Models to Predict Protein Biomaterial Performance

Markus Buehler (MIT) David L. Kaplan (Tufts University) Joyce Wong (Boston University)

Objective

Reduce the current trial-and-error approach utilized in the field with a **more rational approach** based on **bottom-up multiscale modeling** to guide the preparation of the required materials

Predictions of biomaterials performance can be attained by the **combined use of suitable experimental models** to cover **polymer features** (chemistry, molecular weight), **processing** (fiber morphology, hierarchical structure) and **modeling** at different length scales of a **material's structural hierarchy** (from chemical to macroscopic scales)

Hypothesis

Conventional vs. new material design and manufacturing approaches

Protein-based biomaterials as the example

Wong et al., Nano Today, 2012

Multiscale hierarchical structure illustrated for silk

Giesa, Buehler et al., Nano Letters, 2011

Design, processing, and material properties are closely linked

Copyright Dennis Kunel Microscopy

(spider) silk spinning liquid to solid

Biopolymer design: sequence, structure, process condition and properties

Synergistic Approach For Prodiction Towards Desirable Outcomes Design Sequence, Chemistry Models to Predict Protein Biomaterial Performance

Markus Buehler (MIT) David L. Kaplan (Tufts University) Joyce Wong (Boston University)

Silk Block Copolymers – Design & Self-Assembly

Self-assembled structures of polymeric materials

Example – Biosynthesis of protein variants based on spider silk

Code	Spider silk-like block copolymers	Mw [Da]
HBA ₃	M H H H H H H S S G L V P R G S G M K E T A A A K F E R Q H M D S P D L G T D D D D K A M A A S <u>Q G G Y</u> <u>G G L G S Q G S G R G G L G G Q T S</u> G A G A A A A A G G A G T S G A G A A A A A G G A G T S G A G A A A A A G G A G T S	10,068
HAB ₃	M H H H H H H S S G L V P R G S G M K E T A A A K F E R Q H M D S P D L G T D D D D K A M A A S G A G A A A A A G G A G T <u>S Q G G Y G G L G S Q G S G R G G</u> <u>L G G Q T S Q G G Y G G L G S Q G S G R G G L G G Q</u> <u>T S Q G G Y G G L G S Q G S G R G G L G G Q T S</u>	11,967

hydrophilic block B is underlined hydrophobic Block A bold hexahistidine tag italicized.

Films – materials formation from spider silk block copolymers

Scanning Electron Microscopy

Characterization of Spider Silk Block Copolymers

Code	Beta sheet	Turn	Alpha helix	Random coil
HBA ₃	21.1±5	24.8±3	13.2±5	12.6±5
HAB ₃	10.8±3	27.4±5	8.7±4	11.8±5

Percentage of structures after FTIR and Deconvolution

Mechanical properties - water annealed films

Code	Linear Elastic Modulus @ 2-3% strain [MPa]	Ultimate Tensile Strength [MPa]	Failure strength [%]
HBA ₃	161.9±27.5	13±0.7	43.8±16.9
HAB ₃	553±31.3	20.9±7	6.1 ± 3.4

Models to Predict Protein Biomaterial Performance

Markus Buehler (MIT) David L. Kaplan (Tufts University) Joyce Wong (Boston University)

Regenerated silk fibers + block copolymers

gland

microfluidic device (fluid focusing) spun fibers (AB₃ & BA₃)

Fiber Morphology

spun from regenerated silk fibroin (RSF) and mixtures with HAB₃ and HBA₃ (30% RSF/70% copolymer)

Brightfield images [RSF (B, scale bar 150 mm) RSF/HAB₃ blend (C, scale bar 150 mm) and RSF/HBA₃ blend (D, scale bar 150 mm) fibers]

E-L - SEM images of fibers [(E) Native silk, scale bar 30 mm, (F) Native silk, scale bar 2 mm,(g) RSF fibers, scale bar 8 mm, (H) RSF fibers, scale bar 4 mm, (I) RSF/HAB₃ blend, scale bar 30 mm, (J) RSF/HAB₃ blend, scale bar 2 mm,(K) RSF/HBA₃ blend, scale bar 20 mm, (L) RSF/HBA₃ blend, scale bar 5 mm]

Models to Predict Protein Biomaterial Performance

Markus Buehler (MIT) David L. Kaplan (Tufts University) Joyce Wong (Boston University)

Multi-scale integration of computational and experimental tools

 \rightarrow structure-property-process relationships in protein materials

Reactive, nonreactive molecular dynamics (MD), mesoscale (coarse-grained) and continuum models to span Angstrom to micrometers and meters and time-scales from femtoseconds to seconds

Structure prediction and functional properties

Example: molecular mechanics of silk

De novo sequences: in silico model

AB3 vs. BA3

Slight chance of β -sheet at A (poly-Ala)

Krishnaji, Bratzel, et al., Advanced Functional Materials, 2012

81

BA₃ Lattice 3x2

Strong chance of many β -sheets because of overlapping A

Krishnaji, Bratzel, et al., Advanced Functional Materials, 2012

Equilibration & structure convergence - computation

Length and secondary structure change visible during tempering in implicit water and equibration in explicit water (water molecules hidden for clarity)

Residues are colored by secondary structure: **β-sheet is in blue**.

Convergence for each stage is determined by: (b) RMSD and (c) changes in total β-sheet content.

Krishnaji, Bratzel, et al., Advanced Functional Materials, 2012

Pull out testing - computation

Force-control pullout testing of the equilibrated structures in explicit water

Length and secondary structure change visible during deformation

Residues are colored by secondary structure: β -sheet is in blue.

Total instantaneous β-sheet content (thin line) correlated with the forceextension curves (thick line) for each structure: **AB3 stiffer than AB3**

Comparison: Experimental modulus $E_{AB3} = 0.16 \pm 0.03$ GPa $E_{BA3} = 0.44 \pm 0.1$ GPa

Krishnaji, Bratzel, et al., Advanced Functional Materials, 2012

Scaling up: Dissipative Particle Dynamics (DPD) model

Wong, Kaplan, Buehler, *et al., Nano Today, 2012*

Forms fibers from microfluidic spinning device

Clogging and no fiber formation

Microscopic insight from molecular simulation

Wong, Kaplan, Buehler, et al., Nano Today, 2012

Conclusion – A New Approach to Materials Design

universality

Conclusions Broader implications

Multifunctionality (diversity) created by changing structural arrangements of few (universal) constituents

No need to invent new building blocks

Powerful biocompatible paradigm for materials innovation

- Fewer resources
- More flexibility
- Wider design space

M. Buehler, Nano Today, 2010

beta-sheet