
 

 

 

 

The NIST SP 800-90A Deterministic Random 
Bit Generator Validation System (DRBGVS) 

 
 

Updated: February 14, 2013 
Previous Update: March 21, 2012 

Original: March 10, 2009 
 
 

 

 

 

 

 

 

Timothy A. Hall 

 

National Institute of Standards and Technology 

Information Technology Laboratory 

Computer Security Division 



 

 ii 

TABLE OF CONTENTS 

1 INTRODUCTION .............................................................................................................................................. 1 

2 SCOPE ................................................................................................................................................................ 1 

3 CONFORMANCE ............................................................................................................................................. 1 

4 DEFINITIONS AND ABBREVIATIONS ........................................................................................................ 1 
4.1 DEFINITIONS ................................................................................................................................................ 1 
4.2 ABBREVIATIONS .......................................................................................................................................... 2 

5 DESIGN PHILOSOPHY OF THE DETERMINISTIC RANDOM BIT GENERATION VALIDATION 
SYSTEM ....................................................................................................................................................................... 2 

6 DRBGVS TEST .................................................................................................................................................. 2 
6.1 CONFIGURATION INFORMATION ................................................................................................................... 3 
6.2 THE DETERMINISTIC RANDOM BIT GENERATOR TEST ................................................................................. 3 
6.3 INPUT VALUES ............................................................................................................................................. 6 

APPENDIX A REFERENCES ........................................................................................................................... 7 

APPENDIX B REQUIREMENTS IDENTIFIED BY “SHALL” STATEMENTS THAT ARE TESTED 
BY THE CAVP VALIDATION TESTING ............................................................................................................... 8 
 
 

 



 

 iii 

Update Log 

2/14/13 

• Changed order of DRBG functions called when Prediction Resistance is False and reseed 
is supported. The function “reseed” is now called immediately after “instantiate” and 
before either call to “generate”. 

• Testing is now available for SP 800-90A DRBG mechanisms that use SHA-512/224 and 
SHA-512/256 as defined in FIPS 180-4. 

 

3/21/12 

• Added new returned bits length feature.  DRBGs should be tested with each call to 
generate returning four (4) blocks of output, but may be tested with 1 to 32 blocks if 
implementation does not support 4. 

• Added description of test file formats for implementations that do not implement the 
“reseed” function. 

• Changed references from SP 800-90 to SP 800-90A (January 2012). 

• Added statement that implementations previously validated against SP 800-90 are 
considered validated against SP 800-90A. 

• Updated Appendix B to reflect minor changes in SP 800-90A. 

 

9/02/11 

• Added Appendix B, “Requirements Identified By “Shall” Statements That Are Tested by 
the CAVP validation testing.” 

 

7/6/11 

• Section 6.3 

o Updated instructions for testing with prediction resistance enabled and disabled.



 

 1 

1 Introduction 

This document, The NIST SP 800-90A Deterministic Random Bit Generator Validation System 
(DRBGVS), specifies the procedures involved in validating implementations of the Deterministic 
Random Bit Generator mechanisms approved in NIST SP 800-90A, Recommendation for 
Random Number Generation Using Deterministic Random Bit Generators  (January 2012)  [1]. 

NIST SP 800-90A is a revision of NIST SP 800-90.  Previously validated NIST SP 800-90 
implementations are considered validated to SP 800-90A. 

The DRBGVS is designed to perform automated testing on Implementations under Test (IUTs).  
This document provides the basic design and configuration of the DRBGVS.  It defines the 
purpose, the design philosophy, and the high-level description of the validation process for 
DRBG.  The requirements and procedures to be followed by those seeking formal validation of 
an implementation of DRBG are presented.  The requirements described include the specification 
of the data communicated between the IUT and the DRBGVS, the details of the tests that the 
IUT must pass for formal validation, and general instruction for interfacing with the DRBGVS. 

2 Scope 

This document specifies the tests required to validate IUTs for conformance to the NIST SP 800-
90A [1].  When applied to IUTs that implement DRBG, the DRBGVS provides testing to 
determine the correctness of the algorithm contained in the implementation.  The DRBGVS 
consists of a single test that determines if the DRBG implementation produces the expected 
random bit output given a set of entropy and other inputs.  The requirements of NIST SP 800-
90A addressable at the algorithm level and indicated by shall statements that are tested by the 
validation suite are listed in Appendix B. 

3 Conformance 

The successful completion of the tests contained within the DRBGVS is required to be validated 
as conforming to the DRBG.  Testing for the cryptographic module in which the DRBG is 
implemented is defined in FIPS PUB 140-2, Security Requirements for Cryptographic Modules 
[2]. 

4 Definitions and Abbreviations 

4.1 Definitions 

 
DEFINITION MEANING 



 

 2 

CST laboratory Cryptographic Security Testing laboratory that operates the DRBGVS 

Deterministic Random 
Bit Generator 

The algorithms specified in NIST SP 800-90A, Recommendations for 
Random Number Generation Using Deterministic Random Bit 
Generators (DRBG) for generating random bits. 

 

4.2 Abbreviations 

ABBREVIATION MEANING 

DRBG Deterministic Random Bit Generator 

DRBGVS Deterministic Random Bit Generator Validation System 

IUT Implementation Under Test 

 

5 Design Philosophy of the Deterministic Random Bit 
Generation Validation System 

The DRBGVS is designed to test conformance to NIST SP 800-90A rather than provide a 
measure of a product’s security.  The validation tests are designed to assist in the detection of 
accidental implementation errors, and are not designed to detect intentional attempts to 
misrepresent conformance.  Thus, validation should not be interpreted as an evaluation or 
endorsement of overall product security. 

The DRBGVS has the following design philosophy: 

1. The DRBGVS is designed to allow the testing of an IUT at locations remote to the 
DRBGVS.  The DRBGVS and the IUT communicate data via REQUEST (.req) 
and RESPONSE (.rsp) files.  

2. The testing performed within the DRBGVS uses statistical sampling (i.e., only a 
small number of the possible cases are tested); hence, the successful validation of 
a device does not imply 100% conformance with the standard. 

6 DRBGVS Test 

The DRBGVS for DRBG consists of a single test. The DRBGVS requires the vendor to select 
the mechanism or mechanisms, Hash_DRBG, HMAC_DRBG, CTR_DRBG, or 
Dual_EC_DRBG, and options (e.g., which SHA algorithm is used for hashing functions).  
Separate files will be generated for each mechanism. 



 

 3 

6.1 Configuration Information 

To initiate the validation process of the DRBGVS, a vendor submits an application to an 
accredited laboratory requesting the validation of its implementation of DRBG.  The vendor’s 
implementation is referred to as the Implementation under Test (IUT).  The request for validation 
includes background information describing the IUT along with information needed by the 
DRBGVS to perform the specific tests.  More specifically, the request for validation includes: 

1. Vendor Name; 

2. Product Name;  

3. Product Version; 

4. Implementation in software, firmware, or hardware; 

5. Processor and Operating System with which the IUT was tested if the IUT is 
implemented in software or firmware; 

6. Brief description of the IUT or the product/product family in which the IUT is 
implemented by the vendor (2-3 sentences); 

7. The DRBG mechanisms and options (e.g., SHA sizes, block cipher algorithms) supported 
by the IUT. 

6.2 The Deterministic Random Bit Generator Test 

The DRBGVS consists of a single test that exercises the DRBG instantiate, generate and reseed 
operations and is organized as follows.  CAVS generates a separate request (.req) file for each 
DRBG mechanism supported by the implementation.  The four NIST SP 800-90A DRBG 
mechanisms are Hash_DRBG, HMAC_DRBG, CTR_DRBG, and Dual_EC_DRBG.  The file 
names are simply the mechanism name with a .req extension (e.g., CTR_DRBG.req). 

Each file lists the supported options for that mechanism.  For Hash_DRBG and HMAC_DRBG, 
this is simply what SHA sizes are used.  For CTR_DRBG, this is the block cipher functions used 
(e.g., AES-128) and whether or not a derivation function (df) is used.  For Dual_EC_DRBG, this 
is the curve names (e.g., P-521) and SHA sizes used.  All options supported by the mechanism 
are listed on a single line following the file header.  Examples: 

# HMAC_DRBG options: SHA-1 :: SHA-224 :: SHA-384 :: SHA-512/256 
 
# CTR_DRBG options: 3KeyTDEA use df :: AES-128 use df :: AES-256 no df 
 
# Dual_EC_DRBG options: P-256 SHA-1 :: P-256 SHA-256 :: P-521 SHA-512 
 
For each option, a series of test cases is specified.  The test case is defined by six lines of 
bracketed parameters.  The first identifies the option.  The second is whether the prediction 
resistance flag is on or off.  The next four indicate bit lengths of input parameters to the 



 

 4 

Instantiate and Generate functions.  The last is the number of returned bits from each call to the 
generate function and is a multiple of the output block length (default is 4 times output block 
length).  For example, an HMAC_DRBG SHA-1 test case might be: 

 
[SHA-1] 
[PredictionResistance = True] 
[EntropyInputLen = 128] 
[NonceLen = 64] 
[PersonalizationStringLen = 0] 
[AdditionalInputLen = 0] 
[ReturnedBitsLen = 640] 
 

Each test case contains 15 trials.  For cases with prediction resistance enabled, each trial consists 
of the following functions called in sequence: 

(1) instantiate drbg 

(2) generate ReturnedBitsLen random bits, do not print 

(3) generate ReturnedBitsLen random bits, print out 

(4) uninstantiate. 

There are eight values for each trial.  The first is a count (0 – 14).  The next three are entropy 
input, nonce, and personalization string for the instantiate operation.  The next two are additional 
input and entropy input for the first call to generate.  The final two are additional input and 
entropy input for the second call to generate.  These values are randomly generated.  Below is a 
sample trial for the HMAC_DRBG SHA-1 test case: 

 
COUNT = 0 
EntropyInput = 7a0f5bc462fd0d65156d8b1a6ba7387d 
Nonce = 1ad732f0b703c3f5 
PersonalizationString =  
AdditionalInput =  
EntropyInputPR = a1b85ba779582722098e7a6c002f5ebb 
AdditionalInput =  
EntropyInputPR = c335a123499584ec3188a52655294af4 
ReturnedBits = ? 
 
In the above sample trial, inputs followed by an equal (=) sign followed by whitespace such as 
PersonalizationString and AdditionalInput are zero-length inputs. 

For test cases without prediction resistance, each trial consists of the following functions called 
in sequence: 

(1) instantiate drbg 

(2) reseed 



 

 5 

(3) generate ReturnedBitsLen random bits, do not print 

(4) generate ReturnedBitsLen random bits, print out 

(5) uninstantiate. 

There are eight values for each trial.  The first is a count (0 – 14).  The next three are entropy 
input, nonce, and personalization string for the instantiate operation.  The fifth and sixth are 
additional input and entropy input to the call to reseed. The seventh value is additional input to 
the first call to generate.   The eighth and final value is additional input to the second generate 
call.  The values are randomly generated.  A test case and one trial sample for CTR_DRBG  is 
listed below. 

[3KeyTDEA use df] 
[PredictionResistance = False] 
[EntropyInputLen = 112] 
[NonceLen = 56] 
[PersonalizationStringLen = 112] 
[AdditionalInputLen = 0] 
[ReturnedBitsLen = 256] 
 
COUNT = 0 
EntropyInput = 60afe5d671ffdfca5744cae6cdce 
Nonce = 489f2692847ca1 
PersonalizationString = b26ff8dfb1a920b7c064d423b23d 
EntropyInputReseed = 3e97714ae391b119a02ed85887f8 
AdditionalInputReseed =  
AdditionalInput =  
AdditionalInput =  
ReturnedBits = ? 
 
In the above sample trial, inputs followed by an equal (=) sign followed by whitespace such as 
PersonalizationString and AdditionalInput are zero-length inputs. 

A DRBG implementation does not have to support the reseed function; it is optional according to 
SP 800-90A.  For DRBG implementations that do not support reseed, each trial consists of the 
following functions called in sequence 

(1) instantiate drbg 

(2) generate ReturnedBitsLen random bits, do not print 

(3) generate ReturnedBitsLen random bits, print out 

(4) uninstantiate. 

There are six input values for each trial.  The first is a count (0 – 14).  The next three are entropy 
input, nonce, and personalization string for the instantiate operation.  The fifth value is additional 
input to the first call to generate.  The sixth and final value is additional input to the second 
generate call.  The values are randomly generated.  A test case and one trial sample for 
Dual_EC_DRBG  are listed below. 



 

 6 

[P-256 SHA-256] 
[PredictionResistance = False] 
[EntropyInputLen = 128] 
[NonceLen = 64] 
[PersonalizationStringLen = 128] 
[AdditionalInputLen = 128] 
[ReturnedBitsLen = 960] 
 
COUNT = 0 
EntropyInput = c6b70aab318fa09a7a20f7f3bc1c2496 
Nonce = 62b58f21db3498cd 
PersonalizationString = f05e442fba8c7a543f0c8001e0a29189 
AdditionalInput = d1132e0952444e596825e761111e27f7 
AdditionalInput = c01d3ff5ac2000189441903bf4689db5 
ReturnedBits = ? 
 
 
More information on the input values is in the section below. 

6.3 Input values 

Prediction resistance: if an implementation supports prediction resistance, the CST lab should 
check the “Prediction Resistance Enabled” box for each mechanism tested.  If an implementation 
can be used without prediction resistance, the lab should check the “Prediction Resistance Not 
Enabled” box.  Implementations that either have prediction resistance always on or always off 
will have one box checked; implementations that can be used either way will have both boxes 
checked. 

Derivation function (df) for CTR_DRBG: counter-mode (CTR) block cipher mechanism 
DRBGs are defined in NIST SP 800-90A for use with a derivation function (df) and with no df.  
One or both of these options may be checked on the CTR_DRBG tab, whichever one(s) the 
implementation uses. 

CAVS has default bit lengths for the inputs it provides.  If the implementation can support these 
bit lengths, then do not change them.  If an implementation does not support one of the defaults, 
the bit lengths can be edited by pushing the “Edit Input Lengths” button.  The defaults and 
restrictions on each of the input lengths are as follows: 

Entropy input: the default bit length is the maximum security strength supported by the 
mechanism/option.  This is the minimum bit length CAVS will accept, as CAVS tests all DRBGs 
at their maximum supported security strength.  Longer entropy inputs are permitted, with the 
following exception: for CTR_DRBG with no df, the bit length must equal the seed length. 

Nonce: the default nonce bit length is one-half the maximum security strength supported by the 
mechanism/option.  Longer nonces are permitted.  CTR_DRBG with no derivation function (no 
df) does not use a nonce; the nonce values in the request file should be ignored for this case. 

Personalization string: CAVS has two default bit lengths for personalization string, 0 and 
maximum supported security strength, except in the case of CTR_DRBG with no df, where the 
second length must be <= seed length.  If the implementation only supports one personalization 



 

 7 

string length, then set both numbers equal to each other.  If the implementation does not use a 
personalization string, set both numbers to 0 (zero). 

Additional input: the additional input bit lengths have the same defaults and restrictions as the 
personalization string lengths. 

 

 

Appendix A References 

[1] Recommendation for Random Number Generation Using Deterministic Random Bit 
Generators, NIST SP 800-90A (A Revision of SP 800-90), National Institute of 
Standards and Technology, January 2012. 

[2] Security Requirements for Cryptographic Modules, FIPS Publication 140-2, National 
Institute of Standards and Technology, May 2001. 



 

 8 

Appendix B Requirements Identified By “Shall” Statements 
That Are Tested by the CAVP validation testing 

The “shall” statements in all special publications indicate requirements that must be fulfilled to 
claim conformance to this Recommendation.  The “shall” statements in the Special Publications 
address requirements at the algorithm, module, product level, and/or a higher level.   

This section identifies the “shall” statements tested at the algorithm level when performing the 
DRBG validation test suite. 

8.6 Seeds 

The seed and its use by a DRBG mechanism shall be generated and handled as specified in the 
following subsections. 

See below. 

 

8.6.1 Seed Construction for Instantiation 

Entropy input shall always be used in the construction of a seed; requirements for the entropy 
input are discussed in Section 8.6.3. 

CAVS input files provide entropy input for use in the instantiate function, where it is used to 
construct the initial seed.  

Except for the case noted below, a nonce shall be used; requirements for the nonce are discussed 
in Section 8.6.7. 

CAVS input files provide a valid nonce value for use the instantiate function. 

 

8.6.8 Reseeding 

Reseeding of the DRBG shall be performed in accordance with the specification for the given 
DRBG mechanism. 

The CAVS DRBG tests validate the reseed function, when implemented. 

 

9 DRBG Mechanism Functions 

 



 

 9 

A function need not be implemented using such envelopes, but the function shall have equivalent 
functionality. 

See below. 

9.1 Instantiating a DRBG 

 

The following or an equivalent process shall be used to instantiate a DRBG. 

Instantiate_function (requested_instantiation_security_strength, prediction_resistance_flag, 
personalization_string): 

… 

The CAVS DRBG tests verify the correct operation of the Instantiate_function. 

 

9.2 Reseeding a DRBG Instantiation 

The following or an equivalent process shall be used to reseed the DRBG instantiation. 

Reseed_function (state_handle, prediction_resistance_request, additional_input): 

… 

The CAVS DRBG tests verify the correct operation of the Reseed_function. 

 

9.3.1 The Generate Function 

The following or an equivalent process shall be used to generate pseudorandom bits. 

Generate_function (state_handle, requested_number_of_bits, requested_security_strength,  

prediction_resistance_request, additional_input): 

… 

The CAVS DRBG tests verify the correct operation of the Generate_function. 

 



 

 10 

10.1 DRBG Mechanisms Based on Hash Functions 

Table 2 specifies the values that shall be used for the function envelopes and DRBG algorithm 
for each approved hash function.  

Tested in CAVS DRBG tests.  IUT cannot pass validation tests unless Table 2 is followed. 

 

10.1.1 Hash_DRBG 

The Hash_DRBG requires the use of a hash function during the instantiate, reseed and generate 
functions; the same hash function shall be used throughout a Hash_DRBG instantiation. 

Tested in CAVS Hash_DRBG Tests. 

 

10.1.1.2 Instantiation of Hash_DRBG 

The following process or its equivalent shall be used as the instantiate algorithm for this 
DRBG mechanism (see step 9 of the instantiate process in Section 9.1). 

Tested in CAVS Hash_DRBG Tests. 

 

10.1.1.3 Reseeding a Hash_DRBG Instantiation 

The following process or its equivalent shall be used as the reseed algorithm for this DRBG 
mechanism (see step 6 of the reseed process in Section 9.2): 

Hash_DRBG_Reseed_algorithm (working_state, entropy_input, additional_input):  

Tested in CAVS Hash_DRBG tests. 

 

10.1.1.4  Generating Pseudorandom Bits Using Hash_DRBG 

The following process or its equivalent shall be used as the generate algorithm for this 
DRBG mechanism (see step 8 of the generate process in Section 9.3): 

Hash_DRBG_Generate_algorithm (working_state, requested_number_of_bits, 
additional_input):  

Tested in CAVS Hash_DRBG tests. 



 

 11 

 

10.1.2 HMAC_DRBG 

The same hash function shall be used throughout an HMAC_DRBG instantiation. 

Tested in CAVS HMAC_DRBG tests.  The result will not be correct unless the same specified 
hash function is used throughout the instantiation. 

 

10.1.2.2  The HMAC_DRBG Update  Function (Update) 

The following or an equivalent process shall be used as the HMAC_DRBG_Update 
function. 

Tested in CAVS DRBG tests.  The HMAC_DRBG Update_function is called inside 
instantiate, reseed, and generate in order to update the internal state.  Thus, its correct 
operation is reflected in a correct result returned from the second call to generate. 

10.1.2.3 Instantiation of HMAC_DRBG 
The following process or its equivalent shall be used as the instantiate algorithm for this 
DRBG mechanism (see step 9 of the instantiate process in Section 9.1): 

      Tested in the CAVS HMAC_DRBG tests. 

 

10.1.2.4 Reseeding an HMAC_DRBG Instantiation 

The following process or its equivalent shall be used as the reseed algorithm for this DRBG 
mechanism (see step 6 of the reseed process in Section 9.2): 

      Tested in the CAVS HMAC_DRBG tests. 

 

10.1.2.5 Generating Pseudorandom Bits Using HMAC_DRBG 

The following process or its equivalent shall be used as the generate algorithm for this 
DRBG mechanism (see step 8 of the generate process in Section 9.3): 

      Tested in the CAVS HMAC_DRBG tests. 

 



 

 12 

10.2.1 CTR_DRBG 

The same block cipher algorithm and key length shall be used for all block cipher operations of 
this DRBG. 

Tested in CAVS CTR_DRBG tests.  The result will not be correct unless the same block cipher 
algorithm and key length is used throughout the instantiation. 

 

Table 3 specifies the values that shall be used for the function envelopes and the CTR_DRBG 
mechanism (algorithms). 

Tested in CAVS CTR_DRBG tests.  IUT cannot pass validation tests unless Table 3 is followed. 

 

When using TDEA as the selected block cipher algorithm, the keys shall be handled as 64-bit 
blocks containing 56 bits of key and 8 bits of parity as specified for the TDEA engine specified 
in [SP 800-67]. 

A CTR_DRBG IUT using TDEA as the block cipher function cannot pass validation tests unless 
the CAVS-generated keys are interpreted in this way. 

 

10.2.1.2 The Update Function (CTR_DRBG_Update) 

The following or an equivalent process shall be used as the CTR_DRBG_Update function. 

Tested in CAVS DRBG tests.  The CTR_DRBG Update_function is called inside instantiate, 
reseed, and generate in order to update the internal state.  Thus, its correct operation is 
reflected in a correct result returned from the second call to generate. 

 

10.2.1.3.1 Instantiation When Full Entropy is Available for the 
Entropy Input, and a Derivation Function is Not Used 

The following process or its equivalent shall be used as the instantiate algorithm for this 
DRBG mechanism: 

Tested in the CAVS CTR_DRBG with no derivation function (no df) tests. 

 



 

 13 

10.2.1.3.2 Instantiation When a Derivation Function is Used 

Let Block_Cipher_df be the derivation function specified in Section 10.4.2 using the chosen 
block cipher algorithm and key size. 

The following process or its equivalent shall be used as the instantiate algorithm for this 
DRBG mechanism: 

Tested in the CAVS CTR_DRBG with derivation function (df) tests. 

 

10.2.1.4.1 Reseeding When Full Entropy is Available for the 
Entropy Input, and a Derivation Function is Not Used 

The following process or its equivalent shall be used as the reseed algorithm for this DRBG 
mechanism (see step 6 of the reseed process in Section 9.2):  

Tested in the CAVS CTR_DRBG with no derivation function (no df) tests. 

 

10.2.1.4.2 Reseeding When a Derivation Function is Used 

Let Block_Cipher_df be the derivation function specified in Section 10.4.2 using the chosen 
block cipher algorithm and key size. 

The following process or its equivalent shall be used as the reseed algorithm for this DRBG 
mechanism (see reseed process step 6 of Section 9.2):  

Tested in the CAVS CTR_DRBG with derivation function (df) tests.  IUT cannot pass 
validation tests otherwise. 

 

10.2.1.5.1 Generating Pseudorandom Bits When a Derivation 
Function is Not Used for the DRBG Implementation 

The following process or its equivalent shall be used as the generate algorithm for this 
DRBG mechanism (see step 8 of the generate process in Section 9.3.3):  

Tested in the CAVS CTR_DRBG with no derivation function (no df) tests. 

 



 

 14 

10.2.1.5.2 Generating Pseudorandom Bits When a Derivation 
Function is Used for the DRBG Implementation 

The Block_Cipher_df is specified in Section 10.4.2 and shall be implemented using the 
chosen block cipher algorithm and key size. 

Tested in the CAVS CTR_DRBG with derivation function (df) tests.  IUT cannot pass 
validation tests otherwise. 

 

The following process or its equivalent shall be used as generate algorithm for this DRBG 
mechanism (see step 8 of the generate process in Section 9.3.3):  

Tested in the CAVS CTR_DRBG with derivation function (df) tests. 

 

10.3.1 Dual Elliptic Curve Deterministic RBG (Dual_EC_DRBG) 

Table 4 specifies the values that shall be used for the envelope and algorithm for each curve. 

Tested in CAVS Dual_EC_DRBG tests.  IUT cannot pass validation tests unless Table 4 is 
followed. 

 

10.3.1.2  Instantiation of Dual_EC_DRBG 

The following process or its equivalent shall be used as the instantiate algorithm for this 
DRBG mechanism (see step 9 of the instantiate process in Section 9.1): 

      Tested in CAVS Dual_EC_DRBG tests. 

 

10.3.1.3  Reseeding of a Dual_EC_DRBG Instantiation 

The following process or its equivalent shall be used to reseed the Dual_EC_DRBG process 
after it has been instantiated (see step 6 of the reseed process in Section 9.2): 

      Tested in CAVS Dual_EC_DRBG tests. 

 

10.3.1.4  Generating Pseudorandom Bits Using Dual_EC_DRBG 

 



 

 15 

c. x(A) is the x-coordinate of the point A on the curve, given in affine coordinates. 
An implementation may choose to represent points internally using other 
coordinate systems; for instance, when efficiency is a primary concern. In this 
case, a point shall be translated back to affine coordinates before x() is applied. 

Tested in CAVS Dual_EC_DRBG tests.  IUT cannot pass  validation tests unless the 
point is in affine coordinates before x() is applied. 

 

The following process or its equivalent shall be used to generate pseudorandom bits (see step 
8 of the generate process in Section 9.3): 

      Tested in CAVS Dual_EC_DRBG tests.   

 

10.4.1 Derivation Function Using a Hash Function (Hash_df) 

The following or an equivalent process shall be used to derive the requested number of bits.  

Tested in the CAVS Hash_DRBG and Dual_EC_DRBG tests.  IUT cannot pass validation tests 
unless Hash_df is implemented properly according to this requirement. 

 

10.4.2 Derivation Function Using a Block Cipher Algorithm (Block_Cipher_df) 

The following or an equivalent process shall be used to derive the requested number of bits. 

 1. input_string : …This string shall be a multiple of 8 bits. 

Comment: L is the bitstring represention of the integer resulting from len (input_string)/8. L 
shall be represented as a 32-bit integer. 

Comment : N is the bitstring represention of the integer resulting from 
number_of_bits_to_return/8. N shall be represented as a 32-bit integer. 

Comment : i shall be represented as a 32-bit integer, i.e., len (i) = 32. 

Tested in the CAVS CTR_DRBG with derivation function (df) tests.  IUT cannot pass validation 
tests otherwise. 

 

10.4.3    BCC Function 

The following or an equivalent process shall be used to derive the requested number of bits. 



 

 16 

Tested in the CAVS CTR_DRBG with derivation function (df) tests.  IUT cannot pass validation 
tests unless BCC is implemented properly according to this requirement. 

11.2  Implementation Validation Testing 

A DRBG mechanism shall be tested for conformance to this Recommendation.  

CAVS validation testing provides a method to achieve this requirement. 

A DRBG mechanism shall be designed to be tested to ensure that the product is correctly 
implemented. A testing interface shall be available for this purpose in order to allow the 
insertion of input and the extraction of output for testing.  

Tested by CAVS validation tests.  IUT must have a testing interface in order to pass validation 
tests. 

A.1 Constants for the Dual_EC_DRBG 

The Dual_EC_DRBG requires the specifications of an elliptic curve and two points on the 
elliptic curve. One of the following NIST approved curves with associated points shall be used 
in applications requiring certification under [FIPS 140].  

CAVS Dual_EC_DRBG tests use only the NIST Approved curves and associated points. 

 


	1 Introduction
	2 Scope
	3 Conformance
	4 Definitions and Abbreviations
	4.1 Definitions
	4.2 Abbreviations

	5 Design Philosophy of the Deterministic Random Bit Generation Validation System
	6 DRBGVS Test
	6.1 Configuration Information
	6.2 The Deterministic Random Bit Generator Test
	6.3 Input values

	Appendix A References
	Appendix B Requirements Identified By “Shall” Statements That Are Tested by the CAVP validation testing
	8.6 Seeds
	8.6.1 Seed Construction for Instantiation
	8.6.8 Reseeding


	9 DRBG Mechanism Functions
	9.1 Instantiating a DRBG
	9.2 Reseeding a DRBG Instantiation
	9.3.1 The Generate Function

	10.1 DRBG Mechanisms Based on Hash Functions
	10.1.1 Hash_DRBG
	10.1.1.2 Instantiation of Hash_DRBG
	10.1.1.3 Reseeding a Hash_DRBG Instantiation
	10.1.1.4  Generating Pseudorandom Bits Using Hash_DRBG

	10.1.2 HMAC_DRBG
	10.1.2.2  The HMAC_DRBG Update  Function (Update)
	10.1.2.3 Instantiation of HMAC_DRBG
	10.1.2.4 Reseeding an HMAC_DRBG Instantiation
	10.1.2.5 Generating Pseudorandom Bits Using HMAC_DRBG

	10.2.1 CTR_DRBG
	10.2.1.2 The Update Function (CTR_DRBG_Update)
	10.2.1.3.1 Instantiation When Full Entropy is Available for the Entropy Input, and a Derivation Function is Not Used
	10.2.1.3.2 Instantiation When a Derivation Function is Used
	10.2.1.4.1 Reseeding When Full Entropy is Available for the Entropy Input, and a Derivation Function is Not Used
	10.2.1.4.2 Reseeding When a Derivation Function is Used
	10.2.1.5.1 Generating Pseudorandom Bits When a Derivation Function is Not Used for the DRBG Implementation
	10.2.1.5.2 Generating Pseudorandom Bits When a Derivation Function is Used for the DRBG Implementation


	10.3.1 Dual Elliptic Curve Deterministic RBG (Dual_EC_DRBG)
	10.3.1.2  Instantiation of Dual_EC_DRBG
	10.3.1.3  Reseeding of a Dual_EC_DRBG Instantiation
	10.3.1.4  Generating Pseudorandom Bits Using Dual_EC_DRBG

	10.4.1 Derivation Function Using a Hash Function (Hash_df)
	10.4.2 Derivation Function Using a Block Cipher Algorithm (Block_Cipher_df)
	10.4.3    BCC Function

	11.2  Implementation Validation Testing
	A.1 Constants for the Dual_EC_DRBG


