
 i

Key Derivation using Pseudorandom

Functions (SP 800-108) Validation System

(KBKDFVS)

March 22, 2012

Sharon S. Keller

National Institute of Standards and Technology

Information Technology Laboratory

Computer Security Division

 ii

 iii

TABLE OF CONTENTS
1 Introduction ...1
2 Scope ..1

3 Conformance ..1
4 Definitions and Abbreviations ..2

4.1 Definitions...2
4.2 Abbreviations ..2

5 Design Philosophy of SP800-108 KDF Validation System............................3

6 The Key Derivation Using Pseudorandom Functions (SP800-108KDF)
Validation System (KBKDFVS) Test ..3

6.1 Configuration Information ...4
6.2 The Validation Test ..6

6.2.1 The Validation Test for KDF in Counter Mode6
6.2.2 The Validation test for KDF in Feedback Mode7

6.2.3 The Validation test for KDF in Double-Pipeline Iteration Mode8
Appendix A References ..9

Appendix B Tested Components of SP 800-108 ..10
B.1 SP800-108 Algorithmic Specifications ..10

B.2 Additional Requirements of SP800-108 ..10

 1

1 Introduction
This document, Key Derivation Using Pseudorandom Functions (SP 800-108KDF)

Validation System (KBKDFVS), specifies the procedures involved in validating

implementations of the three key derivation functions found in SP800-108. The three key

derivation functions include KDF in Counter Mode, KDF in Feedback Mode, and KDF in

Double-Pipeline Iteration Mode. Each KDF in SP 800-108 uses a key to generate a key.

Therefore the abbreviation used for these KDFs is KBKDF (Key Based Key Derivation

Function). The testing encompasses IUTs that implement SP 800-108, Recommendation

for Key Derivation Using Pseudorandom Functions [1]. The KBKDFVS is designed to

perform automated testing on Implementations Under Test (IUTs).

This document defines the purpose, the design philosophy, and the high-level description

of the validation process for each key derivation function. It includes specifications for

tests that make up the KBKDFVS. The requirements and administrative procedures to be

followed by those seeking formal validation of an implementation of SP800-108 are

presented. The requirements described include a specification of the data communicated

between the IUT and the KBKDFVS, the details of the tests that the IUT must pass for

formal validation, and general instruction for interfacing with the KBKDFVS.

A set of KDF test vectors is available on the

http://csrc.nist.gov/groups/STM/cavp/index.html website for testing purposes.

2 Scope

This document specifies the tests required to validate implementations of SP 800-108 for

conformance to the key derivation functions (KDF). When applied to an Implementation

Under Test (IUT), the KBKDFVS provides testing to determine the correctness of the

implementation of the KDF specifications. As detailed in the Recommendation, three

KDFs are described in SP800-108: KDF in Counter Mode, KDF in Feedback Mode and

KDF in Double-Pipeline Iteration Mode. A separate validation test suite has been

designed for each KDF. The validation testing verifies that an IUT has implemented the

components of the KDF according to the specifications in the Recommendation. The

requirements of NIST SP 800-108 addressable at the algorithm level and indicated by

shall statements that are tested by the validation suite are listed in Appendix B.

3 Conformance

The successful completion of the tests contained within the KBKDFVS is required to

claim conformance to SP800-108. Testing for the cryptographic module in which a

KDF(s) is implemented is defined in FIPS PUB 140-2, Security Requirements for

Cryptographic Modules. [2]

 2

4 Definitions and Abbreviations

4.1 Definitions

DEFINITION MEANING

CST laboratory Cryptographic Security Testing laboratory that operates the
KBKDFVS

Key Derivation Function A function for generating keying material

4.2 Abbreviations

ABBREVIATION MEANING

CMAC Block Cipher-based MAC Algorithm

CMACVS CMAC Validation System

FIPS Federal Information Processing Standard

h An integer whose value is the length of the output of the PRF in bits

HMAC Keyed-Hash Message Authentication

Code

HMACVS HMAC Validation System

IUT Implementation Under Test

KI A key derivation key. For a key derivation, KI is used (along with

other data) to derive keying material KO

KO Keying material that is derived from a key derivation key KI and

other data

KBKDF Key Based Key Derivation Function – KDFs that use a key in the

computation

KDF Key Derivation Function

L An integer specifying the length of the derived keying material KO in

bits, which is represented as a binary string when it is an input to a

key derivation function

 3

MAC Message Authentication Code

PRF Pseudorandom Function

r An integer, smaller or equal to 32, whose value is the length of the

binary representation of the counter i when i is an input in counter

mode or (optionally) in feedback mode and double-pipeline iteration

mode of each iteration of the PRF

5 Design Philosophy of SP800-108 KDF Validation System

The KBKDFVS is designed to test conformance to the specifications for each of the

KDFs specified in NIST SP 800-108 rather than provide a measure of a product’s

security. The validation tests are designed to assist in the detection of accidental

implementation errors, and are not designed to detect intentional attempts to misrepresent

conformance. Thus, validation should not be interpreted as an evaluation or endorsement

of overall product security.

The KBKDFVS has the following design philosophy:

1. The KBKDFVS is designed to allow the testing of an IUT at locations

remote to the KBKDFVS. The KBKDFVS and the IUT communicate

data via REQUEST and RESPONSE files. The KBKDFVS also generates

SAMPLE files to provide the IUT with an example of the format required

by the RESPONSE file.

2. The testing performed within the KBKDFVS utilizes statistical sampling

(i.e., only a small number of the possible cases are tested); hence, the

successful validation of a device does not imply 100% conformance with

the Recommendation.

6 The Key Derivation Using Pseudorandom Functions
(SP800-108KDF) Validation System (KBKDFVS) Test

The KBKDFVS tests the implementation for its conformance to SP 800-108.

When applied to an IUT, the KBKDFVS provides testing to determine the correctness of

the implementation of the KDF specifications. A separate validation test suite has been

designed for each KDF. The validation test suite for each KDF verifies that an IUT has

implemented the components of the KDF according to the specifications in the

Recommendation.

 4

6.1 Configuration Information

To initiate the validation process of the KBKDFVS, a vendor submits an application to

an accredited laboratory requesting the validation of its implementation of one or more of

the key derivation functions detailed in SP 800-108. The vendor’s implementation is

referred to as the IUT. The request for validation includes background information

describing the IUT, along with information needed by the KBKDFVS to perform the

specific tests. More specifically, the request for validation includes:

1. Cryptographic algorithm implementation information

 a. Vendor Name;

 b. Implementation Name;

 c. Implementation Version;

 d. Indication if implementation is software, firmware, or hardware;

 e. Processor and Operating System with which the IUT was tested if the IUT

is implemented in software or firmware;

 f. Brief description of the IUT or the product/product family in which the

IUT is implemented by the vendor (2-3 sentences); and

2. Configuration information for the KBKDFVS tests.

 a. The KDF(s) implemented:

 i. KDF in Counter Mode

 ii. KDF in Feedback Mode

 iii. KDF in Double-Pipeline Iteration Mode

3. If KDF in Counter Mode is implemented:

a. r- length of the binary representation of the counter i. Possible values are

8, 16, 24, or 32 bits.

b. Pseudo-random functions supported by the IUT

 i. CMAC AES 128, 192, 256

 ii. CMAC TDES 2, 3

 iii. HMAC SHA1, SHA224, SHA256, SHA384, SHA512

c. L-length of the derived keying material K0 in bytes – Enter all that apply:

 5

i. A minimum and maximum value for full block lengths supported

ii. A minimum and maximum value for partial block lengths supported

d. Method(s) supported to generate K: SP800-56A, SP800-56B, SP800-90,

an Approved RNG, N/A – Out of the scope of the algorithm

implementation

e. Order of the fixed input data: Does the IUT support the counter coming

before and/or after the fixed input data?

4. If KDF in Feedback Mode is implemented:

a. Pseudo-random functions supported by the IUT

 i. CMAC AES 128, 192, 256

 ii. CMAC TDES 2, 3

 iii. HMAC SHA1, SHA224, SHA256, SHA384, SHA512

b. L-length of the derived keying material K0 in bytes – Enter all that apply:

i. A minimum and maximum value for full block lengths supported

ii. A minimum and maximum value for partial block lengths supported

c. Method(s) supported to generate K: SP800-56A, SP800-56B, SP800-90A,

an Approved RNG, N/A – Out of the scope of the algorithm

implementation

d. Does the IUT support the counter being used as an input? If yes,

i. r- length of the binary representation of the counter i. Possible

values are 8, 16, 24, or 32 bits.

ii. Does the IUT support the counter coming before and/or after the

iteration variable and/or after the fixed input data?

5. If KDF in Double-Pipeline Iteration Mode is implemented:

a. Pseudo-random functions supported by the IUT

 i. CMAC AES 128, 192, 256

 ii. CMAC TDES 2, 3

 iii. HMAC SHA1, SHA224, SHA256, SHA384, SHA512

 6

b. L-length of the derived keying material K0 in bytes – Enter all that apply:

i. A minimum and maximum value for full block lengths supported

ii. A minimum and maximum value for partial block lengths supported

c. Method(s) supported to generate K: SP800-56A, SP800-56B, SP800-90A,

an Approved RNG, N/A – Out of the scope of the algorithm

implementation

d. Does the IUT support the counter being used as an input? If yes,

i. r- length of the binary representation of the counter i. Possible

values are 8, 16, 24, or 32 bits.

ii. Does the IUT support the counter coming before and/or after the

iteration variable and/or after the fixed input data?

6.2 The Validation Test

A separate file is generated for each supported key derivation type. For example, if an

IUT supports the KDF using Counter Mode and the KDF using Feedback Mode, two files

will be generated:

KDFCTR_gen.req and

KDFFeedback_gen.req.

6.2.1 The Validation Test for KDF in Counter Mode

Within each request file, there is a section for each PRF supported, i.e., PRF=CMAC

AES128, PRF=HMAC SHA224. Within each PRF section, there is a section for each

“Counter Location” supported. Within each “Counter Location” section, there is a

section for each r length supported. Within each r length supported, the test provides 10

sets of data for each L length specified. Four L lengths are specified including a

minimum and maximum length divisible by h and a minimum and maximum length not

evenly divisible by h. Therefore a total of 40 sets of data per PRF/Counter Location/rlen

is generated. The set of data includes a count (this is a count of the test values and is not

the counter used in the data to be MACed), an L and a randomly generated KI.

The IUT supplies the fixed input data string length (in bytes), the fixed input data string

value and the KO.

The values generated by the IUT are stored in the RESPONSE file in the format specified

 7

in the SAMPLE file. There shall be a RESPONSE file for every SAMPLE file.

The KBKDFVS will verify the correctness of the KO using the inputs from the IUT and

the values supplied by the KBKDFVS. The KBKDFVS will generate the string to be

MACed by using the FixedInputData supplied by the IUT, generating the binary

representation of i using the rlen information located in the section, and then

concatenating the information in the order specified by the Counter location. This string

is then MACed with the PRF algorithm specified resulting in the KO. The KBKDFVS

compares the IUT’s KO value to the KBKDFVS KO value to see if they are the same. If

they are, then it can be determined that the KDF is implemented correctly according to

the Recommendation. If the values do not match, the IUT has an error in it. During the

validation of the IUT, if an error occurs, the count, the variable and the values that don’t

match are stored in the log file. The laboratory uses this information to assist the vendor

in debugging their IUT.

6.2.2 The Validation test for KDF in Feedback Mode
Within each request file, there is a section for each PRF supported, i.e., PRF=CMAC

AES128, PRF=HMAC SHA224. The counter is optional in the data to be MACed. If the

counter is not used, the PRF supported sections are the only sections in the files. If the

counter is used, within each PRF section, there is a section for each “Counter Location”

supported. Within each “Counter Location” section, there is a section for each r length

supported.

For each combination of PRF (if no counter is used in the data to be MACed) or for each

combination of PRF/Counter Location/rlen (if counter is used), the test provides 10 sets

of data for each L length specified. Four L lengths are specified including a minimum

and maximum length divisible by h and a minimum and maximum length not evenly

divisible by h. Therefore a total of 40 sets of data per PRF/{Counter Location/rlen} is

generated to the IUT. The set of data includes a count (this is a count of the test values

and is not the counter used in the data to be MACed), an L, a randomly generated KI, an

IV length in bits, and an IV.

The IUT supplies the fixed input data string length (in bytes), the fixed input data string

value and the KO.

The values generated by the IUT are stored in the RESPONSE file in the format specified

in the SAMPLE file. There shall be a RESPONSE file for every SAMPLE file.

The KBKDFVS will verify the correctness of the KO using the inputs from the IUT and

the values supplied by KBKDFVS. The KBKDFVS will generate the string to be

MACed by using the FixedInputData supplied by the IUT, and the IV, for the first round,

or the previous KO value for subsequent rounds. If the counter is used in the data to be

MACed, the KBKDFVS will generate the binary representation of i using the rlen

information located in the section, and concatenating the information in the order

specified. This string is then MACed with the PRF algorithm specified resulting in the

KO. The KBKDFVS compares the IUT’s KO value to the KBKDFVS KO value to see if

they are the same. If they are, then it can be determined that the KDF is implemented

 8

correctly according to the Recommendation. If the values do not match, the IUT has an

error in it. During the validation of the IUT, if an error occurs, the count and the values

that don’t match are stored in the log file. The laboratory uses this information to assist

the vendor in debugging their IUT.

6.2.3 The Validation test for KDF in Double-Pipeline Iteration Mode
Within each request file, there is a section for each PRF supported, i.e., PRF=CMAC

AES128, PRF=HMAC SHA224. The counter is optional in the data to be MACed. If the

counter is not used, the PRF supported sections are the only sections in the files. If the

counter is used, within each PRF section, there is a section for each “Counter Location”

supported. Within each “Counter Location” section, there is a section for each r length

supported.

For each combination of PRF (if no counter is used in the data to be MACed) or for each

combination of PRF/Counter Location/rlen (if counter is used), the test provides 10 sets

of data for each L length specified. Four L lengths are specified including a minimum

and maximum length divisible by h and a minimum and maximum length not evenly

divisible by h. Therefore a total of 40 sets of data per PRF/{Counter Location/rlen} is

generated to the IUT. The set of data includes a count (this is a count of the test values

and is not the counter used in the data to be MACed), an L, and a randomly generated KI.

The IUT supplies the fixed input data string length (in bytes), the fixed input data string

value and the KO.

The values generated by the IUT are stored in the RESPONSE file in the format specified

in the SAMPLE file. There shall be a RESPONSE file for every SAMPLE file.

The KBKDFVS will verify the correctness of the KO using the inputs from the IUT and

the values supplied by KBKDFVS. The KBKDFVS will generate the string to be

MACed by using the FixedInputData supplied by the IUT. If the counter is used in the

data to be MACed, the KBKDFVS will generate the binary representation of i using the

rlen information located in the section, and then concatenate the information in the order

specified. This string is then MACed with the PRF algorithm specified resulting in the

KO. The KBKDFVS compares the IUT’s KO value to the KBKDFVS KO value to see if

they are the same. If they are, then it can be determined that the KDF is implemented

correctly according to the Recommendation. If the values do not match, the IUT has an

error in it. During the validation of the IUT, if an error occurs, the count and the values

that are in error are stored in the log file. The laboratory uses this information to assist the

vendor in debugging their IUT.

 9

Appendix A References

[1] Recommendation for Key Derivation Using Pseudorandom Functions

(Revised), Special Publication 800-108, National Institute of Standards and

Technology, October 2009.

[2] Security Requirements for Cryptographic Modules, FIPS Publication 140-

2, National Institute of Standards and Technology, May 2001.

http://csrc.nist.gov/publications/nistpubs/800-108/SP800-108_Revision.pdf
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf

 10

Appendix B Tested Components of SP 800-108

The KBKDFVS validation testing for SP 800-108 tests all the algorithmic specifications,

components, features, and functionalities specified in the Special Publication. In addition

to these algorithmic conditions, the validation testing also addresses additional

requirements identified as “shall” statements in the Special Publication that are applicable

at the algorithm level.

B.1 SP800-108 Algorithmic Specifications

The following sections of SP 800-108 contain the algorithmic specifications:

4 Pseudorandom Function (PRF)

5 Key Derivation Functions

5.1 KDF using Counter Mode

5.2 KDF using Feedback Mode

5.3 KDF using Double-Pipeline Iteration Mode.

The validation test suite for SP 800-108 tests the requirements in each of these sections.

B.2 Additional Requirements of SP800-108

There is one additional requirement that is identified by a “shall” statement in SP 800-

108 that is addressable at the algorithm level and therefore is tested by the KBKDFVS.

Section Shall Statement CAVP testing

7.4 Input Data Encoding The encoding method shall define

a one-to-one mapping from the

set of all possible input

information for that data field to a

set of the corresponding binary

strings.

CAVS requires the IUT to

supply the fixed input data,

the Label, the Context, and

the binary representation

of L. CAVS then checks

that the Label, Context and

L are included in the fixed

input data. Because the

specific order of these

components is not specified

in the special publication,

this is not checked

