
CSS and Screen Readers 1

CSS in Action: Invisible Content with Screen Readers

http://www.webaim.org/techniques/css/invisiblecontent/

Hiding Text from Sighted Users

Fortunately, there are ways of resolving the conflicts between the needs and
desires of visual users and those of screen reader users. This paper examines a
few circumstances in which hiding text from visual users can be beneficial, and
proposes a solution which allows HTML to be hidden without compromising the
accessibility or semantic integrity of the document, and which works across
browsers and platforms.

The essence of the technique proposed in this document is to hide the content
above the viewable area of the browser and to also shrink the content to a height
and width of 1 pixel. The combination of moving the content and shrinking it is
what allows this technique to work across a wide range of browsers and
platforms.

Sample Code 1

The following code should appear in the style sheet:

.hidden
{position:absolute;
left:0px;
top:-500px;
width:1px;
height:1px;
overflow:hidden;}

The CSS class should then be referenced from within the tag of the element
being hidden, as shown:

<div class="hidden">This text is hidden.</div>

Sample Code 2

The following code should appear in the style sheet:

.hidden
{
position:absolute;
left:0px;
top:-500px;
width:1px;

http://www.webaim.org/techniques/css/invisiblecontent/

CSS and Screen Readers 2

height:1px;
overflow:hidden;
}

h1
{
height:30;
width:60;
background-image:url(h1.jpg);
}

The CSS class should then be referenced from within the tag of the element
being hidden, as shown:

<h1>This heading text is hidden.</h1>

Sample Code 3

The following code should appear in the style sheet:

#skip a, #skip a:hover, #skip a:visited
{
position:absolute;
left:0px;
top:-500px;
width:1px;
height:1px;
overflow:hidden;
}

#skip a:active
{
position:static;
width:auto;
height:auto;
}

The CSS class should then be referenced from within the tag of the element.

<div id="skip">Skip to Main Content</div>

Forms within data tables

To a visual user, table header cells can perform the dual function of organizing
table content and also providing labels for the form elements within that table, as
seen in the screenshot of a form within a data table below.

CSS and Screen Readers 3

Figure 1. Data table used to provide "labels" for form elements

To a screen reader user, the table row and column headers are somewhat useful
in terms of understanding the layout of the table, but the headers do not act as
form labels. When screen reader users tab from one form element to another,
they will not hear the table headers read to them. In fact, they will not hear any
label at all. Screen readers require text labels. Ideally, these labels should be
wrapped in the <label> tag, as recommended by WCAG 1.0. Additional labeling
and grouping can be accomplished by using the <fieldset> and <legend> tags.

In this particular instance, however, visual users will not receive any added
benefit from the visual text labels. To them, such text labels would be redundant
with the table headers, since, in a visual sense, these headers already provide
adequate labels for the form elements. Here is how the same table would look to
visual users if standard text labels were added, with the <label> tag, <fieldset> tag,
and <legend> tag:

CSS and Screen Readers 4

Figure 2. Form with labels within a data table.

Though screen reader users will be happy with this version of the table, most
sighted users will find the additional text to be a distraction. To visual users, the
table has just become more crowded, wordy, and harder to understand at a
glance. This is a situation in which the addition of markup intended to benefit
screen reader users interferes with the accessibility, or at least the user-
friendliness of the content to visual users.

Sample Code 4

The following code should appear in the style sheet:

.hidden
{
position:absolute;
left:0px;
top:-500px;
width:1px;
height:1px;
overflow:hidden;
}

The CSS class should then be referenced from within the tag of the element
being hidden, as shown:

…
<label for="amembers" class="hidden">Number of members in team A</label>
…

Multiple form elements that "share" a single label

Another example of apparent incompatibility between the needs of screen
readers users and visual users occurs when developers create multiple form
elements that seem as though they ought to belong to the same label. A common
example of this is when two, or more text input elements are used for phone
numbers.

Figure 3. Form labels that apply to more than one form element.

In the screenshot above, most visual users in North America will understand that
the individual text input areas correspond to the different sections of standard
phone numbers. Screen reader users may attempt to enter the entire phone
number in the first box. When they discover that the box limits them to only 3

CSS and Screen Readers 5

characters, this will likely lead to some confusion. Some users will be able to
figure out the entire context after experimenting with it, but this kind of
experimentation takes time, and is unnecessary.

The most obvious workaround for this particular problem would be to combine all
of the text input boxes into a single text input box, and then provide the
appropriate label. This may be the best solution in most circumstances in almost
every way. Nevertheless, the CSS technique can be applied to this situation also.

Sample Code 5

.hidden
{
position:absolute;
left:0px;
top:-500px;
width:1px;
height:1px;
overflow:hidden;
}

The CSS class should then be referenced from within the tag of the element
being hidden, as shown:

<form method="post" action="">
<p>Phone number:
(
<label for="area" class="hidden">Area code</label>
<input name="area" type="text" size="3" maxlength="3" id="area" />
)
<label for="first" class="hidden">first 3 digits</label>
<input name="first" type="text" size="3" maxlength="3" id="first" />
-
<label for="last" class="hidden">last 4 digits</label>
<input name="last" type="text" size="4" maxlength="4" id="last" />
<label for="ext" class="hidden">extension</label>
<input name="ext" type="text" size="5" maxlength="5" id="ext" />
</p>
<p><input type="submit" name="Submit" value="Submit" /></p>
</form>

Sample Code 6

The following code should appear in the style sheet:

.hidden
{ position:absolute;
left:0px;
top:-500px;
width:1px;

CSS and Screen Readers 6

height:1px;
overflow:hidden;
}

The CSS class should then be referenced from the <label> tag, as shown:

<div class="hidden">Begin main menu.</div>
...
<div class="hidden">End main menu.</div>

	Cascading Style Sheets with Screen Readers
	CSS in Action: Invisible Content with Sc
	http://www.webaim.org/techniques/css/inv
	Hiding Text from Sighted Users
	The essence of the technique proposed in
	Sample Code 1
	Sample Code 1

	The following code should appear in the
	The class should then be referenced fro
	CSS

	Sample Code 2
	Sample Code 2

	The following code should appear in the
	The class should then be referenced fro
	CSS

	Sample Code 3
	Sample Code 3

	The following code should appear in the
	The class should then be referenced fro
	CSS

	<div id="skip">Skip t
	<div id="skip">Skip t

	Forms within data tables
	To a visual user, table header cells can
	Figure 1. Data table used to provide "la
	Figure 1. Data table used to provide "la

	To a screen reader user, the table row a
	<label>
	WCAG
	<fieldset>
	<legend>

	In this particular instance, however, vi
	<label>
	<fieldset>
	<legend>

	Figure 2. Form with labels within a data
	Figure 2. Form with labels within a data

	Though screen reader users will be happy
	Sample Code 4
	Sample Code 4

	The following code should appear in the
	The class should then be referenced fro
	CSS

	Multiple form elements that "share" a si
	Another example of apparent incompatibil
	Figure 3. Form labels that apply to more
	Figure 3. Form labels that apply to more

	In the screenshot above, most visual use
	The most obvious workaround for this par
	CSS

	Sample Code 5
	Sample Code 5

	The class should then be referenced fro
	CSS

	Sample Code 6
	Sample Code 6

	The following code should appear in the
	The class should then be referenced fro
	CSS
	<label>

