
 i

The Key Agreement Schemes

 Validation System (KASVS)

Updated: January 23, 2013

Previously Updated: September 1, 2011

Previously Updated: July 7, 2011

Sharon S. Keller

National Institute of Standards and Technology

Information Technology Laboratory

Computer Security Division

 ii

Update Log
1/23/13

Confirm that the format of the OtherInfo is out of scope of the CAVP testing. If Static or

StaticUnified schemes is being tested, the CAVS testing does look for the Nonce
U

 in the

PartyUInfo subfield of OtherInfo.

8/30/11

Add Appendix B containing “shall” statements tested by CAVS.

7/7/11

1. Naming of files generated by the CAVS tool will contain KDFConcat or

KDFASN1.

2. If Static scheme is being tested, the OtherInfo field used in the Key Derivation

Function should contain Party U’s nonce. Added a check to assure this nonce is

in the OtherInfo field.

3. Added chart defining the variable names and definitions used in both the Function

and Validity tests

4. Decided prerequisite information will not be included in the validation system

document. It can be found on the webpage and in the FAQ.

3/2/11

1. It has been determined that the assurances are out of scope of the CAVP.

Therefore the requirement to indicate the assurances has been removed. To assist

in the validation testing and, possibly as a tool to determine the assurances,

algorithmic functions used by the SP800-56A (but not defined in this special

publication) are now required.

09/13/2010

1. 6.1 #3 x. and d. xi. Removed TDES from CCM line. CCM is for use with 128-bit

block ciphers.

3/11/09

(Revised parts are underlined.)

2. Added specifications for testing the processing specified in SP800-56A through the

calculation of the shared secret value (ZZ). This testing is provided for IUTs who

have implemented SP800-56A but are using KDFs approved in IG D.2 Acceptable

Key Establishment Protocols and not contained in SP800-56A.

3. Added an assurance to Section 5.6.2.3 that addresses the IG D.3 Assurance of the

Validity of a Public Key for Key Establishment which states that an IUT can claim

that the FFC or ECC Ephem scheme validation assurance is not required.

4. Added the requirement to enter the following configuration information:

 iii

4.1. The KDFs implemented:

4.1.1. Concatenation

4.1.2. ASN.1

4.2. The Nonce types used in key confirmation:

4.2.1. Random Nonce

4.2.2. Time Stamp

4.2.3. Monotonically increasing sequence number

4.2.4. Combination of 2 and 3

4.3. If Static scheme is supported, the Nonce types used in this scheme:

4.3.1. Random Nonce

4.3.2. Time Stamp

4.3.3. Monotonically increasing sequence number

4.3.4. Combination of 2 and 3

12/24/08

(Revised parts are underlined.)

1. Section 2 Scope, Paragraph about the prerequisites:

a. The KASVS validation process also requires prerequisite testing of the

underlying algorithms used in the implementation. They include:

1. The underlying DSA and/or ECDSA algorithm’s domain parameter

and/or key pair functions if the assurances selected indicate that this

function should be in the implementation. Please refer to Table 1 in this

document to determine what, if anything, needs to be tested as a

prerequisite,

3. The supported MAC algorithms (CCM, CMAC, and/or HMAC) if

Key Confirmation is supported, and

 iv

TABLE OF CONTENTS

1 Introduction ... 1

2 Scope... 1

3 Conformance ... 2

4 Definitions and Abbreviations .. 2

4.1 Definitions .. 2

4.2 Abbreviations .. 3

5 Design Philosophy of Key Agreement Schemes Validation System 4

6 Key Agreement Scheme Validation System (KASVS) Test 5

6.1 Configuration Information ... 5

6.2 The Function Test .. 12

6.2.1 Key Confirmation Not Supported .. 12

6.2.2 Key Confirmation Supported .. 13

6.2.3 Testing of the 800-56A Processing through Shared Secret
Computation (ZZ) for IUTs that do not use a KDF specified in 800-56A 15

6.2.4 Definition of Variables used in CAVS files for Function test ... 16

6.2.4.1 FFC Function Test Variables .. 16
6.2.4.2 ECC Function Test Variables .. 18

6.3 The Validity Test ... 20

6.3.1 Key Confirmation Not Supported .. 21

6.3.2 Key Confirmation Supported .. 23

6.3.3 Testing of the 800-56A Processing through Shared Secret
Computation (ZZ) for IUTs that do not use a KDF specified in 800-56A 25

6.4.4 Definition of Variables used in CAVS files for Validity test 26

6.2.4.1 FFC Validity Test Variables ... 26
6.2.4.2 ECC Validity Test Variables .. 29

Appendix A References ... 31

Appendix B Requirements Identified By “Shall” Statements That Are
Tested by the CAVP validation testing... 31

 1

1 Introduction
This document, The Key Agreement Scheme (KAS) Validation System (KASVS), specifies

the procedures involved in validating implementations of the Key Agreement Schemes.

The testing encompasses IUTs that implement the key agreement schemes, as specified in

SP 800-56A, Recommendation for Pair-Wise Key Establishment Schemes Using Discrete

Logarithm Cryptography [1], without key confirmation and with key confirmation. The

KASVS is designed to perform automated testing on Implementations Under Test (IUTs).

In addition to testing the complete special publication, KASVS also provides testing of

implementations of SP800-56A that implement a key derivation function NOT specified

in SP800-56A (See IG 7.1). For this situation, the CAVP provides component testing of

the special publication referred to as the testing of “all of SP800-56A except the key

derivation function”. This testing is performed in situations where an implementation of

SP800-56A is using a KDF approved for use in Implementation Guidance D.2

Acceptable Key Establishment Protocols that is not specified in SP800-56A.

This document defines the purpose, the design philosophy, and the high-level description

of the validation process for each key agreement scheme, either alone or accompanied

with key confirmation and for the testing of the DLC primitive components. It includes

specifications for the two categories of tests that make up the KASVS, i.e., the Function

test and the Validity test. The requirements and administrative procedures to be followed

by those seeking formal validation of an implementation of SP800-56A are presented.

The requirements described include a specification of the data communicated between

the IUT and the KASVS, the details of the tests that the IUT must pass for formal

validation, and general instruction for interfacing with the KASVS.

A set of KAS test vectors is available on the http://csrc.nist.gov/cryptval/ website for

testing purposes.

2 Scope

This document specifies the tests required to validate implementations of SP 800-56A for

conformance to the key agreement schemes, either alone or accompanied with key

confirmation, as specified in [1], and it specifies the tests required to validate

implementations of “all of SP800-56A except the key derivation function”. When

applied to an Implementation Under Test (IUT), the KASVS provides testing to

determine the correctness of the implementation of the key agreement scheme

specifications and, if applicable, the key confirmation specifications. Determining the

correctness of specifications in the IUT involves both the testing of the requirements

identified by “shall” statements that are addressable at the algorithm level and

requirements identified by the specifications in the standard.

As detailed in the Recommendation, Discrete Logarithm Cryptography (DLC) includes

Finite Field Cryptography (FFC) and Elliptic Curve Cryptography (ECC). A separate

validation test suite has been designed for each of these types of cryptography. These

validation test suites contain validation testing for each key agreement scheme. The

 2

validation testing verifies that an IUT has implemented the components of the key

agreement scheme according to the specifications in the Recommendation. These

components include the calculation of the DLC primitives (the shared secret value Z) and

the calculation of the derived keying material (DKM) via the Key Derivation Function

(KDF). If key confirmation is supported, the validation test suite also verifies that an

IUT has implemented the components of key confirmation as specified in the

Recommendation. This includes the parsing of the DKM, the generation of MacData and

the calculation of MacTag. The requirements addressable at the algorithm level, and

indicated by “shall” statements, that are tested by the validation test suite are listed in

Appendix B.

If the IUT implements a KDF not specified in SP800-56A, the component testing of “all

of SP800-56A except the key derivation function” is tested.

The KASVS validation process requires the definition of supporting cryptographic

functions included within the implementation that are used by the SP800-56A but not

defined in the special publication. These functions provide information to the KASVS to

determine what validation testing is required. In addition, these functions may be used to

assist in obtaining the assurances (but this is out of scope of the CAVP).

Note that the validation testing without key confirmation asks for a MAC algorithm to

perform the testing. It is not a prerequisite to getting the IUT validated. Likewise, if “all

of SP800-56A except the key derivation function” is being tested, the testing requires the

shared secret value ZZ to be hashed. The hash function is only used to perform the test

and is not a prerequisite to getting the IUT validated.

3 Conformance

The successful completion of the tests contained within the KASVS is required to claim

conformance to SP800-56A. Testing for the cryptographic module in which a key

agreement scheme(s) is implemented is defined in FIPS PUB 140-2, Security

Requirements for Cryptographic Modules.[2]

4 Definitions and Abbreviations

4.1 Definitions

DEFINITION MEANING

Assurance of identifier Confidence that identifying information (such as a name) is correctly
associated with an entity

Assurance of possession
of a private key

Confidence that an entity possesses a private key associated with a
public key.

 3

Assurance of validity Confidence that either a key or a set of domain parameters is
arithmetically correct

CMT laboratory Cryptographic Module Testing laboratory that operates the KASVS

Key agreement A key establishment procedure where the resultant secret keying
material is a function of information contributed by two participants,
so that no party can predetermine the value of the secret keying
material independently from the contributions of the other parties.

Key confirmation A procedure to provide assurance to one party (the key confirmation
recipient) that another party (the key confirmation provider) actually
possesses the correct secret keying material and/or shared secret.

4.2 Abbreviations

ABBREVIATION MEANING

CCM Counter with Cipher Block Chaining-Message Authentication Code

CCMVS CCM Validation System

CMACVS CMAC Validation System

DKM Derived Keying Material

DLC Discrete Logarithm Cryptography

DSA Digital Signature Algorithm

DSAVS Digital Signature Algorithm Validation System

ECDSA Elliptic Curve Digital Signature Algorithm

ECDSAVS ECDSA Validation System

FIPS Federal Information Processing Standard

HMAC Keyed-Hash Message Authentication

Code

HMACVS HMAC Validation System

I.G. D.2 Acceptable Key Establishment Protocols identifies additional

symmetric and asymmetric key establishment schemes allowed in a

FIPS Approved mode of operation, in addition to those provided in

SP 800-56A. As stated in this IG’s resolution, in many cases, the

KDF used to generate the keying material from the shared secret is

 4

not one of the KDFs specified in SP800-56A.

I.G. D.3 Assurance of the Validity of a Public Key for Key Establishment

IUT Implementation Under Test

KAS Key Agreement Scheme

KC Key Confirmation

KDF Key Derivation Function

KES Key Establishment Scheme

MAC Message Authentication Code

SHA Secure Hash Algorithm

SHAVS SHA Validation System

Z A shared secret that is used to derive secret keying material using a

key derivation function; a DLC primitive – either Diffie-Hellman or

MQV.

5 Design Philosophy of Key Agreement Schemes Validation
System

The KASVS is designed to test conformance to the key agreement and key confirmation

specifications rather than provide a measure of a product’s security. The validation tests

are designed to assist in the detection of accidental implementation errors, and are not

designed to detect intentional attempts to misrepresent conformance. Thus, validation

should not be interpreted as an evaluation or endorsement of overall product security.

The KASVS has the following design philosophy:

1. The KASVS is designed to allow the testing of an IUT at locations remote

to the KASVS. The KASVS and the IUT communicate data via

REQUEST and RESPONSE files. The KASVS also generates SAMPLE

files to provide the IUT with an example of the format required by the

RESPONSE file.

2. The testing performed within the KASVS utilizes statistical sampling (i.e.,

only a small number of the possible cases are tested); hence, the successful

validation of a device does not imply 100% conformance with the

Recommendation.

 5

6 Key Agreement Scheme Validation System (KASVS) Test

The KASVS tests the implementation of the key agreement and the key confirmation

processes for its conformance to SP800-56A.

When applied to an IUT, the KASVS provides testing to determine the correctness of the

implementation of the key agreement scheme specifications. As detailed in the

Recommendation, Discrete Logarithm Cryptography (DLC) includes Finite Field

Cryptography (FFC) and Elliptic Curve Cryptography (ECC). A separate validation test

suite has been designed for each of these types of cryptography. Within each test suite,

validation testing has been designed for each key agreement scheme. The validation test

suite for each key agreement scheme verifies that an IUT has implemented the

components of the key agreement scheme according to the specifications in the

Recommendation. These components include the calculation of the DLC primitives (the

shared secret value Z) and the calculation of the derived keying material (DKM) via the

Key Derivation Function (KDF). If key confirmation is supported, the validation test

suite also verifies that the components of key confirmation as specified in the

Recommendation have been implemented correctly. This includes the parsing of the

DKM, the generation of MacData and the calculation of MacTag.

Supporting cryptographic functions included within the implementation that are used by

the SP800-56A but not defined in the special publication must be defined. These

functions provide information to the KASVS to determine what validation testing is

required. In addition, these functions may be used to assist in obtaining the assurances

(but the assurances are out of scope of the CAVP). These functions include Domain

Parameter Generation, Domain Parameter Validation, Key Pair Generation, Full Public

Key Validation, Partial Public Key Validation (for ECC only) and Key Regeneration.

6.1 Configuration Information

To initiate the validation process of the KASVS, a vendor submits an application to an

accredited laboratory requesting the validation of its implementation of the complete key

agreement scheme with or without key confirmation, or only the processing up to and

including the DLC primitive component. The vendor’s implementation is referred to as

the IUT. The request for validation includes background information describing the IUT,

along with information needed by the KASVS to perform the specific tests. More

specifically, the request for validation includes:

1. Cryptographic algorithm implementation information

 a. Vendor Name;

 b. Implementation Name;

 c. Implementation Version;

 d. Indication if implementation is software, firmware, or hardware;

 6

 e. Processor and Operating System with which the IUT was tested if the IUT

is implemented in software or firmware;

 f. Brief description of the IUT or the product/product family in which the

IUT is implemented by the vendor (2-3 sentences); and

2. Configuration information for the KASVS tests.

 a. The underlying cryptographic schemes supported by the IUT, i.e., FFC and/or

ECC. The FFC schemes are based on ANS X9.42 and the ECC schemes are

based on ANS X9.63.

 b. For each underlying algorithm, a list of supporting cryptographic functions

included within the IUT that are supported by SP800-56A but not defined in

the special publication. Based on the functions defined as being supported by

an IUT, the scope of the validation testing necessary to thoroughly test the

implementation is determined.

3. If FFC is implemented, the following configuration information is required:

a. Supported key agreement scheme(s):

o dhHybrid1, MQV2, dhEphem, dhHybridOneFlow, MQV1,

dhOneFlow, dhStatic

b. Supported roles for key agreement:

o Initiator, Responder

The following configuration information is required if the KDF implemented is specified

in SP800-56A and key confirmation is supported:

c. If key confirmation is supported, supported roles for key confirmation:

o Provider, Recipient

d. If key confirmation is supported, types of key confirmation:

o Unilateral, Bilateral

e. The KDFs implemented:

O Concatenation

O ASN.1

f. The Nonce types used in key confirmation:

 7

O Random Nonce

O Time Stamp

O Monotonically increasing sequence number

O Combination of 2 and 3

g. If Static scheme is supported, the Nonce types used in this scheme:

O Random Nonce

O Time Stamp

O Monotonically increasing sequence number

O Combination of 2 and 3

h. Parameter size set(s) supported:

O FA

O FB

O FC

(Refer to SP800-56A, Section 5.5.1.1, Table 1, FFC Parameter Size

Sets for more information.)

i. SHA algorithm(s) supported for use in the key derivation function testing.

For the testing of only the DLC primitive (ZZ Only), the SHA algorithm is

requested for testing purposes only – to hash the ZZ value before outputting

it. In this case, it is not required as a prerequisite to the SP800-56A

implementation.

j. If key confirmation is supported, indicate all MACs supported by the IUT,

along with the associated information. If key confirmation is not supported,

indicate one MAC supported by the IUT, along with the associated

information. Note in this case, the MAC is not required as a prerequisite to

the SP800-56A implementation – it is only used in the testing process. The

MACs to choose from are listed below:

o A NIST-approved MAC supported by the IUT:

CCM:

 Algorithm: AES

 8

 Key Size: 128, 192, 256

 Nonce Length in bytes: 7, 8, 9, 10, 11, 12, 13

 Tag Length in bytes:

o For FA: 10, 12, 14, 16

o For FB: 14, 16

o For FC: 16

CMAC:

 Algorithm and key size: AES128, AES192, AES256

 Tag Length in bytes:

o For FA: 10 <= Tag Length <= 16

o For FB: 14 <= Tag Length <=16

o For FC: Tag Length = 16

HMAC:

 For FA:

o SHA Algorithm supported: SHA1, SHA224,

SHA256, SHA384, SHA512

o HMAC Key Size in bytes: >= 10 bytes

o Tag Length in bytes: >= 10 bytes

 For FB:

o SHA Algorithm supported: SHA224,

SHA256, SHA384, SHA512

o HMAC Key Size in bytes: >= 14 bytes

o Tag Length in bytes: >= 14 bytes

 For FC:

 9

o SHA Algorithm supported: SHA256,

SHA384, SHA512

o HMAC Key Size in bytes: >= 16 bytes

o Tag Length in bytes: >= 16 bytes

4. If ECC is implemented, the following configuration information is required:

a. Supported key agreement scheme(s):

o (Cofactor) Full Unified Model, Full MQV, (Cofactor) Ephemeral

Unified Model, (Cofactor) One-Pass Unified Model, One-Pass

MQV, (Cofactor) One-Pass Diffie-Hellman, Cofactor Static

Unified Model

b. Supported roles:

o Initiator, Responder

The following configuration information is required if the KDF implemented is specified

in SP800-56A and key confirmation is supported:

c. If key confirmation is supported, supported roles for key confirmation:

o Provider, Recipient

d. If key confirmation is supported, supported types of key confirmation:

o Unilateral, Bilateral

 e. The KDFs implemented:

o Concatenation

o ASN.1

f. The Nonce types used in key confirmation:

o Random Nonce

o Time Stamp

o Monotonically increasing sequence number

o Combination of 2 and 3

g. Static scheme is supported, the Nonce types used in this scheme:

 10

o Random Nonce

o Time Stamp

o Monotonically increasing sequence number

o Combination of 2 and 3

h. Parameter set(s) supported:

o EA

o EB

o EC

o ED

o EE

 (Refer to SP800-56A, Section 5.5.1.2, Table 2, ECC Parameter Size

Sets for more information.)

i. Supported curve (indicate one per parameter set supported). Note, if an IUT

supports both prime fields and polynomial fields, a parameter set from each

field should be tested:

o For EA: P192, K163, B163

o For EB: P224, K233, B233

o For EC: P256, K283, B283

o For ED: P384, K409, B409

o For EE: P512, K571, B571

j. SHA algorithms supported for use in the key derivation function testing.

For the testing of only the DLC primitive (ZZ Only), the SHA algorithm is

requested for testing purposes only – to hash the ZZ value before outputting

it. In this case, it is not required as a prerequisite to the SP800-56A

implementation.

k. If key confirmation is supported, indicate all MACs supported by the IUT,

along with the associated information. If key confirmation is not supported,

indicate one MAC supported by the IUT, along with the associated

information. Note in this case, the MAC is not required as a prerequisite to

the SP800-56A implementation – it is only used in the testing process. The

MACs to choose from are listed below:

 11

o A NIST-approved MAC supported by the IUT:

CCM:

 Algorithm: AES

 Key Size: 128, 192, 256

 Nonce Length in bytes: 7, 8, 9, 10, 11, 12, 13

 Tag Length in bytes:

For EA: 10, 12, 14, 16

 For EB: 14, 16

 For EC: 16

 CMAC (Only for use with EA, EB, EC):

 Algorithm and key size: AES128, AES192, AES256

 Tag Length in bytes:

 For EA: 10 <= Tag Length <= 16

 For EB: 14 <= Tag Length <=16

 For EC: Tag Length = 16

 HMAC:

 For EA:

 SHA Algorithm supported: SHA1, SHA224,

SHA256, SHA384,

SHA512

 HMAC Key Size in bytes: >= 10 bytes

 Tag Length in bytes: >= 10 bytes

 For EB:

 SHA Algorithm supported: SHA224, SHA256,

SHA384, SHA512

 HMAC Key Size in bytes: >= 14 bytes

 12

 Tag Length in bytes: >= 14 bytes

 For EC:

 SHA Algorithm supported: SHA256, SHA384,

SHA512

 HMAC Key Size in bytes: >= 16 bytes

 Tag Length in bytes: >= 16 bytes

 For ED:

 SHA Algorithm supported: SHA384, SHA512

 HMAC Key Size in bytes: >= 24 bytes

 Tag Length in bytes: >= 24 bytes

 For EE:

 SHA Algorithm supported: SHA512

 HMAC Key Size in bytes: >= 32 bytes

 Tag Length in bytes: >= 32 bytes

6.2 The Function Test

6.2.1 Key Confirmation Not Supported

A separate file is generated for each supported key agreement scheme – KDF type - role

combination. For example, if an IUT supports the key agreement scheme dhHybrid1,

uses KDF Concatenation and the IUT supports both initiator and responder roles, two

files will be generated:

KASFunctionTest_FFCHybrid1_KDFConcat_NOKC_init.req and

KASFunctionTest_FFCHybrid1_KDFConcat_NOKC_resp.req.

Within each request file, there is a section for each combination of parameter set and

SHA algorithm supported, i.e., FA-SHA1, FA-SHA224, FB-SHA224, FC-SHA512. For

each combination of parameter set and SHA algorithm, the Function Test provides 10

sets of data to the IUT. In addition to this, if FFC is used, one set of domain parameter

values is included for use with these 10 sets of data. If ECC is used, the curve name is

included in the file header. Depending on the scheme being tested, this set of data may

include a static public key and/or an ephemeral public key, and a nonce. The nonce is

used in constructing the value of the MacData. (See Section 5.2.3 of NIST SP800-56A.)

 13

The IUT uses the domain parameter values or the NIST-approved curves to generate a

public/private key pair. The IUT uses the appropriate public keys supplied by the

KASVS and its own public/private key pair to calculate the shared secret value Z. The Z

value is computed using the appropriate DLC primitive corresponding to the scheme

being tested (Section 5.7 of NIST SP800-56A).

The IUT also calculates the derived keying material DKM. SP800-56A specifies two key

derivation functions in Section 5.8 - the Concatenation Key Derivation Function

(Approved Alternative 1) and the ASN.1 Key Derivation Function (Approved Alternative

2). The DKM is computed using the supported KDFs. These two functions differ only in

the format of the Other Information OtherInfo (OI) field. In the KASVS, the IUT is

required to supply the value of the OI field since the exact format of this field is outside

the scope of the algorithm specifications – i.e. it is application specific. This allows the

CAVS tool to test both key derivation functions in the same manner. Note, for this

reason, the format of the OI field is outside the scope of the KASVS validation testing.

Other fields needed in the computation of the key derivation function are the IUTid,

supplied by the IUT and the CAVSid, supplied by the CAVS tool. If Static scheme is

being tested, Party U (which may be the IUT or the CAVS depending on the roles being

tested) must supply a nonce.

The IUT computes a Tag to determine if the SP800-56A implementation has been

implemented correctly. The IUT specifies an approved MAC algorithm supported by

their implementation, i.e., CCM, CMAC, or HMAC. The MAC key is obtained from

the DKM. The MacData to be MACed shall be the string “Standard Test Message”

concatenated with the 16-byte nonce found in the request file (Section 5.2.3 of NIST

SP800-56A).

The values generated by the IUT are stored in the RESPONSE file in the format specified

in the SAMPLE file. There shall be a RESPONSE file for every SAMPLE file.

If the IUT indicates that they support full or partial validation of their keys, (denoted in

the supporting cryptographic functions), the KASVS will perform a validation of the

IUT’s public keys. The KASVS will check to see if Party U’s nonce is in the OI field if

Static scheme is being tested. The KASVS will also verify the correctness of the IUT’s

Tag by calculating the shared secret value using the appropriate DLC primitive and the

IUT’s public keys, computing the derived keying material, and computing the Tag. The

KASVS compares the IUT’s Tag value to the KASVS Tag value to see if they are the

same. If they are, then it can be determined that the implemented key agreement scheme,

the DLC primitive implementation, and the KDF implementation are implemented

correctly according to the Recommendation. If the values do not match, the IUT has an

error in it. During the validation of the IUT, if an error occurs, the intermediate values

generated by the CAVS, such as Z and DKM, are stored in the log file. The laboratory

uses this information to assist the vendor in debugging their IUT.

6.2.2 Key Confirmation Supported

A separate file is generated for each supported combination of the key agreement scheme,

 14

key agreement role, key confirmation role, key confirmation type and KDF type. For

example, if an IUT supports FFC cryptography, the dhStatic key agreement scheme, both

key agreement roles (initiator and responder), both key confirmation roles (provider and

recipient), both key confirmation types (unilateral and bilateral), and both KDF types

then 16 files will be generated:

KASFunctionTest_FFCStatic_KDFConcat_KC_init_prov_ulat.req

KASFunctionTest_FFCStatic_KDFConcat_KC_init_rcpt_ulat.req

KASFunctionTest_FFCStatic_KDFConcat_KC_init_prov_blat.req

KASFunctionTest_FFCStatic_KDFConcat_KC_init_rcpt_blat.req

KASFunctionTest_FFCStatic_KDFConcat_KC_resp_prov_ulat.req

KASFunctionTest_FFCStatic_KDFConcat_KC_resp_rcpt_ulat.req

KASFunctionTest_FFCStatic_KDFConcat_KC_resp_prov_blat.req

KASFunctionTest_FFCStatic_KDFConcat_KC_resp_rcpt_blat.req

KASFunctionTest_FFCStatic_KDFASN1_KC_init_prov_ulat.req

KASFunctionTest_FFCStatic_KDFASN1_KC_init_rcpt_ulat.req

KASFunctionTest_FFCStatic_KDFASN1_KC_init_prov_blat.req

KASFunctionTest_FFCStatic_KDFASN1_KC_init_rcpt_blat.req

KASFunctionTest_FFCStatic_KDFASN1_KC_resp_prov_ulat.req

KASFunctionTest_FFCStatic_KDFASN1_KC_resp_rcpt_ulat.req

KASFunctionTest_FFCStatic_KDFASN1_KC_resp_prov_blat.req

KASFunctionTest_FFCStatic_KDFASN1_KC_resp_rcpt_blat.req.

Within each REQUEST file, there is a section for each combination of parameter set and

SHA algorithm supported, i.e., FA-SHA1, FA-SHA224, FB-SHA224, FC-SHA512.

Within each combination of parameter set and SHA algorithm, the Function Test

provides a section for each supported combination of MAC algorithm and key size, i.e.,

CCM AES128, CCM AES256. In addition to this, if FFC is used, one set of domain

parameter values is included for use with these sets of data. If ECC is used, the curve

name is included in the file header. In each MAC algorithm-key size section, the

Function Test provides 10 sets of data to the IUT. Depending on the scheme being

tested, this set of data may include a static public key and/or an ephemeral public key.

The IUT uses the domain parameter values or the NIST-approved curves to generate a

public/private key pair. The IUT uses the appropriate public keys supplied by the

KASVS and its own public/private key pair to calculate the shared secret value Z. The Z

value is computed using the appropriate DLC primitive corresponding to the scheme

being tested (Section 5.7 of NIST SP800-56A).

The IUT also calculates the derived keying material DKM. SP800-56A specifies two key

derivation functions in Section 5.8 - the Concatenation Key Derivation Function

(Approved Alternative 1) and the ASN.1 Key Derivation Function (Approved Alternative

2). The DKM is computed using the supported KDFs. These two functions differ only in

the format of the Other Information OtherInfo (OI) field. In the KASVS, the IUT is

required to supply the value of the OI field since the exact format of this field is outside

the scope of the algorithm specifications – i.e. it is application specific. This allows the

 15

CAVS tool to test both key derivation functions in the same manner. Note, for this

reason, the format of the OI field is outside the scope of the KASVS validation testing.

Other fields needed in the computation of the key derivation function are the IUTid,

supplied by the IUT and the CAVSid, supplied by the CAVS tool. If Static scheme is

being tested, Party U (which may be the IUT or the CAVS depending on the roles being

tested) must supply a nonce.

The IUT computes Tags for each implemented approved MAC algorithm supported by

their implementation. These include CCM, CMAC, and/or HMAC. For each supported

MAC algorithm, a MAC key will be obtained from the DKM. Depending on the key

confirmation role (provider or recipient) and the key confirmation type (unilateral or

bilateral), MacData will be computed as specified in Section 8 of NIST SP800-56A.

The values generated by the IUT are stored in the RESPONSE file in the format specified

in the SAMPLE file. There shall be a RESPONSE file for every SAMPLE file.

If the IUT indicates that they support full or partial validation of their keys, (denoted in

the supporting cryptographic functions), the KASVS will perform a validation of the

IUT’s public keys. The KASVS will check to see if Party U’s nonce is in the OI field if

Static scheme is being tested. The KASVS will also verify the correctness of the IUT’s

Tag by calculating the shared secret value using the appropriate DLC primitive and the

IUT’s public keys, computing the derived keying material, computing the MacData

value, and computing the Tag. The KASVS compares the IUT’s Tag value to the

KASVS Tag value to see if they are the same. If they are, then it can be determined that

the implemented key agreement scheme, the DLC primitive implementation, and the

KDF implementation are implemented correctly according to the Recommendation. If the

values do not match, the IUT has an error in it. During the validation of the IUT, if an

error occurs, the intermediate values generated by the CAVS, such as Z, MacData, and

DKM, are stored in the log file. The laboratory uses this information to assist the vendor

in debugging their IUT.

6.2.3 Testing of the 800-56A Processing through Shared Secret
Computation (ZZ) for IUTs that do not use a KDF specified in 800-56A

A separate file is generated for each supported key agreement scheme - role combination.

For example, if an IUT supports the key agreement scheme dhHybrid1, and the IUT

supports both initiator and responder roles, two files will be generated:

KASFunctionTest_FFCHybrid1_NOKC_ZZOnly_init.req and

KASFunctionTest_FFCHybrid1_NOKC_ ZZOnly_resp.req.

Within each request file, there is a section for each combination of parameter set and

SHA algorithm supported, i.e., FA-SHA1, FA-SHA224, FB-SHA224, FC-SHA512. For

each combination of parameter set and SHA algorithm, the Function Test provides 10

sets of data to the IUT. In addition to this, if FFC is used, one set of domain parameter

values is included for use with these 10 sets of data. If ECC is used, the curve name is

 16

included in the file header. Depending on the scheme being tested, this set of data may

include a static public key and/or an ephemeral public key.

The IUT uses the domain parameter values or the NIST-approved curves to generate a

public/private key pair. The IUT uses the appropriate public keys supplied by the

KASVS and its own public/private key pair to calculate the shared secret value Z. The Z

value is computed using the appropriate DLC primitive corresponding to the scheme

being tested (Section 5.7 of NIST SP800-56A). Because IUTs shall not output the Z

value in the clear, the Z value is hashed. Note that this hash implementation is for testing

purposes only. It is not a prerequisite for this testing.

The values generated by the IUT are stored in the RESPONSE file in the format specified

in the SAMPLE file. There shall be a RESPONSE file for every SAMPLE file.

If the IUT indicates that they support full or partial validation of their keys, (denoted in

the supporting cryptographic functions), the KASVS will perform a validation of the

IUT’s public keys. The KASVS will also verify the correctness of the IUT’s secret value

using the appropriate DLC primitive and the IUT’s public keys. The KASVS compares

the IUT’s hashed Z value to the KASVS hashed Z value to see if they are the same. If

they are, then it can be determined that the implemented key agreement scheme and the

DLC primitive implementation are implemented correctly according to the

Recommendation. If the values do not match, the IUT has an error in it. During the

validation of the IUT, if an error occurs, the intermediate values of Z generated by the

CAVS are stored in the log file. The laboratory uses this information to assist the vendor

in debugging their IUT.

6.2.4 Definition of Variables used in CAVS files for Function test
The Function test uses many variables as denoted in the request and sample files. Below

is a table for the FFC Function test variables and the ECC Function test variables.

6.2.4.1 FFC Function Test Variables

Table 1: FFC Function Test Variables for all schemes for with key confirmation

(KC) and without key confirmation (NOKC)

P Domain parameter for DSA

Q Domain parameter for DSA

G Domain parameter for DSA

COUNT the number of the set of values to be tested

by IUT. Used to identify each set of values.

YstatCAVS CAVS DSA static public key

 17

YephemCAVS CAVS DSA ephemeral public key

Nonce ONLY USED BY NOKC. the 16-byte

nonce that is to be concatenated to the

message "Standard Test Message" to make

the value of MacData. This MacData value

is used for purposes of testing when no key

confirmation capability exists. See Section

5.2.3 Implementation Validation Message.

CCMNonce nonce used by the CCM function, if CCM

is used to generate the Tag.

YstatIUT IUT DSA static public key

YephemIUT IUT DSA ephemeral public key

OILen Length of the OtherInfo field. See Section

5.8 Key Derivation Functions for Key

Agreement Schemes.

OI OtherInfo is the bit string defined for the

Concatenation and ASN.1 Key Derivation

Functions. It must include at least the

initiator's id, the responder's id, and, if

Static Scheme is being tested, the initiator's

nonce. See Section 5.8 Key Derivation

Functions for Key Agreement Schemes,

OtherInfo definition.

IUTidLen the length of the IUT's id

IUTid The IUT's id

DKM Derived Keying Materal generated by

running one of the Key Derivation

Functions specified in SP800-56A. See

Section 5.8.

Tag The tag (or MAC) generated by using the

DKM to MAC the Message with the

specified method (CCM, CMAC, HMAC).

NonceEphemCAVS ONLY USED BY C(1,2) and C(0,2)

schemes with KC. nonce to be used in the

MacData field.

 18

NonceDKMLen ONLY USED BY STATIC SCHEME. the

length of the nonce supplied by the initiator

to be used in the OI field in the PartyUInfo

field.

NonceDKM ONLY USED BY STATIC SCHEME. The

nonce supplied by the initiator to be used in

the OI field in the PartyUInfo field. See

Section 6.3.1 dhStatic, Action 4. In Table

18, Row "Ephemeral Data" it is referred to

as Nonceu. In the same table, row "Derive

Secret Keying Material" it states "Compute

kdf(Z, OtherInput) using Nonceu". If the

IUT is being tested for the Initiator role, the

IUT supplies this value. If the IUT is being

tested for the Responder role, the CAVS

supplies this value.

NonceEphemIUTLen length of NonceEphemIUT value

NonceEphemIUT ONLY USED BY C(1,2) and C(0,2)

schemes with KC. nonce to be used in the

MacData field.

Message ONLY USED BY NOKC The complete

message to be MACed which includes the

message "Standard Test Message"

concatenated with the Nonce above. See

Section 5.2.3 Implementation Validation

Message.

MacData ONLY USED BY KC. The message to be

MAced. See Section 8 Key Confirmation

for the specific format of this field based on

the scheme, key confirmation role, the key

agreement role, and whether unilateral or

bilateral key confirmation is being tested.

6.2.4.2 ECC Function Test Variables

Table 2: ECC Function Test Variables for all schemes for with key confirmation

(KC) and without key confirmation (NOKC)

COUNT the number of the set of values to be tested

by IUT. Used to identify each set of values.

QsCAVSx CAVS ECDSA static public key x

 19

coordinate

QsCAVSy CAVS ECDSA static public key y

coordinate

QeCAVSx CAVS ECDSA ephemeral public key x

coordinate

QeCAVSy CAVS ECDSA ephemeral public key y

coordinate

Nonce the 16-byte nonce that is to be concatenated

to the message "Standard Test Message" to

make the value of MacData. This MacData

value is used for purposes of testing when

no key confirmation capability exists. See

Section 5.2.3 Implementation Validation

Message.

CCMNonce nonce used by the CCM function, if CCM

is used to generate the Tag.

QsIUTx IUT ECDSA static public key x coordinate

QsIUTy IUT ECDSA static public key y coordinate

QeIUTx IUT ECDSA ephemeral public key x

coordinate

QeIUTy IUT ECDSA ephemeral public key y

coordinate

OILen Length of the OtherInfo field. See Section

5.8 Key Derivation Functions for Key

Agreement Schemes.

OI OtherInfo is the bit string defined for the

Concatenation and ASN.1 Key Derivation

Functions. It must include at least the

initiator's id, the responder's id, and, if

Static Scheme is being tested, the initiator's

nonce. See Section 5.8 Key Derivation

Functions for Key Agreement Schemes,

OtherInfo definition.

IUTidLen the length of the IUT's id

IUTid The IUT's id

DKM Derived Keying Material generated by

running one of the Key Derivation

Functions specified in SP800-56A. See

Section 5.8.

Tag The tag (or MAC) generated by using the

DKM to MAC the Message with the

specified method (CCM, CMAC, HMAC).

NonceEphemCAVS ONLY USED BY C(1,2) and C(0,2)

schemes with KC. nonce to be used in the

MacData field.

NonceDKMLen the length of the nonce supplied by the

 20

initiator to be used in the OI field in the

PartyUInfo field.

NonceDKM the nonce supplied by the initiator to be

used in the OI field in the PartyUInfo field.

See Section 6.3.1 dhStatic, Action 4. In

Table 18, Row "Ephemeral Data" it is

referred to as Nonceu. In the same table,

row "Derive Secret Keying Material"it

states "Compute kdf(Z, OtherInput) using

Nonceu". If the IUT is being tested for the

Initiator role, the IUT supplies this value.

If the IUT is being tested for the Responder

role, the CAVS supplies this value.

NonceEphemIUTLen length of NonceEphemIUT value

NonceEphemIUT ONLY USED BY C(1,2) and C(0,2)

schemes with KC. nonce to be used in the

MacData field.

Message ONLY USED BY NOKC The complete

message to be MACed which includes the

message "Standard Test Message"

concatenated with the Nonce above. See

Section 5.2.3 Implementation Validation

Message.

MacData ONLY USED BY KC. The message to be

MAced. See Section 8 Key Confirmation

for the specific format of this field based on

the scheme, key confirmation role, the key

agreement role, and whether unilateral or

bilateral key confirmation is being tested.

6.3 The Validity Test
The second test in the NIST SP800-56A suite of validation tests is the Validity test. Its

purpose is to test the ability of the IUT to recognize valid and invalid results received

from the CAVS tool generated by the key agreement process with or without key

confirmation. Incorrect values are generated by the CAVS tool by interjecting errors in

different fields. The fields in which errors are introduced include Z, DKM, OI, MacData,

Tag, CAVS’ static public key, IUT’s static public key, CAVS ephemeral pubic key and

the IUT’s static private key. Errors introduced in the keys test if the IUT has

implemented the pubic key validation function properly. Note that this is only performed

if the cryptographic functions supported by the IUT support this capability.

A version of this test is also included for IUTs that implement all of SP800-56A except a

KDF specified in SP800-56A.

 21

6.3.1 Key Confirmation Not Supported

A separate file is generated for each supported key agreement scheme – KDF type - role

combination. For example, if an IUT supports the ECC key agreement scheme

dhFullUnified, uses KDF Concatenation and the IUT supports both initiator and

responder roles, two files will be generated:

KASValidityTest_ECCFullUnif_KDFConcat_NOKC_init.req and

KASValidityTest_ECCFullUnif_KDFConcat_NOKC_resp.req.

Within each request file, there is a section for each combination of parameter set and

SHA algorithm supported (for example, FA-SHA1, FA-SHA224, FB-SHA224, FC-

SHA512). For each combination of parameter set and SHA algorithm, the Validity Test

provides information identifying the domain parameter values (for FFC) or elliptic curve

(ECC) being used. For FFC implementations, the KASVS will generate 24 sets of data

for the IUT. For ECC implementations, the KASVS will generate 30 sets of data for the

IUT. Within these sets of data, the KASVS will modify some of the values to introduce

errors. This will determine whether or not the IUT can detect these errors. In addition to

verifying that the IUT can detect errors in the key agreement and key confirmation

processing, this test will also provide assurance of the validity of the domain parameters

as implemented by the IUT.

Depending on the key agreement scheme being tested, data supplied by the CAVS

includes:

1 A header containing:

a. Parameter Sets Supported

b. CAVSid

c. IUTid

d. The parameters associated with each parameter set, including:

i. Curve selected (if ECC)

ii. SHA(s) supported

iii. MAC algorithm(s) supported

iv. If the MAC is CCM:

1. Key sizes supported

2. CCM Nonce length

3. CCM Tag length

 22

v. If the MAC is CMAC:

1. Key sizes supported

2. AES/TDES Tag length

vi. If the MAC is HMAC:

1. SHA(s) supported

2. Key sizes supported

3. Tag length

2 A set of data containing a subset of the following data depending on the

scheme implemented:

a. CAVS values, including:

i. Static public key and/or

ii. Ephemeral public key (or nonce)

b. Nonce value

c. IUT values, including:

i. Static private key, and

ii. Static public key, and/or

iii. Ephemeral private key, and

iv. Ephemeral public key

d. If CCM is selected: the CCMNonce value

e. Other Information, OI

f. CAVS Tag

The IUT uses this information to validate the CAVS Tag value, returning a (P)ASS or

(F)AIL. The IUT generates a response file containing the values above, plus the tag

generated by the IUT (IUTTag) and the Result. The format for the RESPONSE file is

specified in the SAMPLE file. There shall be a RESPONSE file for every SAMPLE file.

The KASVS verifies that the correct responses were returned by the IUT by comparing

the results in the RESPONSE file with those in the FAX file. If the results match, CAVS

records (P)ASS for this test; otherwise, CAVS records (F)AIL.

 23

6.3.2 Key Confirmation Supported

A separate file is generated for each supported combination of the key agreement scheme,

KDF type, key agreement role, key confirmation role and key confirmation type. For

example, if an IUT supports the FFC key agreement scheme dhHybrid1, the

Concatenation KDF, the key agreement role of initiator, both key confirmation roles

(provider and recipient), and both key confirmation types (unilateral and bilateral), four

files will be generated:

KASValidityTest_FFCHybrid1_KDFConcat_KC_init_prov_ulat.req

KASValidityTest_FFCHybrid1_KDFConcat_KC_init_prov_blat.req

KASValidityTest_FFCHybrid1_KDFConcat_KC_init_rcpt_ulat.req

KASValidityTest_FFCHybrid1_KDFConcat_KC_init_rcpt_blat.req

Within each REQUEST file, there is a section for each combination of parameter set and

SHA algorithm supported, i.e., FA-SHA1, FA-SHA224, FB-SHA224, FC-SHA512.

Within each combination of parameter set and SHA algorithm, the Validity Test provides

a section for each supported combination of MAC algorithm and key size, i.e., CCM

AES128, CCM AES256. In addition to this, if FFC is used, one set of domain parameter

values is included for use with these sets of data. If ECC is used, the curve name is

included in the file header.

In each MAC algorithm-key size section, the Validity Test generates 24 sets of data for

FFC implementations and 30 sets of data for ECC implementations. Within these sets of

data, the KASVS alters some of the values to introduce errors. This will determine

whether or not the IUT can detect these errors. In addition to verifying that the IUT can

detect errors in the key agreement and key confirmation processing, this test will also

provide assurance of the validity of the domain parameters if implemented by the IUT.

Depending on the key agreement scheme being tested, data supplied by the CAVS

includes:

3 A header containing:

a. Parameter Sets Supported

b. CAVSid

c. IUTid

d. Key Confirmation Types Supported

e. The parameters associated with each parameter set, including:

 24

i. Curve selected (if ECC)

ii. SHA(s) supported

iii. MAC algorithm(s) supported

iv. If the MAC is CCM:

1. Key sizes supported

2. CCM Nonce length

3. CCM Tag length

v. If the MAC is CMAC:

1. Key sizes supported

2. AES/TDES Tag length

vi. If the MAC is HMAC:

1. SHA(s) supported

2. Key sizes supported

3. Tag length

4 A set of data containing a subset of the following data depending on the

scheme implemented:

a. CAVS values, including:

i. Static public key and/or

ii. Ephemeral public key (or nonce)

b. IUT values, including:

i. Static private key, and

ii. Static public key, and/or

iii. Ephemeral private key, and

iv. Ephemeral public key

c. If CCM is selected: the CCMNonce value

d. Other Information, OI

 25

e. CAVS Tag

The IUT uses this information to validate the CAVS Tag value returning a (P)ASS or

(F)AIL. The IUT generates a response file containing the values above, plus the tag

generated by the IUT (IUTTag) and the Result. The format for the RESPONSE file is

specified in the SAMPLE file. There shall be a RESPONSE file for every SAMPLE file.

The KASVS compares the contents of the RESPONSE file with the contents of the FAX

file. If the results match, CAVS records (P)ASS for this test; otherwise, CAVS records

(F)AIL.

6.3.3 Testing of the 800-56A Processing through Shared Secret
Computation (ZZ) for IUTs that do not use a KDF specified in 800-56A

A separate file is generated for each supported key agreement scheme - role combination.

For example, if an IUT supports the ECC key agreement scheme dhFullUnified, and the

IUT supports both initiator and responder roles, two files will be generated:

KASValidityTest_ECCFullUnif_NOKC_ZZOnly_init.req and

KASValidityTest_ECCFullUnif_NOKC_ ZZOnly_resp.req.

Within each request file, there is a section for each combination of parameter set and

SHA algorithm supported (for example, FA-SHA1, FA-SHA224, FB-SHA224, FC-

SHA512). For each combination of parameter set and SHA algorithm, the Validity Test

provides information identifying the domain parameter values (for FFC) or elliptic curve

(ECC) being used. For FFC implementations, the KASVS will generate 24 sets of data

for the IUT. For ECC implementations, the KASVS will generate 30 sets of data for the

IUT. Within these sets of data, the KASVS will modify some of the values to introduce

errors. This will determine whether or not the IUT can detect these errors. In addition to

verifying that the IUT can detect errors in the key agreement processing, this test will

also provide assurance of the validity of the domain parameters as implemented by the

IUT.

Depending on the key agreement scheme being tested, data supplied by the CAVS

includes:

1 A header containing:

a. Parameter Sets Supported

b. The parameters associated with each parameter set, including:

i. Curve selected (if ECC)

ii. SHA(s) used for hashing Z (this is only for testing purposes. It

is not a prerequisite for testing “All of 800-56A except KDF”.)

 26

2 A set of data containing a subset of the following data depending on the

scheme implemented:

a. CAVS values, including:

i. Static public key and/or

ii. Ephemeral public key (or nonce)

b. IUT values, including:

i. Static private key, and

ii. Static public key, and/or

iii. Ephemeral private key, and

iv. Ephemeral public key

c. Hash of the CAVS Z value (CAVSHashZZ)

The IUT uses this information to validate the CAVS Z value, returning a (P)ASS or

(F)AIL. The IUT generates a response file containing the values above, plus the Z value

generated by the IUT (IUTHashZZ) and the Result. The format for the RESPONSE file

is specified in the SAMPLE file. There shall be a RESPONSE file for every SAMPLE file.

The KASVS verifies that the correct responses were returned by the IUT by comparing

the results in the RESPONSE file with those in the FAX file. If the results match, CAVS

records (P)ASS for this test; otherwise, CAVS records (F)AIL.

6.4.4 Definition of Variables used in CAVS files for Validity test
The Function test uses many variables as denoted in the request and sample files. Below

is a table for the FFC Function test variables and the ECC Function test variables.

6.2.4.1 FFC Validity Test Variables

Table 3: FFC Validity Test Variables for all schemes for with key

confirmation (KC) and without key confirmation (NOKC)

P Domain parameter for DSA (supplied by

CAVS)

Q Domain parameter for DSA (supplied by

CAVS)

G Domain parameter for DSA (supplied by

CAVS)

COUNT the number of the set of values to be tested by

IUT. Used to identify each set of values.

(supplied by CAVS)

YstatCAVS CAVS DSA static public key (supplied by

 27

CAVS)(Not used by dhEphem)

YephemCAVS CAVS DSA ephemeral public key (supplied

by CAVS)

NonceEphemCAVS ONLY USED BY C(1,2) and C(0,2) schemes

with KC. nonce to be used in the MacData

field.

Nonce ONLY USED BY NOKC. the 16-byte nonce

that is to be concatenated to the message

"Standard Test Message" to make the value

of MacData. This MacData value is used for

purposes of testing when no key confirmation

capability exists. See Section 5.2.3

Implementation Validation Message.

(supplied by CAVS)

NonceDKMCAVS ONLY USED BY STATIC SCHEME. the

nonce supplied by the initiator to be used in

the OI field in the PartyUInfo field. See

Section 6.3.1 dhStatic, Action 4. In Table 18,

Row "Ephemeral Data" it is referred to as

Nonceu. In the same table, row "Derive

Secret Keying Material" it states "Compute

kdf(Z, OtherInput) using Nonceu". If the IUT

is being tested for the Responder role, this

value is associated with the CAVS.

XstatIUT IUT DSA static private key (supplied by

CAVS)(Not used by dhEphem)

YstatIUT IUT DSA static public key (supplied by

CAVS)(Not used by dhEphem)

NonceEphemIUT ONLY USED BY C(1,2) and C(0,2) schemes

with KC. nonce to be used in the MacData

field.

XephemIUT IUT DSA ephemeral private key (supplied by

CAVS)

YephemIUT IUT DSA ephemeral public key (supplied by

CAVS)

NonceDKMIUT ONLY USED BY STATIC SCHEME. the

nonce supplied by the initiator to be used in

the OI field in the PartyUInfo field. See

Section 6.3.1 dhStatic, Action 4. In Table 18,

Row "Ephemeral Data" it is referred to as

Nonceu. In the same table, row "Derive

Secret Keying Material" it states "Compute

kdf(Z, OtherInput) using Nonceu". If the IUT

is being tested for the Initiator role, this value

is associated with the IUT.

CCMNonce nonce used by the CCM function, if CCM is

 28

used to generate the Tag.(supplied by IUT)

OI OtherInfo is the bit string defined for the

Concatenation and ASN.1 Key Derivation

Functions. It must include at least the

initiator's id, the responder's id, and, if Static

Scheme is being tested, the initiator's nonce.

See Section 5.8 Key Derivation Functions for

Key Agreement Schemes, OtherInfo

definition. (supplied by IUT)

CAVSTag The tag (or MAC) GENERATED BY THE

CAVS by using the DKM to MAC the

Message with the specified method (CCM,

CMAC, HMAC).(supplied by CAVS)

IUTTag The tag (or MAC) GENERATED BY THE

IUT by using the DKM to MAC the Message

with the specified method (CCM, CMAC,

HMAC).(supplied by IUT)

Result P (Pass) or F (Fail) indicating if the IUT

agrees with the Tag generated by the CAVS.

 29

6.2.4.2 ECC Validity Test Variables

Table 4: ECC Validity Test Variables for all schemes for with key confirmation

(KC) and without key confirmation (NOKC)

COUNT the number of the set of values to be tested by

IUT. Used to identify each set of values.

QsCAVSx CAVS ECDSA static public key x coordinate

QsCAVSy CAVS ECDSA static public key y coordinate

QeCAVSx CAVS ECDSA ephemeral public key x

coordinate

QeCAVSy CAVS ECDSA ephemeral public key y

coordinate

NonceEphemCAVS ONLY USED BY C(1,2) and C(0,2) schemes

with KC. nonce to be used in the MacData field.

Nonce the 16-byte nonce that is to be concatenated to

the message "Standard Test Message" to make

the value of MacData. This MacData value is

used for purposes of testing when no key

confirmation capability exists. See Section 5.2.3

Implementation Validation Message.

NonceDKMCAVS the nonce supplied by the initiator to be used in

the OI field in the PartyUInfo field. See Section

6.3.1 dhStatic, Action 4. In Table 18, Row

"Ephemeral Data" it is referred to as Nonceu. In

the same table, row "Derive Secret Keying

Material" it states "Compute kdf(Z, OtherInput)

using Nonceu". If the IUT is being tested for the

Responder role, this value is associated with the

CAVS.

dsIUT IUT ECDSA static private key

QsIUTx IUT ECDSA static public key x coordinate

QsIUTy IUT ECDSA static public key y coordinate

NonceEphemIUT ONLY USED BY C(1,2) and C(0,2) schemes

with KC. nonce to be used in the MacData field.

deIUT IUT ECDSA ephemeral private key

QeIUTx IUT ECDSA ephemeral public key x coordinate

QeIUTy IUT ECDSA ephemeral public key y coordinate

NonceDKMIUT the nonce supplied by the initiator to be used in

the OI field in the PartyUInfo field. See Section

6.3.1 dhStatic, Action 4. In Table 18, Row

"Ephemeral Data" it is referred to as Nonceu. In

the same table, row "Derive Secret Keying

Material"it states "Compute kdf(Z, OtherInput)

using Nonceu". If the IUT is being tested for the

 30

Initiator role, this valueis associated with the

IUT.

CCMNonce nonce used by the CCM function, if CCM is used

to generate the Tag. (supplied by IUT)

OI OtherInfo is the bit string defined for the

Concatenation and ASN.1 Key Derivation

Functions. It must include at least the initiator's

id, the responder's id, and, if Static Scheme is

being tested, the initiator's nonce. See Section 5.8

Key Derivation Functions for Key Agreement

Schemes, OtherInfo definition. (supplied by IUT)

CAVSTag The tag (or MAC) GENERATED BY THE

CAVS by using the DKM to MAC the Message

with the specified method (CCM, CMAC,

HMAC).(supplied by CAVS)

IUTTag The tag (or MAC) GENERATED BY THE IUT

by using the DKM to MAC the Message with the

specified method (CCM, CMAC,

HMAC).(supplied by IUT)

Result P (Pass) or F (Fail) indicating if the IUT agrees

with the Tag generated by the CAVS.

 31

Appendix A References

[1] Recommendation for Pair-Wise Key Establishment Schemes Using Discrete

Logarithm Cryptography, Special Publication 800-56A, National Institute of

Standards and Technology, March 2006.

[2] Security Requirements for Cryptographic Modules, FIPS Publication 140-2,

National Institute of Standards and Technology, May 2001.

Appendix B Requirements Identified By “Shall” Statements
That Are Tested by the CAVP validation testing

The “shall” statements in all special publications indicate requirements that must be

fulfilled to claim conformance to this Recommendation. The “shall” statements in the

Special Publications address requirements at the algorithm, module, product level, and/or

a higher level.

This section identifies the “shall” statements tested at the algorithm level when

performing the KAS validation test suite.

5. Cryptographic Elements
All cryptographic elements used together shall be selected in accordance with the

same parameter size set.

CAVS only tests allowable combinations. An IUT must implement at least

one allowable combination of cryptographic elements to be testable.

5.1 Cryptographic Hash Functions
An Approved hash function shall be used when a hash function is required (for

example, for the key derivation function or to compute a MAC when HMAC, as

specified in FIPS 198, is used). FIPS 180-2 [2] specifies Approved hash functions.

Hash validation testing is a prerequisite to KAS validation.

The hash function shall be selected in accordance with the parameter lists in

Tables 1 and 2 of Section 5.5.

CAVS only tests allowable combinations. An IUT must implement at least

one allowable combination of cryptographic elements to be testable.

http://csrc.nist.gov/publications/nistpubs/800-56A/SP800-56A_Revision1_Mar08-2007.pdf
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf

 32

5.2 Message Authentication Code (MAC) Algorithm
An Approved MAC algorithm shall be used to compute a MacTag, for example,

HMAC [5].

MAC validation testing is a prerequisite to KAS validation.

5.2.1 MacTag Computation
The MacTag computation shall be performed using an Approved MAC algorithm.

MAC validation testing is a prerequisite to KAS validation.

5.2.3 Implementation Validation Message
For purposes of validating an implementation of the schemes in this

Recommendation during an implementation validation test (under the NIST

Cryptographic Validation Program), the value of MacData shall be the string

“Standard Test Message”, followed by a 16-byte field for a nonce.

CAVS supplies a random nonce for each set of test values. The specified

string concatenated with the random nonce is the value used as the

MacData for testing implementations with no key confirmation.

5.3 Random Number Generation
Whenever this Recommendation requires the use of a randomly generated value

(for example, for keys or nonces), the values shall be generated using an

Approved random bit generator (RBG) providing an appropriate security strength.

Random number generator (RNG/DRBG) validation testing is a

prerequisite to KAS validation.

5.4 Nonces

The security strength of the random bit generator and the entropy of the nonce

shall be at least one half of the minimum required bit length of the subgroup order

(as specified in Tables 1 and 2 of Section 5.5).

CAVS testing requires the nonce to be at least one half of the minimum

required bit length of the subgroup order.

5.5 Domain Parameters
For this Recommendation, however, only one set of domain parameters shall be

used during any key establishment transaction using a given run of a scheme (that

is, the statickey domain parameters and the ephemeral-key domain parameters

used in one scheme shall be the same).

 33

CAVS only tests one set of domain parameters per key establishment

transaction at one time.

5.5.1.1 FFC Domain Parameter Generation
FFC Domain parameters shall be generated using a method specified in FIPS 186-

3 [3] based on a parameter size set selected from Table 1.

DSA validation testing is a prerequisite to KAS validation.

As shown in Table 1, there are three parameter size sets (named FA through FC)

for FFC; all the parameters of a particular set shall be used together.

CAVS only tests allowable combinations. An IUT must implement at least

one allowable combination of cryptographic elements to be testable.

5.5.1.2 ECC Domain Parameter Generation
As shown in Table 2, there are five parameter size sets (named EA, EB, EC, ED

and EE) for ECC; all the members of a particular set shall be used together.

CAVS only tests allowable combinations. An IUT must implement at least

one allowable combination of cryptographic elements to be testable.

The ECC domain parameters shall either be generated as specified in ANS X9.62

[13] or selected from the recommended elliptic curve domain parameters specified

in FIPS 186-3 [3].

ECDSA validation testing is a prerequisite to KAS validation.

5.6.1.1 FFC Key Pair Generation
For the FFC schemes, each static and ephemeral private key and public key shall

be generated using an Approved method and the selected valid domain parameters

(p, q, g{, SEED, pgenCounter}) (see Appendix B of FIPS 186-3).

DSA Key Pair Generation is a prerequisite to KAS validation.

Each private key shall be unpredictable and shall be generated in the range [1, q-

1] using an Approved random bit generator.

RNG and/or DRBG are prerequisites to KAS validation.

DSA is a prerequisite to KAS validation to assure private key is in range

 34

[1,q-1].

5.6.1.2 ECC Key Pair Generation
For the ECC schemes, each static and ephemeral private key d and public key Q

shall be generated using an Approved method and the selected domain parameters

(q, FR, a, b{, SEED}, G, n, h) (see Appendix B of FIPS 186-3).

ECDSA Key Pair Generation and Key Pair Verification are prerequisites

to KAS validation.

Each private key, d, shall be unpredictable and shall be generated in the range [1,

n-1] using an Approved random bit generator.

RNG and/or DRBG are prerequisites to KAS validation.

ECDSA is a prerequisite to KAS validation to assure private key is in

range [1, n-1].

5.6.2.1 Owner Assurances of Static Public Key Validity
The owner of a static public key shall obtain assurance of its validity in one or

more of the following ways:

1. Owner Full Validation - The owner performs a successful full public key

validation (see Sections 5.6.2.4 and 5.6.2.5). For example, a key

generation routine may perform full public key validation as part of its

processing.

2. TTP Full Validation – The owner receives assurance that a trusted third

party (trusted by the owner) has performed a successful full public key

validation (see Sections 5.6.2.4 and 5.6.2.5).

3. Owner Generation – The owner has generated the public key from the

private key (see Section 5.6.1).

4. TTP Generation – The owner has received assurance that a trusted third

party (trusted by the owner) has generated the public/private key pair and

has provided the key pair to the owner (see Section 5.6.1).

Out of scope of the algorithm testing. However, if the IUT has the supporting

function key pair generation or full public key validation, the CAVS Validity

Test tests that the IUT can detect an erroneous public/private key pair.

5.6.2.2 Recipient Assurances of Static Public Key Validity
The recipient of a static public key shall obtain assurance of its validity in one or

more of the following ways:

 35

1. Recipient Full Validation - The recipient performs a successful full public

key validation (see Sections 5.6.2.4 and 5.6.2.5).

2. TTP Full Validation – The recipient receives assurance that a trusted third

party (trusted by the recipient) has performed a successful full public key

validation (see Sections 5.6.2.4 and 5.6.2.5).

3. TTP Generation – The recipient receives assurance that a trusted third

party (trusted by the recipient) has generated the public/private key pair in

accordance with Section 5.6.1and has provided the key pair to the owner.

Out of scope of the algorithm testing. However, if the IUT has the supporting

function full public key validation, the CAVS Validity Test tests that the IUT

can detect an erroneous public/private key pair.

5.6.2.3 Recipient Assurances of Ephemeral Public Key Validity
The recipient of an ephemeral public key shall obtain assurance of its validity in

one or more of the following ways:

1. Recipient Full Validation - The recipient performs a successful full public

key validation (see Sections 5.6.2.4 and 5.6.2.5).

2. TTP Full Validation – The recipient receives assurance that a trusted third

party (trusted by the recipient) has performed a successful full public key

validation (see Sections 5.6.2.4 and 5.6.2.5). For example, a trusted

processor may only forward an ephemeral public key to the recipient if the

public key passes a full public key validation.

3. Recipient ECC Partial Validation - If using an ECC method (only), the

recipient performs a successful partial public key validation (see Section

5.6.2.6).

4. TTP ECC Partial Validation – If using an ECC method (only), the

recipient receives assurance that a trusted third party (trusted by the

recipient) has performed a successful partial public key validation (see

Section 5.6.2.6). For example, a trusted processor may only forward an

ECC ephemeral public key to the recipient if it passes a partial public key

validation.

Out of scope of the algorithm testing. However, if the IUT has the supporting

function full and/or partial public key validation, the CAVS Validity Test tests

that the IUT can detect an erroneous public/private key pair.

5.6.2.4 FFC Full Public Key Validation Routine
This method shall be used with static and ephemeral FFC public keys when

assurance of the validity of the keys is obtained by method 1 or method 2 of

Sections 5.6.2.1, 5.6.2.2, and 5.6.2.3.

If the IUT implements the FFC Full Public Key Validation Routine then it

is tested by CAVS.

 36

5.6.3.1 Owner Assurances of Possession of a Static Private Key
The owner of a static public key shall have assurance that the owner actually

possesses the correct associated private key in one or more of the following ways:

1. Owner Receives Assurance via Explicit Key Confirmation – The owner

employs the static key pair to successfully engage another party in a key

agreement transaction incorporating explicit key confirmation. The key

confirmation shall be performed with the owner as key confirmation

recipient in order to obtain assurance that the private key functions

correctly. See Section 8 for further explanation.

2. Owner Receives Assurance via Use of an Encrypted Certificate - The

owner uses the static private key while engaging in a key agreement

transaction with a Certificate Authority (trusted by the owner), providing

the CA with the corresponding static public key. As part of this

transaction, the CA generates a certificate containing the owner’s static

public key and encrypts the certificate using a symmetric key derived from

the shared secret they have (allegedly) established. Only the encrypted

form of the certificate is provided to the owner. By successfully decrypting

the certificate, the owner obtains assurance of possession of the correct

private key (at the time of the key agreement transaction).

3. Owner Receives Assurance via Key Regeneration – The owner regenerates

a public key from the static private key and verifies that the regenerated

public key is equal to the original static public key. Note that this method

may be useful if the static private key has been generated by a party other

than the owner or as an integrity check on a key pair that has been stored

for a long period of time.

4. Owner Receives Assurance via Trusted Provision - A trusted party (trusted

by the owner) provides the static private key and static public key to the

owner using a trusted distribution method. Reliance upon this method

assumes (1) that the trusted party will provide a private key that is

consistent with the public key and (2) that the trusted party will not use

the private key to masquerade as the owner.

5. Owner Receives Assurance via Key Generation - The act of generating a

key pair, with the public key being computed from the private key, is a

way for the owner to obtain assurance of possession of the correct private

key. This method allows an owner who protects his/her own keys to have

assurance of possession without additional computation. Note that this

method may not detect algorithm implementation errors, hardware errors,

random bit flips, etc. Further assurance may be obtained through the use of

one or more of the above methods.

Out of scope of the algorithm testing. However, if the IUT has the supporting

function key pair generation or key regeneration, the CAVS Validity Test tests

this function.

 37

5.6.4.1 Common Requirements on Static and Ephemeral Key Pairs
A public/private key pair shall be correctly associated with its corresponding

specific set of domain parameters.

DSA/ECDSA Key Pair Generation is a prerequisite to KAS validation.

CAVS testing gives correct and incorrect public/private key pairs to the

IUT to see if it can detect erroneous key pair – domain parameter

combinations.

2. Each DLC private key shall be unpredictable and created using an Approved key

generation method as specified in Section 5.6.1.

RNG and/or DRBG are prerequisites to KAS validation.

DSA and/or ECDSA Key Pair Generation is a prerequisite to KAS

validation.

5.7 DLC Primitives
Each scheme in Section 6 shall use an appropriate primitive from the following

list:

1. The FFC DH primitive (Section 5.7.1.1 of this Recommendation): This

primitive shall be used by the dhHybrid1, dhEphem, dhHybridOneFlow,

dhOneFlow and dhStatic schemes, which are based on finite field

cryptography and the Diffie-Hellman algorithm.

2. The ECC CDH primitive (Section 5.7.1.2 of this Recommendation and

called the Modified Diffie-Hellman primitive in ANS X9.63): This

primitive shall be used by the Full Unified Model, Ephemeral Unified

Model, One-Pass Unified Model, One-Pass Diffie-Hellman and Static

Unified Model schemes, which are based on elliptic curve cryptography

and the Diffie-Hellman algorithm.

3. The FFC MQV primitive (Section 5.7.2.1 of this Recommendation): This

primitive shall be used by the MQV2 and MQV1 schemes, which are

based on finite field cryptography and the MQV algorithm.

4. The ECC MQV primitive (Section 5.7.2.2 of this Recommendation): This

primitive shall be used by the Full MQV and One-Pass MQV schemes,

which are based on elliptic curve cryptography and the MQV algorithm.

All of these “shall” statements are defining which DLC primitive is used

by which schemes. The CAVP tests the DLC primitive when testing the

schemes.

The shared secret output from these primitives shall be used as input to a key

 38

derivation function (see Section 5.8).

The CAVS test uses the output from the shared secret as input to a key

derivation function.

5.8 Key Derivation Functions for Key Agreement Schemes
An Approved key derivation function (KDF) shall be used to derive secret keying

material from a shared secret.

If the IUT uses one of the 2 KDFS specified in SP800-56A, CAVS KAS

testing tests the correctness of the KDF function. If the IUT uses a KDF

not specified in SP800-56A, the CAVS Component test “All of 800-56A

EXCEPT the KDF” can be performed.

If Key Confirmation (KC) or implementation validation testing are to be

performed as specified in Section 8 or Section 5.2.3, respectively, then the MAC

key shall be formed from the first bits of the KDF output …

The CAVS testing uses the first bits of the KDF as the MAC key to MAC

the string in the testing. If the IUT is not using the same first bits of the

KDF, the testing will indicate that the IUT is not implemented correctly.

Any hash function used in a KDF shall be Approved (see Section 5.1) and shall

also meet the selection requirements specified herein (see Section 5.5.1).

Hash validation testing is a prerequisite to KAS validation.

CAVS testing only allows for the testing of specified parameter sets.

5.8.1 Concatenation Key Derivation Function (Approved Alternative
1)
keydatalen: An integer that indicates the length (in bits) of the secret keying

material to be generated; keydatalen shall be less than or equal to hashlen × (232
 –

1).

Implicitly tested by CAVS.

Any scheme attempting to call this key derivation function with keydatalen

greater than or equal to hashlen × (232
 − 1) shall output an error indicator and

stop without outputting DerivedKeyingMaterial.

 39

Implicitly tested by CAVS.

5.8.2 ASN.1 Key Derivation Function (Approved Alternative 2)
keydatalen: An integer that indicates the length (in bits) of the secret keying

material to be generated; keydatalen shall be less than or equal to hashlen × (232

–1).

Implicitly tested by CAVS.

Any call to this key derivation function using a keydatalen value that is greater

than hashlen × (232
 –1) shall cause the KDF to output an error indicator and stop

without outputting DerivedKeyingMaterial.

Implicitly tested by CAVS.

6. Key Agreement
Each party in a key agreement process shall use the same set of valid domain

parameters.

CAVS testing requires both the IUT and CAVS to use the same domain

parameters to successfully test an implementation.

Party U shall have an identifier IDU.

CAVS testing requires Party U to supply an identifier.

If Party U owns a static key pair that is used in a given key agreement transaction,

then IDU shall be the identifier that is bound to that key pair.

CAVS testing requires the identifier and static key pair of the IUT and

CAVS to successfully test an implementation.

6.1.1 Each Party Has a Static Key Pair and Generates an Ephemeral
Key Pair, C(2, 2)
All key pairs shall be generated using the same domain parameters.

CAVS testing requires both the static and ephemeral key pairs be

generated using the same domain parameters.

 40

1. Each party shall have an authentic copy of the same set of domain parameters,

D. These parameters shall have been generated as specified in Section 5.5.1. For

FFC schemes, D= (p, q, g{, SEED, pgenCounter}); for ECC schemes, D = (q,

FR, a, b{, SEED}, G, n, h).

CAVS testing requires both the static and ephemeral key pairs be

generated using the same domain parameters.

2. Each party shall have been designated as the owner of a static key pair that was

generated as specified in Section 5.6.1 using the set of domain parameters, D. For

FFC schemes, the static key pair is (x, y); for ECC schemes, the static key pair is

(ds, Qs).

CAVS testing either assigns or requires the IUT and CAVS to supply the

static key pair so implicitly they are being designated as the owner of that

key.

Each party shall obtain assurance of the validity of its own static public key as

specified in Section 5.6.2.1.

Out of scope of the algorithm testing. However, if the IUT has the

supporting function full and/or partial public key validation, the CAVS

Validity Test tests that the IUT can detect an erroneous public/private key

pair.

Each party shall obtain assurance of its possession of the correct value for its own

private key as specified in Section 5.6.3.1.

Out of scope of the algorithm testing. However, if the IUT has the

supporting function key generation, the CAVS Validity Test tests that the

IUT can detect an erroneous public/private key pair.

3.The parties shall have agreed upon an Approved key derivation function (see

Section 5.8) as well as an Approved hash function appropriate for use with the

key derivation function and associated parameters (see Section 5.5).

CAVS testing requires the IUT to indicate what key derivation function

and hash function it supports. CAVS then tests these functions with the

KAS tests.

If key confirmation is used, the parties shall have agreed upon an Approved MAC

 41

and associated parameters (see Tables 1 and 2).

CAVS testing requires the IUT to indicate what MAC function it supports.

CAVS then tests this function with the KAS tests.

MAC validation testing is a prerequisite to KAS validation.

Prior to or during the key agreement process, each party shall obtain the identifier

associated with the other party during the key agreement scheme and the static

public key that is bound to that identifier.

CAVS testing requires both parties to obtain the identifier associated with

the other party during key agreement scheme and the static key bound to

that identifier for the testing to succeed.

Each party shall obtain assurance of the validity of the other party’s static public

key as specified in Section 5.6.2.2.

Out of scope of the algorithm testing. However, if the IUT has the

supporting function full and/or partial public key validation, the CAVS

Validity Test tests that the IUT can detect an erroneous public/private key

pair.

6.1.1.1 dhHybrid1, C(2, 2, FFC DH)
The prerequisites for this scheme shall be satisfied as specified in Section 6.1.1.

In particular, party U shall obtain the static public key yV of party V, and party V

shall obtain the static public key yU of party U.

Party U shall execute the following key agreement transformation in order to a)

establish a shared secret value Z with party V, and b) derive shared secret keying

material from Z.

U shall derive secret keying material as follows:

1. Generate an ephemeral key pair (rU, tU) from the domain parameters D as

specified in Section 5.6.1. Send the public key tU to V. Receive an ephemeral

public key tV (purportedly) from V. If tV is not received, output an error indicator

and stop.

2. Verify that tV is a valid public key for the parameters D as specified in Section

5.6.2.3. If assurance of public key validity cannot be obtained, output an error

indicator and stop.

3. Use the FFC DH primitive in Section 5.7.1.1 to derive a shared secret Zs – an

integer in the range [2, p-2] – from the set of domain parameters D, U’s static

private key xU, and V’s static public key yV. Convert Zs to a byte string (which is

also denoted by Zs) using the Integer-to-Byte-String Conversion specified in

Appendix C.1, and then zeroize the results of all intermediate calculations used in

 42

the computation of Zs. If the call to the FFC DH primitive outputs an error

indicator, zeroize the results of all intermediate calculations used in the attempted

computation of Zs, output an error indicator, and stop.

4. Use the FCC DH primitive to derive a shared secret Ze – another integer in the

range [2,p-2] – from the set of domain parameters D, U’s ephemeral private key

rU, and V’s ephemeral public key tV. Convert Ze to a byte string (which is also

denoted by Ze) using the Integer-to-Byte-String Conversion specified in Appendix

C.1, and then zeroize the results of all intermediate calculations used in the

computation of Ze. If this call to the FFC DH primitive outputs an error indicator,

zeroize Zs and the results of all intermediate calculations used in the attempted

computation of Ze, output an error indicator, and stop.

5. Compute the shared secret Z = Ze || Zs. Zeroize the results of all intermediate

calculations used in the computation of Z (including Ze and Zs).

6. Use the agreed-upon key derivation function to derive secret keying material

DerivedKeyingMaterial of length keydatalen bits from the shared secret value Z

and OtherInput (including the identifiers IDU and IDV). (See Section 5.8.) If the

key derivation function outputs an error indicator, zeroize all copies of Z, output

an error indicator, and stop.

THIS APPLIES TO ALL OF SECTION 6.1.1.1

Tested by Validity Test and Function Test with the following exceptions:

Testing of zeroized values is out of scope

Testing of format of OtherInput field is out of scope. IDu and IDv are not looked

for in OtherInput string.

Assurance of public key validity is out of scope of the algorithm testing. However,

if the IUT has the supporting function public key validation, the CAVS Validity

Test tests this function.

6.1.1.2 Full Unified Model, C(2, 2, ECC CDH)
In particular, party U shall obtain the static public keyQs,V of party V, and party

V shall obtain the static public key Qs,U of party U.

Party U shall execute the following key agreement transformation in order to a)

establish a shared secret value Z with party V, and b) derive shared secret keying

material from Z.

Actions: U shall derive secret keying material as follows:

1. Generate an ephemeral key pair (de,U, Qe,U) from the domain parameters D as

specified in Section 5.6.1. Send the public key Qe,U to V. Receive an ephemeral

public key Qe,V

(purportedly) from V. If Qe,V is not received, output an error indicator and stop.

2. Verify that Qe,V is a valid public key for the parameters D as specified in

Section 5.6.2.3. If assurance of public key validity cannot be obtained, output an

 43

error indicator and stop.

3. Use the ECC CDH primitive in Section 5.7.1.2 to derive a shared secret Zs – an

element of the finite field of size q – from the set of domain parameters D, U’s

static private key ds,U, and V’s static public key Qs,V. Convert Zs to a byte string

(which is also denoted by Zs) using the Field-element-to-Byte-String Conversion

specified in Appendix C.2, and then zeroize the results of all intermediate

calculations used in the computation of Zs. If the call to the ECC CDH primitive

outputs an error indicator, zeroize the results of all intermediate calculations used

in the attempted computation of Zs, output an error

indicator, and stop.

4. Use the ECC CDH primitive to derive a shared secret Ze – another element of

the finite field of size q – from the set of domain parameters D, U’s ephemeral

private key de,U, and V’s ephemeral public key Qe,V. Convert Ze to a byte string

(which is also denoted by Ze) using the Field-element-to-Byte-String Conversion

specified in Appendix C.2, and then zeroize the results of all intermediate

calculations used in the computation of Ze. If this call to the ECC CDH primitive

outputs an error indicator, zeroize Zs and the results of all intermediate

calculations used in the attempted computation of Ze, output an error indicator,

and stop.

5. Compute the shared secret Z = Ze || Zs. Zeroize the results of all intermediate

calculations used in the computation of Z (including Ze and Zs).

6. Use the agreed-upon key derivation function to derive secret keying material

DerivedKeyingMaterial of length keydatalen bits from the shared secret value Z

and OtherInput (including the identifiers IDU and IDV). (See Section 5.8.) If the

key derivation function outputs an error indicator, zeroize all copies of Z, output

an error indicator, and stop.

7. Zeroize all copies of the shared secret Z and output DerivedKeyingMaterial.

THIS APPLIES TO ALL OF SECTION 6.1.1.2

Tested by Validity Test and Function Test with the following exceptions:

Testing of zeroized values is out of scope

Testing of format of OtherInput field is out of scope. IDu and IDv are not looked

for in OtherInput string.

Assurance of public key validity is out of scope of the algorithm testing. However,

if the IUT has the supporting function public key validation, the CAVS Validity

Test tests this function.

6.1.1.3 MQV2, C(2, 2, FFC MQV)
The prerequisites for this scheme shall be satisfied as specified in Section 6.1.1.

In particular, party U shall obtain the static public key yV of party V, and party V

shall obtain the static public key yU of party U.

 44

Party U shall execute the following key agreement transformation in order to a)

establish a shared secret value Z with party V, and b) derive shared secret keying

material from Z.

U shall derive secret keying material as follows:

1. Generate an ephemeral key pair (rU, tU) from the domain parameters D as

specified in

Section 5.6.1.1. Send the public key tU to V. Receive an ephemeral public key tV

(purportedly) from V. If tV is not received, output an error indicator and stop.

2. Verify that tV is a valid public key for the parameters D as specified in Section

5.6.2.3. If assurance of public key validity cannot be obtained, output an error

indicator and stop.

3. Use the MQV2 form of the FFC MQV primitive in Section 5.7.2.1 to derive a

shared secret Z – an integer in the range [2, p-2] – from the set of domain

parameters D, U’s static private key xU, V’s static public key yV, U’s ephemeral

private key rU, U’s ephemeral public key tU, and V’s ephemeral public key tV. If

the call to the FFC MQV primitive outputs an error indicator, zeroize the results

of all intermediate calculations used in the attempted computation of Z, output an

error indicator, and stop.

4. Convert Z to a byte string (which is also denoted by Z) using the Integer-to-

Byte-String Conversion specified in Appendix C.1, and then zeroize the results of

all intermediate calculations used in the computation of Z.

5. Use the agreed-upon key derivation function to derive secret keying material

DerivedKeyingMaterial of length keydatalen bits from the shared secret value Z

and OtherInput (including the identifiers IDU and IDV). (See Section 5.8.) If the

key derivation function outputs an error indicator, zeroize all copies of Z, output

an error indicator, and stop.

6. Zeroize all copies of the shared secret Z and output DerivedKeyingMaterial.

THIS APPLIES TO ALL OF SECTION 6.1.1.3

Tested by Validity Test and Function Test with the following exceptions:

Testing of zeroized values is out of scope

Testing of format of OtherInput field is out of scope. IDu and IDv are not looked

for in OtherInput string.

Assurance of public key validity is out of scope of the algorithm testing. However,

if the IUT has the supporting function public key validation, the CAVS Validity

Test tests this function.

6.1.1.4 Full MQV, C(2, 2, ECC MQV)
The prerequisites for this scheme shall be satisfied as specified in Section 6.1.1.

In particular, party U shall obtain the static public key Qs,V of party V, and party

V shall obtain the static public key Qs,U of party U.

 45

Party U shall execute the following transformation to a) establish a shared secret

value Z with party V, and b) derive shared secret keying material from Z.

Actions: U shall derive secret keying material as follows:

1. Generate an ephemeral key pair (de,U, Qe,U) from the domain parameters D as

specified in Section 5.6.1.2. Send the public key Qe,U to V. Receive an ephemeral

public key Qe,V

(purportedly) from V. If Qe,V is not received, output an error indicator and stop.

2. Verify that Qe,V is a valid public key for the parameters D as specified in

Section 5.6.2.3. If assurance of public key validity cannot be obtained, output an

error indicator and stop.

3. Use the Full MQV form of the ECC MQV primitive in Section 5.7.2.3.1 to

derive a shared secret value Z – an element of the finite field of size q – from the

set of domain parameters D, U’s static private key ds,U, V’s static public key

Qs,V, U’s ephemeral private key de,U, U’s ephemeral public key Qe,U, and V’s

ephemeral public key Qe,V. If the call to the ECC MQV primitive outputs an error

indicator, zeroize the results of all intermediate calculations used in the attempted

computation of Z, output an error indicator, and stop.

4. Convert Z to a byte string (which is also denoted by Z) using the Field-element-

to-Byte String Conversion specified in Appendix C.2, and then zeroize the results

of all intermediate calculations used in the computation of Z.

5. Use the agreed-upon key derivation function to derive secret keying material

DerivedKeyingMaterial of length keydatalen bits from the shared secret value Z

and OtherInput (including the identifiers IDU and IDV). (See Section 5.8.) If the

key derivation function outputs an error indicator, zeroize all copies of Z, output

an error indicator, and stop.

6. Zeroize all copies of the shared secret Z and output DerivedKeyingMaterial.

THIS APPLIES TO ALL OF SECTION 6.1.1.4

Tested by Validity Test and Function Test with the following exceptions:

Testing of zeroized values is out of scope

Testing of format of OtherInput field is out of scope. IDu and IDv are not looked

for in OtherInput string.

Assurance of public key validity is out of scope of the algorithm testing. However,

if the IUT has the supporting function public key validation, the CAVS Validity

Test tests this function.

6.1.2 Each Party Generates an Ephemeral Key Pair; No Static Keys
are Used, C(2, 0)
Each party shall have an authentic copy of the same set of domain parameters, D.

These parameters shall have been generated as specified in Section 5.5.1. For

FFC schemes, D = (p, q, g{, SEED, pgenCounter}); for ECC schemes, D = (q,

FR, a, b{, SEED}, G, n, h).

 46

CAVS testing requires both the static and ephemeral key pairs be

generated using the same domain parameters.

3.The parties shall have agreed upon an Approved key derivation function (see

Section 5.8) as well as an Approved hash function appropriate for use with the

key derivation function and associated parameters (see Section 5.5).

CAVS testing requires the IUT to indicate what key derivation function

and hash function it supports. CAVS then tests these functions with the

KAS tests.

If key confirmation is used, the parties shall have agreed upon an Approved MAC

and associated parameters (see Tables 1 and 2).

MAC validation testing is a prerequisite to KAS validation.

4.Prior to or during the key agreement process, each party shall obtain the

identifier associated with the other party during the key agreement scheme.

CAVS testing requires both parties to obtain the identifier associated with

the other party during key agreement scheme and the static key bound to

that identifier for the testing to succeed.

6.1.2.1 dhEphem, C(2, 0, FFC DH)
The prerequisites for this scheme shall be satisfied as specified in Section 6.1.2.

Party U shall execute the following key agreement transformation in order to a)

establish a shared secret value Z with party V, and b) derive shared secret keying

material from Z.

Actions: U shall derive secret keying material as follows:

1. Generate an ephemeral key pair (rU, tU) from the domain parameters D as

specified in Section 5.6.1. Send the public key tU to V. Receive an ephemeral

public key tV (purportedly) from V. If tV is not received, output an error indicator

and stop.

2. Verify that tV is a valid public key for the parameters D as specified in Section

5.6.2.3. If assurance of public key validity cannot be obtained, output an error

indicator and stop.

3. Use the FCC DH primitive in Section 5.7.1.1 to derive a shared secret Z – an

integer in the range [2, p-2] – from the set of domain parameters D, U’s

ephemeral private key rU,

and V’s ephemeral public key tV. If the call to the FFC DH primitive outputs an

error indicator, zeroize the results of all intermediate calculations used in the

 47

attempted computation of Z, output an error indicator, and stop.

4. Convert Z to a byte string (which is also denoted by Z) using the Integer-to-

Byte-String Conversion specified in Appendix C.1, and then zeroize the results of

all intermediate calculations used in the computation of Z.

5. Use the agreed-upon key derivation function to derive secret keying material

DerivedKeyingMaterial of length keydatalen bits from the shared secret value Z

and OtherInput (including the identifiers IDU and IDV). (See Section 5.8.) If the

key derivation function outputs an error indicator, zeroize all copies of Z, output

an error indicator, and stop.

6. Zeroize all copies of the shared secret Z and output DerivedKeyingMaterial.

THIS APPLIES TO ALL OF SECTION 6.1.2.1

Tested by Validity Test and Function Test with the following exceptions:

Testing of zeroized values is out of scope

Testing of format of OtherInput field is out of scope. IDu and IDv are not looked

for in OtherInput string.

Assurance of public key validity is out of scope of the algorithm testing. However,

if the IUT has the supporting function public key validation, the CAVS Validity

Test tests this function.

6.1.2.2 Ephemeral Unified Model, C(2, 0, ECC CDH)
The prerequisites for this scheme shall be satisfied as specified in Section 6.1.2.

Party U shall execute the following key agreement transformation in order to a)

establish a shared secret value Z with party V, and b) derive shared secret keying

material from Z.

Actions: U shall derive secret keying material as follows:
1. Generate an ephemeral key pair (de,U, Qe,U) from the domain parameters D as

specified in Section 5.6.1. Send the public key Qe,U to V. Receive an ephemeral

public key Qe,V (purportedly) from V. If Qe,V is not received, output an error

indicator and stop.

2. Verify that Qe,V is a valid public key for the parameters D as specified in

Section 5.6.2.3. If assurance of public key validity cannot be obtained, output an

error indicator and stop.

3. Use the ECC CDH primitive in Section 5.7.1.2 to derive a shared secret Z – an

element of the finite field of size q – from the set of domain parameters D, U’s

ephemeral private key de,U, and V’s ephemeral public key Qe,V. If the call to the

ECC CDH primitive outputs an error indicator, zeroize the results of all

intermediate calculations used in the attempted computation of Z, output an error

indicator, and stop.

4. Convert Z to a byte string (which is also denoted by Z) using the Field-element-

 48

to-Byte- String Conversion specified in Appendix C.2, and then zeroize the results

of all intermediate calculations used in the computation of Z.

5. Use the agreed-upon key derivation function to derive secret keying material

DerivedKeyingMaterial of length keydatalen bits from the shared secret value Z

and OtherInput (including the identifiers IDU and IDV). (See Section 5.8.) If the

key derivation function outputs an error indicator, zeroize all copies of Z, output

an error indicator, and stop.

6. Zeroize all copies of the shared secret Z and output DerivedKeyingMaterial.

THIS APPLIES TO ALL OF SECTION 6.1.2.2

Tested by Validity Test and Function Test with the following exceptions:

Testing of zeroized values is out of scope

Testing of format of OtherInput field is out of scope. IDu and IDv are not looked

for in OtherInput string.

Assurance of public key validity is out of scope of the algorithm testing. However,

if the IUT has the supporting function public key validation, the CAVS Validity

Test tests this function.

6.2.1 Initiator Has a Static Key Pair and Generates an Ephemeral Key
Pair;
Responder Has a Static Key Pair, C(1, 2)

1. Each party shall have an authentic copy of the same set of domain parameters,

D. These parameters shall have been generated as specified in Section 5.5.1. For

FFC schemes, D= (p, q, g{, SEED, pgenCounter}); for ECC schemes, D = (q,

FR, a, b{, SEED}, G, n, h).

CAVS testing requires both the static and ephemeral key pairs be

generated using the same domain parameters.

2. Each party shall have been designated as the owner of a static key pair that was

generated as specified in Section 5.6.1 using the set of domain parameters, D. For

FFC schemes, the static key pair is (x, y); for ECC schemes, the static key pair is

(ds, Qs).

CAVS testing either assigns or requires the IUT and CAVS to supply the

static key pair so implicitly they are being designated as the owner of that

key.

 49

Each party shall obtain assurance of the validity of its own static public key as

specified in Section 5.6.2.1.

Out of scope of the algorithm testing. However, if the IUT has the

supporting function full and/or partial public key validation, the CAVS

Validity Test tests that the IUT can detect an erroneous public/private key

pair.

Each party shall obtain assurance of its possession of the correct value for its own

private key as specified in Section 5.6.3.1.

Out of scope of the algorithm testing. However, if the IUT has the

supporting function key generation, the CAVS Validity Test tests that the

IUT can detect an erroneous public/private key pair.

3.The parties shall have agreed upon an Approved key derivation function (see

Section 5.8) as well as an Approved hash function appropriate for use with the

key derivation function and associated parameters (see Section 5.5).

CAVS testing requires the IUT to indicate what key derivation function

and hash function it supports. CAVS then tests these functions with the

KAS tests.

If key confirmation is used, the parties shall have agreed upon an Approved MAC

and associated parameters (see Tables 1 and 2).

MAC validation testing is a prerequisite to KAS validation.

4. Prior to or during the key agreement process, each party shall obtain the

identifier associated with the other party during the key agreement scheme and the

static public key

that is bound to that identifier.

CAVS testing requires both parties to obtain the identifier associated with

the other party during key agreement scheme and the static key bound to

that identifier for the testing to succeed.

Each party shall obtain assurance of the validity of the other party’s static public

key as specified in Section 5.6.2.2.

Out of scope of the algorithm testing. However, if the IUT has the

 50

supporting function full and/or partial public key validation, the CAVS

Validity Test tests that the IUT can detect an erroneous public/private key

pair.

6.2.1.1 dhHybridOneFlow, C(1, 2, FFC DH)
The prerequisites for this scheme shall be satisfied as specified in Section 6.2.1.

In particular, party U shall obtain the static public key yV of party V, and party V

shall obtain the static public key yU of party U.

Party U shall execute the following key agreement transformation in order to a)

establish a shared secret value Z with party V, and b) derive shared secret keying

material from Z.

Actions: U shall derive secret keying material as follows:

1. Generate an ephemeral key pair (rU, tU) from the domain parameters D as

specified in Section 5.6.1. Send the public key tU to V.

2. Use the FFC DH primitive in Section 5.7.1.1 to derive a shared secret Zs – an

integer in the range [2, p-2] – from the set of domain parameters D, U’s static

private key xU, and V’s static public key yV. Convert Zs to a byte string (which is

also denoted by Zs) using the Integer-to-Byte-String Conversion specified in

Appendix C.1, and then zeroize the results of all intermediate calculations used in

the computation of Zs. If the call to the FFC DH primitive outputs an error

indicator, zeroize the results of all intermediate calculations used in the attempted

computation of Zs, output an error indicator, and stop.

3. Use the FCC DH primitive to derive a shared secret Ze – another integer in the

range [2, p-2] – from the set of domain parameters D, U’s ephemeral private key

rU, and V’s static public key yV. Convert Ze to a byte string (which is also

denoted by Ze) using the Integerto-Byte-String Conversion specified in Appendix

C.1, and then zeroize the results of all intermediate calculations used in the

computation of Ze. If this call to the FFC DH

primitive outputs an error indicator, zeroize Zs and the results of all intermediate

calculations used in the attempted computation of Ze, output an error indicator,

and stop.

4. Compute the shared secret Z = Ze || Zs. Zeroize the results of all intermediate

calculations used in the computation of Z (including Ze and Zs).

5. Use the agreed-upon key derivation function to derive secret keying material

DerivedKeyingMaterial of length keydatalen bits from the shared secret value Z

and OtherInput (including the identifiers IDU and IDV). (See Section 5.8.) If the

key derivation function outputs an error indicator, zeroize all copies of Z, output

an error indicator, and stop.

6. Zeroize all copies of the shared secret Z and output DerivedKeyingMaterial.

Party V shall execute the following key agreement transformation in order to a)

establish a shared secret value Z with party U, and b) derive shared secret keying

material from Z.

Actions: V shall derive secret keying material as follows:

1. Receive an ephemeral public key tU (purportedly) from U. If tU is not received,

output an error indicator and stop.

 51

2. Verify that tU is a valid public key for the parameters D as specified in Section

5.6.2.3. If assurance of public key validity cannot be obtained, output an error

indicator and stop.

3. Use the FFC DH primitive in Section 5.7.1.1 to derive a shared secret Zs – an

integer in the range [2, p-2] – from the set of domain parameters D, V’s static

private key xV, and U’s static public key yU. Convert Zs to a byte string (which is

also denoted by Zs) using the Integer-to-Byte-String Conversion specified in

Appendix C.1, and then zeroize the results of all intermediate calculations used in

the computation of Zs. If the call to the FFC DH primitive outputs an error

indicator, zeroize the results of all intermediate calculations used in the attempted

computation of Zs, output an error indicator, and stop.

4. Use the FCC DH primitive to derive a shared secret Ze – another integer in the

range [2,p-2] – from the set of domain parameters D, V’s static private key xV,

and U’s ephemeral public key tU. Convert Ze to a byte string (which is also

denoted by Ze) using the Integerto-Byte-String Conversion specified in Appendix

C.1, and then zeroize the results of all intermediate calculations used in the

computation of Ze. If this call to the FFC DH primitive outputs an error indicator,

zeroize Zs and the results of all intermediate calculations used in the attempted

computation of Ze, output an error indicator, and stop.

5. Compute the shared secret Z = Ze || Zs. Zeroize the results of all intermediate

calculations used in the computation of Z (including Ze and Zs).

6. Use the agreed-upon key derivation function to derive secret keying material

DerivedKeyingMaterial of length keydatalen bits from the shared secret value Z

and OtherInput (including the identifiers IDU and IDV). (See Section 5.8.) If the

key derivation function outputs an error indicator, zeroize all copies of Z, output

an error indicator, and stop.

7. Zeroize all copies of the shared secret Z and output DerivedKeyingMaterial.

THIS APPLIES TO ALL OF SECTION 6.2.1.1

Tested by Validity Test and Function Test with the following exceptions:

Testing of zeroized values is out of scope

Testing of format of OtherInput field is out of scope. IDu and IDv are not

looked for in OtherInput string.

Assurance of public key validity is out of scope of the algorithm testing.

However, if the IUT has the supporting function public key validation, the

CAVS Validity Test tests this function.

6.2.1.2 One-Pass Unified Model, C(1, 2, ECC CDH)
The prerequisites for this scheme shall be satisfied as specified in Section 6.2.1.

In particular, party U shall obtain the static public key Qs,V of party V, and party

V shall obtain the static public key Qs,U of party U.

 52

Party U shall execute the following key agreement transformation in order to a)

establish a shared secret value Z with party V, and b) derive shared secret keying

material from Z.

Actions: U shall derive secret keying material as follows:

1. Generate an ephemeral key pair (de,U, Qe,U) from the domain parameters D as

specified in Section 5.6.1. Send the public key Qe,U to V.

2. Use the ECC CDH primitive in Section 5.7.1.2 to derive a shared secret Zs – an

element of the finite field of size q – from the set of domain parameters D, U’s

static private key ds,U, and V’s static public key Qs,V. Convert Zs to a byte string

(which is also denoted by Zs) using the Field-element-to-Byte-String Conversion

specified in Appendix C.2, and then zeroize the results of all intermediate

calculations used in the computation of Zs. If the call to the ECC CDH primitive

outputs an error indicator, zeroize the results of all intermediate calculations used

in the attempted computation of Zs, output an error

indicator, and stop.

3. Use the ECC CDH primitive to derive a shared secret Ze – another element of

the finite field of size q – from the set of domain parameters D, U’s ephemeral

private key de,U, and V’s static public key Qs,V. Convert Ze to a byte string

(which is also denoted by Ze) using the Field-element-to-Byte-String Conversion

specified in Appendix C.2, and then zeroize the results of all intermediate

calculations used in the computation of Ze. If this call to the ECC CDH primitive

outputs an error indicator, zeroize Zs and the results of all intermediate

calculations used in the attempted computation of Ze, output an error indicator,

and stop.

4. Compute the shared secret Z = Ze || Zs. Zeroize the results of all intermediate

calculations used in the computation of Z (including Ze and Zs).

5. Use the agreed-upon key derivation function to derive secret keying material

DerivedKeyingMaterial of length keydatalen bits from the shared secret value Z

and OtherInput (including the identifiers IDU and IDV). (See Section 5.8.) If the

key derivation function outputs an error indicator, zeroize all copies of Z, output

an error indicator, and stop.

6. Zeroize all copies of the shared secret Z and output DerivedKeyingMaterial.

Party V shall execute the following key agreement transformation in order to a)

establish a shared secret value Z with party U, and b) derive shared secret keying

material from Z.

Actions: V shall derive secret keying material as follows:

1. Receive an ephemeral public key Qe,U (purportedly) from U. If Qe,U is not

received, output an error indicator and stop.

2. Verify that Qe,U is a valid public key for the parameters D as specified in

Section 5.6.2.3. If assurance of public key validity cannot be obtained, output an

error indicator and stop.

3. Use the ECC CDH primitive in Section 5.7.1.2 to derive a shared secret Zs – an

element of the finite field of size q – from the set of domain parameters D, V’s

static private key ds,V, and U’s static public key Qs,U. Convert Zs to a byte string

(which is also denoted by Zs) using the Field-element-to-Byte-String Conversion

specified in Appendix C.2, and then zeroize the results of all intermediate

 53

calculations used in the computation of Zs. If the call to the ECC CDH primitive

outputs an error indicator, zeroize the results of all intermediate calculations used

in the attempted computation of Zs, output an error

indicator, and stop.

4. Use the ECC CDH primitive to derive a shared secret Ze – another element of

the finite field of size q – from the set of domain parameters D, V’s static private

key ds,V, and U’s ephemeral public key Qe,U. Convert Ze to a byte string (which

is also denoted by Ze) using the Field-element-to-Byte-String Conversion

specified in Appendix C.2, and then zeroize the results of all intermediate

calculations used in the computation of Ze. If this call to the ECC CDH primitive

outputs an error indicator, zeroize Zs and the results of all intermediate

calculations used in the attempted computation of Ze, output an error indicator,

and stop.

5. Compute the shared secret Z = Ze || Zs. Zeroize the results of all intermediate

calculations used in the computation of Z (including Ze and Zs).

6. Use the agreed-upon key derivation function to derive secret keying material

DerivedKeyingMaterial of length keydatalen bits from the shared secret value Z

and OtherInput (including the identifiers IDU and IDV). (See Section 5.8.) If the

key derivation function outputs an error indicator, zeroize all copies of Z, output

an error indicator, and stop.

7. Zeroize all copies of the shared secret Z and output DerivedKeyingMaterial.

THIS APPLIES TO ALL OF SECTION 6.2.1.2

Tested by Validity Test and Function Test with the following exceptions:

Testing of zeroized values is out of scope

Testing of format of OtherInput field is out of scope. IDu and IDv are not

looked for in OtherInput string.

Assurance of public key validity is out of scope of the algorithm testing.

However, if the IUT has the supporting function public key validation, the

CAVS Validity Test tests this function.

6.2.1.3 MQV1, C(1, 2, FFC MQV)
In particular, party U shall obtain the static public

key yV of party V, and party V shall obtain the static public key yU of party U.

Party U shall execute the following key agreement transformation in order to a)

establish a shared secret value Z with party V, and b) derive shared secret keying

material from Z.

Actions: U shall derive secret keying material as follows:

1. Generate an ephemeral key pair (rU, tU) from the domain parameters D as

specified in

Section 5.6.1. Send the public key tU to V.

 54

2. Use the MQV1 form of the FFC MQV primitive in Section 5.7.2.1 to derive a

shared secret Z – an integer in the range [2, p-2] – from the set of domain

parameters D, U’s static private key xU, V’s static public key yV, U’s ephemeral

private key rU, U’s ephemeral public key tU, and (for a second time) V’s static

public key yV. If the call to the FFC MQV primitive outputs an error indicator,

zeroize the results of all intermediate calculations used in the attempted

computation of Z, output an error indicator, and stop.

3. Convert Z to a byte string (which is also denoted by Z) using the Integer-to-

Byte-String Conversion specified in Appendix C.1, and then zeroize the results of

all intermediate calculations used in the computation of Z.

4. Use the agreed-upon key derivation function to derive secret keying material

DerivedKeyingMaterial of length keydatalen bits from the shared secret value Z

and OtherInput (including the identifiers IDU and IDV). (See Section 5.8.) If the

key derivation function outputs an error indicator, zeroize all copies of Z, output

an error indicator, and stop.

5. Zeroize all copies of the shared secret Z and output DerivedKeyingMaterial.

Party V shall execute the following key agreement transformation in order to a)

establish a shared secret value Z with party U, and b) derive shared secret keying

material from Z.

Actions: V shall derive secret keying material as follows:

1. Receive an ephemeral public key tU (purportedly) from U. If tU is not received,

output an error indicator and stop.

2. Verify that tU is a valid public key for the parameters D as specified in Section

5.6.2.3. If assurance of public key validity cannot be obtained, output an error

indicator and stop.

3. Use the MQV1 form of the FFC MQV primitive in Section 5.7.2.1 to derive a

shared secret Z – an integer in the range [2, p-2] – from the set of domain

parameters D, V’s static private key xV, U’s static public key yU, V’s static

private key xV (for a second time), V’s static public key yV, and U’s ephemeral

public key tU. If the call to the FFC MQV primitive outputs an error indicator,

zeroize the results of all intermediate calculations used in the attempted

computation of Z, output an error indicator, and stop.

4. Convert Z to a byte string (which is also denoted by Z) using the Integer-to-

Byte-String Conversion specified in Appendix C.1, and then zeroize the results of

all intermediate calculations used in the computation of Z.

5. Use the agreed-upon key derivation function to derive secret keying material

DerivedKeyingMaterial of length keydatalen bits from the shared secret value Z

and OtherInput (including the identifiers IDU and IDV). (See Section 5.8.) If the

key derivation function outputs an error indicator, zeroize all copies of Z, output

an error indicator, and stop.

6. Zeroize all copies of the shared secret Z and output DerivedKeyingMaterial.

THIS APPLIES TO ALL OF SECTION 6.2.1.3

Tested by Validity Test and Function Test with the following exceptions:

 55

Testing of zeroized values is out of scope

Testing of format of OtherInput field is out of scope. IDu and IDv are not

looked for in OtherInput string.

Assurance of public key validity is out of scope of the algorithm testing.

However, if the IUT has the supporting function public key validation, the

CAVS Validity Test tests this function.

6.2.1.4 One-Pass MQV, C(1, 2, ECC MQV)
The prerequisites for this scheme shall be satisfied as specified in Section 6.2.1.

In particular, party U shall obtain the static public key Qs,V of party V, and party

V shall obtain the static public key Qs,U of party U.

Party U shall execute the following transformation to a) establish a shared secret

value Z with party V, and b) derive shared secret keying material from Z.

Actions: U shall derive secret keying material as follows:

1. Generate an ephemeral key pair (de,U, Qe,U) from the domain parameters D as

specified in Section 5.6.1. Send the public key Qe,U to V.

2. Use the One-Pass MQV form of the ECC MQV primitive in Section 5.7.2.3.2

to derive a shared secret value Z – an element of the finite field of size q – from

the set of domain parameters D, U’s static private key ds,U, V’s static public key

Qs,V, U’s ephemeral private key de,U, U’s ephemeral public key Qe,U, and (for a

second time) V’s static public key of all intermediate calculations used in the

attempted computation of Z, output an error indicator, and stop.

3. Convert Z to a byte string (which is also denoted by Z) using the Field-element-

to-Byte String Conversion specified in Appendix C.2, and then zeroize the results

of all intermediate calculations used in the computation of Z.

4. Use the agreed-upon key derivation function to derive secret keying material

DerivedKeyingMaterial of length keydatalen bits from the shared secret value Z

and OtherInput (including the identifiers IDU and IDV). (See Section 5.8.) If the

key derivation function outputs an error indicator, zeroize all copies of Z, output

an error indicator, and stop.

5. Zeroize all copies of the shared secret Z and output DerivedKeyingMaterial.

Party V shall execute the following transformation to a) establish a shared secret

value Z with party U, and b) derive shared secret keying material from Z.

Actions: V shall derive secret keying material as follows:

1. Receive an ephemeral public key Qe,U (purportedly) from U. If Qe,U is not

received, output an error indicator and stop.

2. Verify that Qe,U is a valid public key for the parameters D as specified in

Section 5.6.2.3. If assurance of public key validity cannot be obtained, output an

error indicator and stop.

3. Use the One-Pass MQV form of the ECC MQV primitive in Section 5.7.2.3 to

derive a shared secret value Z – an element of the finite field of size q – from the

set of domain parameters D, V’s static private key ds,V, U’s static public key

Qs,U, V’s static private key ds,V (for a second time), V’s static public key Qs,V,

 56

and U’s ephemeral public key Qe,U. If the call to the ECC MQV primitive

outputs an error indicator, zeroize the results of all intermediate calculations used

in the attempted computation of Z, output an error indicator, and stop.

4. Convert Z to a byte string (which is also denoted by Z) using the Field-element-

to-Byte String Conversion specified in Appendix C.2, and then zeroize the results

of all intermediate calculations used in the computation of Z.

5. Use the agreed-upon key derivation function to derive secret keying material

DerivedKeyingMaterial of length keydatalen bits from the shared secret value Z

and OtherInput (including the identifiers IDU and IDV). (See Section 5.8.) If the

key derivation function outputs an error indicator, zeroize all copies of Z, output

an error indicator, and stop.

6. Zeroize all copies of the shared secret Z and output DerivedKeyingMaterial.

THIS APPLIES TO ALL OF SECTION 6.2.1.4

Tested by Validity Test and Function Test with the following exceptions:

Testing of zeroized values is out of scope

Testing of format of OtherInput field is out of scope. IDu and IDv are not

looked for in OtherInput string.

Assurance of public key validity is out of scope of the algorithm testing.

However, if the IUT has the supporting function public key validation, the

CAVS Validity Test tests this function.

6.2.2 Initiator Generates Only an Ephemeral Key Pair; Responder Has
Only a Static Key Pair, C(1, 1)

1. Each party shall have an authentic copy of the same set of domain parameters,

D. These parameters shall have been generated as specified in Section 5.5.1. For

FFC schemes, D = (p, q, g{, SEED, pgenCounter}); for ECC schemes, D = (q,

FR, a, b{, SEED}, G, n, h).

CAVS testing requires both the static and ephemeral key pairs be

generated using the same domain parameters.

2.The responder shall obtain assurance of the validity of its own static public key

as specified in Section 5.6.2.1.

Out of scope of the algorithm testing. However, if the IUT has the

supporting function full and/or partial public key validation, the CAVS

Validity Test tests that the IUT can detect an erroneous public/private key

pair.

 57

The responder shall obtain assurance of its possession of the correct value of its

own private key as specified in Section 5.6.3.1.

Out of scope of the algorithm testing. However, if the IUT has the

supporting function key generation, the CAVS Validity Test tests that the

IUT can detect an erroneous public/private key pair.

3.The parties shall have agreed upon an Approved key derivation function (see

Section 5.8) as well as an Approved hash function appropriate for use with the

key derivation function and associated parameters (see Section 5.5).

CAVS testing requires the IUT to indicate what key derivation function

and hash function it supports. CAVS then tests these functions with the

KAS tests.

If key confirmation is used, the parties shall have agreed upon an Approved MAC

and associated parameters (see Tables 1 and 2).

MAC validation testing is a prerequisite to KAS validation.

4. Prior to or during the key agreement process, each party shall obtain the

identifier associated with the other party during the key agreement scheme. The

initiator shall obtain the static public key that is bound to the responder’s

identifier.

CAVS testing requires both parties to obtain the identifier associated with

the other party during key agreement scheme and the static key bound to

that identifier for the testing to succeed.

The initiator shall obtain assurance of the validity of the responder’s static public

key as specified in Section 5.6.2.2.

Out of scope of the algorithm testing. However, if the IUT has the

supporting function full and/or partial public key validation, the CAVS

Validity Test tests that the IUT can detect an erroneous public/private key

pair.

6.2.2.1 dhOneFlow, C(1, 1, FFC DH)
The prerequisites for this scheme shall be satisfied as specified in Section 6.2.2.

 58

In particular, party U shall obtain the static public key yV of party V.

Party U shall execute the following key agreement transformation in order to a)

establish a shared secret value Z with party V, and b) derive shared secret keying

material from Z.

Actions: U shall derive secret keying material as follows:

1. Generate an ephemeral key pair (rU, tU) from the domain parameters D as

specified in Section 5.6.1. Send the public key tU to V.

2. Use the FCC DH primitive in Section 5.7.1.1 to derive a shared secret Z – an

integer in the range [2, p-2] – from the set of domain parameters D, U’s

ephemeral private key rU, and V’s static public key yV. If the call to the FFC DH

primitive outputs an error indicator, zeroize the results of all intermediate

calculations used in the attempted computation of Z, output an error indicator, and

stop.

3. Convert Z to a byte string (which is also denoted by Z) using the Integer-to-

Byte-String Conversion specified in Appendix C.1, and then zeroize the results of

all intermediate calculations used in the computation of Z.

4. Use the agreed-upon key derivation function to derive secret keying material

DerivedKeyingMaterial of length keydatalen bits from the shared secret value Z

and OtherInput (including the identifiers IDU and IDV). (See Section 5.8.) If the

key derivation function outputs an error indicator, zeroize all copies of Z, output

an error indicator, and stop.

5. Zeroize all copies of the shared secret Z and output DerivedKeyingMaterial.

Party V shall execute the following key agreement transformation in order to a)

establish a shared secret value Z with party U, and b) derive shared secret keying

material from Z.

Actions: V shall derive secret keying material as follows:

1. Receive an ephemeral public key tU (purportedly) from U. If tU is not received,

output an error indicator and stop.

2. Verify that tU is a valid public key for the parameters D as specified in Section

5.6.2.3. If assurance of public key validity cannot be obtained, output an error

indicator and stop.

3. Use the FCC DH primitive in Section 5.7.1.1 to derive a shared secret Z – an

integer in the range [2, p-2] – from the set of domain parameters D, V’s static

private key xV, and U’s ephemeral public key tU. If the call to the FFC DH

primitive outputs an error indicator, zeroize the results of all intermediate

calculations used in the attempted computation of Z, output an error indicator, and

stop.

4. Convert Z to a byte string (which is also denoted by Z) using the Integer-to-

Byte-String Conversion specified in Appendix C.1, and then zeroize the results of

all intermediate calculations used in the computation of Z.

5. Use the agreed-upon key derivation function to derive secret keying material

DerivedKeyingMaterial of length keydatalen bits from the shared secret value Z

and OtherInput (including the identifiers IDU and IDV). (See Section 5.8.) If the

key derivation function outputs an error indicator, zeroize all copies of Z, output

an error indicator, and stop.

6. Zeroize all copies of the shared secret Z and output DerivedKeyingMaterial.

 59

THIS APPLIES TO ALL OF SECTION 6.2.2.1

Tested by Validity Test and Function Test with the following exceptions:

Testing of zeroized values is out of scope

Testing of format of OtherInput field is out of scope. IDu and IDv are not

looked for in OtherInput string.

Assurance of public key validity is out of scope of the algorithm testing.

However, if the IUT has the supporting function public key validation, the

CAVS Validity Test tests this function.

6.2.2.2 One-Pass Diffie-Hellman, C(1, 1, ECC CDH)
The prerequisites for this scheme shall be satisfied as specified in Section 6.2.2.

In particular, party U shall obtain the static public key Qs,V of party V.

Party U shall execute the following key agreement transformation in order to a)

establish a shared secret value Z with party V, and b) derive shared secret keying

material from Z.

Actions: U shall derive secret keying material as follows:

1. Generate an ephemeral key pair (de,U, Qe,U) from the domain parameters D as

specified in Section 5.6.1. Send the public key Qe,U to V.

2. Use the ECC CDH primitive in Section 5.7.1.2 to derive a shared secret Z – an

element of the finite field of size q – from the set of domain parameters D, U’s

ephemeral private key de,U, and V’s static public key Qs,V. If this call to the ECC

CDH primitive outputs an error indicator, zeroize the results of all intermediate

calculations used in the attempted computation of Z, output an error indicator, and

stop.

3. Convert Z to a byte string (which is also denoted by Z) using the Field-element-

to-Byte-String Conversion specified in Appendix C.2, and then zeroize the results

of all intermediate calculations used in the computation of Z.

4. Use the agreed-upon key derivation function to derive secret keying material

DerivedKeyingMaterial of length keydatalen bits from the shared secret value Z

and OtherInput (including the identifiers IDU and IDV). (See Section 5.8.) If the

key derivation function outputs an error indicator, zeroize all copies of Z, output

an error indicator, and stop.

5. Zeroize all copies of the shared secret Z and output DerivedKeyingMaterial.

Party V shall execute the following key agreement transformation in order to a)

establish a shared secret value Z with party U, and b) derive shared secret keying

material from Z.

Actions: V shall derive secret keying material as follows:

1. Receive an ephemeral public key Qe,U (purportedly) from U. If Qe,U is not

received, output an error indicator and stop.

2. Verify that Qe,U is a valid public key for the parameters D as specified in

Section 5.6.2.3. If assurance of public key validity cannot be obtained, output an

 60

error indicator and stop.

3. Use the ECC CDH primitive in Section 5.7.1.2 to derive a shared secret Z – an

element of the finite field of size q – from the set of domain parameters D, V’s

static private key ds,V, and U’s ephemeral public key Qe,U. If this call to the ECC

CDH primitive outputs an error indicator, zeroize the results of all intermediate

calculations used in the attempted computation of Z, output an error indicator, and

stop.

4. Convert Z to a byte string (which is also denoted by Z) using the Field-element-

to-Byte-String Conversion specified in Appendix C.2, and then zeroize the results

of all intermediate calculations used in the computation of Z.

5. Use the agreed-upon key derivation function to derive secret keying material

DerivedKeyingMaterial of length keydatalen bits from the shared secret value Z

and OtherInput (including the identifiers IDU and IDV). (See Section 5.8.) If the

key derivation function outputs an error indicator, zeroize all copies of Z, output

an error indicator, and stop.

6. Zeroize all copies of the shared secret Z and output DerivedKeyingMaterial.

THIS APPLIES TO ALL OF SECTION 6.2.2.2

Tested by Validity Test and Function Test with the following exceptions:

Testing of zeroized values is out of scope

Testing of format of OtherInput field is out of scope. IDu and IDv are not

looked for in OtherInput string.

Assurance of public key validity is out of scope of the algorithm testing.

However, if the IUT has the supporting function public key validation, the

CAVS Validity Test tests this function.

6.3 Scheme Using No Ephemeral Key Pairs, C(0, 2)

1. Each party shall have an authentic copy of the same set of domain parameters,

D. These parameters shall have been generated as specified in Section 5.5.1. For

FFC schemes, D = (p, q, g{, SEED, pgenCounter}); for ECC schemes, D = (q,

FR, a, b{, SEED}, G, n, h).

CAVS testing requires both the static and ephemeral key pairs be

generated using the same domain parameters.

2. Each party shall have been designated as the owner of a static key pair that was

generated as specified in Section 5.6.1 using the set of domain parameters, D. For

FFC schemes, the static key pair is (x, y); for ECC schemes, the static key pair is

(ds, Qs).

 61

CAVS testing either assigns or requires the IUT and CAVS to supply the

static key pair so implicitly they are being designated as the owner of that

key.

Each party shall obtain assurance of the validity of its own static public key as

specified in Section 5.6.2.1.

Out of scope of the algorithm testing. However, if the IUT has the

supporting function full and/or partial public key validation, the CAVS

Validity Test tests that the IUT can detect an erroneous public/private key

pair.

Each party shall obtain assurance of its possession of the correct value for its own

private key as specified in Section 5.6.3.1.

Out of scope of the algorithm testing. However, if the IUT has the

supporting function key generation, the CAVS Validity Test tests that the

IUT can detect an erroneous public/private key pair.

3.The parties shall have agreed upon an Approved key derivation function (see

Section 5.8) as well as an Approved hash function appropriate for use with the

key derivation function and associated parameters (see Section 5.5).

CAVS testing requires the IUT to indicate what key derivation function

and hash function it supports. CAVS then tests these functions with the

KAS tests.

If key confirmation is used, the parties shall have agreed upon an Approved MAC

and associated parameters (see Tables 1 and 2).

MAC validation testing is a prerequisite to KAS validation.

4. Prior to or during the key agreement process, each party shall obtain the

identifier associated with the other party during the key agreement scheme and the

static public key that is bound to that identifier.

CAVS testing requires both parties to obtain the identifier associated with

the other party during key agreement scheme and the static key bound to

that identifier for the testing to succeed.

 62

Each party shall obtain assurance of the validity of the other party’s static public

key as specified in Section 5.6.2.2.

Out of scope of the algorithm testing. However, if the IUT has the

supporting function full and/or partial public key validation, the CAVS

Validity Test tests that the IUT can detect an erroneous public/private key

pair.

6.3.1 dhStatic, C(0, 2, FFC DH)
The prerequisites for this scheme shall be satisfied as specified in Section 6.3. In

particular, party U shall obtain the static public key yV of party V, and party V

shall obtain the static public key yU of party U.

Party U shall execute the following key agreement transformation in order to a)

establish a shared secret value Z with party V, and b) derive shared secret keying

material from Z.

Actions: U shall derive secret keying material as follows:

1. Obtain a nonce, NonceU (see Section 5.4). Send NonceU to V.

2. Use the FFC DH primitive in Section 5.7.1.1 to derive a shared secret Z – an

integer in the range [2, p-2] – from the set of domain parameters D, U’s static

private key xU, and V’s static public key yV. If the call to the FFC DH primitive

outputs an error indicator, zeroize the results of all intermediate calculations used

in the attempted computation of Z, output an error indicator, and stop.

3. Convert Z to a byte string (which is also denoted by Z) using the Integer-to-

Byte-String Conversion specified in Appendix C.1, and then zeroize the results of

all intermediate calculations used in the computation of Z.

4. Use the agreed-upon key derivation function to derive secret keying material

DerivedKeyingMaterial of length keydatalen bits from the shared secret value Z

and OtherInput (including the identifiers IDu and IDv, and NonceU.). NonceU

shall be in the PartyUInfo subfield of OtherInfo. If the key derivation function

outputs an error indicator, zeroize all copies of Z, output an error indicator, and

stop.

5. Zeroize all copies of the shared secret Z and output DerivedKeyingMaterial.

Party V shall execute the following key agreement transformation in order to a)

establish a shared secret value Z with party U, and b) derive shared secret keying

material from Z.

Actions: V shall derive secret keying material as follows:

1. Obtain U’s nonce, NonceU, from U. If NonceU is not available, output an error

indicator

and stop.

2. Use the FFC DH primitive in Section 5.7.1.1 to derive a shared secret Z – an

integer in the range [2, p-2] – from the set of domain parameters D, V’s static

private key xV, and U’s static public key yU. If the call to the FFC DH primitive

outputs an error indicator, zeroize the results of all intermediate calculations used

in the attempted computation of Z, output an error indicator, and stop.

 63

3. Convert Z to a byte string (which is also denoted by Z) using the Integer-to-

Byte-String Conversion specified in Appendix C.1, and then zeroize the results of

all intermediate calculations used in the computation of Z.

4. Use the agreed-upon key derivation function to derive secret keying material

DerivedKeyingMaterial of length keydatalen bits from the shared secret value Z

and OtherInput (including the identifiers IDU and IDV, and NonceU). NonceU

shall be in the PartyUInfo subfield of OtherInfo. If the key derivation function

outputs an error indicator, zeroize all copies of Z, output an error indicator, and

stop.

5. Zeroize all copies of the shared secret Z and output DerivedKeyingMaterial.

THIS APPLIES TO ALL OF SECTION 6.3.1

Tested by Validity Test and Function Test with the following exceptions:

Testing of zeroized values is out of scope

Testing of format of OtherInput field is out of scope. IDu and IDv are not

looked for in OtherInput string. (Note NonceU is looked for.)

Assurance of public key validity is out of scope of the algorithm testing.

However, if the IUT has the supporting function public key validation, the

CAVS Validity Test tests this function.

6.3.2 Static Unified Model, C(0, 2, ECC CDH)
The prerequisites for this scheme shall be satisfied as specified in Section 6.3. In

particular, party U shall obtain the static public key Qs,V of party V, and party V

shall obtain the static public key Qs,U of party U.

Party U shall execute the following key agreement transformation in order to a)

establish a shared secret value Z with party V, and b) derive shared secret keying

material from Z.

Actions: U shall derive secret keying material as follows:

1. Obtain a nonce, NonceU (see Section 5.4). Send NonceU to V.

2. Use the ECC CDH primitive in Section 5.7.1.2 to derive a shared secret Z – an

element of the finite field of size q – from the set of domain parameters D, U’s

static private key ds,U, and V’s static public key Qs,V. If the call to the ECC CDH

primitive outputs an error

indicator, zeroize the results of all intermediate calculations used in the attempted

computation of Z, output an error indicator, and stop.

3. Convert Z to a byte string (which is also denoted by Z) using the Field-element-

to-Byte-String Conversion specified in Appendix C.2, and then zeroize the results

of all

intermediate calculations used in the computation of Z.

4. Use the agreed-upon key derivation function to derive secret keying material

DerivedKeyingMaterial of length keydatalen bits from the shared secret value Z

and OtherInput (including the identifiers IDU and IDV, and NonceU). NonceU

 64

shall be in the PartyUInfo subfield of OtherInfo. If the key derivation function

outputs an error indicator, zeroize all copies of Z, output an error indicator, and

stop.

5. Zeroize all copies of the shared secret Z and output DerivedKeyingMaterial.

Party V shall execute the following key agreement transformation in order to a)

establish a shared secret value, Z, with party U, and b) derive shared secret keying

material from Z.

1. Obtain U’s nonce, NonceU, from U. If NonceU is not if available, output an

error indicator and stop.

2. Use the ECC CDH primitive in Section 5.7.1.2 to derive a shared secret Z – an

element of the finite field of size q – from the set of domain parameters D, V’s

static private key ds,V, and U’s static public key Qs,U. If the call to the ECC CDH

primitive outputs an error

indicator, zeroize the results of all intermediate calculations used in the attempted

computation of Z, output an error indicator, and stop.

3. Convert Z to a byte string (which is also denoted by Z) using the Field-element-

to-Byte-String Conversion specified in Appendix C.2, and then zeroize the results

of all intermediate calculations used in the computation of Zs.

4. Use the agreed-upon key derivation function to derive secret keying material

DerivedKeyingMaterial of length keydatalen bits from the shared secret value Z

and OtherInput (including the identifiers IDu and IDv, and NonceU.). NonceU

shall be in the PartyUInfo subfield of OtherInfo. If the key derivation function

outputs an error indicator, zeroize all copies of Z, output an error indicator, and

stop.

5. Zeroize all copies of the shared secret Z and output DerivedKeyingMaterial.

THIS APPLIES TO ALL OF SECTION 6.3.2

Tested by Validity Test and Function Test with the following exceptions:

Testing of zeroized values is out of scope

Testing of format of OtherInput field is out of scope. IDu and IDv are not

looked for in OtherInput string. (Note, NonceU is looked for.)

Assurance of public key validity is out of scope of the algorithm testing.

However, if the IUT has the supporting function public key validation, the

CAVS Validity Test tests this function.

8. Key Confirmation
For key confirmation to comply with this Recommendation, key confirmation

shall be incorporated into key establishment schemes as specified in this section.

If an IUT supports key confirmation, then it is tested by CAVS using the

specification in this section.

 65

If key confirmation is incorporated into a scheme in which a recipient does not

provide an ephemeral public key, a nonce shall be provided for the key

confirmation process.

CAVP – tests this scheme. It requires V to supply a nonce.

8.1 Assurance of Possession Considerations when using Key
Confirmation

The key agreement scheme (including the key confirmation) shall be performed

as described in this Recommendation.

See next section.

8.2 Unilateral Key Confirmation for Key Agreement Schemes

To include unilateral key confirmation from a provider (who has a static key pair)

to a recipient, the following steps shall be incorporated into the scheme.

1. If the recipient does not have an ephemeral key pair and has not already

provided a nonce as part of the scheme, then the recipient shall provide a nonce to

be used in its place (see Section 5.4).

CAVP – tests this scheme. It requires U to supply a nonce.

8.4.4 C(1, 2) Scheme with Unilateral Key Confirmation Provided by U
to V
Since V does not contribute an ephemeral public key during the key agreement

process, a nonce (NonceV) shall be provided to U prior to the computation of the

MacTag and used as the EphemDataV during MacTag computations.

CAVP – tests this scheme. It requires U to supply a nonce.

8.4.6 C(1, 2) Scheme with Bilateral Key Confirmation
V shall contribute a nonce (NonceV) prior to U’s computation of the MacTagU.

CAVP – tests this scheme. It requires V to supply a nonce.

8.4.8 C(0, 2) Scheme with Unilateral Key Confirmation Provided by U
to V

 66

V shall contribute a nonce (NonceV) to U prior to the generation of the MacTagu.

CAVP – tests this scheme. It requires V to supply a nonce.

8.4.10 C(0, 2) Scheme with Bilateral Key Confirmation
V shall contribute a nonce (NonceV) prior to the generation of MacTagU.

CAVP – tests this scheme. It requires V to supply a nonce.

10. Implementation Validation
When the NIST CMVP has established a validation program for this

Recommendation, a vendor shall have its implementation tested and validated by

the CMVP in order to claim conformance to this Recommendation.

CAVS validation testing provides a method to achieve this requirement.

An implementation claiming conformance to this Recommendation shall include

one or more of the following capabilities:

• Domain parameter generation as specified in Section 5.5.1.

• A key agreement scheme from Section 6, together with an Approved key

derivation function from Section 5.8. Other key derivation methods may be

temporarily allowed for backward compatibility. These other allowable methods

and any restrictions on their use will be specified in FIPS 140-2 Annex D. If key

confirmation is also claimed, the

appropriate key confirmation technique from Section 8 shall be used.

At least one key agreement scheme must be implemented by an IUT for

CAVS to test it.

An implementer shall also identify the appropriate specifics of the

implementation, including:

• The security strength(s) of supported cryptographic algorithms; this will

determine the

parameter set requirements (see Tables 1 and 2 in Section 5.5.1),

• The domain parameter generation method (see Section 5.5.1).

• The hash function (see Section 5.1),

• The MAC key size(s) (see Tables 1 and 2 in Section 5.5.1),

• The MAC length(s) (see Tables 1 and 2 in Section 5.5.1),

• The type of cryptography: FFC or ECC,

• The key establishment schemes available (see Section 6),

• The key derivation function to be used, including the format of OtherInfo (see

Section

 67

5.8),

• The type of nonces to be generated (see Section 5.4),

• The NIST Recommended elliptic curve(s) available (if appropriate), and

• The key confirmation scheme (see Section 8).

 CAVS requires the IUT to supply this information.

Appendix C: Data Conversions (Normative)
The bytes of S shall satisfy:

C = Σ 28(n-i)Si for i = 1 to n.

If q is an odd prime, then α must be an integer in the interval [0, q-1]; α shall be

converted to a byte string of length n bytes using the technique specified in

Appendix C.1

above.

The rightmost bit sm shall become the rightmost bit of the last byte Sn, and so on

through

the leftmost bit s1, which shall become the (8n - m + 1)th bit of the first byte S1.

The

leftmost (8n - m) bits of the first byte S1 shall be zero.

If q = 2m, then α must be a bit string of length m bits. Let s1, s2, …, sm be the

bits of α

from leftmost to rightmost. α shall be converted to an integer x satisfying:

x = Σ 2(m-i) si for i = 1 to m.

 CAVS supports this.

