Cloud and on Accelerators

Extreme Acceleration of Molecular Dynamics Simulations: Sampling for the 99%

• Pierce, L.C.T., Salomon-Ferrer, R. de Oliveira, C.A.F. McCammon, J.A. Walker, R.C., "*Routine access to millisecond timescale events with accelerated molecular dynamics.*", Journal of Chemical Theory and Computation, **2012**, in press, DOI: 10.1021/ct300284c

SI2-SSE funded accelerated MD simulation running for 1 week on \$500 GPU samples the same phase space as 1 month long 1ms conventional MD simulation on multi-million dollar custom built ASIC.

SI2-supported Software

- IBAMR: An adaptive and distributed-memory parallel version of the immersed boundary (IB) method
- AmberTools
- Amber
- VOStat Web computing
- Eclipse Parallel Tools Platform
- SciDB
- CyberGIS Gateway
- Performance Analyzer for R programs
- R Virtual machine
- METIS Serial Graph Partitioning and Fill-reducing Matrix Ordering
- ParMETIS Parallel Graph Partitioning and Fill-reducing Matrix Ordering
- hMETIS Hypergraph & Circuit Partitioning
- Scientific Cloud Computing Virtual Platform
- Scientific Cloud Computing Interface Tools
- Java GUI for the FEFF9 Spectroscopy Code
- Silver Extensible Meta-Programming Language
- Copper Parser and Context-Aware Scanner Generator
- Parallel Kernel Independent Fast Multipole Method
- Massively Parallel Quantum Chemistry (MPQC)
- Integral Library
- General Atomic and Molecular Electronic Structure System (GAMESS)
- ORCA
- MADNESS
- Automated web-based carbon-data ingestion tool
- Parallel implementation of linear geostatistical inverse problem algorithm
- Massive matrix multiplication algorithm
- Spatiotemporally aggregated uncertainty quantification for linear Bayesian inverse problems algorithm
- Lattice QCD library in CUDA for GPUs
- GenoSets: Visualizing Comparative Genomics
- Elemental distributed-memory dense linear algebra
- FLAME dense linear algebra library
- Berkeley Open Infrastructure for Network Computing (BOINC)
- Sage
- Sage-combinat
- Sigiri Task Management for Clouds
- Karma Provenance Capture

- In-Situ Partial Order Analyzer
- Distributed Analyzer of MPI Programs
- Symbolic GPU Program Analyzer
- Prover of User GPU Programs
- Dynamic Verifier of C Pthread Programs
- Graphical Explorer of MPI Programs
- Eddy Murphi Parallel and Distributed Murphi
- Extensible Utah Multicore
- Differential Geometry Software Project
- OpenUH Compiler
- Abstract Data and Communication Library
- TAU Performance System
- Program Database Toolkit
- Ocelot Infrastructure (for architecture emulation and dynamic translation)
- EVPath event transport middleware
- ADIOS adaptable IO System (maintained and distributed by ORNL)
- Path integral Quantum Monte Carlo
- CUAHSI Hydrologic Information System
- HydroDesktop: CUAHSI Hydrologic Information System Desktop Application
- HydroServer: CUAHSI Hydrologic Information System Server
- Block: DMRG for quantum chemistry
- Cooperative Computing Tools
- User Level Cache Control in Multicores
- Balanced Work Stealing for Time-Sharing Multicores
- High Performance MPI for InfiniBand, IWARP and RoCE
- Pegasus Workflow Management System
- Swift Parallel Scripting Language
- Rocks Cluster Toolkit
- Rocks Cluster Toolkit Source Code Repository
- Application Fingerprint Source Code Repository
- GridFTP data transfer server and client
- Grid Resource Allocation and Management (GRAM) server and clients
- Grid Security Infrastructure (GSI) security libraries
- Globus Online hosted research data management services
- Graph Annotation Format
- Differential Equations Analysis Library
- Advanced Solver for Problems in Earth Convection (ASPECT)
- Trilinos