Combinatorial and Random Testing Effectivenessfor a Grid Computer Simulator
D. Richard Kuhf, Raghu Kackér Yu Lei
"National Institute of Standards and Technology, *University of Texas, Arlington,
kuhn@nist.gov, raghu.kacker@nist.gov, ylei@uta.edu

Abstract: This paper compares the effectiveness of randodnt-avay combinatorial testing,
wheret = 2, 3, 4, for a grid computer network simulatétrevious investigations of random vs.
combinatorial testing have reached conflicting Itsswith some showing more effective fault
detection for combinatorial testing and others ifigdno significant difference between the two
methods. In this paper, these two methods are amdgor deadlock detection on a simulator
with tests covering 2-way to 4-way combinationscohfiguration values, paired with an equal
number of randomly generated tests. Random teptiogded better results than pairwise (2-
way) testing and there was no statistically sigaifit difference between the methods for 3-way
testing, but 4-way combinatorial tests detectedentmadlocks than the same number of random
tests. The paper reviews explanations for thesdtseand implications for testing.

1 Background

Pairwise testing is a well-established practicedfiware assurance, atdvay/
combinatorial testing — using 3-way, 4-way, or lghktrength combinations — is attracting
increasing attention. In pairwise, or all-paiesting, every possible pair of input parameters is
assigned every pairwise combination of input valtdeast once. Generalizing this approach to
t-way combinations for > 2 is referred to as combinatorialteway testing. As with any test
methodology, it is important to measure the effextess of combinatorial testing, and to
compare it with other methods so that test enggean make informed decisions.

Some studies have compared the effectiveness dficatorial and random approaches to
testing, but have reached conflicting results. r8etier et al. (2004) and Bach, Schroeder (2004)
found no significant difference between these tagiihg approaches, and Bryce et al. (2006)
found that combinatorial testing provided only aafifrmprovement over random testing in
structural coverage, and no improvement in covefagblack box tests derived from
requirements. However Kobayashi et al. (2001),,Bauk (2005), Pretschner et al. (2008) and
Ellims, Ince, Petre (2008) fourtedvay testing to be more effective for fault detenti In this
paper we compare the effectiveness of these twmappes in finding configurations that lead
to deadlock in a grid computer network simulation.

Evidence for the effectiveness of combinatorialitgsincludes extensive investigations of
pairwise testing (e.g., Burr and Young, 1998; Bugtas et al., 1994; Dohen et al., 1996; Dunietz
et al., 1997; Williams and Probert, 1996), someisiusing interaction strengths above
pairwise (Schroeder et al., 2004; Kuhn and Oku@620and empirical data on the number of
faults at different interaction strengths (Wallarel Kuhn, 2001; Kuhn et al., 2004; Bell, 2006).
These previous studies covered a variety of agmhicalomains. The effectiveness of pairwise
and other combinatorial test methods rests on ltserwation that a significant number of events
in software are triggered only by the interactidétvao or more variable values. By including
tests for all 2-way, 3-way, etc., interactions, tb&t set should be able to detect faults thatroccu
only with complex interactions.

The key enabler in combinatorial testing isogering array that covers aff-way
combinations of parameter values, for the desineshgtht. Covering arrays are combinatorial

objects that represent interaction test suitegovering array CA(N;t,K,V), is anN x k array,

wherek is the number of variables, aads the number of possible values for each variabtdh
that in everyN x t subarray, eacttuple occurs at least once, thas thestrength of the
coverage of interactions, Each row of the covedangy represents a test, with one column for
each parameter that is varied in testing. Colletyi the rows of the array include evaryay
combination of parameter values at least once.ekample, Figure 1 shows a covering array
that includes all 3-way combinations of binary \eddor 10 parameters. Each row corresponds
to one test, and each column gives the values partecular parameter. It can be seen that any
three columns in any order contain all eight pdestombinations (000, 001, 010, 011, 100, 101,
110, 111) of the parameter values. Collectivelig set of tests will exercise all 3-way
combinations of input values in only 13 tests, @®pared with 1,024 for exhaustive coverage.
The primary goal in simulation is to study the babeaof the system with different input
configurations. For example, a production linewdation may study the effects of changing line
speed, interconnection between workstations, afférngize on the number of items that can be
produced per hour. A network simulation may inigede the effect of configurations on packet
rate, delay, or potential for deadlock in the netwo

Parameters
Tests 1 2 3 4 5 6 7 8 9 10
1 0 0 0 0 0 0 0 0 0 0
21 1 1 1 1 1 1 1 1 1
3 1 1 1.0 1 00 0 0 1
4 1 0 1 1 0 1 0 1 0 O
5 1 0 0 0 1 1 1 0 0 0
6 0 1 1 0 0 1 0 0 1 0
7 0 0 1 0 1 0 1 0 1 0
8 1 1 0 1 0 0 1 0 1 0
9 0 0 0 1 1 1 0 0 1 1
10 0 0 1 1 0 0 1 0 0 1
11 0 1 0 1 1 0 0 1 0 0
12 1 0 0 0 0 0 0 1 1 1
13 0 1 0 0 0 1 1 1 0 1
Figurel. 3-way covering array for 10 parameters with 2iealeach.

In this study we compare random and combinatoestirig of a network simulator, to
determine if these two test approaches producéfisigntly different deadlock detection in the
simulation. Using deadlocks as events of interestes evaluating program responses
straightforward and unambiguous. Numerical resutsh as packet rates or delays are not
considered, but could be the subject of a futuvestigation. The two test modes — random or
combinatorial — are compared using a standard aveet t-test for statistical significance.

2 Experimental Evaluation

This work investigates the hypothesis that comlinalttest suites will detect significantly
more deadlocks than random test suites of the saagefor interaction strengths of t = 2, 3, 4.

Independent and Dependent Variables: The independent variable in this study is the e
testing used, eitherway combinatorial or random. The dependent vagiabthe number of
deadlocks detected.

Subject Application and Test Suites: Software under test for the experiment was Simured
(Pardo, 2005), a multicomputer network simulatoredeped at the University of Valencia. The
software is available in C++ and Java versionsb&dh Linux and Windows. The core
command line code (not including user interfacgraphical display) consists of 2,131 lines of
C++. Simured provides a simulation of the switghamd routing layers for a multicomputer,
allowing the user to study grid computer configimas to investigate the effect of topologies
and configurable parameters on routing, timing, atier variables of interest. We used the
C++ command line version of this software, compiléth gcc and run on 64-bit processors
under Red Hat Enterprise Linux V4. No seeded $amitother modifications were made to the
Simured software.

Simured provides a set of 14 parameters that caeti® a variety of values in a
configuration file that is read by the simulatétarameters and values used are shown in Table
1. Larger values are possible for a number ofrpatars, but would require extensive run time
on a large system.

Parameter Values

1 | DIMENSIONS 1,2,4,6,8
2 | NODOSDIM 2,4,6
3 | NUMVIRT 1,2,3,8
4 | NUMVIRTINJ 1,2,3,8
5 | NUMVIRTEJE 1,2,3,8
6 | LONBUFFER 1,2,4,6
7 | NUMDIR 1,2
8 | FORWARDING 0,1
9 [PHYSICAL true, false
10 | ROUTING 0,1,2,3
11 | DELFIFO 1,2,4,6
12 | DELCROSS 1,2,4,6
13 | DELCHANNEL 1,2,4,6
14 | DELSWITCH 1,2,4,6

Table 1. Simured configuration parameters and test valued.us

Evaluation Metrics. Test suites were evaluated according to the numib@eadlocks detected.
We also compare the percentaget-ofay combinations covered for the random test suwfes
equal size, and determine the number of randors testded to provide 100% coverage of the
respectivet-way combinations. (By definition, a covering arqarpvides 100% coverage of
way combinations.)

Threats to Validity: Clearly there is a limitation on the extent to whihese results can be
generalized to other applications. While previ@esnparisons of combinatorial and random
testing focused on fault detection, this study eatds these methods with respect to deadlock
detection in a simulation. Some implications déttifference are discussed in the analysis of
results, in Section 4.2. A second difference esrhture of the software under test. Simured is a
small but complex program that is not assumed tee heharacteristics similar to other
application domains. Network simulation requiea¢ensive calculations for statistics such as
packet transmission rates and delays, and is natttyi comparable to other types of software.

While the issues raised above should be consideredaluating results, we believe that the
experiment has identified a number of factors tat be usefully considered when deciding
whether to use random or combinatorial testingafparticular problem.

3 Testing Procedure

Covering arrays that include #llvay combinations for= 2, 3, and 4 were generated using
the IPOG algorithm (Lei et al., 2007), which prodscompact test suites. Test suites for the
configuration shown in Table 1 included 28, 161d &B2 tests for = 2, 3, and 4 respectively.
Random test suites matching the sizes of the @&)@4-way combinatorial test suites were
produced using the standard C libraapd() function, producing one test at a time with a tall
rand() for each variable value. In generating randordets, theand() function was initialized
with a call tosrand() to seed the pseudo-random number generator frersytem clock. From
these tests, configuration files were generate@fomured and the command line version of
Simured invoked with each configuration file.

Each test set was executed for 500, 1000, 200@, 401 8000-packet simulation runs. For
combinatorial testing, one test suite run was cotetufor each of the five packet counts and
three interaction levels (28, 161, and 752 testsaftotal of 4,705 simulations). Random
generation produces a different test set with ¢@sihgeneration run. For random testing, eight
runs at each combination of packet count and iotieralevel were conducted (37,640
simulations), and the average deadlock detectitouleded.

4 Resultsand Analysis

41 Test Reaults

Results for the two test modes were compared witfardard t-test for paired samples.
Table 2 shows the number of deadlocks detected) tisgts produced from IPOG versus the
average number of deadlocks detected with an equmber of randomly generated tests.
Values for random test detection represent theagecof eight runs with randomly generated
tests at each combination of interaction level packet count. Table 3 gives the two-tailed
probability of a difference between the numbereddiocks detected by combinatorial and that
by random testing.

For pairwise testingt € 2), combinatorial testing detected slightly fewleadlocks than an
equal number of random tests, and the differenstaisstically significant. At interaction
strengtht = 3 the difference between the two test methodsistatistically significant. At= 4,
however, the covering arrays produced by IPOG tldesignificantly more deadlocks than an
equal number of random tests (see Table 3). Iméxésection we consider some possible
reasons for the variation in effectiveness of thesetest methods.

Deadlocks Detected — IPOG
t | Tests | 500 pkts | 1000 pkts | 2000 pkts | 4000 pkts | 8000 pkts
2 28 0 0 0 0 0
3 161 2 3 2 3 3
4 752 14 14 14 14 14
Average Deadlocks Detected — random
t | Tests | 500 pkts | 1000 pkts | 2000 pkts | 4000 pkts | 8000 pkts
2 28 0.63 0.25 0.75 0.50 0.75
3 161 3.00 3.00 3.00 3.00 3.00
4 752 10.13 11.75 10.38 13.00 13.25

Table2. Deadlock detection, IPOG vs. random

Interaction | 2-tailed
strength [probability
2 .0035
3 1778
4 .0235

Table 3. t-test results for difference between random ar@GR)enerated tests

4.2 Analysisof Results

In considering explanations for the results, wstfirote that there can be a number of
differences between the simulations conductedigwtiork and software testing in other
application domains. In many applications, sucbaabases or web applications, different
parameter values may result in different execupatis within the application, but the amount
and complexity of processing is often similar foamg different inputs. Network simulation, by
contrast, may exhibit wide variations in processiegending on whether the input configuration
is a small network of simple topology, or a largemplex one. This difference was observed in
widely varying run times (not reported in this pgpand may also contribute to the distribution
of deadlocks detected at the three interactiondevierevious work (see Section 1) has found
that increasing values bfletect progressively fewer faults, even in cadesraszcombinatorial
testing performed no better than random teststwiza testing t€2) often detected 70% to more
than 90% of faults, while 3-way tests found roughl@o to 20% of more faults, and 4-way to 6-
way tests typically detected less than 5% moredaurlhis distribution is essentially reversed for
the Simured testing (see Table 2), with 0%, 189%,&2% of deadlocks detected=a?, 3, and 4
respectively. This result is not unexpected. Satdn be triggered by combinations of any of
the variables in a program. Even though a largefseariables may be directly or indirectly
involved in triggering deadlocks, the set can beeeked to be much smaller than the total
number of variables in a program. With deadloaksuoring in roughly 2% of simulation runs,
larger test sets would be expected to locate meadldcks. Another significant difference
between the simulation results and conventionéhigss that a program can in most cases be
expected to have a finite number of bugs. In cativaal program testing, it is not surprising
that increasing the number of tests applied agaifiged program with a fixed number of bugs
can result in diminishing returns. Each new tesargeting an ever-decreasing number of
undiscovered faults. With Simured however, canfigion parameters make it possible to
generate a nearly unlimited number of network @urftions, so the ways in which deadlock
can occur are similarly almost unlimited. Each riest has a high probability of generating a

previously untested configuration, so it is possiiolr the number of deadlocks to increase with
larger test sets.

In addition to the “reverse” relationship betweeadlock detection and interaction strength,
another interesting finding was that pairwise telgtt®cted slightly fewer deadlocks than the
same number of random tests. Careful analysis shioat there is in fact a combinatorial
explanation for this result, which we discuss ia temainder of this section.

Because a significant percentage of events cantmntyiggered by the interaction of two or
more variables, one consideration in comparingeandnd combinatorial testing is the degree
to which random testing covers particutavay combinations. Any test set will also cover a
certain proportion of possibte 1, t+2, etc. combinations as well. Table 4 gives terage
percentage afway combinations covered by 100 randomly generasidsets of the same size
as at-way covering array generated by IPOG, for varicuslginations ok = number of
variables andv = number of values per variable. Figures 2 through 6 summarize the coverage
for arrays with variables of 2 to 10 values. Asrse the figures, the coverage provided by a
covering array versus a random test suite of theessize varies considerably with different
configurations. An important practical considesatin comparing combinatorial with random
testing is the effectiveness of the covering agawerator. Algorithms have a wide range in the
size of covering arrays they produce, but all @sghed to produce the smallest array possible
that covers alt-way combinations. It is not uncommon for the é&e#tigorithms to produce
arrays that are more than 50% smaller than otlgerighms. We have found in comparisons
with other tools that there is no uniformly “best§orithm (Lei et al., 2007b). Algorithms vary
greatly in the size of combinatorial test suitesythbroduce, so the comparable random test suites
will also vary in the number of tests. Randontitgsmay produce results similar to
combinatorial tests produced by an algorithm tlestegates a larger, sub-optimal covering array,
because the correspondingly larger random tes$tasea greater probability of covering the
way combinations.

A covering array algorithm that produces a paaot array, i.e., with few tests, foway
combinations may also include fewétX)-way combinations because there are fewer tests.
Tables 7 and 8 illustrate this phenomenon for theugd experiment. Table 7 shows the
percentage aft+1 up tot+3 combination coverage provided by the IPOG tastsin Table 8 the
average coverage of an equivalent number of rartdsta. Although IPOG pairwise tests
provide better 3-way coverage than the random,tastsgher values df the random tests are
roughly the same or better in combination covethga IPOG. Recall from Section 4.1 that
pairwise combinatorial tests detected slightly fedeadlocks than the equivalent number of
random tests. One possible explanation may behbkauperior 4-way and 5-way coverage
(Table 7) of the random tests allowed detectiomofe deadlocks. Almost paradoxically, an
algorithm that produces a larger, sub-optimal ciogearray may provide better fault detection
because the larger array is statistically mordyike includet+1, t+2, and higher degree
interaction tests as a byproduct of the test géioaraThis result demonstrates that the smallest
possible array is not necessarily best for tegtingoses if higher strength interactions are not
also tested. It also suggests that covering ayeagration algorithms that fill “don’t care” values
(those for which all combinations have already bemrered) with random values may provide
better test results by covering a larger numbeé# bft+2, and higher degree combinations.

Now consider the size of a random test set requagulovide 100% combination coverage.
For most covering array algorithms, the difficuttfyfinding tests with high coverage increases
as tests are generated. Thus even if a randombragged test set provides better than 99% of the
coverage of an equal sized covering array, it shoot be concluded that only a few more tests
are needed for the random set to provide 100% ageerTable 5 gives the sizes of randomly
generated test sets required for 100% combinatooiadrage at various configurations, and the
ratio of these sizes to covering arrays computeld iI#fOG. Although there is considerable
variation among configurations, note that the raficandom to combinatorial test set size for
100% coverage exceeds 3 in most cases, with aveatige of 3.9, 3.8, and 3.2t 2, 3, and 4
respectively. Thus combinatorial testing offegnificant advantage over random testing if
the goal is 100% combination coverage.

IPOG Random IPOG Random IPOG Random
Values/ 2-way 2-way 3-way 3-way 4-way 4-way
Vars | Variable tests coverage tests coverage tests coverage
10 2 10 94.1 20 94.3 42 93.2
10 4 30 84.6 151 90.6 657 92.3
10 6 66 85.6 532 91.6 3843 94.8
10 8 117 83.8 1214 90.6 12010 94.7
10 10 172 82.1 2367 90.6 29231 94.6
15 2 10 93.9 24 96.2 58 97.5
15 4 33 88.1 179 94.1 940 97.5
15 6 77 88.6 663 95.4 5243 98.2
15 8 125 86.1 1551 95.2 16554 98.2
15 10 199 86.4 3000 95.0 40233 98.2
20 2 12 96.5 27 97.3 66 98.6
20 4 37 90.9 209 96.2 1126 98.8
20 6 86 91.3 757 97.0 6291 99.2
20 8 142 91.3 1785 96.9 19882 99.2
20 10 215 88.4 3463 96.9 48374 99.2
25 2 12 95.9 30 98.5 74 99.2
25 4 39 92.1 233 97.5 1320 99.4
25 6 89 91.8 839 97.9 7126 99.6
25 8 148 90.3 1971 97.9 22529 99.6
25 10 229 90.0 3823 97.8 54856 99.6

Table 4. Average percent dfway combinations covered by equal number of rantksts

2-way Tests 3-way Tests 4-way Tests
IPOG Random IPOG |Random IPOG |Random
Vars | Values Tests Tests Ratio Tests Tests Ratio Tests Tests Ratio
10 2 10 18 1.80 20 61 3.05 42 150 3.57
10 4 30 145 4.83 151 914 6.05 657 2256 3.43
10 6 66 383 5.80 532 1984 3.73 3843 13356 3.48
10 8 117 499 4.26 1214 5419 4.46 12010 52744 4.39
10 10 172 808 4,70 2367 11690 4,94 29231 | 137590 4,71
15 2 10 20 2.00 24 52 2.17 58 130 2.24
15 4 33 121 3.67 179 672 3.75 940 2568 2.73
15 6 77 294 3.82 663 2515 3.79 5243 17070 3.26
15 8 125 551 4.41 1551 6770 4.36 16554 60568 3.66
15 10 199 940 4,72 3000 15234 5.08 40233 | 159870 3.97
20 2 12 23 1.92 27 70 2.59 66 140 2.12
20 4 37 140 3.78 209 623 2.98 1126 3768 3.35
20 6 86 288 3.35 757 2563 3.39 6291 18798 2.99
20 8 142 630 4,44 1785 8450 4,73 19882 59592 3.00
20 10 215 1028 4,78 3463 14001 4.04 48374 | 157390 3.25
25 2 12 34 2.83 30 70 2.33 74 174 2.35
25 4 39 120 3.08 233 790 3.39 1320 3520 2.67
25 6 89 327 3.67 839 2890 3.44 7126 19632 2.75
25 8 148 845 5.71 1971 7402 3.76 22529 61184 2.72
25 10 229 1031 4.50 3823 16512 4.32 54856 | 191910 3.50
Ratio Average: 3.90 3.82 3.21

Table 5. Size of random test set required for 100%ay combination coverage.

Values

per Ratio, Ratio, Ratio,
variable 2-way 3-way 4-way

2 2.14 2.54 2.57

4 3.84 4.04 3.04

6 4.16 3.59 3.12

8 4.70 4.33 3.44

10 4.68 4.59 3.86

Table 6. Average ratio of random/IPOG for covering arrays
by values per variable, variables = 10, 15, 20, 25

The comparisons between random and combinatosthtedetailed in Tables 4 — 6 suggest
a number of tentative conclusions:

e For binary variables (v=2), random tests compare reasonably well with covering arrays
(94% to 99% coverage) for all three values @fable 4, Figure 2). Thus random testing for
a system under test (SUT) with all or mostly binaayiables may compare favorably with
combinatorial testing. This factor may explainulesin previous studies in which
combinatorial testing performed no better than camdesting. All variables of the
application used in (Bryce et al., 2006) were binand comparably sized random test suites
covered a high number of combinations. For on@ftwo applications studied in
(Schroeder, 2004), 16 of 18 variables were binad/E8 of 19 variables for the other were
either binary or 3-valued. The percentages of déoations covered by random test suites for

binary variables in Table 4 are similar to the cage reported in (Schroeder, 2004), but are
somewhat higher than the coverage in (Bryce e2@06), probably as a result of different
covering array algorithms. Kobayashi et al. (208dmpared combinatorial and random
testing for logic testing (thus 2-valued variablasyl found combinatorial testing superior on
average for 2-way, 3-way, and 4-way tests. Howdeer2-way combinations nearly half of
the random test suites performed as well or b#tter the corresponding 2-way
combinatorial tests.

e Combination coverage provided by random generation of the equivalent number of

pairwise tests at (t = 2) decreases as the number of values per variable increases, and the
coverage provided by pairwise testing is signiftbatess than 100% (Table 4, Figures 2 - 6).
The effectiveness of random testing relative tovpiae testing should be expected to decline
as the average number of values per variable isesea

e For 4-way interactions, coverage provided by random test generation increases with the
number of variables (Table 4). Thus combinatorial testing should lgmigicantly more
effective at fault detection for a module with amyamately 10 variables than random testing,
while the difference between the two test methddsiksl be less for modules with 20 or
more variables.

e The combination coverage advantage of combinatorial testing relative to random testing
decreases at higher interaction levels (Table 4, Figures 2 — 6). For example, with 15
variables of 6 values each, random tests providghly 88% coverage of 2-way
combinations, increasing to 98% coverage for 4-a@ypbinations. Note however that this
does not mean the random test set will be almostfastive as the combinatorial set. A
random test set must still be approximately 4 tithessize of the corresponding
combinatorial set to provide 100% combination cager(Table 5).

e For 100% combination coverage, the advantage of combinatorial testing varies directly
with the number of values per variable and inversely with the interaction strength t (Table 6)
Figure 7 illustrates how these factors (interacstrengtht and values per variablg

combine: the ratio of random/combinatorial coveraghighest for 10 variables with 2,

but declines for other pairings bAndv. Random testing cannot assure any pre-set lével o
desired coverage while covering arrays by definiaghieve 100% combination coverage.
Random testing is significantly less efficient tr@mbinatorial testing, requiring 2 to nearly
5 times as many tests as a covering array to obtamplete coverage (Tables 6). Thus if
100% combination coverage is desired, combinatte&lng should be significantly less
expensive than random test generation.

Note also that the number of faults in the SUT afiect the degree to which random
testing approaches combinatorial testing effecegsn For example, suppose the random
test set covers 99% of combinations for 4-way atgons, and the SUT contains only one 4-
way interaction fault. Then there is a 99% prolitgiihat the random tests will contain the
4-way interaction that triggers this fault. Howeuéthe SUT containsn independent faults,
then the probability that combinations for mfaults are included in the random test set is
.99". Hence with multiple faults, random testing maysignificantly less effective, as its

probability of missing at least one threcombinations that detect these faults will bec’ -
for ¢ = percent coverage ana= number of independent faults.

t-way 2-way 3-way 4-way 5-way Average
coverage | coverage | coverage | coverage | coverage

2 1.00 .758 429 217 0.601

3 1.00 1.00 .924 .709 0.908

4 1.00 1.00 1.00 974 0.994

Table 7. Combination coverage of IPOG t-way tests

Same size 2-way 3-way 4-way 5-way Average
ast-way | coverage | coverage | coverage | coverage | coverage
2 .940 .735 499 .306 0.620
3 1.00 .942 917 .767 0.906
4 1.00 1.00 .965 974 0.985

Table8. Combination coverage of random tests

Away
F-w gy

2w
15 =

20
]

Figure 2. Random coveragetefiay
combinations for v=2.

1003

95%

A gy

Fw gy
2w a3

15 v

20
25

Figure 3. Random coveragetefiay
combinations for v=4.

100%

95%

A Ey

20% Fway

2w
10 15 ay

20

25
Figure 4. Random coveragetefiay
combinations for v=6.

BE%

Bow By
B0% Fwsy
Z-w ay
15 20
25

Figure 5. Random coveragetefiay
combinations for v=8.
100%
B5%6
B0%G
B5% A gy
50% Fway

Zoway
15
20

il

Figure 6. Random coveragetefiay
combinations for v=10

| 4.50-5.00
W 4.00-4.50
3.50-4.00
W 3.00-3.50
@ 2.50-3.00
W 2.00-2.50
[11.50-2.00
01.00-1.50
m0.50-1.00
[0.00-0.50 ' ~ nval=10

Ratio

Values per
variable

Interactions

Figure 7. Average ratio of random/IPOG for covgrairays by values per variable

5 Conclusions

For the simulation program tested in this studyrwae tests detected slightly fewer
deadlocks than an equal number of random testsl-tuaty combinatorial testing produced
better results than an equal number of random. tetsalyzing the random test sets suggests a
number of reasons for these results. Althoughnpsér tests covered all 2-way combinations
and an equal number of random tests covered felaeerandom tests covered more 4-way and
5-way combinations, and thus had a greater prababfltriggering deadlocks that depended
on 4-way or 5-way interactions. However, the 4-waynbinatorial tests covered significantly
more 4-way combinations (100% vs. 96%) and alseigdea equal 5-way coverage compared
with the corresponding random test set, and fouarerdeadlocks as well.

This result demonstrated that the smallest posaiiég is not necessarily best for testing
purposes if higher strength interactions are rext sdsted. When usirtgvay combinatorial
testing, it can be helpful to evaluate the test@etoverage of+1 and higher interaction
strengths. Methods of combining combinatorial earttlom tests may also be effective, as
proposed in Bell (2006) and Bell, Vouk (2006). $baeesults also suggest that covering array
algorithms may provide better test results byrfgli‘don’t care” values with random (rather
than constant, sequential, or other non-randomjegal

Disclaimer: Reference to commercial products adémarks does not imply endorsement by
NIST or any other agency of the US Government, that such products are necessarily best
suited to any purpose.

References

J. Bach, P. Shroeder, Pairwise Testing - A BesttReaThat Isn't. Proceedings of 22nd Pacific
Northwest Software Quality Conference, 2004, p®-186

Kera Z. Bell and Mladen A. Vouk. On effectivene$pairwise methodology for testing
network-centric software. Proceedings of the ITirdhEEE International Conference on
Information & Communications Technology, pages Z3b; Cairo, Egypt, December 2005.

K.Z. Bell, Optimizing Effectiveness and Efficienoy Software Testing: a Hybrid
Approach, PhD Dissertation, North Carolina Statéversity, 2006.

R. Bryce, A. Rajan, M.P.E. Heimdahl, Interactiorsiieg in Model Based Development: Effect
on Model Coverage, IEEE, 13th Asia Pacific Softwangineering Conference (APSEC'06)

pp. 259-268.

K. Burr and W. Young, Combinatorial Test TechniguEesble-Based Automation, Test
Generation, and Test Coverage, International Centr on Software Testing, Analysis, and
Review (STAR), San Diego, CA, October, 1998

K. Burroughs, A. Jain, and R. L. Erickson. Imprdwiality of protocol testing through
techniques of experimental design. In Proceedifigise IEEE International Conference on
Communications (Supercomm/ICC'94), May 1-5, Newe@nk, Louisiana, USA. IEEE, May
1994, pp. 745-752

D. M. Cohen, S. R. Dalal, J. Parelius, G. C. Pattbe Combinatorial Design Approach to
Automatic Test Generation IEEE Software, Vol. 18, N, pp. 83-87, September 1996

M. Ellims, D. Ince, M. Petre, The Effectivenessle¥ay Test Data Generation, SAFECOMP
2008, pp. 16-29, Springer Verlag.

I. S. Dunietz, W. K. Ehrlich, B. D. Szablak, C.Mallows, A. lannino. Applying design of
experiments to software testing Proceedings ofrttieConf. on Software Engineering,
(ICSE '97), 1997, pp. 205-215, New York

Kuhn, D. R., D. Wallace, and A. Gallo, “SoftwareuRdnteractions and Implications for
Software Testing,” IEEE Transactions on Softwargikeering, 30(6):418-421, 2004.

Kuhn, D. R. and V. Okun, “Pseudo-exhaustive Tesfimgsoftware,” Proceedings of 30th
NASA/IEEE Software Engineering Workshqmp. 153-158, 2006.

D.R. Kuhn, M.J. Reilly, An Investigation of the Aljpgability of Design of Experiments to
Software Testing, 27th NASA/IEEE Software EnginegiWWorkshop, NASA Goddard
Space Flight Center, 4-6 December, 2002 .

Lei, Y., R. Kacker, D.R. Kuhn, V. Okun, J. Lawrent®OG/IPOG-D: Efficient Test
Generation for Multi-Way Combinatorial Testing”, fBeare Testing, Verification, and
Reliability. (Published Online: Nov 29 2007, DOD.1002/stvr.381)

Y.Lei, R. Kacker, D.R. Kuhn, V. Okun, J. Lawrenti®OG - a General Strategy for t-way
Testing", IEEE Engineering of Computer Based Systeanference, 2007.

Kobayashi, N., T. Tsuchiya, T. Kikuno, “Applicaltyliof Non-Specification Based Approaches
to Logic Testing for Software’Rroceedings of the 2001 International Conference on
Dependable Systems and Networks, IEEE, pp. 337 — 346.

F. Pardo, JSimured - Simulador de Redes de Mulficdatdores Paralelo, University of
Valencia, May, 2005. http://simured.uv.es/doc/meepdf

Alexander Pretschner, Tejeddine Mouelhi, Yves Laofit Model Based Tests for Access
Control Policies2008 International Conference on Software Testing, Verification, and
Validation pp. 338-347

Patrick J. Schroeder, Pankaj Bolaki, and Vijayraop& Comparing the fault detection
effectiveness of n-way and random test suitesrdeddings of the IEEE International
Symposium on Empirical Software Engineering, patfsh9, 2004.

Wallace, D. R. and D. R. Kuhn, “Failure Modes indvtml Device Software: An Analysis of 15
Years of Recall Data,” International Journal ofiRlgillity, Quality and Safety Engineering,
8(4):351-371, 2001.

A.W. Williams, R.L. Probert. A practical stratefpyr testing pair-wise coverage of network
interfaces The Seventh International Symposiumaftwére Reliability Engineering
(ISSRE '96) p. 246

